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Abstract
Chaos systems have obtained wide applications in physics, chemistry, physiology,
biology and various engineerings. Duffing system, van der Pol system and nonlinear Mothieu
system all are paradigmatic chaotic systems in chaotic dynamics. lkeda system and

Mackey-Glass system are paradigmatic electro-optical and physiological system. Two kinds of

inertial tachometer are also important mechanical systems. In this project, by suitable coupling,

four new systems, namely, Duffing-van der Pol system, Mathieu-Duffing system, Mathieu-van
der Pol systems and Ikeda-Mackey-Glass system are given. Two kinds of inertial tachometer are
also new important systems.

Chaos control and synchronization have rapidly extended their application for physical,
chemical, biological systems, secure communication, neural networks, self-organization etc. In
this project, a new chaos control and anticontrol method, two new chaos synchronization
methods are proposed. They all deserve significant both theoretical and practical
importance: 1.pragmatical adaptive chaos control and anticontrol for different systems.
Traditional chaos control and anticontrol only work for the same system. The new method
extends the chaos control and anticontrol to other different systems, greatly increases its
effectiveness. 2.new chaos synchronization method for uncoupled systems. For traditional
synchronization by coupling, there exist defections of losing secret and lagging of signals,
which can by eliminated by uncoupled synchronization. Traditional uncoupled synchronization
are obtained by exciting two corresponding parameters of the systems to be synchronized by the
same chaotic or noise signal. In this project, (a)multichanneled various excitations(various time
function, chaotic function, noise, etc)are used to increase the reliability of synchronization in the
accident of interruption of part of the channels.(b)Synthetic excitations(e.g. periodically
modulated chaotic signal, chaos modulated noise, etc)are used to ensure the security.
(c)(a)(b)are used simultaneously to ensure more security. (d)(a),(b),(c) are used for fractional
order systems and time-delay systems. 3.New exponential backstepping synchronization method.
In traditional chaos synchronization method, Lyapunov function V is positive definite, V is
negative definite, the settling time of synchronization is rather long, the control quality is not
satisfactory. In this project, exponential synchronizations used to increase the control quality
greatly. Combined with backstepping design, three advantages are obtained: 1. Settling time is
decreased greatly. 2.V functions are chosen step by step, which becomes more easy. 3.The
number of controller is decreased. The main parts of our study are:

1. The study of chaos of Mathieu-van der Pol system and Ikeda- Mackey-Glass system: By
phase portraits, bifurcation diagrams, power spectra, Lyapunov exponents, the various chaotic
behaviors of these systems will be studied.

2. New uncoupled synchronization method. Multichanneledly synthetically excited

VIII



synchronizations for integral and fractional ordered, time-delay systems are studied.

3. The study of chaos of Duffing-van der Pol system and Mathieu-Duffing system: By  phase
portraits, bifurcation diagrams, power spectra, Lyapunov exponents, the various chaotic
behaviors of these systems will be studied. The regions and shapes of the strange attractors,
hyperchaos, ect will also be studied.

4. New pragmatical adaptive chaos control and anticontrol method for different systems.
pragmatical asymptotical stability theory by probability concept is used to prove the estimated
parameters must approach the unknown parameters.

5. The study of chaos of two kinds of inertial tachometer:By phase portraits, bifurcation
diagrams, power spectra, Lyapunov exponents, the various chaotic behaviors of these systems
will be studied.

6. New exponential backstepping synchronization method.

key words: Duffing-van der Pol system, Mathieu-Duffing system, Mathieu-van der Pol system,
Ikeda- Mackey-Glass system, Inertial tachometer system, Pragmatical adaptive chaos control and
anticontrol method, Multichannelly an Synthetically excited uncoupled chaos synchronization,

Exponential backstepping chaos synchronization.
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Chapter 1

Introduction

Chaotic phenomena have been observed in physics, chemistry, physiology, and many
disciplines [1-3]. In contrast with the famous chaotic systems, such as Lorenz system, Duffing
system, and Rdssler system, nonlinear Mathieu system is less mentioned [4-9]. However,
nonlinear Mathieu system is important and can be applied in analysis of the resonant micro
electro mechanical systems [10-12]. In this report, the new autonomous and new nonautonomous
chaotic systems constructed by mutual linear coupling of two non-identical nonlinear damped
Mathieu systems are studied.

Nonlinear dynamics, commonly called the chaos theory, changes the scientific way of
looking at the dynamics of natural and social systems, which has been intensively studied over
the past several decades. The phenomenon of chaos has attracted widespread attention amongst
mathematicians, physicists and engineers. Chaos has also been extensively studied in many fields,
such as chemical reactions, power converters, biological systems, information processing, secure
communications, etc. [1-6]. Whilst many researchers analyze complicated, physically motivated
configurations, there is also a need to investigate simple equations which may capture the essence
of chaos in a less involved setting, thereby aiding the understanding of essential characteristics.
The original investigation of an extraordinary three-dimensional nonlinear system by the
mathematical meteorologist E.N. Lorenz who discovered chaos in a simple system of three
autonomous ordinary differential equations in order to describe the simplified Rayleigh—Benard
problem [7] (which is called Yang Lorenz system in this paper) is the most popular system for
studying.

There are tremendous amount of articles in studying Yang Lorenz and other systems [8-12].

Although these systems have been analyzed in detail, there are no articles in looking into these

systems, such as Lorenz system with x(—t), y(—t),z(—t)and — t (which is called Yin Lorenz system
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in this article). Since Lorenz discovered chaos on 1963, all studies of chaos concentrated when
time went forward i.e.t : 0 — oo in the last 47 years. Physically backward time,t : 0 — —o0, has
not discovered up to now, but mathematically it can be easily performed and must be studied for
complete understanding of the property of chaos. In this Chapter, we find out that there are rich
dynamics in such Yin Lorenz system.

In Chinese philosophy, Yin is the negative, historical or feminine category in nature, while
Yang is the positive, comtemporary or masculine category in nature. Yin and Yan are two
fundamental opposites in Chinese philosophy. In Chapter 2, the Yin Lorenz system is introduced
and the chaotic behavior with Yin parameters is investigated by phase portrait, Lyapunov
exponents and bifurcation in the following simulation results. We use positive, i.e. Yang,
parameters for the Yang Lorenz system, and negative, i.e. Yin, parameters for the Yin Lorenz
system.

Chaotic systems are characterized by one positive Lyapunov exponent (PLE) in the
Lyapunov spectrum [2-9]. The one PLE just indicates that the dynamics of the underlying chaotic
attractor expands only in one direction. If a chaotic attractor is characterized by more than one
positive Lyapunov exponent, it is termed hyperchaos. In this case, the dynamics of the chaotic
attractor expands in more than one direction giving rise to a ‘“‘thick™ chaotic attractor [10-14].
There are both theoretical and practical interests in hyperchaos. Hyperchaos was first reported
from computer simulations of hypothetical ordinary differential equations in [15-17]. The first
observation of hyperchaos from a real physical system, a fourth-order electrical circuit, was later
reported in [18]. Very few hyperchaos generators have been reported since then [19-22].

As the numerical example, recently developed new Mathieu-van der pol autonomous
oscillator with four state variables is used. For this new system four Lyapunov exponents are not
zero. Although by traditional theory [23], for four-dimensional continuous-time systems, there
must be a zero Lyapunov exponent, however, on the history of science, as said by T. S. Kuhn in
his book “The Structure of Scientific Revolution”, the unexpected discovery or anomality

(counterinstance) is not simply factual in its import and the scientist’s world is qualitatively
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transformed as well as quantitatively enriched by fundamental novelties of either fact or theory.
“Conversion as a feature of revolutions in science” is the conclusion of the book “Revolution in
Science” written by 1. B. Cohen [24]. One of the patterns of the evolution of science is: current
paradigm — normal science — anomality (counterinstance) — crisis — emergence of
scientific theories — new paradigm.

Recently, Ott and Yorke [25] show that the existence of Lyapunov exponents is a subtle
question for systems that are not conservative. They describe a simple continuous-time flow such
that Lyapunov exponents fail to exist at nearly every point in the phase space. Ge and Yang [26]
firstly find out the simulation results of 3PLES in Quantum Cellular Neuro Network autonomous
system with four state variables. As a consequence, in Chapter 3, Mathieu-van der pol
autonomous system with four state variables is introduced, and the hyperchaos for 3PLEs are
investigated by phase portrait, power spectrum, Lyapunov exponents and parameter diagram in
the following simulation results.

In our natural world, plenty of chaotic systems describing natural phenomenon are found
that they have some states always positive. It means these states are always in the first quadrant.
Such as the three species prey-predator system [36], double Mackey-Glass systems [37-38],
energy communication system in biological research [39] and virus-immune system [40]. In
Chapter 4, a new strategy to achieve chaos control by GYC partial region stability theory is
proposed [32-33]. Via using the GYC partial region stability theory, the new Lyapunov function
is a simple linear homogeneous function of error states and the lower order controllers are much
more simple and introduce less simulation error.

In Chapter 5, a new chaos generalized synchronization strategy by GYC partial region
stability theory is proposed [20-21]. It means that there exists a given functional relationship
between the states of the master and that of the slave. Via using the GYC partial region stability
theory, the new Lyapunov function is a simple linear homogeneous function of states and the
lower order controllers are much more simple and introduce less simulation error.

In current scheme of adaptive synchronization, traditional Lyapunov stability theorem and
12



Barbalat lemma are used to prove that the error vector approaches zero as time approaches
infinity, but the question that why those estimated parameters also approach the uncertain values
remains no answer. In this article, pragmatical asymptotically stability theorem and an
assumption of equal probability for ergodic initial conditions [50-51] are used to prove strictly
that those estimated parameters approach the uncertain values. Moreover, traditional adaptive
chaos synchronization in general is limited for the same system. Therefore, In Chapter 6, a new
adaptive synchronizing strategy - pragmatical adaptive synchronization by GYC partial region
stability theory is proposed as well. Via using this new approach, the new Lyapunov function is a
simple linear homogeneous function of states and the lower order controllers and parametric
update laws are much simpler and introduce less simulation error.

There are various types of synchronization, such as complete synchronization [48],
generalized synchronization [49], phase synchronization [50], lag synchronization [51], and so on.
Among these types of synchronization, generalized synchronization is one of the most interesting
topics. Generalized synchronization refers to a functional relation between the state vectors of
master and slave, i.e. ¥ =F(X,t), where X and y are the state vectors of master and slave. In
the work of Ref. [52], the generalized synchronization is extended to a more general form,
y =F(X,y,t), where the “slave” y is not a traditional pure slave obeying the “master” X
completely but plays a role to determine the final desired state of the “slave”. Since the “slave”
y plays an “interwined” role, this type of synchronization is called “symplectic
synchronization™', the master is called “partner A”, and the slave is called “partner B”. In this
report, we propose two types of new chaos synchronization, “non-simultaneous symplectic
synchronization” and “double symplectic synchronization”.

We propose the “non-simultaneous symplectic synchronization”, Yy(t) =F(X(7),y(t),t),
where ¢ is a given function of time t, so-called variable scale time. The synchronization is
achieved at “different time” for “partner A” X(7) and “partner B” y(t), therefore we call this
type of synchronization “non-simultaneous symplectic synchronization”. When 7=t,

non-simultaneous symplectic synchronization reduces to symplectic synchronization. When
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applying the non-simultaneous symplectic synchronization in secret communication, since the
functional relation of the non-simultaneous symplectic synchronization is more complex than that
of the traditional generalized synchronization, and cracking the variable scale time 7 is an extra
task for the attackers in addition to cracking the system model and cracking the functional
relation, the message is harder to be detected by applying the non-simultaneous symplectic
synchronization than by applying traditional generalized synchronization. Therefore, the
non-simultaneous symplectic synchronization may be applied to increase the security of secret
communication. In order to achieve non-simultaneous symplectic synchronization, nonlinear
control [53] and adaptive control are applied. In the work of Ref. [53], the induced matrix norm
and the Lipschitz constant are obtained by auxiliary numerical simulation. However, they can be

estimated theoretically by using the property of induced matrix norms [54a] and by applying

' The term “symplectic” comes from the Greek for “interwined”. H. Weyl first introduced the term in 1939 in his book

“The Classical Groups” (p. 165 in both the first edition, 1939, and second edition, 1946, Princeton University Press).

adaptive control. Furthermore, in our case, non-simultaneous symplectic synchronization, the
complexity of the functional relation F(X(7),y(t),t) is greater than that studied in Ref. [53], thus
the Lipschitz constant may be enormous. However, by applying adaptive control, the estimated
Lipschitz constant is much less than the Lipschitz constant obtained by applying nonlinear
control. This result in the reduction of the gain of the controller, i.e. the cost of controller is
reduced. The proposed scheme is effective and feasible for both autonomous and nonautonomous
chaotic systems, whether the dimensions of X(7) and Yy(t) systems are the same or not.

In practice, some or all of the system parameters are uncertain. Moreover, these parameters
change from time to time. Many researchers solve this problem by adaptive synchronization
[122-127]. In current scheme of adaptive synchronization, traditional Lyapunov asymptotical
stability theorem and Babalat lemma are used to prove the errors of synchronizing states
approach zero. But the question that why the estimated parameters also approach the uncertain
values, has still remained without answer. By the pragmatical asymptotical stability theorem

[128-129] and an assumption of equal probability for ergodic initial conditions, the answer can
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be given.
Among many kinds of synchronizations, the generalized synchronization is investigated

[130-142]. It means there exists a given functional relationship between the states of the master
and that of the slave Y =G(X), where x, Yy are the states vector of master system and slave

system respectively. In this report, a special kind of generalized synchronizations
y=G(X)=x+F(t) isstudied, where F(t) is a given vector function of time which may take
various forms, either regular or chaotic function of time. When F(t)=0, it reduces to a
complete synchronization [143-144]. As a numerical example, two identical double Duffing
chaotic systems [145] and a double van der Pol chaotic system [146-147] are used as master
system, slave system, and goal system, respectively. The goal system gives chaotic F(t). Next,
the robustness of the generalized synchronization is also studied [148-154].

The contents of this report are as follows. Chapter 2 contains the dynamics of new
autonomous and nonautonomous chaotic systems. The system models are described and the
numerical results of regular and chaotic behaviors are presented. In Chapter 3, generalized
synchronization of new chaotic systems is achieved by applying pure error dynamics and
elaborate Lyapunov function. The methods of designing Lyapunov function are presented, and
both new autonomous and new nonautonomous chaotic systems are illustrated in examples. By
applying pure error dynamics and elaborate nondiagonal Lyapunov function, nonlinear
generalized synchronization of new chaotic systems is obtained in Chapter 4. We propose the
methods of designing Lyapunov function, and illustrate them by both new autonomous and new
nonautonomous chaotic systems in examples. In Chapter 5, the dynamics of nonholonomic
systems is studied by applying the fundamental nonholonomic form of Lagrange’s equations.
Two types of external nonholonomic constraints are studied for moving target pursuit problems:
a straightly oscillating target and a circularly rotating target. Numerical results show that chaos
exists in each case. By applying the nonlinear nonholonomic form of Lagrange’s equations, the

dynamics of nonlinear nonholonomic system is studied in Chapter 6. We investigate external
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nonlinear nonholonomic constraint: the magnitude of velocity keeping constant. Chaos is proved
to exist in each case by numerical results. Furthermore, Feigenbaum number rule still holds for
nonlinear nonholonomic system. In Chapter 7, the non-simultaneous symplectic synchronization
is proposed, and it is achieved by applying adaptive control. The synchronization scheme is
presented, and chaotic systems with the same or different dimensions are illustrated in examples.
We investigate the double symplectic synchronization by applying active control in Chapter 8.
The synchronization scheme is derived, and both autonomous and nonautonomous chaotic
systems are illustrated in examples. In Chapter 9 the fractional derivative and its approximation
are introduced. And then gives the dynamic equation of double Duffing system. The system
under study is described both in its integer and fractional forms. Numerical simulation results
are presented. In Chapter 10, a brief description of synchronization scheme based on the
substitution of the strengths of the mutual coupling term of two identical chaotic double Duffing
systems by the chaotic variable of a third double Duffing system are presented. And numerical
simulations are given for illustration. It is found that one can obtain CS or AS by adjusting the
driving strength and initial conditions. In Chapter 11, chaos synchronization and
antisynchronization are obtained by replacing two corresponding parameters of two uncoupled
identical double Duffing chaotic dynamical systems by a white noise, a Rayleigh noise, a Rician
noise or a uniform noise respectively. It is found that one can obtain CS or AS by adjusting the
driving strength. In Chapter 12, theoretical analyses of the pragmatical asymptotical stability are
quoted. Adaptive controllers are designed for the pragmatical generalized synchronization of
two double Duffing chaotic oscillators with a double van der Pol chaotic system as a goal
system. High robustness of the generalized synchronization is also obtained in Chapter 12. In
Chapter 13, chaotic behaviors of a fractional order double van der Pol system are studied by
phase portraits and Poincaré maps. It is found that chaos exists in this system with order from
3.9 down to 0.4 much less than the number of states of the system. Linear transfer function
approximations of the fractional integrator block are calculated for a set of fractional orders in

[ 0.1, 0.9 ] based on frequency domain arguments. In Chapter 14, the variable of a third double
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van der Pol system substituted for the strength of two corresponding mutual coupling term of
two identical chaotic double van der Pol system, give rise to their complete synchronization (CS)
or anti-synchronization (AS). Numerical simulations show that either CS or AS depends on
initial conditions and on the strengths of the substituted variable. In Chapter 15, we focus on the
synchronization and antisynchronization of two identical double Duffing systems whose
corresponding parameters are replaced by a white noise, a Rayleigh noise, a Rician noise or a
uniform noise respectively. It is noted that whether CS or AS appear depends on the driving
strength. In Chapter 16, based on a pragmatical theorem of asymptotical stability using the
concept of probability, an adaptive control law is derived such that it can be proved strictly that
the zero solution of error dynamics and of parameter dynamics is asymptotically stable.
Numerical results are given for a chaotic double van der Pol system controlled to a double
Duffing system. In Chapter 17, chaos in new integral and fractional order double Ikeda delay
systems is studied. A double Ikeda delay system consists of two traditional Ikeda delay systems
which are coupled together. Numerical simulations display the chaotic behaviors of the integral
and fractional order delay systems by phase portraits, Poincaré maps and bifurcation diagrams.
In Chapter 18, the chaotic behaviors of double Ikeda systems are obtained by replacing the
original constant delay time by a function of chaotic state variable of a second chaotic double
Ikeda system. The method is named delay time excited chaos synchronization which can be
successfully obtained for some cases. Numerical simulations are illustrated by phase portraits.
Phase portrait is expressed by numerical analysis. In Chapter 19, it is discovered that lag
synchronization and lag anti-synchronization appear for two identical double Ikeda systems,
without any control scheme or coupling terms, but with different initial conditions. In Chapter
20, the chaotic behaviors of double Ikeda systems are obtained by replacing the parameters by
different chaotic state variables of a third chaotic double Ikeda system. The method is named
parameter excited method for synchronization which will be successfully used for uncoupled
synchronization. Numerical simulations are illustrated by phase portraits and time histories. In

Chapter 21, a new double Mackey-Glass delay system, which consists of two coupled
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Mackey-Glass systems, is studied. Numerical simulations display the chaotic behaviors of the
integral and fractional order delay systems by phase portraits and bifurcation diagrams. In
Chapter 22, a control method called parameter excited method is applied to control a double
Mackey-Glass chaotic system and to synchronize two uncoupled double Mackey-Glass systems.
By replacing a parameter of the chaotic system by a noise signal, its chaotic motion can be
eliminated. By replacing the corresponding parameters of two identical chaotic systems by a
noise signal, these two chaotic systems with different initial conditions can be synchronized. For
some chaotic systems, such as physical and electrical systems, which are difficult or even
impossible to couple, this method is effective and potential in practice. In Chapter 23, it is
discovered that TLS, TAS and TALS, TAAS appear for two identical double Mackey-Glass
systems, without any control scheme or coupling terms, but with different initial conditions. In
Chapter 24, the lag synchronization of two uncoupled double Mackey-Glass systems is achieved
via the parameter excited method. This method is accomplished by replacing the corresponding
parameters of the systems with two lag noise signals. By means of the difference of the timing
between two replacements for the first system and the second system, the lag synchronization
can be obtained. The parameter of the first system is substituted by a noise at t =0sec, and the
parameter of the second system is substituted by the noise at t=dsec. In other words, the
control schemes do not work synchronously for these two systems. Parameter excited method is
effective and potential in practice for some chaotic systems which are difficult or even
impossible to be coupled. Temporary lag synchronization, partial lag synchronization, chaos
control and robustness of lag synchronization are also obtained by this method. Finally, the

conclusions of the whole report are drawn in Chapter 25.
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Chapter 2

Hyperchaos of New Mathieu-van der Pol system with Three Positive

Lyapunov Exponents

2.1 Preliminaries

This Chapter gives another illustration of three positive Lyapunov exponents (3PLES) in
numerical simulations of a new system, Mathieu-van der pol autonomous system, with four state
variables. As we know, two positive Lyapunov exponents confirm hyperchaotic nature of its
dynamics and means that system can present more complicated behavior than ordinary chaos. We
further generate three positive Lyapunov exponents in a new coupled nonlinear system and
anticipate the advanced application in secure communication. Not only a new chaotic system with
three Lyapunov exponents is proposed, but also its implementation of electronic circuit is putting
into practice in this article. The phase portrait, electronic circuit, power spectrum, Lyapunov
exponents and 2-D and 3-D parameter diagram with three positive Lyapunov exponents of the

new system will be showed in this Chapter.

