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Abstract

In using pooling designs to identify clones containing a specific subsequence called positive clones, sometimes there exist
nonpositive clones which can cancel the effect of positive clones. Various models have been studied which differ in the power of
cancellation. Although the various models pose interesting mathematical problems, and ingenious constructions of pooling designs
have been proposed, in practice we rarely are sure about the true model and thus about which pooling design to use. In this paper
we give a pooling design which fits all inhibitor models, and does not use more tests than in the more specific models. In particular,
we obtain a 1-round pooling design for the k-inhibitor model for which only sequential designs are currently known.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Pooling design; Inhibitor

1. Introduction

In many DNA experiments, we want to know whether a clone (or a contig, a gene) contains a specific subsequence.
If it does, we call the clone positive, otherwise, it is negative. Group testing is often used to identify the positive
clones. A group test is applied to an arbitrary subset of the clones and yields a positive outcome if and only if that
subset contains a positive clone (the test does not reveal which or how many), otherwise, the outcome is negative. The
goal is to use a minimum number of tests to identify all positive clones. In biological applications, more important
than the number of tests is the number of rounds these tests can be performed (all test in the same round are performed
parallelly). Note that the choice of clones to be included in a test can only use information from test outcomes of
previous rounds. Thus the fewer the rounds, the less information is available in the test design. A 1-round testing
scheme is usually referred to as a pooling design in biological literature.

In some applications, some negative clones are special in the sense that they can cancel the effect of positive clones
in deciding the test outcome. Such clones are called inhibitors. Different models can be formulated by considering
different cancellation effect. The simplest model was first proposed by Farach et al. [7] in which the presence of a
single inhibitor dictates the test outcome to be negative regardless of how many positive clones are in the test. Later,
De Bonis and Vaccaro [3] generalized the above model to the k-inhibitor model in which a test has a positive outcome

✩ This research is partially supported by a Republic of China National Science grant NSC 93-2115-M-009-013.
* Corresponding author.

E-mail address: fkhwang@gmail.com (F.K. Hwang).
0022-0000/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2007.03.005



F.K. Hwang, F.H. Chang / Journal of Computer and System Sciences 73 (2007) 1090–1094 1091
if and only if it contains a positive clone and at most k −1 inhibitors (the first model is the special case k = 1). Pooling
designs have been proposed for the 1-inhibitor model [4], and extended to the error-tolerant version [8].

Obviously, there are many other models one can propose as to how many inhibitors can dominate how many
positive clones. Besides the cumbersomeness in constructing pooling designs for all these variety models, the main
problem is in reality, rarely do we have exact information on the model, thus at a loss of which pooling design to use.
In this paper we consider the general inhibitor model which includes all variations of cancellation effect and show
that the pooling designs proposed for the 1-inhibitor model and its error-tolerant version are applicable to the general
inhibitor model. Thus we can use the same pooling design in the presence of inhibitors without worrying whether the
model is correct.

2. The error free version

Consider a set S of n clones including p positive clones and q inhibitors, p and q are unknown except p � d and
q � n. We also do not know the exact cancellation effect between the positive clones and the inhibitors.

A pooling design is usually represented by the incidence matrix M where rows are indexed by tests and columns
by clones, i.e., mij = 1 if clone j is contained in test i, and mij = 0 otherwise. It is convenient to treat a column
vector as a subset of the row indices {i: mij = 1}. Then we can talk about a union of columns. A binary matrix is
called d-disjunct if no column is covered by the union of any other d columns. It is well known [5] that a d-disjunct
matrix can identify all positive clones if p � d . In fact, the d-disjunct matrix has become the main tool in constructing
pooling designs.

An isolated row is a row containing a single 1-entry. Suppose a d-disjunct matrix M has an isolated row. Then this
row can be deleted along with the column it is incident to without affecting the identification of other clones, and the
reduced matrix is easily seen to be still d-disjunct. Therefore we assume that the disjunct matrices considered in this
paper has no isolated row.

Lemma 1. In a (d + x)-disjunct matrix, a column has at least x + 1 1-entries not covered by the union of any other
d columns.

