%% GOGHZ ' EP\ x’@%:""w'ﬁﬁa?
o if@PJ—_

RO oW EEA

% % %L 1 NSC 98-2220-E-009-028-

#oF HF 98#£08701px99&07" 31 p
HFHE P FREAETIIRE 2RI
FRAFL D RRY

O SN SR SO

WM AT B2 T K B & SRR (2/3)

An ESL system verification and synthesis environment for communication DSP (2/3)
33 Y% NSC98-2220-E-009-039
HEHEF:98 £ 8% 1 p 199 & 7 % 31¢p

S A
BN T = s 4 ig@%%‘f;{i 142k B Hoa
-~ PR

Peid B E R IT B R LY AL AJE R SLE W K AP ok R
Ty ¥ g F S P B E R AL B LR AR T
e L

ﬁ:

Ve

E N Ef f B - AR R PR A - B I E &

P
AL B FET U AR DL AL o BT Y ‘fﬁ’T’ﬁglﬁ BRI B OE

Ao iphmv? APHFERC AR EJIERARFERD G FELEIT
B3 PR pd e A HROHBE T PSS T 0 AP A E)

2T VA A A G] %R

M43
Poid S FIE R B Rl A2 E

B iR

The Fast Fourier Transform (FFT) processors are widely used in signal
processing systems and communication systems. Many FFT architectures are
proposed in literature to meet different applications. While designing an FFT
processor, one of the most difficult issues is to choose the best architecture under the
design constraints. An FFT generator can not only improve the productivity but also
shorten time-to-market. In this thesis, we propose approaches which can make
appropriate design trade-off between throughput and area of pipeline FFT
architectures, and automatically generate the corresponding hardware design. The
experimental results show that the proposed methodology can generate area-efficient

architectures under throughput constraints.

Keywords

Fast Fourier Transform, pipeline, parameterization, generator

=~ PEeankd B
A. Introduction

Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) are
widely used algorithms for calculating the Discrete Fourier Transform (DFT) and
Inverse Discrete Fourier Transform (IDFT) because of the low computation
complexity. FFT processor is an important block in communication system and signal
processing system. For example, as shown in Figure 1, Orthogonal Frequency
Division Multiplexing (OFDM) system is widely used in many communication
applications such as xDSL modem, HDTV, and wide band mobile terminals. In those
applications, FFT and IFFT are the most important processing blocks to meet the

design constraints.

x bits

e

Serial [1 Guard
Data > S/P : r\‘:’]!{'—"na]r IFFT ' P/S » Interval -]I?P’; — CnL\J’grtcr
Input H appe i i Insertion °
Channel
Serial Guad
- One-tap . - ; Interval LPF Down

: FFT i s/p
Equalizer i i Insertion A/D Converter

Data -«—{ P/S
Output

Figure 1 An example architecture of OFDM system

An automatic FFT generator can not only improve productivity but also shorten
time-to-market. To support user customization, the automatic FFT generator provides some
parameters to customize for the design constraints, such as the FFT transform sizes, 1/O data
ordering, data bitwidth, and the various architectures. In this thesis, we mainly focus on the
trade-off between throughput and area of the FFT architectures.

Since the FFT algorithm was proposed by Cooley and Turkey in 1965 [1], many similar
algorithms have been proposed to reduce the computation complexity of FFT. As the
technology progress and algorithm improvement, FFT is widely used in Digital Signal
Processing (DSP) applications. According to different algorithms, many kinds of FFT
architectures have been proposed. Generally, there are two kinds of popular FFT architectures.
One is memory-based architecture and the other is pipelined-based architecture. A single
processing elements (PE) is used in memory-based architecture. It can be easily extended to
other FFT transform sizes, so the memory-based architectures are usually used for low
hardware cost and low throughput designs. Pipeline-based architectures have features such as
regularity, simplicity, and high throughput rate. In this thesis, we only focus on pipelined-based
architectures.