2.2 Differential equations for Mathieu-van der Pol system and phase protraits

Mathieu equation and van der Pol equation are two typical nonlinear non-autonomous

systems:
X, =X
L . _ 3 , (2-2-1)
X, =—(a+bsinat)x, —(a+bsinat)x,” —cx, +dsinat

{X3 s (2-2-2)

X, =—€% + f (1-%5)X, + gsin ot
Exchanging sinot in Eq. (2-2-1) by X; and sinwt in Eq. (2-2-2) by X;, we obtain the autonomous

new Mathieu -van der Pol system:
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X, = —(a+bx;)X, —(a+hx;)x> —cx, +dx;
X3 =X,

X, = —eX; + f(1=%;°)X, + 0%,
where X, y, z and w are four stats of the system, a, b, c, d, e, f and g are parameters of the
Mathieu-van der Pol system.

It is well-known that the phase portrait presents the evolution of a set of trajectories
emanating from various initial conditions. When the solution becomes stable, the asymptotic
behaviors of the phase trajectories are particularly interested and the transient behaviors in the
system are neglected. As a result, the phase portrait projections of the Mathieu-van der Pol
system, Eq. (2-2-3), is plotted in Fig. 2-1. In this numerical studies, the parametric values are
taken to be a=91.7, b=5.023, ¢=-0.001, d=91, e=87.001, f=0.0180 and g=9.5072 for plotting the

hyperchaotic phase portrait projections.

2.3 Power spectrum
The power spectrum analysis of the nonlinear dynamical system, Eq. (2-2-3) is shown in Fig.

2-2. The noise-like spectrum is the characteristics of chaotic dynamical system.

2.4 Lyapunov exponents

The Lyapunov exponents of Mathieu-van der Pol system with 3PLEs are plotted in Figs.
2-3~2-8. These figures show that there exits at least one PLE in the Lyapunov spectrum for our
new system, and the Lyapunov exponents of Mathieu-van der Pol system are varied with

parameters a, b, d and e.

2.5 Parameter diagrams
A system with more than one positive Lyapunov exponent can be classified as a

hyperchaotic system. In this study, the parameter values, b, d, g, and f, are varied to observe the
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regions of chaos of our new system. The enriched information of chaotic behaviors of the system
can be obtained from the Figs 2-9~2-14.

In Figs 2-9~2-14, the regions of 3PLEs are yellow, 2PLEs green and 1PLEs purple. It can be
realized that the Mathieu-van der pol system is chaotic in several different region, especially
hyperchaos with 3 PLEs are found in many regions between hyperchaos with 2 PLE and chaos

with 1 PLE.

2.6 Phase portraits and its implementation of electronic circuits

It is well-known that the phase space can present the evolution of a set of trajectories
emanating from various initial conditions. When the solution becomes stable, the asymptotic
behaviors of the phase trajectories are particularly interested and the transient behaviors in the
system are neglected. As a result, the phase portrait of the Mathieu-van der pol system, equation
(2-2-1), is plotted in Fig. 2-1. In this numerical studies, the parametric values are taken to be
a=91.7, b=5.023, ¢=0.01, d=91, e=87.001, f=0.0180 and g=9.5072 for plotting the tri-chaotic
phase portrait. The new system can be represented as an electronic oscillator circuit and
projection of phase portraits outputs shown in Figs. 2-15~16. We have implemented it using an
electronics simulation package Multisim (previously called Electronic Workbench, EWB) and the
approximated nonlinear electronic circuits are presented to realize the disordered behavior in the
new chaotic system. The voltage outputs have been normalized to 1 V and the operational
amplifiers are considered to be ideal. The phase diagrams are plotted within the time interval 500
s. The time step is 0.001 s. Due to the limit of the scope of implementation of electronic circuits,
the phase portraits can be only shown in two dimensions. In Fig. 2-16, the configuration of

electronic circuits is also given.
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Fig.2- 1 Phase portrait projections of four state Mathieu-van der Pol system with a=91.17,
b=5.023, c=-0.001, d=91, e=87.001, f=0.0180and g=9.5072.

log 105w
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o
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Fig.2- 2 Power spectrum of X for Mathieu-van der Pol system with a=91.17, b=5.023, ¢=-0.001,
d=91, e=87.001, f=0.018and g=9.5072.
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Fig.2- 3 Lyapunov exponents of Mathieu-van der Pol system with b=5.023, c=-0.001, d=91,

e=87.001, f=0.018and g=9.5072.
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Fig.2- 4 Lyapunov exponents of Mathieu-van der Pol system with b=5.023, c=-0.001, d=25,
e=87.001, f=0.018and g=9.5072.
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Fig.2- 5 Lyapunov exponents of Mathieu-van der Pol system with a=96.326680, c=-0.001, d=25,
e=87.001, f=0.018and g=9.5072.
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Fig.2- 6 Lyapunov exponents of Mathieu-van der Pol system with a=96.326680, b=5.023,
c=-0.001, e=87.001, f=0.018and g=9.5072.
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Fig.2- 7 Lyapunov exponents of Mathieu-van der Pol system with a=96.326680, b=5.023,
¢=-0.001, e=87.001, f=0.018and g=9.5072.
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Fig.2- 8 Lyapunov exponents of Mathieu-van der Pol system with a=96.326680, b=5.023,
c=-0.001, d=25, f=0.018and g=9.5072.
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Fig.2- 9 Parameter diagrams of Mathieu-van der Pol system with a=96.326680, b=5.023,
c=-0.001, e=87.001and f=0.018.
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Fig.2- 10 2D Parameter diagrams varied with f. a=96.326680, b=5.023, c=-0.001and e=87.001.
Part A and B are shown in Fig.7.
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Fig.2- 11 2D Parameter diagrams varied with f. a=96.326680, b=5.023, c=-0.001and e=87.001.
Part C are shown in Fig. 8.
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Fig.2- 12 3D Parameter diagrams of Mathieu-van der Pol system with 8=96.326680, b=5.023,
€=-0.001 and e=87.001.

Fig.2- 13 3D Parameter diagrams of Mathieu-van der Pol system with 8=96.326680, b=5.023,
€=-0.001 and e=87.001.
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Fig.2- 14 Parameter diagrams of Mathieu-van der Pol system with a=96.326680, b=5.023,
c=-0.001, e=87.001and g=9.5072.
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Fig.2- 15 Projection of phase portraits outputs in electronic circuit for Mathieu-van der Pol

system.
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Chapter 3

Chaos Control of New Mathieu-van der Pol Systems with New
Mathieu -Duffing Systems as Goal System by GYC Partial Region
Stability Theory

3.1 Preliminaries

In this Chapter, a new strategy by using GYC partial region stability theory is proposed to
achieve chaos control. Via using the GYC partial region stability theory, the new Lyapunov
function used is a simple linear homogeneous function of error states and the lower order
controllers are much simpler and introduce less simulation error. Numerical simulations are given
for new Mathieu-van der Pol system and new Mathieu-Duffing system to show the effectiveness

of this strategy.

3.2 Chaos Control Scheme
Consider the following chaotic system

x=f(t, x) (3-2-1)
where X =[X,%,, -, X, ]T e R" is athe state vector, f:R _xR" — R" is a vector function.

The goal system which can be either chaotic or regular, is
y=9(y) (3-2-2)
where y = [Y1> ARETITA ]T e R" isastate vector, g:R, xR" — R" is a vector function.

In order to make the chaos state x approaching the goal state y, define e=x-y as the
state error. The chaos control is accomplished in the sense that [13-22]:

lime = lim(x—y) =0 (3-2-3)

t—o0
In this Chapter, we will use examples in which the error dynamics always happens in the

first quadrant of coordinate system and use GYC partial region stability theory [43-44]. The
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Lyapunov function is a simple linear homogeneous function of error states and the controllers are

simpler because they are in lower order than that of traditional controllers

3.3 New Chaotic Mathieu- Duffing System

Mathieu equation and Duffing equation are two typical nonlinear non-autonomous systems:

: : 3 . (3-3-4)
;=1
o . (3-3-5)

Exchanging sinot in Eq. (3-3-4) by z, and sinwt in Eq. (3-3-5) by z,, We obtain the

autonomous master new Mathieu-Duffing system:

-2, (3-3-6)
. 3
2, =—(a, +bz3)z, - (8, +b;23)z” —¢,2, +d, 24

where a,, b, ¢,, d,, € and f, are uncertain parameters. This system exhibits chaos when the
parameters of system are a, =20.30, b, =0.5970, ¢, =0.005, d, =-24.441, e =0.002,

f, =14.63and initial states is (-2, 10, -2, 10). Its phase portraits are shown in Fig. 3-1.

3.4 Numerical Simulations

The following chaotic system

X, =X, =200
%, = —(a+b(x; —200))(X, —200) — (a+b(X; —200))(X, —200)°
—C(X, —200) +d(X; —200) (3-4-7)
%, = (X, —200)
X, = —€(X; —200) + f (1—(X; —200)?)(x, —200) + g(X, —200)

is the new Mathieu-van der Pol system of which the old origin is translated

to (X, X, ,X5,X,) =(200,200,200,200) in order that the error dynamics happens always in the first
quadrant of error state coordinate system. This translated new Mathieu-van der Pol system

41



presents chaotic motion when initial conditions is (X;q, X505, X309, X40) = (210.1, 209.5, 210.1,
209.5) and the parameters area=10, b=3, ¢=04, d=70, e=1, f=5, g=0.1.
In order to lead (X,X,,X3,X,) to the goal, we add control terms U;, Uy, Uz and U4 to each

equation of Eq. (3-4-7), respectively.

X, =X, —200+u,
X, =—(a+b(x; —200))(x, —200) — (a+b(x; —200))(x, —200)°
—C(X, —200)+d(x; —200) +u, (3-4-8)
X3 = (X, —200) +u;
X, =—€(X; —200) + f (1—(X; —200)%)(X, —200) + g(X, —200) +u,

CASE I. Control the chaotic motion to zero.

In this case we will control the chaotic motion of the new Mathieu-van der Pol system (3-4-8)
to zero. The goal isy =0. The state error is¢; =X; —Y; = X;, (=1, 2, 3, 4) and error dynamics

becomes

€, =X, =X, —200+u,
€, = X, = —(a+b(x; —200))(X; —200) — (a+b(x; —200))(X, —200)’

—c(x, —200)+d(x; —200)+u, (3-4-9)
€; = X3 = (X4 —200) + U,

&, = X, =—e(X; —200)+ f (1—(X; —200))(X, —200)+ g(X, —200)+U,

In Fig. 3-2, we can see that the error dynamics always exists in first quadrant.
By GYC partial region asymptotical stability theorem, one can easily choose a Lyapunov

function in the form of a positive definite function in first quadrant as:

Its time derivative through error dynamics (3-4-3) is

V =¢ +6&, +&; +¢,
= (X, —200+Uu,) + (—(a+b(x; —200))(x, —200)
—(a+b(x; —200))(x; —200)° —c(x, —200) +d(X; —200) +U,) (3-4-11)
+ (X4 —200+Uu;) + (—e(X; —200) + f(1—(X5 —200)2)(x4 —200)
+9(X, —200)+uy,)
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Choose

u, =—(x, —200)—e¢,

U, = (—(a+b(x; —200))(x, —200) — (a+b(x; —200))(x, —200)°
—C(x, —200)+d(x; —200))—e,

Uy =—(X, —200) —e,

U, = (—e(X; —200) + f (1—(x; —200)%)(x, —200)
+g(x, —200))—¢e,

(3-4-12)

We obtain
V=-—e —¢,-€—¢€,<0

which is negative definite function in first quadrant. The numerical results are shown in Fig.3-3.
After 10 sec, the error trajectories approach the origin.
CASE Il. Control the chaotic motion to a regular function.

In this case we will control the chaotic motion of the new Mathieu-van der Pol system (3-4-8)

to regular function of time. The goal is y; = Fiesm‘”t , (i=1, 2, 3, 4). The error equation
& =% -y =X —Fe"" (i=1,2,3,4) (3-4-13)

lime, = lim(x, —F.es"*) =0 , (i=1, 2, 3, 4)

t—w t—w

where F=F,=F =F,=F=10and ©=0.5

The error dynamics is

&, =X, —200+U, — F,oe™ " (cos mt)

&, = —(a-+b(X; — 200))(x, —200) — (a +b(x; —200))(x, — 200)°
— (X, —200) + d(X; —200) +u, — F,0e"" ' (cos ot)

&, = (X, —200) + Uy — F;0e"" " (cos wot)

e, =—e(X; —200)+ f(1—(X; — 200)2)(x4 —200) + g(x; —200)

sin ot

(3-4-14)

+u, —F,0e™" (cos ot)
In Fig. 4-4, the error dynamics always exists in first quadrant.
By GYC partial region asymptotical stability theorem, one can easily choose a Lyapunov

function in the form of a positive definite function in first quadrant as:
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V=g +e,+e;+¢,

Its time derivative is
V =€ +6, +6; +&, = (X, —200 + U, — F,we"" " (cos ot))
+(—=(a+b(x; —200))(x, —200) — (a+b(x; —200))(x, —200)°
—C(X, —200) +d(X; —200) + U, — F,0e*™ (cos wt))

. (3-4-15)
+((X, —200) + U, — F;0e™ ' (cos ot))
+(—e(x; —200)+ f(1—(X;5 — 200)2)(x4 —200) + g(x, —200)
+u, — F,0e™" (cos ot))
Choose

u; = —(x, —200 — F,0e"" " (cos ot)) — e,

U, = —(=(a+b(x; —200))(x, —200) — (a + b(x; —200))(x, — 200)’
—¢(X, —200) + d(X; —200) — F,me ™! (cos ot)) — e, (3-4-16)

Uy = —((X, —200) — F;0e™" ' (cos wt)) — &,

u, =—(—e(X; —200) + f(1—(x; —200)*)(x, —200) + g(x, — 200)

sin ot

-F,me (cosmt)) —e,

We obtain

which is a negative definite function in first quadrant. The numerical results are shown in Fig.4-5
and Fig. 4-6. After 10 sec., the errors approach zero and the chaotic trajectories approach to
regular motion.
CASE I11. Control the chaotic motion of the new Mathieu-van der Pol system to chaotic motion
of the new Mathieu-Duffing system.

In this case we will control chaotic motion of the new Mathieu-van der Pol system (3-4-1) to
that of following goal system, i.e. the new chaotic Mathieu-Duffing system with initial states (-2,
10, -2, 10), system parameters @, =20.30 , b, =0.5970 , c,=0.005, d,=-24.441,

e, =0.002and f, =14.63.
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2,=1,
. 3

. (3-4-17)

. 3

The error equation ise; = X; — z;, (i=1, 2, 3, 4). Our aim islime; =0 (i=1, 2, 3, 4).

tow

The error dynamics becomes

€ =% -2, =(X, =200-2,) +U,
&, =X, — 2, = (—(@a+b(x; —200))(X, —200) — (& + b(x; — 200))(x, —200)°
—C(X, —200)+d(X; —200) — (—(a, +b,z5)z, — (3, + blz3)zl3
—CyZ, +d,23)) +U, (3-4-18)
€y =X3—23 =(X, —200—12,) +U;4
€, =X, — 2, = (—e(X; —200) + f (1—(X; —200)*)(X, —200) + g(X, —200)

3
—(-z3-737 -z, + f1z7)))+u,

In Fig. 4-7, the error dynamics always exists in first quadrant.

By GYC partial region asymptotical stability theorem, one can easily choose a Lyapunov

function in the form of a positive definite function in first quadrant as:

V=g +e,+e;+8,

Its time derivative is

V=¢+6 +6& +¢, =((Xx, —200-2,)+U,)
+((—(@a+b(x; —200))(x, —200) — (@ + b(x; —200))(x, —200)°
—c(X, —200)+d(x; —200) - (—(a, +b,z;)z, - (a, +b,z;)z,’
—C,Z, +d,Z5))+Uy) +((X, —200—12,)+U;3)
+((—e(X; —200) + f (1—(x, —200)2)(x4 —200)+ g(x, —200)

3
—(-23 -2 —e;z, + fiz)))+uy)

(3-4-19)

Choose
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u, =—(x, —200-2,)—e,
U, = —(—(a+b(x; —200))(x, —200) —(a+b(x; — 200))(X, —200)’
—c(X, —200)+d(x; —200)—(—(a, +b,2;)z, —(a, +b,25)z,’
—C,z, +d,z;))—¢, (3-4-20)
Uy =—(X, —200—2,)—¢e,
Uy = —(—e(X; —200) + f (1—(%; —200)?)(x, —200)+ g(x, —200)

3
—(-z3-73 —eiz,+ 7)) ey

We obtain

which is negative definite function in first quadrant. The numerical results are shown in Fig.4-8

and Fig. 4-9. After 10 sec., the errors approach zero and the chaotic trajectories of the new

Mathieu-van der Pol system approach to that of the new Mathieu-Duffing system.