Proof. Suppose to the contrary there exist a column C and a set D of d columns such that C has at most x 1-entries
not covered by D. Then these 1-entries can be covered by at most x additional columns since each 1-entry incident to
C is also incident to another column (no isolated row). Thus C is covered by at most d + x other columns, violating
the assumption of (d + x)-disjunctness. �
Theorem 2. A (d + r)-disjunct matrix can identify all p positive clones in S.

Proof. Let N denote a negative clone, P a positive clone and I an inhibitor. Let t (C) denote the number of negative
pools clone C appears in. For a given r-set R of columns, let tR(C) denote the same except that a 0-outcome is
changed to 1 if that row contains a 1-entry from R. R is treated as a candidate set of the inhibitors (or a set to cover
the inhibitors if their number is less then r). Define

t∗(C) = min
R

tR(C),

where the minimum is over all
(
n
r

)
choices of r-sets of columns. Then

t∗(P ) = min
R

tR(P ) = tR
′
(P ) = 0,

where R′ is an r-set covering all inhibitors.
On the other hand, by the definition of a (d + r)-disjunct matrix, any column C has an 1-entry not covered by any

d + r columns. In particular, for C ∈ {N,I }, the set of positive clones and R, forming a set of at most d + r columns,
must leave at least one 1-entry of C uncovered. Clearly, this uncovered 1-entry is in a negative pool. Thus we have

t∗(C) � 1, for C ∈ {N,I }.
Consequently the set {C: t∗(C) = 0} is the set of positive clones. �
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The procedure takes O(nr+1) time since for each C we have to try
(
n
r

)
R. We can reduce the number of choice of

R by noting

t (N) � r + 1 and t (I ) � r + 1.

Thus any column C with t (C) � r must be positive and can be excluded from R.

3. The error-tolerant version

The assumption of the error-tolerant version are same as the error-free version except that e01 + e10 errors may
occur to the outcomes, say, e01 errors change a 0-outcome to 1, and e10 change a 1-outcome to 0. We assume an upper
bound e of e01 + e10 is known.

The notion of dz-disjunctness was first raised by Macula [9]. We use the notion (d, z) replaced dz. A binary matrix
is (d, z)-disjunct if each column has at least z 1-entries not covered by any other d columns. Note that (d, z)-disjunct
is just d-disjunct.

Let M be a (d + r, c + e + 1)-disjunct matrix where c is a constant to be fixed later.
Ignoring the inhibitors for the moment, then a positive clone P can appear in a negative pool only if its outcome is

one of the e10 errors. So when R contains all inhibitors, then

t∗(P ) = tR(P ) � e10.

On the other hand, for C ∈ {N,I }, then C has at least c+e+1 1-entries not covered by the at most d positive columns
and the r columns in R for all R before errors. Clearly, these uncovered 1-entries all appear in negative pools. Errors
of the e01-type may reduce the number of such negative pools. But still,

t∗(C) = min
R

tR(C) � min
R

{c + e + 1 − e01} = c + e + 1 − e01.

Since

e � e10 + e01,

t∗(C) � c + e10 + 1 > t∗(P ).

The problem is we do not know e10 to separate P from N and I in general, we consider some special cases:

(i) We know an upper bound e10 of e10 and an upper bound e01 of e01. Set c = e01 + e10 − e. Then for C ∈ {N,I },
t∗(C) � (e01 +e10 −e)+e+1−e01 = e10 +1. Thus {C′: t∗(C′) � e10} is the set of positive clones. In particular,
when e is obtained by adding up e01 and e10, then c = 0.

(ii) If we have no estimates of e10 and e01, set c = e. Then

t∗(C) � e + e + 1 − e01 � e + 1 > e10 � t∗(P ).

Thus {C′: t∗(C′) � e} is the set of positive clones.
(iii) If p = d , then set c = 0 and the set {C′: t∗(C′) is among the d smallest} is the set of positive clones.

Note that case 2 is the solution given in [8], and case 3 the solution given in [6] for the 1-inhibitor model.