Fig. 3-1 Chaotic phase portrait projections for new Mathieu-Duffing system.
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Fig. 3-2 Phase portrait projections of error dynamics for Case I.
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Fig. 3-3 Time histories of errors for Case I.

47



240
b1 SR
180}
1B
140

68

210
1] S
1801

1801
170

e

160

20

195

180

185

e3

180

175

170

Fig. 3-4 Phase portrait projections of error dynamics for Case II.

100

90

a0

70

60

a0

40

30

100

90

a0

70

&0

0

40

30

100

a0

0

70

B0

50

40

an

100

a0

a0

70

B0

0

A

40

an

Fig. 3-5 Time histories of errors for Case II.
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Chapter 4
Generalized Chaos Synchronization of New Mathieu-van der Pol
Systems with New Duffing-van der Pol systems as Functional system
by GYC Partial Region Stability Theory

4.1 Preliminaries

In this Chapter, a new strategy by using GYC partial region stability theory is proposed to
achieve generalized chaos synchronization. Via using the GYC partial region stability theory, the
new Lyapunov function used is a simple linear homogeneous function of states and the lower
order controllers are much more simple and introduce less simulation error. Numerical
simulations are given for new Mathieu-van der Pol system and new Duffing-van der Pol system

to show the effectiveness of this strategy.

4.2 Generalized Chaos Synchronization Strategy

Consider the following unidirectional coupled chaotic systems
x=f(t, X)

y=h(t,y)+u (4-2-1)

where x :[prz,"'sxn]T eR", y=[V.¥5 s Y, ]T e R" denote the master state vector and slave

. . . T
state vector respectively, f and h are nonlinear vector functions, and u=[u,u,,--,u,] €R"

is a control input vector.

The generalized synchronization can be accomplished when t — oo, the limit of the error
vector e=[e,,e,,--,e,|' approaches zero:

lime=0 (4-2-2)

t—>wo

where

e=G(X)-y (4-2-3)
G(x) isa given function of x.
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By using the partial region stability theory [50-51], the Lyapunov function is easier to find,
since the linear homogenous terms of the entries of e can be used to construct the definite

Lyapunov function and the controllers can be designed in lower order.

4.3 New Chaotic Duffing-van der Pol System

Duffing equation and van der Pol equation are two typical nonlinear non-autonomous

systems:
,=2
L 3 . (4-3-1)
7, =-2,—-1; —hz, +isinawt
1,=12
C . (4-3-2)
2, =—jz;—kK(1-23)z, +Isinat

Exchanging sinot in Eq. (4-3-1) by z, and sinwt in Eq. (4-3-2) by z,» We obtain the

autonomous master new Duffing-van der Pol system:
2,=1, (4-3-3)

=1,

where h, 1, j, k, | are uncertain parameter. This system exhibits chaos when the parameters of
system areh=0.0006, j=1, k=5, i=0.67and |=0.05and initial states is (2, 2.4, 5, 6), its

phase portraits projections and Lyapunov exponents as shown in Fig. 4-1 and 4-2.

4.4 Numerical Simulations

The two unidirectional coupled new chaotic Mathieu-van der pol systems are shown as
follows:

X =X,
X, = —(a+bXx: )X —(a+bx:)x> —cx, +dx
% ( 3)X —( 3)X , +dX, (4-4-1)

X, = €% + (1= X;.7)X, +0X,
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Y=Y, +UY
Yo =—(@+by;)y, —(@+by;)y,* —cy, +dy; +u,
Y3 =Y, +U;

Yy =—€y; + f(l—Y32)Y4 +0y; +Uy

CASE 1. The generalized synchronization error function ise; = (X, —y; +100), (i=1, 2, 3, 4.).

The addition of 100 makes the error dynamics always happens in first quadrant. Our goal

isy; =X +100, i.e.

lime, = lim(x, — y;, +100)=0 (i=1,2,3,4)

t—o0 t—o0
The error dynamics becomes:
& =X =Y =X -Y,—U

&, =X, — ¥, =—((a+bx;)x, —(@+by;)y,)—((@+bx;)x;’ —(a+by;)y,’)
—C(X, = Y,)+d(X; —y3)—U,

(4-4-2)

(4-4-3)

System parameters are chosen as a=10, b=3, ¢=04, d=70, e=1, f=5, g=0.1 and

initial states are (X;(,Xy0,X30>X49) =(0.1, -0.5, 0.1, -0.5), (Y105 Y20>Y30> Yao) =(0.3, -0.1, 0.3,

-0.1). Before control action, the error dynamics always happens in first quadrant as shown in Fig.

4-3. By GYC partial region stability, one can choose a Lyapunov function in the form of a

positive definite function in first quadrant:
V=¢e +e,+6e;+¢e,

Its time derivative through Eq. (4-4-2) is

V=¢+6¢,+6;+¢,
= (X, = Y5 —U) + (=((@+b%;)X, —(@+hy;)y,) - ((a+bxy)x,’
—(a+by;)y, ) =X, = ¥5) +d (X = Y3) —Uy) + (X4 — Y4 —Us)
+(—e(X; —y;) + f((l—X32)X4 -(1- y32)y4)+g(xl —Y)—Uy)

Choose
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U =X —Y,)+g
U, = (—((@+bxy)X, —(@+by,)y;) —((@+bxy)x’ —(@+by;)y,*)

—C(X, —Y,)+d(X;—Y;))+6, (4-4-6)
Uy = (X4 — Yy4) + €5

Uy = (-8(%s = ¥3)+ F((1=%7)% = (1= Y3)Ya) + 90X — i) + e
We obtain
V=-g-6€-6-€<0 (4-4-7)
which is negative definite function in the first quadrant. Four state errors versus time and time
histories of states are shown in Fig. 4-4 and Fig. 4-5.
CASE Il. The generalized synchronization error function is €; =(X; — y; + F sinot +100), (i=1, 2,
3,4).
The addition of 100 makes the error dynamics always happens in first quadrant.

Our goal is y; = X; + F;sinot +100, i.e.

lime, = lim(x; — y; + F; sinot +100) = 0 (i=1, 2, 3, 4). (4-4-8)
t—w

t—oo
where F=F, =K =F,=F=10, ®=0.5.

The error dynamics becomes

€ =X, —Y, —U, + Fsinawt

&, =—((@+bx)x, —(@+by;)y)) - ((@+bx;)x,” —(a+byy)y,")
—C(Xy, —Y,)+d(X3 —Y;)—U, + Fsin ot (4-4-9)
€3 =X4— Y4 —U; +Fsinat

€y =—€(%; — ¥3) + F((A=%")%, — (1= ¥, )ya) + (X, = ¥,) —u, + Fsin ot

System parameters are chosen as a=10, b=3, ¢=04, d=70, e=1, f=5, g=0.1 and
initial states are (X, X505, X395 X49) =(0.1, -0.5, 0.1, -0.5), (Y,0> Ya0> Y10 Yao) =(0.3, -0.1, 0.3, -0.1).

Before control action, the error dynamics always happens in first quadrant as shown in Fig. 5-6.
By GYC partial region stability, one can choose a Lyapunov function in the form of a positive

definite function in first quadrant:
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V=g +e,+€, +¢€,

Its time derivative through Eq. (5-4-8) is

V=6 +6,+6;+6,
= (X, — Y, —U, + Focosat) +(—((a+bx;)x, —(@+by;)y,) - ((@+bx;)x’
—(a+by;)y,; )= (X, — ¥2) +d(X; — ¥3) U, + Focosat) + (X, — Y, —Us
+Facosat) +(—e(x; — ¥3)+ (=X, (1= y37)y,) + 904 = yy)
—U, + Focosat)

Choose

u, =(X, —y,)+Faocosat +e,

u, = (—((a+bx;)x —(a+bY3)Y1)—((a+bX3)X13 —(a+bY3)Y13)
—C(X, —Y,)+d(X; —Y;))+ Focoswt +e,
Uy =(X4 —Y4)+ Forcosot + e,

Uy = (—e(X; = Y3) + F((1=%3")%, = (1= Y, )Ys) + 9(X — ¥,)) + Focoswt +e,
We obtain

V=-g-6€-6-¢<0

(4-4-10)

(4-4-11)

(4-4-12)

(4-4-13)

which is a negative definite function in the first quadrant. Four state errors versus time and time

histories of X, —y,+100 and — F; sinwt are shown in Fig. 4-7 and Fig. 4-8.

CASE I11. The generalized synchronization error function is € =X, — y; + F.e"® +100, (i=1, 2,

3, 4).

The addition of 100 makes the error dynamics always happens in first quadrant.
Our goal is y; = X; + F.e""' +100, ..

lime, = lim(x; — y; + F.e"™® +100) =0 (i=1, 2, 3, 4).

t—w t—w©

The error dynamics becomes

sin ot

&, =—((@a+bx;)x, —(a+by;)y;)) —((@+bx;)x’ —(@+by;)y,’)
—C(X, —Y,)+d(X3 —y;)—U, + Fes"

sin wt

€, =—€(X3—Yy3)+ f((l—X32)X4 —(I—Y32)Y4)+ g(x —y)—u,+Fe
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System parameters are chosen as a=10, b=3, ¢=04, d=70, e=1, f=5, g=0.1,

F,=F,=F =F,=F =10, ®»=0.5and initial states are (X, Xy, X309, X40) =(0.1, -0.5, 0.1, -0.5),
(Yi0> Y205 Y305 Ya0) =(0.3, -0.1, 0.3, -0.1). Before control action, the error dynamics always

happens in first quadrant as shown in Fig. 5-9. By GYC partial region stability, one can choose a

Lyapunov function in the form of a positive definite function in first quadrant:

Its time derivative through Eq. (5-4-14) is
V=6 +6,+6 +6,
=X, =Y, —U; + Foesin™ cosat) +(—((a+bxy)x, —(a+by;)y,)—((a+ bx3)x13
—(a+bY3)yl3)—C(X2 =Yy +d(X; —y;)—U, + Foe™* cosat) +(X, — Y4 —U;
+Far™ cosat) +(—e(X; —y;)+ f((1- X32)X4 -(1- y32)Y4) +9(X —Yy)
—u, + Foe™ cos at)
(4-4-17)
Choose
U =(X, = Y,)+ Fae™ cosat + ¢,
U, = (—((@a+bx;)x, —(a+by;)y,) - ((@+bxy)x,* —(a+by;)y,*)
—C(X, = Y,) +d(X; — ¥3)) + Foe™ cos at + e,
Uy = (X, — Y,) + Foe™™ ™ cos wt + e,
u, =(—e(x; —ys)+ f((1- X32)X4 -(1- y32)y4)+ g —y))+ Fae™” cos at +€
(4-4-18)
We obtain
V=-—g-6€-6-€<0 (4-4-19)

which is a negative definite function in the first quadrant. Four state errors versus time and time

histories of X, —y, +100 and —F,e"™™" are shown in Fig. 4-10 and Fig. 4-11.

CASE IV. The generalized synchronization error function is €; = %Xiz —-y; +100, (i=1, 2, 3, 4).

The addition of 100 makes the error dynamics always happens in first quadrant.
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Our goal is y; = %Xi2 +100, i.e.

lime, = lim(% x° —y; +100) (i=1,2,3,4) (4-4-20)
t—w t—w
The error dynamics becomes
& =XX% —Y =XX; — Y, —U
€, = X%, =¥ =—((@+bx)X, X, —(@+by;)y) — ((@+bx;)%, %" —(@+by;)y,”)
—C(X3 = ¥) +d (X X5 — Y3) — U,
€5 =X3X3 — Y3 = X3X4 — Y4 —Us
€4 = XgXy = ¥4 = —€(XyX3 — Y3) + f((l—X32)X§ -(1- y32)Y4)+ g(XgX; = Yp) —Uy
(4-4-21)

System parameters are chosen as a=10, b=3, ¢=04, d=70, e=1, f=5, g=0.land
initial states are (X, X505, X395 X49) =(0.1, -0.5, 0.1, -0.5), (Y,0> Ya0> Y10 Yao) =(0.3, -0.1, 0.3, -0.1).

Before control action, the error dynamics always happens in first quadrant as shown in Fig. 4-12.
By GYC partial region stability, one can choose a Lyapunov function in the form of a positive

definite function in first quadrant:

Its time derivative through Eq. (5-4-20) is

= (XX, = Y5 —U) +(=((@+bX;)X, X, —(@+by;)y;) - ((@+bx;)x, %,
—(@+by;)y;>) =3 = ¥2) +d (X, X5 = Y3) —Us) + (X3X, = Y4 —Us)

+(—e(X4X3 = Y3)+ f((l—X32)Xf -(1- Y32)Y4)+ (X% —Y)—Uy)

(4-4-23)

Choose
Uy =X X, =Y, +€
u, =—((@a+bx;)x,Xx _(a+bY3)Y1)_((a+bX3)X2X13 _(a+by3)Y13)

—0(X3 = ¥y) +d (XX — Y3) + e, (4-4-24)
Us = X3X4 — Y4 +€5

Uy =—€(X; X5 = ¥3) + F((A=%2)XG — (1= Y35 y,) +9(Xe% = Y;) +e,
We obtain

V=-—g-6€-6-€<0 (4-4-25)
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which is a negative definite function in the first quadrant. Three state errors versus time is shown

in Fig. 4-13.

CASE V. The generalized synchronization error function is €; = %Xi3 —-y; +10000 (i=1, 2, 3, 4).
The addition of 10000 makes the error dynamics always happens in first quadrant.

Our goal is Y; :%Xi3 +10000, i.e.

lime, = }Lrg(% x> -y, +10000) (i=1, 2,3, 4) (4-4-26)
The error dynamics becomes

€ = XX =Y =X % — Y, U,

€ =X3% ¥, ==((@+bxy)x3x —(a+by;)y)) — (@ +bx )5 %" —(@-+by)y,’)

—Cc(X; —¥,) +d(X3%; — y3) - U,
€ = X3% = V3 = X3 Xy — Yy —Us
€ = X%y =¥ = —e(Xixs = ¥3) + F (=37 = (1= y5")Ya) + 905X = Yy) — Uy
(4-4-27)

System parameters are chosen as a=10, b=3, ¢=04, d=70, e=1, f=5, g=0.1 and
initial states are (X109X207X30’X40):(0'19 -0.5, 01, '0.5), (yma y209 y307 y40):(0.3, '0.1, 03, -01)

Before control action, the error dynamics always happens in first quadrant as shown in Fig. 4-14.
By GYC partial region stability, one can choose a Lyapunov function in the form of a positive

definite function in first quadrant:

Its time derivative through Eq. (4-4-26) is

V=¢ +6&,+6; +¢,
= (X Xy = Y5 —U)) +(=((@+bx;)x3%, — (@a+by;)y;) - (@+bx;)x3 x>
—(@+by;)y, ) =03 = ¥,) +d(X3X; = Y3) —Uy) + (X3 Xy — Y4 —Us)

+(—e(x3x; = Y3)+ F((A=%2)%5 = (1= y57)y) + 90O % = V) —Uy))

(4-4-29)

Choose
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u, = X12X2 -y, t€
U, =—=((@+bxy)X3% —(@+by;)y,) - (@+bx;)x3 %, —(@+by;)y,)
—C(X; = Y,) +d(X3X; — Y3) + €, (4-4-30)
Uy = X3X, — Y, +€;
Uy =—e(X3 X5 = ¥3)+ F((1=%")x] (1= ¥ )Y) + 9(Xi% = ¥y) +e,

We obtain
V=-g-6e-6-¢<0 (4-4-31)

which is a negative definite function in the first quadrant. Three state errors versus time is shown
in Fig. 4-15.

CASE VI. The generalized synchronization error function is € = X; —Y; +z; +100, z;(i=1, 2, 3,

4) is the states of new chaotic Duffing-van der Pol system.

The functional system for synchronization is a new Duffing-van der pol system and initial
states is (2, 2.4, 5, 6), system parameters h=0.0006, j=1, k=5, i=0.67and |=0.05.

s 3 -
7, =-1,-1, —hz, +iz, (4-4-32)

We have lime = lim(x; —y; +2; +100) =0 (i=1, 2, 3, 4) (4-4-33) The error dynamics becomes

tom toow

=X —V1=X+2 =Y, ~Y

&, =%, — ¥, =—((@+bx;)x, —(a+by;)y,)—((@+bx;)x’ —(a+hby;)y,*)
—c(X, = ¥,)+d(X; = ¥3)+ (-2, -2, —hz, +iz;) - u,

B =X—Y3 =X+ 24— Y4~

€y =Xy = V4 =—€(%s = ¥3)+ F((1=X7)%, = (1= y3))y) + 9 (% = ¥,) — U,
+(—jz; +k(1-2,7)z, +12)

(4-4-34)

System parameters are chosen as a=10, b=3, ¢=04, d=70, e=1, f=5, g=0.1 and
initial states are (X, X505, X395 X49) =(0.1, -0.5, 0.1, -0.5), (Y,0> Ya0> Y10 Yao) =(0.3, -0.1, 0.3, -0.1).

Before control action, the error dynamics always happens in first quadrant as shown in Fig. 5-16.

By GYC partial region stability, one can choose a Lyapunov function in the form of a positive
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definite function in first quadrant:

Its time derivative through Eq. (5-4-33) is

V=¢ +6&, +6é; +¢,
= (X, + 2, — ¥, —U)) +(=((@+bx;)X, — (@a+by;)y,) - ((@a+bx;)x,’
—(a+by;)y ) —c(x, = ¥,) +d(X; = ¥3) + (=2, — 2> —hz, +iz;) (4-4-36)
—Up)+ (X 24 = Yy —Uy) + (80 = Y3) + F(=%)X, = (L= Y57)Y)
+g(x1—yl)—u4+(—jz3+k(1—z32)z4+lzl))

Choose
U =X, +2Z, =Y, +€
U, =—((a+bx;)x, —(a+by;)y,) - ((@a+bx; )X’ —(@a+by;)y,’)
—C(X, = Y,)+d(X; — y3)+ (=2, — 2, —hz, +iz5) +e,

(4-4-37)
Uy =X, +Z,—-Y,+6
Uy =—e(X; —y3)+ (1= X)X, — (1= Ys2)Y) + 9% — Y;) + €,
+(—jz; +k(1-237)z, +1z)
We obtain
V=-—g-6€-6-€<0 (4-4-38)

which is a negative definite function in the first quadrant. Four state errors versus time and time

histories of X, —Y; +100 and -z;are shown in Fig. 4-17 and Fig. 4-18.
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Fig. 4-1 Phase portrait projections of new chaotic Duffing-van der Pol System.
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Fig. 4-2 Lyapunov exponents of new chaotic Duffing-van der Pol System.
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Fig. 4-3 Phase portrait projections of error dynamics for Case I.
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Fig. 4-4 Time histories of errors for Case 1.
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Fig. 4-5 Time histories of X1, X2, X3, X4, Y1, Y2, ¥3, ¥4 for Case L.
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Fig. 4-6 Phase portrait projections of error dynamics for Case II.
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Fig. 4-7 Time histories of errors for Case II.
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Fig. 4-8 Time histories of X, —Y; +100 and —F sinwt for Case II.
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Fig. 4-9 Phase portrait projections of error dynamics for Case III.
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Fig. 4-10 Time histories of errors for Case III.
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Fig. 4-11 Time histories of X —y, +100 and —Fe""™ for Case III.
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Fig. 4-12 Phase portrait projections of error dymanics for Case I'V.
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Fig. 4-16 Phase portrait projections of error dymanics for Case VI.
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Chapter 5

Chaos Generalized Synchronization of New
Mathieu- Duffing Systems by GYC Partial Region Stability Theory

5.1 Preliminaries

In this paper, a new method of achieving chaos generalized synchronization by GYC partial
region stability is proposed. Using the GYC partial region stability theory, the Lyapunov function
becomes a simple linear homogeneous function of states and the controllers are simpler then
traditional controllers and the error values of simulation can be reduced because they are in
lower order than that of traditional controllers. A new Mathieu — Duffing system is used in

numerical simulations to prove the effectiveness of the scheme.

5.2 Chaos Generalized Synchronization Strategy by GYC Partial Region
Stability Theory
5.2.1 GYC Partial Region Stability Theory

Consider the differential equations of disturbed motion of a nonautonomous system in the

normal form

dx,
dt

= X (X, %), (s=L---,n) (5-2-1)
where the function X, is defined on the intersection of the partial region Q (shown in Fig. 1)

and

Y X <H (5-2-2)

S

and t>t;, where t, and H are certain positive constants. X, which vanishes when the variables
X, are all zero, is a real valued function of t, X,---,X,. It is assumed that X, is smooth enough

to ensure the existence, uniqueness of the solution of the initial value problem. When X, does
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not contain t explicitly, the system is autonomous.

Obviously, X,=0 (s=1,---n) 1is a solution of Eq.(2.1). We are interested to the
asymptotical stability of this zero solution on partial region Q (including the boundary) of the
neighborhood of the origin which in general may consist of several subregions (Fig. 5-1).
Definition 1:

For any given number ¢ >0, if there exists a & >0, such that on the closed given partial

region Q when

D X<, (s=1---,m) (5-2-3)
for all t=>t,, the inequality

Y xi<e, (s=1--,n) (5-2-4)

is satisfied for the solutions of Eq.(2.27) on Q, then the disturbed motion X, =0 (s=1,---n) is

stable on the partial region Q.
Definition 2:

If the undisturbed motion is stable on the partial region Q, and there exists a & >0, so

that on the given partial region Q when

DXy <8, (5=1---,n) (5-2-5)

The equality

lim(z xfj =0 (5-2-6)

t—o0

is satisfied for the solutions of Eq.(5-2-1) on Q , then the undisturbed motion
X, =0 (s=L---n) is asymptotically stable on the partial region Q.

The intersection of Q and region defined by Eq.(5-2-2) is called the region of attraction.

Definition of Functions V(t,x,---,X,):

Let us consider the functions V(t,X,---,X,) given on the intersection €, of the partial
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region Q and the region

Y xi<h, (s=1---,n) (5-2-7)
S
for t>t, >0, where t, and h are positive constants. We suppose that the functions are

single-valued and have continuous partial derivatives and become zero when X =---=X, =0.

Definition 3:

If there exists t, >0 and a sufficiently small h>0, so that on partial region Q, and
t=t,, V>0 (or <0), then V is a positive (or negative) semidefinite, in general semidefinite,

functiononthe Q, and t>t,.
Definition 4:

If there exists a positive (negative) definitive function W(X,...X,) on €, so that on the
partial region €0, and t>t;

V-W2>0(r-V-W=>0), (5-2-8)

then V(t,X,...,X ) isa positive definite function on the partial region Q, and t>t,.
Definition 5:

If V(t,X,...,X,) is neither definite nor semidefinite on €, and t=>t,, then V(t,X,....X,)
is an indefinite function on partial region Q, and t>t,. That is, for any small h>0 and any

large t, >0, V(t,X,...,X,) can take either positive or negative value on the partial region €,

and t>t;.

Definition 6: Bounded function V

If there exist t, >0, h>0, so that on the partial region €2, we have

V(t,X,....%,)| < L (5-2-9)
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where L is a positive constant, then V is said to be bounded on Q,.

Definition 7:  Function with infinitesimal upper bound

If V is bounded, and for any A >0, there exists x>0, so that on €2, when szz <u,
S

and t>t;, we have
V(t,X,....x,)| <2 (5-2-10)

then V admits an infinitesimal upper bound on €, .

Theorem 1 [20, 21]

If there can be found for the differential equations of the disturbed motion (Eq.( 5-2-27)) a

definite function V(t,X,...,X,) on the partial region, and for which the derivative with respect

to time based on these equations as given by the following :

v Zﬂxs (5-2-11)
dt ot 50X,

is a semidefinite function on the paritial region whose sense is opposite to that of V, or if it
becomes zero identically, then the undisturbed motion is stable on the partial region.
Proof:

Let us assume for the sake of definiteness that V is a positive definite function. Consequently,

there exists a sufficiently large number t, and a sufficiently small number h < H, such that on

the intersection €, of partial region Q and

Y xi<h, (s=1...,n) (5-2-12)

S

and t>t,, the following inequality is satisfied

V(X X ) 2W(X,,..., X)) (5-2-13)

where W is a certain positive definite function which does not depend on t. Besides that, Eq.
(5-2-7) may assume only negative or zero value in this region.

Let ¢ be an arbitrarily small positive number. We shall suppose that in any case &<h.
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Let us consider the aggregation of all possible values of the quantities X,,..., X, , which are on the

intersection @, of €, and

Y X =¢, (5-2-14)

S

and let us designate by | >0 the precise lower limit of the function W under this condition. by

virtue of Eq. (5-2-5), we shall have

V(t,Xx,....,x,) =l for (X,...,X,) on a,. (5-2-15)
We shall now consider the quantities X, as functions of time which satisfy the differential
equations of disturbed motion. We shall assume that the initial values X, of these functions for

t=t, lie on the intersection Q,of €2 and the region

(5-2-16)

where ¢ is so small that
V (), Xigse - s Xp0) < (5-2-17)
By virtue of the fact that V(t,,0,...,0)=0, such a selection of the number & is obviously
possible. We shall suppose that in any case the number § is smaller than ¢ .Then the inequality

D xi<e, (5-2-18)

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently small

t—t,, since the functions X (t) very continuously with time. We shall show that these

inequalities will be satisfied for all values t>t,. Indeed, if these inequalities were not satisfied at

some time, there would have to exist such an instant t=T for which this inequality would become

an equality. In other words, we would have

Y XM =e, (5-2-19)

and consequently, on the basis of Eq. (5-2-9)
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V(Taxl(T)a'--axn(T))Zl (5_2_20)
On the other hand, since & <h, the inequality (Eq.(5-2-4)) is satisfied in the entire interval

of time [to, T], and consequently, in this entire time interval (jj_t <0. This yields

VT, X (M), s X, (T SV (1, X0 %) (5-2-21)
which contradicts Eq. (5-2-12) on the basis of Eq. (5-2-11). Thus, the inequality (Eq.(5-2-1))
must be satisfied for all values of t>t,, hence follows that the motion is stable.

Finally, we must point out that from the view-point of mathenatics, the stability on partial
region in general does not be related logically to the stability on whole region. If an undisturbed

solution is stable on a partial region, it may be either stable or unstable on the whole region and

vice versa. From the viewpoint of dynamics, we wre not interesting to the solution starting from

Q), and going out of Q.

Theorem 2 [20, 21]
. o o . ..dv . . .
If in satisfying the conditions of theorem 1, the derivative e is a definite function on the
partial region with opposite sign to that of V and the function V itself permits an infinitesimal
upper limit, then the undisturbed motion is asymptotically stable on the partial region.

Proof:

Let us suppose that V is a positive definite function on the partial region and that consequently,

C:j_\t/ is negative definite. Thus on the intersection €, of Q and the region defined by Eq.

(5-2-4) and t=>t; there will be satisfied not only the inequality (Eq.(5-2-5)), but the following

inequality as will:

(jj—\t/ <W(X,,e. %), (5-2-22)

where W, is a positive definite function on the partial region independent of t.

Let us consider the quantities X, as functions of time which satisfy the differential
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equations of disturbed motion assuming that the initial values X, =X (,) of these quantities
satisfy the inequalities (Eq. (5-2-10)). Since the undisturbed motion is stable in any case, the
magnitude 0 may be selected so small that for all values of t>t, the quantities X; remain
within €, . Then, on the basis of Eq. (5-2-13) the derivative of function V (t,X(t),..., X (1)) will

be negative at all times and, consequently, this function will approach a certain limit, as t

increases without limit, remaining larger than this limit at all times. We shall show that this limit

1s equal to some positive quantity different from zero. Then for all values of t>t, the following
inequality will be satisfied:
V(X (t),....x, (1) >« (5-2-23)

where a>0.
Since V permits an infinitesimal upper limit, it follows from this inequality that

Y XXM, (s=1...,n), (5-2-24)
where A is a certain sufficiently small positive number. Indeed, if such a number A did not
exist, that is , if the quantity sz (t) were smaller than any preassigned number no matter how

S
small, then the magnitude V (t,X,(t),...,X,(t)), as follows from the definition of an infinitesimal

upper limit, would also be arbitrarily small, which contradicts (5-2-14).

If for all values of t>t, the inequality (Eq. (5-2-195)) is satisfied, then Eq. (5-2-13) shows

that the following inequality will be satisfied at all times:

dv

S < (5-2-25)

where | is positive number different from zero which constitutes the precise lower limit of the
function W, (t, X,(t),..., X (t)) under condition (Eq. (5-2-15)). Consequently, for all values of

t>t, we shall have:
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tdV
V(t,xl(t),...,xn(t)):V(to,xlo,...,xn0)+.[toadtSV(tO,xlo,...,xno)—ll(t—to),
which is, obviously, in contradiction with Eq.(5-2-14). The contradiction thus obtained shows

that the function V(t,X(t),...,X,(t)) approached zero as t increase without limit. Consequently,

the same will be true for the function W (X (t),...,X,(t)) as well, from which it follows directly

that

limx,(t)=0, (s=1,...,n), (5-2-26)

which proves the theorem.

5.2.2 Chaos Generalized Synchronization Strategy

Consider the following unidirectional coupled chaotic systems
x=Tf(t, x)

y=htt,y)+u (>-2-27)

wherex:[xl,xz,m,xn]TeR”, y:[yl,yz,---,yn]TeR” denote two state vectors, f and h are

. . T . .
nonlinear vector functions, and u = [ul,uz,m,un] e R" isa control input vector.
The generalized synchronization can be accomplished when t — oo, the limit of the error
T
vector e=|[e.,e,,---,e,] approaches zero:

lime=0 (5-2-28)

too0
where

e=G(X)-y (5-2-29)
By using the GYC partial region stability theory, the Lyapunov function is easier to find, a
homogeneous function of first degree can be used to construct a positive definite Lyapunov

function and the controllers can be designed in lower order.

5.3 Numerical Simulations

Two new Mathieu — Duffing systems, with the unidirectional coupling appear as
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dt Xl X2
d 3
—X, =—(a+bx,)x, —(a+bx,)x’ —cx, +dx,
‘it (5-3-1)
EX3 Xy
d 3
ax4 X, —X; —eX, + fx,
ay1 =Y, +y
d
ayz :_(a+by3)y1 _(a‘HJY3)Y13 —Cy, +dy3 +U,
(5-3-2)
EY3 =Y, TU;

d
ayz; =—y3—y§—ey4+ fyl+u4

CASE I. The generalized synchronization error functionis € =x -V, +k ,(i=12,3,4).

elle_yl+k1
82=X2—y2+k2
& =X —Y;+k;
e4:X4_Y4+k4

(5-3-3)

where k,(i=1,2,3,4) is positive constants, we choose k=10, k,=75, k,=15, k,=60 in

order that the error dynamics always happens in first quadrant.

Our goal is Yy =X+Kk, i.e. the controlling goal is that

lime, = lim(x, -y, +k) =0, (i =1,2,3,4) (5-3-4)

The error dynamics becomes

& =X-Y,-U,
&, =—(a+bx,)x —(a+bx,)x —cx, +dx,
—(=(a+by,)y, —(a+by,)y; —cy, +dy;)-u, (5-3-5)
€ =X~ Y, U,
6, ==X, — X —ex, + fx, —(—y, — y: —ey, + fy,)—u,

where

e‘i = Xi - yi s (I = 17253’4) (5_3_6)
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Let initial states be (X, X,, X;, X,)= (-2, 10, -2, 10), (Y,, Y,, ¥;, ¥,)= (-1, 11, -1, 11), we find the

error dynamics always exists in first quadrant as shown in Fig. 5-3. By GYC partial region
asymptotical stability theorem, one can choose a Lyapunov function in the form of a positive

definite function in first quadrant:
V=¢ +e,+e,+¢, (5-3-7)

Its time derivative is

V =¢ +6,+€ +¢,
=(X2_y2_u1)

+(=(@+bx)x —(a+hx,)x’ —cx, +dx, (539)
_(_(a+by3)y1 _(a+ by3)y13 _Cyz + dy3)_u2)

+(X4_y4_ua)

+(_X3 _Xz»3 —€X, + le _(_y3 - y33 —ey,+ fyl)_u4)

Choose
U =X, -V, +€
u, =—(a+bx,)x, —(a+bx,)x’ —cx, +dx,
- (_(a+ bys)y1 - (a+ by3)Y13 - Cyz + dy3) + ez (5_3_9)
U, =X, -y, +6
u, =—X; _X33 —€X, + le _(_y3 - y; —€ey, + fy1)+e4
We obtain

V=-g¢-e-6-¢€<0 (5-3-10)

which is negative definite function in first quadrant. Four error states versus time and time

histories of states are shown in Figs.5-4~5-5.

CASE Il. The generalized synchronization error function is € =X —Y,+msinwt+k, ,
,(1=1,2,3,4).
Our goalis Yy, =X +msinwt+k;,i.e. lime, = ym(xi —y,+msinwt+k)=0, ,(i=1,2,3,4)

t—o0

The error dynamics become
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€ =X, —Y,+mwcoswt—u,
&, = —(a+bx,)x —(a+bx,)x —cx, +dx,

—(—(a+by,)y, —(a+by,)y’ —cy, +dy,)+mwcoswt —u, (5-3-11)
€, =X, — Y, +mwcoswt—u,

&, =—X,— X —eX, + fX —(=y, — yi —ey, + fy,) + mwcoswt —u,
where

& =% +mwcoswt—y,, (i=1,2,3,4) (5-3-12)
Let initial states be (X, X,, X;, X,) = (-2, 10, -2, 10), (Y, Y,,Y¥s. Y,) = (-1, 11, -1, 11), and

w=1,m=2,k, =100, k, =100, k, =100, k, =100, we find the error dynamic always exists in first

quadrant as shown in Fig. 5-6. By GYC partial region asymptoical stability theorem, one can

choose a Lyapunov function in the form of a positive definite function in first quadrant:
V=¢ +e,+e,+¢, (5-3-13)

Its time derivative is
V =(x, -y, —U, +mwcoswt)
+(—(a+bx,)x, — (@+bx;)x —cx, +dx,
—(—(a+by,)y, —(a+by,)y; —cy, +dy,)—u, + mwcos wt) (5-3-14)
+(X, =Y, —U; + mwcos wt)

+ (=X, =X} —ex, + X, — (=Y, — yi —ey, + fy,)—u, + mwcoswt)

Choose
U =X, —Yy, +mwcoswt+e
u, = —(a+bx;)X, —(a+bx,)x’ —cx, +dx,
—(=(a+by,)y, —(a+by,)y’ —cy, +dy,)+ mwcoswt +e, (5-3-15)
U, =X, -y, +mwcoswt+e,
U, =—X,—X; —ex, + fx, —(=y, — Vs —ey, + fy,)+ mwcoswt +e,
We obtain

V=-e-6-6-€<0 (5-3-16)
which is negative definite function in first quadrant. Four state errors versus time and time

histories of X, — Y, +K;, are shown in Figs. 5-8.
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CASE Ill. The generalized synchronization error function is e, :%Xiz -y +k, ,(i=12,3,4)
where k; =10, k, =700, k, =20, k, =350.

Our goal is y:%X2 +k,ie. lime=lim(%xi2 -y, +k)=0,(=12,3,4)

t—oow t—

The error dynamics become

él =XX-Y,—U,

&, = X, (—(a+bx,)x, —(@a+bx,)x’ —cx, +dx;,)
—(—(a+by3)y1—(a+by3)yf—cy2+dy3)—u2 (5'3'17)

é3 =XX —Y, U

é4 = X4(_X3 _X33 _eX4 + le)—(—y3 _y33 _ey4+ fyl)—U4

where

€ = Xi).(i _Yiﬂ (I :1:2:394)

Let initial states be (X, X,, X;, X,)= (-2, 10, -2, 10), (Y,, Y,, Y5, Y,)= (-1, 11, -1, 11), we

find that the error dynamics always exists in first quadrant as shown in Fig. 5-9. By GYC partial
region asymptotial stability theorem, one can choose a Lyapunov function in the form of a

positive definite function in first quadrant:
V=¢ +e,+e,+¢, (5-3-18)

Its time derivative is

V =¢ +6 +6 +¢,
=XX, — Y, —U,
+(x2(—(a+bx3)x1 —(a+bx33)x13 —cX, +dx,) (5-3-19)
—(~(a+by,)y, —(a+by,)y; —cy, +dy,)-u,)
+X,X, — Y, — U,

+(X4(_X3 _X33 —eX, + le)_(_y3 - y33 —ey,+ fy1)_u4)

Choose
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U =XX, - Y, +§
U, = X, (—(a+bx,)x, —(a+bx,)x’ —cx, +dx,)

—(—(a+by,)y, —(a+by,)y; —cy, +dy;) +e, (5-3-20)
Uy = XX, =Y, +6

U, =X, (=%, —X; —ex, + fX)—(-y, - y; —ey, + fy,) +e,
We obtain
V=-g-e-6-¢<0 (5-3-21)
which is negative definite function in first quadrant. Four state errors versus time and time
histories of % x’ -y, +k are shown in Figs. 5-10~5-11.

CASE IV. The generalized synchronization error function is € =X—Yy+2z+Kk, z is the state

vector of generalized Lorenz system.