4. The k-inhibitor model

De Bonis and Vaccaro [1,2] proposed a 4-stage scheme for the k-inhibitor model:

stage 1. Find a positive pool.
stage 2. Find a positive pool containing exactly k − 1 inhibitors.
stage 3. Identify all inhibitor and remove them.
stage 4. Identify all positive clones.
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They gave pooling designs for stages 1, 3 and 4, but stage 2 is sequential. The total number of tests required is
O([(r/k)2 + r + d] logn). Using the results in Section 2, we solve the k-inhibitor model with a pooling design in
O((d + r)2 logn) tests. Moreover, there exists a pooling design with fewer tests. Called a binary matrix M a (x +
(m out of y))-disjunct matrix if for any x + y + 1 columns, C0,C1, . . . ,Cx,Cx+1, . . . ,Cx+y there exists a row which
intersects C0 but none of C1, . . . ,Cx , and does not intersect at least m of Cx+1, . . . ,Cx+y . Clearly, (x + (0 out of y))-
disjunct is simply x-disjunct, (x + (y out of y))-disjunct is simply (x + y)-disjunct, and (x + m)-disjunct implies
(x + (m out of y))-disjunct for any y � m.

We now use such a matrix to identify all positive clones. While we can use the general procedure given in Sections 2
and 3 to obtain a 1-round pooling design with or without errors, we can take advantage of the special feature of the
k-inhibitor model to obtain a more efficient 1-round pooling design.

Theorem 3. A (d + (k out of r))-disjunct matrix can identify all p positive clones under the k-inhibitor model.

Proof. For a given r-set R of columns, let tRk (C) denote the number of negative pools clone C appears in except that
a 0-outcome is changed to 1 if the row contains k 1-entry from R. Define t∗k (C) = minR tRk (C), where the minimum
is over all

(
n
r

)
choices of r-sets of columns. Then

t∗k (P ) = min
R

tRk (P ) = tR
′
k (P ) = 0,

where R′ is an r-set covering all inhibitors.
On the other hand, for C ∈ {N,I }, the set of positive clones and R must leave at least one 1-entry of C uncovered

by the definition of a (d + (k out of r))-disjunct matrix. Thus we have

t∗k (C) � 1, for C ∈ {N,I }. �
Next, we extend to the error-tolerant version. Call a binary matrix M a (d + (m out of r), z)-disjunct matrix if for

any d + r + 1 columns, C0,C1, . . . ,Cd,Cd+1, . . . ,Cd+r there exists at least z rows which intersect C0 but none of
C1, . . . ,Cd , and does not intersect at least m of Cd+1, . . . ,Cd+r . For the error-tolerant case, similar to Section 3, can
identify all positive clones under the k-inhibitor model with e-error correcting property.

Corollary 4. A (d+(k out of r),2e+1)-disjunct matrix can identify all p positive clones under the general k-inhibitor
model with at most e errors.

Corollary 5. Suppose a (d +r −k+1,2e+1)-disjunct matrix is used. Then R can be taken from all (r −k+1)-subsets
of the column sets.

5. Conclusions

We show that a (d + r)-disjunct matrix not only works for the 1-inhibitor model, but any inhibitor models and
a (d + r,2e + 1)-disjunct matrix works the same for the e-error-tolerant version. Thus the applicability is widely
extended while no extra test is required.

In particular we can apply our results to the k-inhibitor model to obtain a pooling design while only a sequential
procedure is available in the literature. The number of required tests drops from (d + r)2 logn for the general model
to (d + r − k + 1)2 logn for the k-inhibitor model. Moreover, the number of tests can be reduced by using a (d +
(k out of r))-disjunct matrix. Obviously, the (d + (k out of r))-disjunct matrix is a d-disjunct matrix which is known
[5] to have a lower bound of O(d2 logn/ logd) tests. We are unable to obtain a better bound specifically for the
(d + (k our of r))-disjunct matrix.

A small price is paid in decoding. Namely, in the 1-inhibitor model or other special cases, we can restrict the
candidates of inhibitor to a small set and thus fewer sets R need to be run through. However, even in the 1-inhibitor
model, one cannot estimate the amount of reduction to yield a better time complexity than O(nr+1).
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