The goal system for synchronization is generalized chaotic Lorenz system [22] and initial

states are (0.1, 0.1, 0.1, 0.1), system parameters a =1, b =26, ¢, =0.7, d, =1.5.

d
azlzal(zz—zl)+dz4
—2z,=hbz-212,-2
dt 2 171 173 2
(5-3-22)
azs =17,2, -G 1,

—z,=-12
dt

1~z

We have lime =lim(x-y+z+k)=0, where k=[70707070]".

t—>o t—
The error dynamics becomes

(5-3-23)

Let initial states be (X, X,, X;, X,) = (-2, 10, -2, 10), (Y, Y,, ;. ¥,)= (-1, 11, -1, 11), we find

the error dynamics always exists in first quadrant as shown in Fig. 5-12. By GYC partial region

asymptotical stability theorem, one can choose a Lyapunov function in the form of a positive
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definite function in first quadrant:
V=¢ +e,+e,+¢, (5-3-24)

Its time derivative is
v :(Xz -Y, +a1(22 _21)+dz4 _uz)
+(=(a+bx,)x —(a+bx)x’ —cx, +dx, +bz, — 7,2, - Z,
—(—(a+by,)y, —(@a+by,)y; —cy, +dy;)-u,) (5-3-25)
Xy = Ya+ 24,2, =CZ; — Uy

3 3
+(_X3_X3 —eX, + le —(=Y;— Y5 —ey, + fy1)_21_a124_u4)

Choose
U =X -y, +a(z,-z)+dz, +e
u, =—(@a+bx,)x, —(a+bx,)x’ —cx, +dx, +bz, — 2,2, - z,
_(_(a+ bys)y1 _(a+ bY3)Y13 —Cy, + dy3)+e2 (5'3'26)
U, =X, -y, +22,—CZ, +€
U, ==X _)(33 —ex, + B —(-y; - y; —ey,+fy)-z,-az,+e,
We obtain

V=-e-¢-6-¢€<0 (5-3-27)
which is negative definite function in first quadrant. Four state errors versus time and time

histories of X, — Y, +k; are shown in Figs. 5-13~5-14.
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Chapter 17
Pragmatical Chaotic Symplectic Synchronization of New
Duffing-Van der Pol Systems with Different Order System as
Functional System by New Dynamic Surface Control and Adaptive

Control

17.1 Preliminaries

A new type of chaotic synchronization, pragmatical chaotic symplectic synchronization
(PCSS), is obtained with the state variables of another different order system as a constituent of
the functional relation between “master” and “slave” . A new Duffing-Van der Pol system is

used as “master” system and “slave” system. Especially, the traditional generalized
synchronizations are special cases of the " symplectic synchronization” . Based on the GYC

pragmatical asymptotical stability theorem, new dynamic surface control (NDSC), and adaptive
control, the synchronization is achieved. Numerical simulations are provided to verify the

effectiveness of the proposed scheme.

17.2 Pragmatical Chaotic Symplectic Synchronization Scheme

There are two identical nonlinear chaotic dynamical systems, and the “master ” system
controls the “slave” system partly. In symplectic synchronization, the “master” system is

called partner A:

*The term “Symplectic” comes from the Greek for “intertwined”. H. Weyl first introduced the term in 1939 in his book “The

Classical Groups”(P. 165 in both the first edition, 1939, and second edition, 1946, Princeton University Press)
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X=Ax+ f(x,B) (17-2-1)
where X=[X,X,,---X.]" € R" denotes a state vector, A is an NXN uncertain constant coefficient

matrix, f is a nonlinear vector function, and B is a vector of uncertain constant coefficients in f.

The “slave” system is called partner B:

y=Ay+f(y,B) (17-2-2)
where y=[yl,y2,---yn]T €R" denotes a state vector, A is an NXN estimated coefficient
matrix, B is a vector of estimated coefficients in f. With controllers, partner B becomes

y=Ay+f(y,B)+u() (17-2-3)
where u(t) =[u,(t),u,(t),---u ()]" €R" is a control input vector. The chaotic system which

affords chaotic F(t) vector, is called functional system. However, the PCSS also can be achieved
even the order of functional system is different from that of partners A and B. Now we choose the
order of the former is less than the latter. The augmented functional system can be easily obtained

as shown in Section 3. The augmented functional system becomes

F=CF +g(F) (17-2-4)
where F=[F,F,,---F 1" €R" denotes a state vector, C is an NXN constant coefficient matrix,
g is a nonlinear vector function. PCSS demands:

y=H(xy,t)+F(t) (17-2-5)
where H (x, y,t) consists of state vector X of partner A and state vector y of partner B. Our goal

is to accomplish Eq. (6) via controller u(t), parameter update dynamics, and new dynamic surface

control (NDSC). Define the error vector €:
e =H (X, y,t)-y+F(t) (17-2-6)
The synchronization is achieved when

lime, =0 (i=1,2,..,n) (17-2-7)

t—owo
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The error dynamics is

. , . ooH
€= X+ y+ ot -y+F() (17-2-8)
By Eqgs (17-2-2) ~ (17-2-5), Eq. (17-2-9) becomes

oH OH [ - oH
=—| Ax+ f(x,B) |+—| Ay+ f (y,B) [+—

~Ay-f (y,é)—u(t)+CF +9(F)
In order to reduce terms of the u(t), NDSC is used which makes u(t) more simple. This method

extends the traditional dynamic surface control [30]. A virtual controller W is chosen as

follows

W =H(x,y,t)+ F(t) (17-2-10)
Then

mwW +W =W, lim W ()= %1_}r2W (1) (17-2-11)

where m(0) is a constant. The m(t) is a bounded function of time and approaches to zero as

follows

limm(t)= (17-2-12)

to0
Define the boundary layer errors as

s=W-W (17-2-13)
Its derivative is

s= > _W (17-2-14)
By NDSC, Eq. (17-2-6) and Eq. (17-2-9) becomes

e =W-y (17-2-15)

e=W - Ay—f(y,B)-u(t) (17-2-16)

A Lyapunov function V(e,s,A,B,) is chosen as a positive definite function of e, s, A, B,:

1 ~q=

V(e,s, A, B, )=%eTe+%sTs+ ATA +—BB, (17-2-17)

0 |
l\)|>—‘
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where A= A—A, B=B—B., A, and B_ are two vectors whose elements are all the elements

of matrix A and that of matrix B, respectively. Its time derivative along any solution of Eq.

(15), Eq. (17), and update parameter differential equations for A, and |§C is V. Choose u(t),

m(t), AC and éc so that

V =e'Pe+s'Qs (17-2-18)

where P and Q are diagonal negative definite matrixs, and V is a negative semi-definite function
of e,s, 5%, I_5>C . In the current scheme of adaptive synchronization [21-25], the traditional

Lyapunov stability theorem and Babalat lemma are used to prove that the error vector approaches
zero, as time approaches infinity. But the question of why the estimated parameters also approach
uncertain parameters remains unanswered. By the GYC pragmatical asymptotical stability
theorem, the question can be answered strictly. The equilibrium point e=s=A=B=0 is
pragmatically asymptotically stable (see Appendix). Under the assumption of equal probability, it

is actually asymptotically stable. Hence, the PCSS can be achieved.

17.3 Numerical Results for the PCSS by New Dynamic Surface Control and

Adaptive Control

Since the partner A, a new Duffing-Van der Pol system, is described as

dt
dx, _
T
dx3 —
o
dx,

E:—bx3+c(l—x§)x4+ fx,

where a, b, ¢, d, f are uncertain parameters. When a=0.01, b=1, c¢=5, d=0.67, f=0.05, chaotic

—X, — X’ —ax, +dx,
(17-2-19)

dynamics of this new system is shown in Fig 17-1.The partner B is described as
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dy,

at Y,

d R n

Dy —yr-ay, +dy,

dt (17-2-20)
dy; _ y

dt  7*

d ~ . ~

%z—by3+C(l—y32)y4+ fY1

A Py A~

where & b, €, d and f are estimated parameters.

For this scheme, Uj, Uz, U3 and U4 are added to the partner B then becomes controlled partner

B:
d
%:yz+u1
d R ~
L:_yl_y13_ay2+dy3"'uz
dt (17-2-21)
W y,+u
dt 4 3
d . .
%:_b%*'c(l_yaz)ﬁ*' f3/1"'u4

The chaotic Lii system is chosen as functional system [31] and the augmented state variable is

Z,=1
dz
d_tl =9 (Zz - Zl)
9 _ -2,2,+hz,
dt (17-2-22)
dz,
T 2,2, —kz,
dz
d_t4: 2921 (Zz - Zl)
In the PCSS, we select the
i=1,2,---,n
H (% y.t)=(=%)"y +2/ (2, i=even (17-2-23)
|3, i=odd
Now n=4. By dynamic surface control, the error dynamics Eq. (17-2-16)becomes:
& =W, -y, -u,
&, =W, +y +y’ +ay, —dy,—u
2 2 1 1 2 3 2 (17-2_24)

éz :W3 Y,

&, =W, +by, —¢(1-y)y, - fy, —-u,

95



and the boundary layer error dynamics Eq. (17-2-14) becomes:
. -S
S :#_[_3)(12)(2)/1 - X13y2 +3ngz (22 o 21)}

S'2 :_m_sz_|:_2xzy2 (_X] _X13 —ax, +dX3)—X§ <_y1 - y]3 _é-yz +ay3)

+27.(-z,z, + hz
(22, hz2)| (17-2-25)

. )
S5 :m—3—[—3X32X4y3 _X;y4 +3232(le2 —kZ3):|
3

S =_m—s4—{—2x4y4(—bx3 +e(1-x3)x%, + fxl)—xf (—By3 +e(1-y5)y, + fyl)

4

+497,2,(z, —zl)}

Choose a positive definite Lyapunov function for e, e,, e, €, S, S,, S5, S,,
a b, ¢ d f:
1 B ~ » ~ ~
V=5(e12+e22+e32+e42+sf+sj+s§+sj+a2+b2+cz+d2+f2) (17-2-26)

where d=(a—-4), b=(-b), €=@c-¢, d=d-d), and T=(f-f). We select

controllers, estimated parameter dynamics, and m(t) as:

u =W -y, +e
U, =W, +y, +y) +ay, ~dy; +e, (17-2-27)
u, =W, -y, +e,
u, =W, +by, —6(1-y7 )y, - fy, +e,
a= _2X22 Y13,
6: —2X3%, Y48,
E=2x7y, (1-%)s, (17-2-28)
Cj = 2X,%Y,5,
f =2X,X,Y,S,
m = -

5 -3X%Y, ~X Y, 39 (2,-2)
m,= =

5,205 (%~ +0 |-~y Y] Ay, + )+ 22, (22, +he,)

(17-2-29)

m = =

=5 _3)(32X4y3 —)(33)/4 +3232(2122 —|<23)
m,= —

s, —2x4y4(Jox3 +é(1—x§)x4+bq)—xf(—by3+é(1—ygz)y4+ fy1)+492124(22—21)
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The time derivative of V is
V=-—g-e-e-e-5~-s-si-s; <0 (17-2-30)
which is negative semi-definite function for ¢, e,, €, €,, S, S,, S, S,, & b, ¢, d, f

The Lyapunov asymptotical stability theorem cannot be satisfied in this case. The common origin
of error dynamics, parameter update dynamics, and boundary layer error dynamics cannot be
concluded to be asymptotically stable. By GYC pragmatical asymptotical stability theorem, D is

a 13-manifold, n = 13 and the number of error state variables p = 8. When €, = e, = e, =

e,= s,= s,= s, =5s,=0 and a b, & d, f take arbitrary values , V=0, so X is a

S-manifold, m=n-p=13-8=5.m+ 1< n are satisfied. By the GYC pragmatical asymptotical
stability theorem, the common origin of error dynamics (25), boundary layer error dynamics (26),
and parameter dynamics (29) are asymptotically stable. The equilibrium point €, = e, = e, =
e, = s=5 =5 =g¢5=4a-= b=¢=d =f =0is pragmatically asymptotically
stable. The PCSS is achieved under this scheme.

In this numerical simulation, we select the “unknown” parameter and initial states of the

partner A and of functional system as a=0.01, b=1, ¢=5, d=0.67, f=0.05, g=36, h=20, k=3 to

ensure  the chaotic behavior. The initial states of those system are
x(0)=2, x,(0)=2.4, x(0)=5, x,(0)=6, y,(0)=5, y,(0)=5, y,(0)=10,

y,(0)=10, 7,(0)=12,(0)=2,(0)=2,(0)=10. The estimated parameters have initial conditions

a(0)= 6(0) =¢(0)= d(O) =f (0)=0. The numerical results are shown in Fig. 17-2 ~ Fig. 17-5.
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Chapter 18

Hybrid Projective Synchronization of Hyperchaotic Tachometer

systems by Backstepping Control

18.1 Preliminaries

In this paper, the hyperchaotic dynamics of a tachometer system is studied by means of
phase portraits, Poincare maps, bifurcation diagram, power spectra and Lyapunov exponents.
Next, backstepping control is used to obtaine the pragmatical hybrid hyperchaotic generalized
synchronization of two hyperchaotic tachometer systems. Numerical simulations show that this

method works very well.

18.2. Chaos of tachometer system
The tachometer system considered is shown in Fig 1 [17]. The masses of the rods and vertical
axis O,0, are neglected, and ball A and B are assumed as particles with equal mass m,. The

vertical axis rotates with constant speed n and is subjected to a vertical vibration Asinx, where
X, 1s state variable, A is the amplitude of vibration. m, is the mass of the sleeve C, 1 is the

length of rod BC, 21 is the length of AB. ¢ is the angle between rod AB and vertical axis O,0,,
k, is the spring constant of a restoring spiral spring which is used to restrain the angle ¢ caused

by centrifugal forces of A and B, K, is the viscous damping coefficient caused by friction in the
bearings. Let X, =@, X,=¢, X,=X,.

By Lagrange equation, the state equations for the autonomous tachometer system are
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%,
%=2m +4r112 sin” X _2"]2?5“”9 I Z%Asn:)%smxl Mg sinx cosx
+2m sinx, cos X7y —k;—zx‘—ki—fz)
(18-2-1)
%y
%:—Asinx3

The third and fourth equation of system (1) give a simple harmonic vibration system. When
A=0, at steady state, a given constant 1 corresponds to a definite ¢, therefore this system can be
used as a tachometer.

Choose m =3, m,=3, g=9.8, 1=1.5, A=5, k,=4, k,=1. n is used as a variable parameter.
n=1 gives period 1 motion, n=1.5 gives period 3 motion, N=4 gives chaotic motion. Taking n as
abscissa, the Lyapunov exponents diagram is shown as Fig 2 . Hyperchaos [18] with two positive
LE is found. Bifurcation diagram, Phase portraits & Poincare maps, time histories, and power

spectra are presented in Fig 3~6.

18.3. Hybrid projective synchronization scheme
The projective synchronization means that the drive and response vectors synchronize up to a
scaling factor vector «, 1.e. the former two vectors become proportional. When the elements of
scaling vector take both positive and negative constants, we have hybrid projective synchronization.
Consider the chaotic systems:

{xd = f(xg) = Axq (18-3-1)

=f(x,)= Axr +u(t)
where n-dimensional state vector X,, X, e R".Thesubscripts ‘d" and r’ stand for the

drive and response systems, respectively. f :R" — R" is vector fields in n-dimensional space. If

there exists a constant vector a (a #0) such that lim|x, —ax,||= 0, then hybrid projective
to>mw

synchronization of the system is accomplished, and we call « scaling factor.
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Define error vector
e =X, —ax, (18-3-2)

where e = [e1 ,€,, 58, ]T . Our goal 1s to design a controller u(t) by backstepping method so that

lime=0 (18-3-3)

t—o0

18.4. Hybrid projective synchronization of hyperchaotic tachometer system by

backstepping control

The tachometer system is the master system:

d
axl =X,
ix = —kiX, 4ot 1 —2m,gsin X, N 2m, Asin X, sin X,
dt > 2m,l? 2m, +4m, sin” X, | |
k,X

—4m, X; sin X, cos X, +2m, sin X, cos X,77° — izz) (18-4-1)
iX3 =Xy
dt
%X4 = —Asin X,

where X,, X,, X;, X,are state variables and k,, k,, A, 1, g, m,,m, are constants, when
k=4, k, =1, m, =3, m,=3,A=5, n=4,2=9.8,1=1.5, the system exhibits chaotic behavior .

The slave system is

a
dt 1 = y2
dy Zky oy L Z2mygsiny, , 2m,Asiny,siny,
dt 2m,l 2m, +4m, sin’ y, | |
—4m,y; siny, cos y, +2m, siny, cos y,n° — kiyz ) (18-4-2)
a
dt 3 y4
d .
ay4 =—Asiny,

where Y,, Y,, Y,, Y,are state variables.
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In order to lead (y,, ¥,, Y5, Yi)to(aX, bX, ¢x,dx,),add u, u,, u;, u, as

controllers in Eq (18-2-6):

ayl =Yty
d _—ky - 1 —2m,gsin Yy, N 2m, Asin y, sin y,
dt’? 2m,l? 2m, +4m,sin’ y, I I
k
—4m,y; sin y, cos y, +2m, sin y, cos y,;” — iﬁ’ B+, (18-4-3)
EY3 =Y, U
d

ay4 =—Asiny; +U,

Define error state vectors as follows:

€ =Y —aX
e, =Y,-bXx, (18-4-4)
€ =Y —CX
€4 =Y, _d1X4

where a,, B, c,, d, arescaling constants, and we choose a, =3, h=-4, ¢, =6, d,=-2in
order to get hybrid projective synchronization.

Differentiate Eg (18-2-8) with respect to time, error dynamics is

e =6, -bXx, —ax, +u,

_ klel _ klalxl _ klblxl
2ml1*  2m/l*  2m,I?

N 1 _2m,gsiny, N 2m,Asin y, sin 'y,
2m, +4m, sin’ y, | I

€,

—4m,y; siny, cos Y,

Ky
+2m, sin 2222
sy, cosy,n 2 ) (18-4-5)
b 2m,gsinX, 2m,Asin X, sin X :
+ (- gsimx, -, 2 L —4m,x] sin X, cos X,
2m, +4m, sin” X, I |
: K, X
+2m, sin X, cos X,;7° ——22) +U,

|2
é, =e,—d,x, —C,X, +U,
é, =—Asiny, —d,Asin X, + U,

Choose a positive definite Lyapunov function

105



V, = %ef (18-4-6)
Differentiate Eq (18-2-10) with respect to time, we have:

V, =¢e (e, —bx, —ax, +u,) (18-4-7)
Choose U, =b,x, +a,x,,and e, =«,(e,) =—€,, Eq (18-2-11) becomes

V, = —e? <0 (18-4-8)

e=0 is asymptotically stable. When e, is considered as a controller, ¢,(g,) is an estimative

function, define W, =€, —¢,(e,) =€, +€, and its derivative is

W, =6, +6,. (18-4-9)

Choose a positive definite Lyapunov function

1

Vv, =V, +5W22 (18-4-10)
Then:
V, =V, +W,W, (18-4-11)

klel I(la'l Xl klbl Xl
oml? 2ml’ 2ml?
1 _2m,gsiny, N 2m,Asin y, sin Y,
2m, +4m, sin’ y, | I

. k
+2m, siny, cos y, 7’ —i—zyz)

; 2
Vz =—€ +W2(\N2 —€

—4m,y3siny, cosy,

N b, _2m,gsinX, N 2m, Asin X, sin X,
2m, +4m, sin” X, I I

k,X
) . . 2 2%
—4m, X5 sin X, cos X, +2m, sin X, cos X, — B )+U,)

Choose:

ke kia,x, kbx
Uy =—2W, +e +——>+———+
2ml=  2m/I°  2m|l
3 1 _2m,gsiny, N 2m,Asiny, sin 'y,
2m, +4m, sin’ y, I I

—4m,y: siny, cos Y,

k
+2m, siny, cos y,n° — i—zyz)

b, _2m,gsin X, . 2m, Asin X, sin X,

— —4m2Xx; sin X, cos X,
2m, +4m, sin” X, I |

K, X
: 2 272
+2m, sin X, cos X;77 BT )
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Eq (18-2-15) becomes:

V, = -6} -W,; <0 (18-4-12)
e, =0 is asymptotically stable.

Choose a positive definite Lyapunov function

V, =V, +V2+%e32 (18-4-13)
Then by the third equation of Eq (18-2-9), we have

V, =V, +V, +e,¢,

(18-4-14)
=—e/ -W,” +e,(e, —d,x, —C,X, +U;)
Choose u, =d,x, +c,x,,and put e, =, (e;) =—e,, Eq (18-2-18) becomes
V, =—e -W,” —e? <0 (18-4-15)

e, =0 is asymptotically stable. When €, is considered as a controller, «,(e;) is an estimative

function, define

W, =e, —a,(e)=¢e,+e, and

W, =¢, +é, (18-4-16)
Choose a positive definite Lyapunov function

V, =V, +V, +V, +%W42 (18-4-17)
Then by the fourth equation of Eq (18-2-9), we have

V, =V, +V, +V, +W,W,

(18-4-18)
=—e’ -W, —e; +W,(W, —e, — Asin y, —d, Asin X, +U,)
Choose u, =-2W, +e, + Asin y, +d, Asin X, , Eq (18-2-22) becomes :
V, =—e -W, —e =W} <0 (18-4-19)

e, =0 is asymptotically stable.

Numerical simulations show that the result is satisfactory as shown in Figs 7, 8, 9, and 10.
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Fig 1 Sketch of a tachometer with vibrating base.
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Fig 4  Phase portraits of 7 =1, 7n=1.5, 71 =4, respectively.
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Fig 7 Time history of e, when e, is381.3.

Fig8  Time history of e, when e,, is330.
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Fig9  Time history of e, when e,, is260.

Fig 10  Time history of e, when e,, is230.
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Chapter 19
Chaos Synchronization of the Two Identical Ikeda-Mackey-Glass

Systems without Any Controller

19.1 Preliminaries

In 1990, Pecora and Carroll [1], showed the possibility of chaotic synchronization and
started a new research interest. Synchronization phenomena in coupled chaotic systems have
been extensively studied in laser dynamics [2], electronic circuits [3], chemical and biological
systems [4], and secure communication [5].

Time-delay chaotic systems widely occur in everywhere, such as nature, technology, and
society[6], and they are typical of high dimensional chaotic systems. Mackey-Glass system has
been introduced as a model of blood generation for patients with leukemia[7]. The Ikeda model
has been introduced to describe the dynamics of an optical bistable resonator[8-10]. A new
Ikeda-Mackey Glass system is studied in this paper.

There are different types of synchronization in interacting chaotic systems, such as complete
synchronization [1,11], generalized synchronization [12], phase synchronization [13,14], lag
synchronization[11,15,16], anticipating synchronization [9,17] and so on.

To achieve synchronization, different schemes, such as the Pecora and Carroll (PC) method
[1], unidirectional coupling [11], bidirectional coupling [17], adaptive control [18,19] and
impulsive control [20-22] are proposed.

This paper is organized as follows. In Section 2, the phase portraits, bifurcation diagram of
a new chaotic Ikeda-Mackey-Glass system are presented. In Section 3, synchronization scheme
is given. In Section 3.1, No synchronization of the two identical IMG systems with slightly
different initial conditions are presented when one of delay timer,is zero. In Section 3.2,
generalized synchronization, anti-synchronization and generalized lag-synchronization of the

two identical IMG systems with slightly different conditions are presented when one of delay
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time 7, 1s positive. In Section 4, conclusions are drawn.

19.2. Ikeda-Mackey Glass system

A new IMG system is described by the following differential equations:

X (1) =—a X (t) = fsin X (t—7)+K, X, (T - 7,)
(19-2-1)
X (t- T])
1+ {Xz (t- 4 )}C
where the Ikeda model x, is the phase lag of the electric field across the resonator; ¢, 1is the

X (1) =—a, %, (t)+b +K,x(t-1,)
relaxation coefficient for the driving x, dynamical variable; £ is the laser intensity injected into

the driving system. 7, , 7, are the delay time in the new IMG system, and the dynamical variable in

the Mackey Glass model is the concentration of the mature cells in blood at time t and the delay

time is the time between the initiation of cellular production in the bone marrow and release of
mature cells into the blood[8]. «, is the relaxation coefficient for the driven x, dynamical

variable, Dis the feedback rate for the driven system, andK,, K, is the coupling rate between the

driver system x, and the response system x, .

This system has a chaotic attractor shown in Fig.1. Fig.2 shows the bifurcation diagram,
where «a, =25, [=24.8 k,=14.1, a,=4.7, b=1.2348,c=10, K,=8, r,=5and 7,=1.

If the delay timer,is zero, also it is found that there is also a chaotic behavior for

Ikeda-Mackey Glass system. Fig.3 show that the chaotic attractor of this system where «, =25,

B=248 k=141, a,=4.7, b=1.2348,¢=10, K,=8, 7,=5and r,=0.

19.3. Synchronization Scheme
Consider the time-delayed system:
x(t) =f(x(t),x(t—1)) (19-3-1)

where xR represents the state of the system, and x(t) =dx(t)/dt.

To synchronize system (3), the form of the other system is

y(O) =1(y(t), y(t-1))+u (19-3-2)
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where u is the controlling term.

In this paper, we find that these two Ikeda-Mackey Glass system can be synchronized without
any controller, only by changing the delay time 7 andz, .

Consider synchronization between the Ikeda-Mackey-Glass system

X, (1) =—a,X (t)— Bsin X, (t—7,)TK X, (t - 7,)

(1) =~ 0)+b— ?;Z“(t‘_fz)}c FKo (1) (19-3-3)
Y1 () = -y, (1) = Bsiny, (t=7,)+K,y, (t=7,) +u,

Y,(t)=-a,y,(t)+b - z/;z(t(t__rz)}c +K,y, (t—7,)+u, (19-3-4)

where the controlling term u, =u, =0.
19.3.1. Casel: If the delay time z,=0

In this subsection it is shown that if the delay timer, is zero, no synchronization can be

obtained. Simulation results are shown in Fig.4 and Fig.5.

19.3.2. Case2: If the delay time z,=1

In this subsection it is shown that if the delay timer,is not zero, different types of
synchronization can be obtained.

Fig.6 and Fig.7 show that the generalized synchronization of the two identical IMG systems

can be obtained, where error
e, (=X, (1)-y,, (OHR(®) (19-3-5)

R(t) is a periodic function of time.

Fig.8 and Fig.9 show that the time response of the two identical IMG systems. It is verified

that the anti-synchronization can be obtained by Fig.10 and Fig.11, where error

Cin (t)le,z (t)+Y1,2 ) (19-3-6)

Fig.12 and Fig.13 show that the time response of the two identical IMG systems. It is
verified that the generalized lag-synchronization can be obtained by Fig.14 and Fig.15, where

€Iror
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€ (t) =X (t _/Ul)_ Y| (t)"‘ F(t) aez(t) = Xz(t)_ yz(t_:uz)'i' F'(t) (19‘3‘7)

u, =1.2427 sec, u, =1.08sec, F(t)and F'(t) are periodic function of time.
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Fig. 1. An Ikeda-Mackey Glass chaotic attractor when the delay timesz, =5,7, =1

0ap-

X1 Dty i

a5

Fig.2. The bifurcation diagram of the IMG system when the delay timesz, =5, 7, =1.
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Fig.3. An IMG chaotic attractor when the delay timesz, =5,7, =0
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Fig.4. Time response of the two identical IMG systems with x;(0)=1, x2(0)=0,y;(0)=-1 and
y2(0)=0.5, whenz, =0.
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Fig.5. Time response of the two identical IMG systems with x;(0)=1, x2(0)=0,y;(0)=-1 and
y2(0)=0.5, whenz, =0.
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Fig.6. Error dynamics of the two identical IMG systems with x;(0)=100, x2(0)=10, y;(0)=101 and
y2(0)=10.001, whenz, =1.
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Fig.7. Error dynamics of the two identical IMG systems with x;(0)=100, x,(0)=10, y;(0)=101 and
y2(0)=10.001, whenz, =1.
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Fig.8. Time response of the two identical Ikeda-Mackey Glass systems with x;(0)=1, x»(0)=0,
y1(0)=-1 and y>(0)=0, whenz, =1.
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Fig.9. Time response of the two identical Ikeda-Mackey Glass systems with
x1(0)=1, x2(0)=0, y1(0)=-1 and y»(0)=0, whenz, =1.
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Fig.10. Error dynamics of the two identical IMG systems with
x1(0)=1, x2(0)=0, y1(0)=-1 and y»(0)=0, whenz, =1.
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Fig.11. Error dynamics of the two identical IMG systems with
x1(0)=1, x2(0)=0, y1(0)=-1 and y»(0)=0, whenz, =1.
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Fig.12. Time response of the two identical IMG systems with x;(0)=1, x2(0)=0.1, y;(0)=-1 and
y2(0)=0.5, whenz, =1, g, =1.2427 sec.

123



=
T

[N ]
T

xz:blue yy:red

'
[}
T

Wl

4
400

Fig.13. Time response of the two identical IMG systems with x;(0)=1, x2(0)=0.1, y;(0)=-1 and
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Fig.14. Error dynamics of the two identical IMG systems with x;(0)=1, x2(0)=0.1, y;(0)=-1 and

1 | 1 1
&0O0 700 800 800

t (sec)

1 1 1
300 400 500
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Fig.15. Error dynamics of the two identical IMG systems with x;(0)=1, x2(0)=0.1, y;(0)=-1 and
y2(0)=0.5, whenz, =1.
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Chapter 20
Parameter estimation of Ikeda-Mackey Glass system through

synchronization in presence of disturbance

20.1 Preliminaries

In this paper, parameter estimation of a new lkeda-Mackey Glass system through
synchronization is studied. Parameter estimation of this system by using a least square approach
to derive the time delay system equations. Two time delay Ikeda-Mackey Glass systems are
synchronized and their corresponding parameters converge to same value. When the
Ikeda-Mackey Glass system is disturbed by Rayleigh noise, the parameters are very sensitive to

its initial conditions. Numerical simulations are presented to verify these results.

20.2 Ikeda-Mackey-Glass system
Ikeda-Mackey Glass system is described by the following differential equations:

%,(t) = %, ()~ Bsin x, (t—7)
(20-2-1)
X, (t—=7)

X (1) = —a, %, (1) +k ()

+Kx, (1)

where the Ikeda model x is the phase lag of the electric field across the resonator; ¢, 1is the
relaxation coefficient for the drivingXx, dynamical variable; /S 1is the laser intensity injected into
the driving system. 7 is the delay time in the coupled systems or the round trip time of the light in
the resonator, and the dynamical variable in the Mackey Glass model is the concentration of the

mature cells in blood at time t and the delay time is the time between the initiation of cellular
production in the bone marrow and release of mature cells into the blood[8]. «, is the relaxation

coefficient for the driven x, dynamical variable, k, is the feedback rate for the driven system, and K

is the coupling rate between the driver system x1 and the response system x2.

This system has a chaotic attractor shown in Fig.1. Fig.2 show the bifurcation diagram,
where ¢, =25, [=24.8985, «,=4.7,k =1.2348,b=10, K=8. Phase portrait of period 1 is shown

in Fig.3 when K=23.5.
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20.3 Synchronization scheme

Differential equations of a general delay system are described as follows:

X = f(x(),x(t—7),L) (20-3-1)

where xe R" is the state vector, f€R™ is the parameter vector which is to be estimated.

Let Eq.(20-3-1) be coupled to Eq.(1) which is described as follows:

y=9g(y@),y(t-7), 8) (20-3-2)

where ye R" is the state vector, ﬁA’ € R™ is the parameter vector. The state x asymptotically

A

synchronized with y when g=p.

The general representation of the feedback coupling is

y=9g(y@),y(t-7),4)-CG'[y-x] (20-3-3)

where C is a constant vector and G is the gain vector. Next we construct a mechanism that drives
the measured synchronization error y-x to zero so that (y,ﬁ’ )—>(x,4) as t— o. For that we
consider the following minimization problem to construct a system of differential equation

A

governing the evolution of the model system parameter /£,

F(B)=min{[y—xI"} (20-3-4)

The parameter vector ﬁA’ is to be suitably tuned so that the system (20-3-1) asymptotically

synchronizes with the system (1) through the choice of function given by Eq.(4). The measure
output is one of the state variables of the system. Then the minimization problem can be rewritten

as the following system of differential equation.
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oF oy,

p=— oy —x) X j=1,...m (20-3-5)
o, o,
63{‘ for i=1,...,n and j=1,...,m are to be known for solving this

op;

system of equations. These derivatives are given by

i(a_F):Z”: 9 N aqi_CGT% fori=1,...,nand j=1,....m  (20-3-6)
dt 0p,” oy, of;, b, op,

So we have to solve the original system (1), the coupling system (3), where the equations

; oF 0
A i)a;' =1, (20-3-7)

i i

which governs the evolution of the parameters with a vector of additional parameters & needed
for controlling the stability of the overall system and rate of synchronization, and the equations
corresponding to the evolution of the variational derivatives.

So an extended system consisting of (n+m+nm) equations is to be solved in order to estimate

m parameters and simultaneous synchronization of the n-dimensional system.

20.4 Estimation of parameter of Ikeda-Mackey Glass system without

disturbance

By using above formulation, the equations are described as follows:

X, (t) =-25x%,(t)—24.8985sin x,(t — 1) (20-4-1)
91(0) = =25y, () =B, (1) -sin y, (t=1) = (v, (1) = , (1) (20-4-2)
él(t) = _28(YI(t)_X1(t))V1 (20'4'3)

¥ () = [—25 _Bi()-cos yl_(t(;)r) 3 (=) J V)=V, () -siny,(t-1)  (20-4-4)
Y

128



. X,(t—1)
X, (t) =—-4.7x,(t)—1.2348 —2——— 4+ 8x,(t
() () R0

y,(t—1)

¥,(t) =P, -y, (t)-1.2348 1 =+ 8y, (D) =y, (1) = x,(t)]
+Y, (t—1)

B, (1) = —22(v, (1)~ X, (1) v,

th):(_ﬁz_12348-y4t—tﬂl—9y20—~0w}+8jqﬁ)JVé“)

Y2 (t) {1 Y, (t o T)lo}z S/2 (t)
Y>(t—1) _
Ly, oo 2O

where
¥, (t—1) = =25y, (t—1) =B, (t)-siny, (t—21) — [y, (t— 1) — x,(t— 7)]

(=) = —B (1) v (f—1T)— _ (=27
Yo(t=1)=-B,(t)y,(t-1) 1~23481+y2(t_21)10

+8y,(t=D)—[y,(t—1)—x,(t—1)]

In this paper, we tried to estimate the parameters Bl and ﬁz of the system. The results show that the
parameter Bl converges to its actual value when the master and response systems are synchronized.
Although the parameter f%z cannot converge to its actual value, the response system made

parameter Bl converge to its actual value rapidly. The results are shown in Fig.4.

20.5. Estimation of parameter of Ikeda-Mackey Glass system with disturbance

Parameter estimation is studied when there exists disturbance. The equations of the system

with disturbance are given by

%, (1) = —25x,(t) — 24.8985sin x, (t— 1)
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(20-4-6)

(20-4-7)

(20-4-8)

(20-4-9)

(20-4-10)

(20-5-1)



91(6) = =25y,() =B, (1) -sin y, (t= 1) = (v, () = x, () — (1)) (20-5-2)

B,(t) = —2[y, ()= x, () = p(D]V, (20-5-3)
V() = [—25 _Bu(©)-cos yl_(t(;;) 3, (= T)Jvl ()= v, (t)—siny, (t—1) (20-5-4)
Y1
where
¥, (t=1) = =25y, (t =)= B, (1) -sin y, (t= 2) [y, (t=©) = X, (t= 1) = @(1)] (20-5-5)

: ~ y,(t—217)
Vo (t=1)==B,(t) y,(t—1) _1‘23481"‘;2(‘[—_2'5)104_ 8y, (t=D—[y,(t=1) = x,(t—=1)]
(20-5-6)
where ¢(t)is the Rayleigh noise. The results show that the parameter f%l is very sensitive to its
initial conditions when disturbance exists in Ikeda-Mackey Glass system. By changing the initial

conditions of f%l which can be found that the parameter Bl also converges to its actual value. The

results are shown in Fig.20-5.
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Fig. 20-1. An Ikeda-Mackey Glass chaotic attractor.
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Fig. 20-2. The bifurcation diagram of the Ikeda-Mackey Glass system.
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Fig. 20-3 Phase portrait of period 1.

24.901 T

24,9005 | ]

24891 =

24.8995 -

24.853

24 85985

24,895 | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3

time

Fig. 20-4. Convergence of the estimated parameter to its actual value without

disturbance in the system.
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Fig. 20-5. Convergence of the estimated parameter to its actual value with disturbance in the

system
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Chapter 21
Chaos Synchronization of the Two Identical Ikeda-Mackey-Glass

Systems without Any Controller

21.1 Preliminaries

In this paper, synchronization of the two identical new Ikeda-Mackey Glass(IMG) systems
without any control is studied. When one of delay time is zero, two identical IMG system cannot
be synchronized with slightly different conditions. It is found that when one of delay time is
positive, different types of synchronization can be obtained with slightly different initial
conditions, such as generalized synchronization, anti-synchronization, and generalized

lag-synchronization. Numerical simulations are presented to verify these results.

21. 2. Ikeda-Mackey Glass system

A new IMG system is described by the following differential equations:
X (1) =—a, % (1) - Bsinx, (t—7)TK, X, (t - 7,)
(21-2-1)
XZ(t_Tl) +K2X1(t_72)
1+ {Xz (t -7 )}C

where the Ikeda modelx is the phase lag of the electric field across the resonator;e;, 1s the

X (1) =—a,x, (1) +b

relaxation coefficient for the driving x, dynamical variable; £is the laser intensity injected into the
driving system. 7, , 7, are the delay time in the new IMG system, and the dynamical variable in the
Mackey Glass model is the concentration of the mature cells in blood at time t and the delay time

is the time between the initiation of cellular production in the bone marrow and release of mature

cells into the blood[8]. &, is the relaxation coefficient for the driven x, dynamical variable,bis the
feedback rate for the driven system, and K, , K, 1is the coupling rate between the driver

system x, and the response system X, .

This system has a chaotic attractor shown in Fig.1. Fig.2 shows the bifurcation diagram,
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where ¢, =25, =248 k=141, a,=4.7, b=1.2348,c=10, K,=8, r,=5and 7,=I.
If the delay timer,is zero, also it is found that there is also a chaotic behavior for
Ikeda-Mackey Glass system. Fig.3 show that the chaotic attractor of this system where ¢, =25,

p=248 k=141, a,=4.7, b=12348,c=10, K,=8, r,=5and ,=0.

21. 3. Synchronization Scheme
Consider the time-delayed system:
x(t) = f(x(t),x(t—1)) (21-3-1)
where x € R represents the state of the system, and x(t) =dx(t)/dt.
To synchronize system (3), the form of the other system is
y(®) =f(y(),y(t-1) +u (21-3-2)
where u is the controlling term.

In this paper, we find that these two Ikeda-Mackey Glass system can be synchronized without

any controller, only by changing the delay time 7, and 7, .

Consider synchronization between the Ikeda-Mackey-Glass system

X (1) =—a X ()= Bsin X (t—7,) K X, (t-7,)

) _ X, (t—1,) B (21-3-3)
X, (t) = a2X2(t)+bl+{X2(t—Tl)}c +K,x(t-1,)

Yy, ) =—-ay,(t)= Bsiny, (t—7,)+K,y,(t—7,) +U,

) _ y,(t—1,) B (21-3-4)
Yy, (1) = azyZ(t)+b1+{yz(t—T1)}c+K2yl(t 7,)+U,

where the controlling term u, =u, =0.

21.3.1. Casel: If the delay time z,=0
In this subsection it is shown that if the delay timer, is zero, no synchronization can be

obtained. Simulation results are shown in Fig.4 and Fig.5.

21.3.2. Case2: If the delay time z,=1
In this subsection it is shown that if the delay timer,is not zero, different types of

synchronization can be obtained.
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Fig.21-6 and Fig.21-7 show that the generalized synchronization of the two identical IMG

systems can be obtained, where error
€ (t)le,z (t)'Y1,2 (R (21-3-5)
R(t) is a periodic function of time.

Fig.8 and Fig.9 show that the time response of the two identical IMG systems. It is verified

that the anti-synchronization can be obtained by Fig.21-10 and Fig.21-11, where error
e, (=X, Oy, (D) (21-3-6)

Fig.12 and Fig.13 show that the time response of the two identical IMG systems. It is
verified that the generalized lag-synchronization can be obtained by Fig.21-14 and Fig.21-15,

where error
& (1) = X (t _/11)_ Yi O+F() aez(t) = Xz(t) - yz(t —,L12)+ F'(t) (21‘3‘7)

u, =1.2427 sec, u, =1.08sec, F(t)and F (t) are periodic function of time.

X2

Fig. 21-1. An Ikeda-Mackey Glasthaotic attractor when the delay times 7, =5, 7, =1
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Fig. 21-3. An IMG chaotic attractor when the delay timesz,=5,7, =0
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Fig. 21-4.Time response of the two identical IMG systems with x;(0)=1, x2(0)=0,y;(0)=-1 and
y2(0)=0.5, whenz, =0.
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Fig. 21-5.Time response of the two identical IMG systems with x;(0)=1, x2(0)=0,y;(0)=-1 and
y2(0)=0.5, whenz, =0.
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Fig. 21-6. Error dynamics of the two identical IMG systems with x;(0)=100, x,(0)=10, y;(0)=101
and y»(0)=10.001, whenz, =1.
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Fig. 21-7. Error dynamics of the two identical IMG systems with x,(0)=100, x,(0)=10, y;(0)=101
and y»(0)=10.001, whenz, =1.
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Fig. 21-8. Time response of the two identical Ikeda-Mackey Glass systems with x;(0)=1, x2(0)=0,
y1(0)=-1 and y>(0)=0, whenz, =1.
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Fig. 21-9. Time response of the two identical Ikeda-Mackey Glass systems with
x1(0)=1, x2(0)=0, y1(0)=-1 and y»(0)=0, whenz, =1.
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Fig. 21-10. Error dynamics of the two identical IMG systems with
x1(0)=1, x2(0)=0, yi(0)=-1 and y»(0)=0, whenr, =1.
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Fig. 21-11. Error dynamics of the two identical IMG systems with
x1(0)=1, x2(0)=0, yi(0)=-1 and y»(0)=0, whenr, =1.
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Fig. 21-12. Time response of the two identical IMG systems with x;(0)=1, x2(0)=0.1, y;(0)=-1
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Fig. 21-13. Time response of the two identical IMG systems with x;(0)=1, x2(0)=0.1, y;(0)=-1

and y»(0)=0.5, whenz, =1, , =1.08 sec.
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Fig. 21-14. Error dynamics of the two identical IMG systems with x;(0)=1, x2(0)=0.1, y(0)=-1
and y»(0)=0.5, whenz, =1.

143



Chapter 22

Unbounded Chaos

22.1 Preliminaries

Unbounded chaos with three positive Lyapunov exponents in four dimensional phase space
is found for a modified mechanical tachometer.

Chaos is defined as the phenomenon of occurence of bounded nonperiodic evolution in
completely deterministic nonlinear dynamical system with high sensitive dependence on initial
conditional [1]. Other definitions are, for instance: (a) Chaos is recurrent motion in simple
systems or low-dimensional behaviour that has some random aspect as well as a certain order.
Exponential divergence from adjacent starts while remaining in a bounded region of phase space
is a signature of chaotic motion. [2] (b) An asymptotic motion that is not an equilibrium point,
periodic, or quasi- periodic is often called chaotic. - - - Additionally, we require that a chaotic
motion is a bounded asymptotic solution that possesses sensitive dependence on initial conditions.
[3]

Unbounded chaos is found for a modified mechanical tachometer system. The tachometer
system considered is shown in Fig.1 [4]. The masses of the rods and vertical axis O,0, are
neglected, and ball A and B are assumed as particles with equal mass m,. The vertical axis
rotates with constant speed 1 and is subjected to a vertical vibration Asinx, where x, is state
variable , A is the amplitude of vibration. m, is the mass of the sleeve C, | is the length of rod
BC, 21 is the length of AB.¢ is the angle between rod AB and vertical axis O,0,, k is the
spring constant of a restoring spiral spring which is used to restrain the angle ¢ caused by

centrifugal forces of A and B, Kk, is the viscous damping coefficient caused by friction in the

bearings. Let X=¢, X,=d, X,=X,.

22.2 Equation
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By Lagrange equation, we obtain the state equations for the autonomous tachometer system:

& _
dt—xz
dx, 1 -2m,gsinX,  2m,AsinX, sinX, 5 .
—== + —4
dt 2m +4m sin’ x, I I % SIT 083
+2m sin X, cos X,77° —k‘—le —k2—2X2
N 1> (22-2-1)
szét
%:—Asin@

The third and fourth equation of system (1) give a vibration system. When A=0, at steady

state, given 1 corresponds to a definite 7, therefore this system can be used as a tachometer. Up

to now, the tachometer system has clear mechanical explanation. Now we modify the third

equation of system (1) and the system becomes:

& _
m =%
dx, 1 -2m,gsinx, 2m,AsinX, sinX, ) .
—= : —4
& om+dmsicx | | % S CosR

+2m sin X, cos X7y’ —k1—2X1 _kz_zxz)

. (22-2-2)

%=X4+kx1
%z—AsinX3

The term kX, would be an unusual driving term forcing the velocity % However it

might be realized in an electrical system. We choose m, =3, m,=3, g=9.8, I=1.5, A=5, k=4,
k,=1, k=8, n=18.81. Taking n as abscissa, the Lyapunov exponents diagram is shown as Fig 2 .
Hyperchaos [5] with two positive LE is found. Uncommon hyperchaos with three positive LE is
also found for this four state autonomous system. Phase portraits, time history, bifurcation
diagram and power spectrum are presented in Fig 3~7. In Fig 5(c), it is noted that X, is
unbounded, while in Fig 5(a),(b),(d), X, X,, X, are bounded. Therefore a unbounded chaos is
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found in the four dimensional state space. Our conclusion is that in the definitions of chaos

quoted at the beginning of this paper, the word “bounded” should be deleted.

Fig 22-1 ¢ is the angle between rod AB and vertical axis O,0,, k; is the spring constant of a
restoring spiral spring which is used to restrain the angle ¢ caused by centrifugal forces of A

and B, k, isthe viscous damping coefficient caused by friction in the bearings. Let X =4¢,

X=@, X,=%,.

=
i
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Chapter 23
Conclusions

In this report, the generalized synchronization of new chaotic systems by pure error
dynamics and elaborate Lyapunov function, chaos of nonholonomic systems, non-simultaneous
symplectic synchronization of different chaotic systems with variable scale time, double
symplectic synchronization of different chaotic systems, chaos and chaos synchronization of
double Duffing system, chaos and chaos synchronization of double van der Pol system, chaos and
chaos synchronization of double Ikeda system, chaos and chaos synchronization of double Macky
Glass system, are studied.

Chapter 2 contains the dynamics of new autonomous and new nonautonomous chaotic
systems. The system model and the numerical results of regular and chaotic phenomena are
presented.

In Chapter 3, the generalized synchronization is studied by applying pure error dynamics
and elaborate Lyapunov function. In Chapter 4, by applying pure error dynamics and elaborate
nondiagonal Lyapunov function, the nonlinear generalized synchronization is achieved. The
methods give rigorous theories for generalized synchronization and nonlinear generalized
synchronization and greatly extend the use of various forms of Lyapunov function while current
method only gives semi-simulation theory for generalized synchronization, in which the
maximum values of state variables must be given by simulation, and monotonous square sum
Lyapunov function is used. By the systematic procedures, the complexity of designing suitable
elaborate Lyapunov function and elaborate nondiagonal Lyapunov function is reduced greatly.
The proposed methods are effectively applied to both new autonomous and new nonautonomous
chaotic systems.

Complete identification of chaos in nonholonomic systems and nonlinear nonholonomic

systems is firstly presented in Chapter 5 and Chapter 6. The scope of chaos study has been
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extended to nonholonomic systems and nonlinear nonholonomic system. By applying the
fundamental nonholonomic form of Lagrange’s equations, the chaos of two nonholonomic
moving target pursuit systems is studied in Chapter 5, in which nonholonomic pursuit system
with a straightly oscillating target and nonholonomic pursuit system with a circularly rotating
target are investigated. In Chapter 6, chaos of nonlinear nonholonomic problem, the magnitude of
velocity keeping constant, is studied by applying the nonlinear nonholonomic form of Lagrange’s
equations. Complete identification of chaotic phenomena is obtained in nonlinear nonholonomic
system by Lyapunov exponents, phase portraits, Poincaré maps, and bifurcation diagrams.
Futhermore, the Feigenbaum number rule still holds for nonlinear nonholonomic system.

In Chapter 7, the non-simultaneous symplectic synchronization with variable scale time,
y(t) = F(X(7),y(t),t), is studied. By applying adaptive control, the non-simultaneous symplectic
synchronization is achieved and the estimated Lipschitz constant is much less than the Lipschitz
constant obtained by applying nonlinear control. This result in the reduction of the gain of the
controller, i.e. the cost of controller is reduced. The simulation results show that the proposed
scheme is feasible for both autonomous and nonautonomous chaotic systems, whether the
dimensions of x(r) and y(t) are the same or not. Furthermore, when applying the
non-simultaneous symplectic synchronization in secret communication, since the functional
relation of the non-simultaneous symplectic synchronization is more complex than that of
traditional generalized synchronization, and cracking the variable scale time r is an extra task
for the attackers in addition to cracking the system model and cracking the functional relation, the
non-simultaneous symplectic synchronization may be applied to increase the security of secret
communication.

In Chapter 8, the double symplectic synchronization, G(x,y)=F(X,y,t), is studied. It is an
extension of symplectic synchronization, y =F(x,y,t). By applying active control, the double
symplectic synchronization is achieved. By simulation results, it is shown that the proposed
scheme is effective and feasible for both autonomous and nonautonomous chaotic systems.

Furthermore, the double symplectic synchronization may be applied to increase the security of
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secret communication due to the complexity of its synchronization form.

In Chapter 9, we have studied the chaos in the integral order and fractional order double
Duffing system by phase portraits, Poincaré maps and bifurcation diagrams. The total orders of
the system for the existence of chaos are 0.1 to 0.7 and 1.

In Chapter 10, parameter excited chaos synchronizations of two identical double Duffing
systems are studied by adjusting the strengths of the substituting state variables. Numerical
simulations are illustrated for CS or AS of which the occurrence depends on initial conditions and
driving strength. Besides, alternative CS and AS is also discovered with same initial conditions
and same driving strengths.

In Chapter 11, synchronization and antisynchronization scheme based on the substitution of
the corresponding parameters in two identical chaotic double Duffing systems by a white noise, a
Rayleigh noise, a Rician noise or a uniform noise respectively. For the white noise case, neither
CS and AS are found. For the Rayleigh noise case, CS and AS are obtained for different noise
strengths. For the Rician noise case and the uniform noise case, only AS is obtained. Numerical
simulations show that whether CS or AS occurs is sensitive to the noise strength.

In Chapter 12, a new scheme to achieve the pragmatical generalized synchronization of
adaptive control via the pragmatical asymptotical stability theorem is gavien. By the procedure of
the proposed scheme, two double Duffing systems and a double van der Pol system are used as
master system, slave system, and goal system, respectively. The validity of this approach is
verified theoretically and numerically. Based on pragmatical asymptotical stability theorem, using
this theorem, we can obtain the generalized synchronization of chaotic systems and prove that the
estimated parameters approach the uncertain values.

In Chapter 13, chaos in double van der Pol system and in its fractional order systems is
studied. It is found that with reducing the total derivative order ¢, + 3 +a, + 3, the ranges of

the chaotic phase portraits of the system decrease and its shape changes differently for different

choices of parameters. Twenty-one chaotic cases for 0.4<(a, + S +a,+,)<4.0 are studied,

153



and the lowest total order for chaos existence in the system is found to be 0.4. Thirty nonchaotic
cases are found.

In Chapter 14, the variable with adjustable strength of a third double van der Pol system
substituted for the strength of two corresponding mutual coupling terms of two uncoupled
identical chaotic double van der Pol system, gives rise to their synchronization or
anti-synchronization. Both CS and AS can be achived by adjusting the strength of the substituted
variable and the initial conditions.

In Chapter 15, complete synchronization and antisynchronization scheme based on the
substitution of two same parameters in two identical chaotic double van der Pol systems by a
white noise, a Rayleigh noise respectively. For the white noise case and Rayleigh noise case, CS
and AS are obtained for different noise strengths and initial conditions. Numerical simulations
show that whether CS or AS occurs is sensitive to the noise strength.

In Chapter 16, controling chaotic systems to different systems is studied by new pragmatical
adaptive control method. The pragmatical asymptotical stability theorem fills the vacancy
between the actual asymptotical stability and mathematical asymptotical stability, the conditions
of the Lyapunov function for pragmatical asymptotical stability are lower than that for traditional
asymptotical stability. By using this theorem, with the same conditions for Lyapunov function,
V>0, V<0, as that in current scheme of adaptive chaos control, we not only obtain the
adaptive control of chaotic systems but so prove that the estimated parameters approach the
uncertain values. Traditional chaos control is limited for the same system. This method enlarges
the function of chaos control. We can control a chaotic system to a given chaotic system. The
method also downhill simplex the controllers and reduce their cost.

In Chapter 17, the chaos in integral and fractional order double Ikeda systems with total
order of derivatives from 2 to 0.2 are studied by phase portraits, Poincaré maps and bifurcation
diagrams. It is found that chaos exists in all cases.

In Chapter 18, the chaotic behaviors of double Ikeda systems are obtained by replacing their

delay time by a function of chaotic state variables of a second chaotic system. It is found that
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chaos exists for Case 1, 3, 5, 6. The chaotization of a double Ikeda system is studied by using a
function of state variable of a second identical system to replace a parameter of the first system. It
is found that in Case 9, 10, 11, chaotization exists.

In Chapter 19, lag or anticipated synchronization and the lag or anticipated
anti-synchronization of two double Ikeda systems with different initial conditions are discovered.
There are two situations in all possible initial conditions. Cases 1~8 are the lag or anticipated
synchronizations. Cases 9~16 are the lag or anticipated anti-synchronizations.

In Chapter 20, robust lag chaos synchronization, lag quasi-synchronization and chaos
control of two uncoupled double Ikeda system, are achieved by replacing the corresponding
parameters of two systems by different chaotic state variables of a third chaotic system.
Robustness of synchronization is studied by addition of various noises. The results are
satisfactory.

In Chapter 21, first, we introduce the definition and approximation of fractional order
operator briefly. Then the double Mackey-Glass delay systems in integral and fractional forms
are described. We find the chaos which exists in the integral system and in fractional systems
with orders 0.9, 0.8, 0.1 by phase portraits and the bifurcation diagrams.

In Chapter 22, we apply the parameter excited method to control the double Mackey-Glass
system and to synchronize two uncoupled double Mackey-Glass systems. By replacing the
corresponding parameters of chaotic system with noise, chaos control and chaos synchronization
can be accomplished. This method is effective to synchronize two systems, for which coupling
method of synchronization is difficult or even impossible. Finally, numerical simulations show
the proposed method is effective to suppress the chaotic behavior and drag the trajectories to the
origin. Also, chaos synchronizations are successfully achieved in many cases with Rayleigh noise
Rician noise, and uniform noise respectively.

In Chapter 23, temporary lag or anticipated synchronization and the lag or anticipated
anti-synchronization of double Mackey-Glass systems with small and similar initial conditions

are discovered. For the first interval of TLS, when all initial values are positive, temporary lag
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synchronizations are found. The trajectory will be reversed if the initial condition of X, or Y, is
negative. In these cases, the lag or anticipated anti-synchronization exists. From the results of
simulation, we find six temporary lag (anticipated) synchronization intervals in 30000seconds.
Although the numerical simulations of temporary lag and anticipated synchronization and
anti-synchronization are showed in this . However, the theoretical analysis and its applications
should be open for further work in the future.

In Chapter 24, the parameter excited method is applied to synchronize two uncoupled double
Mackey-Glass systems. By replacing the corresponding parameters with a Rayleigh noise and
choose the appropriate noise strength, the lag synchronization can be successfully obtained.
Temporary lag synchronization, partial lag synchronization, chaos control and robustness of lag
synchronization are also obtained. The abundance of various phenomena fully exhibits the

potential application of this method.
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1. Introduction

Since Ott et al. [ 1] gave the famous OGY control method in 1990, the applications of the various methods to control a
chaotic behavior in natural sciences and engineering are well known. For example, the adaptive control [2-5], the method
of chaos control based on sampled data [G], the method of pulse feedback of systematic variable [ 7], the active control [8,9]
and linear error feedback control [ 10,11]. However, when Lyapunov stability of zero solution of states is studied, the stability
of solutions on the whole neighborhood region of the origin is demanded.

In this paper, a new strategy to achieve chaos control by GYC partial region stability theory is proposed [12,13]. Using
the GYC partial region stability theory, the new Lyapunov function is a simple linear homogeneous function of error states
and the lower order controllers are much more simple and introduce less simulation error.

The layout of the rest of the paper is as follows. In Section 2, chaos control scheme by GYC partial region stability theory
is proposed. In Section 3, new Mathieu-Van der pol system and new Mathieu-Duffing system are presented. In Section 4,
three simulation examples are given. In Section 5, conclusions are drawn. The partial region stability theory is enclosed in
Appendix.

2. Chaos control scheme

Consider the following chaotic system
x=f(t,x) (2.1)
where X = [xy, X, ..., %" & K" isa state vector, £ : Ry = R* — R is a vector function.

* Corresponding address: Department of Mechanical Engineering, Mational Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan, ROC,
Tel: +886 35712874 fax: +886 3 5720634,
E-moil address: smg@ce,net,eduow (7,-M, Ge).
T Tol.: +886 3 5712121x55179,

0362-546X]8 - see front matter © 2009 Elsevier Lrd, All rights reserved,
doi: 10,1016/j.na,2009,02,095
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which is negative definite function in first quadrant, The numerical results are shown in Figs, 10 and 11. After 10 s, the
errors approach zero and the chaotic trajectories of the new Mathieu-Van der pol system approach to that of the new
Mathieu-Duffing system.

5. Conclusions

In this paper, a new strategy by using GYC partial region stability theory is proposed to achieve chaos control. Using the
GYC partial region stability theory, the new Lyapunov function used is a simple linear homogeneous function of states and
the lower order controllers are much more simple and introduce less simulation error. The new chaotic Mathieu-Van der
pol system and new chaotic Mathieu-Duffing system system are used as simulation examples which confirm the scheme
effectively.
Acknowledgment
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effectiveness and feasibility of our new strategy.
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1. Introduction

Nonlinear dynamics, commonly called the chaos theory, changes
the scientific way of looking at the dynamics of natural and social
systems, which has been intensively studied over the past several
decades. The phenomenon of chaos has attracted widespread at-
tention amongst mathematicians, physicists and engineers. Chaos
has also been extensively studied in many fields, such as chemical
reactions, power converters, biological systems, information pro-
cessing, secure communications, ete. [1-9].

Since EN. Lorenz [10] discovered chaos in a simple system of
three autonomous ordinary differential equations in 1963 (called
contemporary Lorenz system in this Letter), there are lots of ar-
ticles in studying contemporary Lorenz system [11-15]. Although
the contemporary Lorenz system has been analyzed in detail, there
are no articles in looking into the historical Lorenz system. Accord-
ing to modern physics, there are many virtual parity of particles,
such as electron (negative) and positron (positive), proton (posi-
tive} and anti-proton (negative), etc. Therefore, there is a positive
chaotic Lorenz system. |s there a negative chaotic Lorenz system?
In [16], we use positive parameters (P-parameters) for the con-

* Corresponding author. Tel: +886 3 5712121855179; fax: +986 3 5720634,
E-mail address: agenghost@gmailcom (S.-Y. L)
! Tel: «86 3 S7T12121455119,

(375-9601/$ - see front matter © 2009 Elsevier BV, Al rights reserved.
doi: 100101 6] physleta 2009.00.004

temporary Lorenz system, negative parameters (N-parameters) for
the historical Lorenz system and give a complete report in study-
ing historical Lorenz system.

In this Letter, a new adaptive synchronizing strategy — prag-
matical [17,18] adaptive synchronization by GYC partial region sta-
bility theory (which is proposed by Ge, Yao and Chen [19-21]) is
proposed. Via using this new approach, the new Lyapunov func-
tion is a simple linear homogeneous function of states and the
lower order controllers and parametric update laws are much sim-
pler and introduce less simulation error.

The layout of the rest of the Letter is as follows. In Section 2,
GYC pragmatical adaptive synchronization scheme is presented. In
Section 3, the contemporary and historical Lorenz system is dis-
cussed. In Section 4 and 5, simulation results are given for com-
paring and observation. In Section 6, conclusions are given.

ion scheme

2. GYC pragmatical ada

synchr

There are two identical nonlinear dynamical systems, and the
master system controls the slave system. The master system is
given by

k=Ax+ f(x, B) 2.1}

where x = [x1,%,...,%]" € R" denotes a state vector, A is an
n < n uncertain constant coefficient matrix, { is a nonlinear vector
function, and B is a vector of uncertain constant coefficients in f.
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the corresponding N-parameters. This study in historical chaos ex-
plores another half battle field for chaos study, will prove to have
epoch-making significance in the future.
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ARTICLE INFO ABSTRACT

Keynmrd;.' ) A new pragmatical adaptive control method for different chaotic systems is proposed. Tra-
Pragmatical adaptive control ditional chaes control is limited 1o decrease chaos of one chaotic system. This method
Double van der Pol system enlarges the effective scope of chaes control. We can control a chaotic system, e.g. a new

Double Dulling system

n chaotic double van der Pol system, to a given chaotic or regular system, e.g. a new chaotic
Uncoupled chaotic system W & & W &

double Duffing system or to a damped simple harmonic system. By a pragmatical theorem
of asymptotical stability based on an assumption of equal probability of initial peint, an
adaptive control law is derived such that it can be proved strictly that the common zero
soelution of error dynamics and of parameter dynamics is asymptotically stable. Numerical
simulations are given to show the effectiveness of the proposed scheme.

@ 2008 Elsevier Inc. All rights reserved.

1. Introduction

Since chaos control was firstly used by Ot et al. [1], it has been studied extensively. Many control methods have
been employed to control chaos [2-6]. Simple linear feedback control was proposed [7-9]. Time delay feedback control
[10-13], sliding mode control [14-17], backstepping method [18] and adaptive control [19-22] were widely used. However,
traditional adaptive chaos control is limited to control the chaotic motion of one chaotic system to regular motion or to fixed
peint, Proposed pragmatical adaptive control method enlarges the scope of chaos control. We ¢an control a chaotic system to
a given simple unchaetic system or to a more complex chaotic system. In current scheme of adaptive control of chaotic mo-
tion [23-25], traditional Lyapunov stability theorem and Babalat lemma are used to prove the error vector approaches zero,
as time appreaches infinity. But the question, why the estimated or given parameters also approach te the uncertain or goal
parameters, remains ne answer. By a pragmatical theorem of asymptotical stability [29-31] based on an assumption of equal
probability of initial peints, an adaptive control law is derived such that it can be proved strictly that the common zero solu-
tion of error dynamics and of parameter dynamics is asymptotically stable. Mumerical results are given for a chaotic double
van der Pol system to he controlled to a chaotic double Duffing system and to a regular damped simple harmonic system.

This paper is organized as follows: In Section 2, a pragmatical adaptive control scheme is given. In Section 2 numerical
results of chaos control are given. A chaotic double van der Pol system is controlled to a chaotic double Duffing system
and to a regular damped simple harmonic system. Finally, conclusions are given in Section 4.

2. Pragmatical adaptive control scheme
Consider the following chaotic system

X =[x, A) 4+ u(t}, (1)

* Correspending author.
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Eq. {30) is the parameter dynamics. Substituting Eqs. (29) and {30) into Eq. {28), we obtain
V=B -E-EB-E<0

which is negative semi-definite function of E,, E;, E3, E,. The Lyapunov asymptotical stability theorem is not satisfied. We
cannot obtain that the common origin of error dynamics {26) and parameter dynamics (27) is asymptotically stahle.
Now, [ is an 8-manifold, n=12 and the number of error state variables p=4. When E, a=E,=0 and
k,ay,be, €y di gy, 1, 8, R Ay, take arbitrary values, V =0, so X is 4-manifold, m=n—p=12 —4=8. m+1 <n is satisfied.
By pragmatical asymptotical stability theorem, error vector e approaches zero and the estimated parameters also approach
the uncertain parameters. The pragmatical generalized synchronization is obtained. Under the assumption of equal
probability, it is actually asymptotically stable. This means that the chaos control for different systems, from a double
van der Pol system to a exponentially damped-simple harmonic system, can be achieved. The simulation results are shown
in Figs. 5 and 6.

4. Conclusions

To control chaotic systems to different systems is study by new pragmatical adaptive control method. The pragmatical
asymptotical stability theorem fills the vacancy between the actual asymptotical stability and mathematical asymptotical
stability. The conditions of the Lyapunov function for pragmatical asymptotical stability are lower than that for traditional
asymptotical stability. By using this theorem, with the same conditions for Lyapunov function, V> 0, V < 0, as that in current
scheme of adaptive chaos control, we not only obtain the adaptive control of chaotic systems but also prove that the esti-
mated parameters approach the uncertain values. Traditional chaos control is limited to decrease chaos of one chaotic sys-
tem. This method enlarges the effective scope of chaos control. We can control a chaotic system to a given chaotic system or
to a given regular system.
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Abstract: In this paper, chaos control and anticontrol of a tachometer system by Ge-Yao-Chen
(GYC) partial region stability are proposed. The Lyapunov function becomes a simple linear
homogeneous function and the controllers become simpler by using the GYC partial region
stability theory. The simulation results are more precise because the controllers are in lower
degree than that of traditional controllers. Finally, chaos control and anticontrol of tachometer
system by GYC partial region stability are obtained and verified by numerical simulations.

Keywords: tachometer system, Lyapunov exponent, hyperchaos, Ge—Yao—Chen partial region

stability theorem, chaos control, anticontrol

1 INTRODUCTION

Since the chaos control problem was first considered
by Ottetal. [1, 2], ithas been studied extensively. Chaos
control is used to suppress or eliminate the chaotic
dynamical behaviour in non-linear systems. There
are many control methods for chaos control, such
as feedback and non-feedback control [3-6], adap-
tive control [7, 8], observer-based control [9], inverse
optimal control [10], and active control [11]. However,
when Lyapunov asymptotical stability of zero solution
of states is used, the asymptotical stability of solutions
on the whole neighbourhood region of the origin is
demanded.

Anticontrol [12-18] is an interesting, new, and chal-
lenging phenomenon. As a reverse process of sup-
pressing or eliminating chaotic behaviours in order
to reduce the complexity of an individual system or a
coupled system, anticontrol of chaos aims at creating
or enhancing the system complexity for some spe-
cial applications. More precisely, anticontrolling chaos
is to generate some chaotic behaviours from a given
system, which is non-chaotic or even stable origi-
nally. By fully exploiting the intrinsic non-linearity,

*Correponding author: Department of Mechanical Engineering,
National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchn 300,
Tatwan, Republic of China. email: zmg@ce. netwedu. tw

TMES1249 © IMechE 2009

this control technique provides another dimension
for feedback systems design. [ts potential applications
can be easily found in many fields, including typically
physics, biology, engineering, and medical as well as
social sciences.

In this paper, a new method to achieve chaos control
and anticontrol by the Ge-Yao-Chen (GYC) the partial
region stability theory [19-21] is proposed. In this the-
ory, when the asymptotical stability of zero solution of
states is studied, the asymptotical stability of solution
only on the partial neighbourhood region of the origin
is demanded. Using this stability theory, the Lyapunov
function becomes a simple linear homogeneous func-
tion of error states, and every terms of the controllers
are of lower degree than that of the controllers when
the traditional Lyapunov asymptotical stability the-
ory is used. The simulation results are more precise
since the controllers are in lower degree than that of
traditional controllers.

This paper is organized as follows. In section
2, chaos control and anticontrol scheme by the
GYC partial region stability theory is proposed. In
section 3, a tachometer system and a new hyper-
chaotic Mathieu-Duffing is introduced. In section
4, chaos control and anticontrol of the tachome-
ter system by the GYC partial region stability the-
ory are presented in three examples by simulations.
Finally, conclusions are drawn in section 5. The
partial region stability theory is introduced in the
Appendix.
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(24)
One can obtain
V=—e—e, —e;—8 <0 (25)

which is a negative definite function in the first quad-
rant. By the asymptotical stability theorem for the
partial region, lim,_, ., @ = 0. The numerical results are
shown in Figs. 13 and 14. When the controllers act,
the errors approach zero and the chaotic motion of
tachometer system approaches to the hyperchaotic
motion of the new Mathieu-Duffing system within 5 s.

5 CONCLUSIONS

In this paper, chaos control and anticontrol of a
chaotic tachometer system by GYC partial region sta-
bility are studied. The simulation results are more
precise because the controllers are in lower degree
than that of traditional controllers. Three simulation
examples are given. When controllers are in action,
the error states rapidly approach zero within 5 s in all
three examples, which means this chaos control and
anticontrol scheme is very effective. Simulations show
that for other continuous systems, this method is also
effective. Besides, traditional anticontrol of a chaotic
system is limited to increase the chaos or hyperchaos
of the chaotic system itself. In this paper, chaos anti-
control is extended to make the chaos of a chaotic
system increase to the hyperchaos of any other system.
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Abstract The history of the Lorenz system is firstly
discussed in this paper. In Chinese philosophy, Yin is
the negative, historical, or feminine principle in nature,
while Yang is the positive, contemporary, or masculine
principle in nature. ¥in and Yan are two fundamental
opposites in Chinese philosophy (therefore, in this pa-
per, these words “Yin parameter,” “Yang parameter,”
“historical system,” and “contemporary system” are
used to represent the “positive parameter,” “negative
parameter,” “time reversed (—f) system,” and “time
forward (1) system,” respectively). Simulation results
show that chaos of historical Lorenz system can be
generated when using “Yin” parameters. To our best
knowledge, most characters of contemporary Lorenz
system are studied in detail, but there are no articles in
making a thorough inquiry about the history of Lorenz
system. As aresult, the chaos of historical Lorenz sys-
tem with “¥in parameters” is introduced in this pa-
per and various kinds of phenomena in the histori-
cal Lorenz system are investigated by Lyapunov ex-
ponents, phase portraits, and bifurcation diagrams.

Keywords Time reversed Lorenz system - Yin
parameters - Lyapunov exponent - Chaos
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1 Introduction

Nonlinear dynamics, commonly called the chaos the-
ory, changes the scientific way of looking at the dy-
namics of natural and social systems, which has been
intensively studied over the past several decades, The
phenomenon of chaos has attracted widespread atten-
tion amongst mathematicians, physicists, and engi-
neers. Chaos has also been extensively studied in many
fields, such as chemical reactions, power convert-
ers, biological systems, information processing, secure
communications, ete. [1-9]. While many researchers
analyze complicated, physically motivated configura-
tions, there is also a need to investigate simple equa-
tions which may capture the essence of chaos in a
less involved setting, thereby aiding the understand-
ing of essential characteristics. The original investiga-
tion of an extraordinary three-dimensional nonlinear
system by the mathematical meteorologist Lorenz [10]
who discovered chaos in a simple system of three au-
tonomous ordinary differential equations in order to
describe the simplified Rayleigh-Benard problem in
1963 (which is called the contemporary Lorenz system
in this paper) is the most popular system for studying.

There are a lol of articles in studying the contempo-
rary Lorenz system [11-15]. Although the contempo-
rary Lorenz system has been analyzed in detail, there
are no articles in looking into the history of the Lorenz
system. In this paper, we find out that there are rich
dynamics in this historical Lorenz system.

4 Springer
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Table 3 Range of parameter ¢ of historical Lorenz system

Table 7 Range of parameter a of historical Lorenz system

—20.0-(—46.8) Chaos
-46.8-(~47.7) Periodic trajectory
—47.7-4-51.3) Chacs
51.3(-524) Periodic trajectory
—52.4-(~59.5) Chaos
-59.5-{—59.8) Periodic trajectory
—59.8(—68.3) Chaos
—68.3(—69.6) Periodic trajectory

69.6-(—T0) Chaos

—3.00-({—5.43) Periodic trajectory
{one altractor 1o two altractors)

—5.45-(—5.60) Chaos

5.60-{—6.05) Periodic rajectory
—6.05-(—-6.1T) Chaos

6.17-(—6.35) Perindic rajectory
—6.35-(~T58) Chaos
—7.58-(=7.76) Periodic trajectory

1.76-(—20) Chaos

Table 4 Range of parameter b of contemporary Lorenz system

0-0.592 Converge 1o a fixed point
(0.592-0.648 Chaos

0.648-0.720 Periodic trajectory
0.720-3 448 Chaos

344584 Comverge 1o a fixed point

Table 5 Range of parameter & of historical Lorenz system

O0—(—0.568) Converge to a fixed point
0.568-(—0.728) Chaos

~0.728-(-0.792) Periodic trajectory
0.792-( 4,000} Chaos

Table 6 Range of parameter @ of contemporary Lorenz system

5.000-5.760 Converge 1o a fixed point
3.760-18.368 Chaos
18,368-20.000 Converge (o a fixed point

where o = [—1, 1]. We choose initial condition (xg. g,
zo) = (—0.1,0.2, 0.3) and Yin parameters a = —6,b =
—8/3 and ¢ = —28, the projection of phase portraits,
bifurcation diagrams, and Lyapunov exponents with
= [—1,1] are shown in Figs. 9 and 10. In observa-
tion of Figs. 9 and 10, it is clear that there are periodic
and chaotic motions in such a family system when g
is varying.

6 Conclusions
In this paper, the ¥in Lorenz system with “Yin para-

melers” and its one-parameter family are firstly in-
troduced. When the transformation from (x(r), y(r).

@) Springer

(), 1) to (x{—1), y(—1), z(—1), —t) is made, sim-
ulation results show that chaos of the Yin Lorenz
system can be generated via using “¥in" parame-
ters (—a, —e, —&). Via numerical simulation, the ¥in
Lorenz system is compared with the Yang Lorenz sys-
tem and we found out there are similarities and dif-
ferences between them. The approximate symmetry
of Lyapunov exponents is most prominent in Figs. 5
and 6. This paper explores the another half battle field
for chaos study, and will prove to have epoch-making
significance in the future.
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SUMMARY

A new strategy to achieve chaos control by GYC partial region stability theory is proposed. By using
the GYC partial region stability theory, the Lyapunov function is a simple linear homogeneous function
of error states, the controllers are more simple and have less simulation error because they are in lower
degree than that of traditional controllers. Simulation results for a new Tkeda-Lorenz system show the
effectiveness of this strategy. Copyright @ 2008 John Wiley & Sons, Lid,

KEY WORDS: chaos control; partial region stability theory: Ikeda-Lorenz system; Genesio system

1. INTRODUCTION

Chaos, as an interesting nonlinear phenomenon, has been intensively investigated. It is well known
that chactic systems have sensitive dependence on initial conditions. A chaoctic system is a nonlinear
deterministic system that displays complex dynamical behaviors [1].

The theory of chaos control has developed since 1990 [2-4| and today is at the forefront of
research in the field of nonlinear dynamics. Techniques have been experimentally implemented
in mechanical [5], chemical [6], electronic [7], laser [8], communication [9] and biclogical [10]
systems. Though there are now many different algorithms developed for the control of chaos for
specific cases, in general all make use of typical properties of chaotic systems, namely, multiple
coexisting solutions, sensitivity and ergodicity.

In this paper, a new chaos control strategy by GYC (Ge- Yao-Chen) partial region stability theory
is proposed [11=13]. By using the GYC partial region stability theory, the Lyapunov function is a
simple linear homogeneous function of error states and the controllers are more simple and have
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Contract/grant sponsor: National Science Council; contract/grant number: 96-2221-E-Q09-145-MY3

Copyright © 2008 John Wiley & Sons, Ltd. Received 14 May 2008
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which is, obviously, in contradiction with Equation (A17). The contradiction thus obtained shows
that the function V(r,x1(t),. .., xpu(1)) approaches zero as ¢ increases without limit. Consequently,
the same will be true for the function W(x(r),..., x,(¢)) as well, from which it follows directly that

lim x:(t)=0 (s=1,...,n)
=00

which proves the theorem. 0
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