Several pipeline-based FFT architectures are proposed, such as the Radix-2 Multi-path
Delay Commutator (R2MDC) [2], Radix-4 Multi-path Delay Commutator (R4MDC) [2],
Radix-2 Single-path Delay Feedback (R2SDF) [3], Radix-4 Single-path Delay Feedback
(R4SDF) [4], Radix-2? Single-path Delay Feedback (R2°SDF) [5], Radix-2? Multi-path Delay
Commutator (R22MDC) [6] and Radix-2° Single-path Delay Feedback (R23SDF) [7]. In these
architectures, the RASDF requires fewer multipliers than the R2SDF; however the R2SDF
architecture is simpler and more regular than the R4ASDF. The R2MDC requires fewer
multipliers, adders and memory size than the R4AMDC; however, the R4AMDC can provide
higher throughput. The R2°SDF has the same multiplier complex as R4SDF, but retains the
butterfly structure of radix-2 algorithm. The R2°MDC uses the same algorithm as the R2*SDF,
and the R2°MDC has higher throughput. As a result, in this work, our proposed FFT generator

is based on the R2°MDC and the R2MDC architectures.
4

B. Pipeline-based FFT architectures

Pipeline-based architectures can be further divided into two kinds of architectures depend on
the design of register. One is Single-path Delay Feedback (SDF) architecture, and the other one is
Multi-path Delay Commutator (MDC) architecture. SDF architecture has higher hardware usage
and lower hardware cost; however, MDC architecture has higher throughput than SDF
architecture. We introduce these architectures below.

We first introduce the SDF architecture. The Radix-2 SDF (R2SDF) architecture [3] is
shown in Figure 2. By storing the butterfly output into the shift registers, R2SDF uses the
registers efficiently. The butterfly passes the output to the next stage when doing addition
operation and storing the output into the shift register when doing subtraction operation. In

each cycle, only one output passes through the multiplier.

| & |

Radix-2 Radix-2 Radix-2 Radix-2
BF BF BF BF

Figure 2 R2SDF architecture (N=16)

The Radix-4 SDF (R4SDF) architecture [4] is shown in Figure 3. Similar to the R2SDF
architecture, radix-4 butterfly store three of outputs into shift registers, and only one output

passes through the multiplier in each cycle.

A A

3*4 3*1

Radix-4
BF

Radix-4
» BF

A

|
|

Figure 3 R4SDF architecture (N=16)

The Radix-2°> SDF (R2*SDF) [5] architecture is similar to the R2SDF architecture and

reduces the number of multipliers. R22SDF uses two types of butterflies, one is the same as that

5

in R2SDF architecture and the other contains also some logic to implement the multiplication of

twiddle factor of —j, as shown in Figure 4.

L& & 14 & 2 e 1t

BFI BFII BFI BFII

—> > —>(X)—> > —

Figure 4 R2°SDF architecture (N=16)

The Radix-2 MDC (R2MDC) architecture [2] is straightforward. The inputs are separated
into two streams by the control of switches, and then go to butterflies in parallel, as shown in

Figure 5.

c2 Radix-2 2 Radix-2 2 Radix-2 c2 Radix-2 ~
BF _>®_’ BF _>®_> BF _>®_> BF N

Figure 5 R2ZMDC architecture (N=16)

The Radix-4 MDC (R4MDC) architecture [2] is also similar to R2ZMDC architecture besides

the raidx-4 butterfly and the number of registers, as shown in Figure 6.

—>
n Radix-4 Radix-4

Yy

S BF BF

Figure 6 RAMDC Architecture (N=16)

The Radix-22 MDC (R2°MDC) architecture [6] is the MDC type architecture of Radix-2
algorithm. In the flow graph of the complete decomposition of an N-point FFT computation with
radix-22 algorithm, the even-numbered stages multiple twiddle factors not only the subtraction
output but the addition output, so the R22MDC architecture needs two complex multipliers in

even-numbered stages, as shown in Figure 7.

> >
€2 BFI c2 BFII c2 BFI c2 BFII
[4] - 2] =

Figure 7 R2°MDC architecture (N=16)

6

=~ Py EEa%
A. Motivation

An exhaustive search approach is proposed to find all possible FFT architectures and then
generate a set of acceptable FFT architecture according to the design constraints. However, from
Table 1, we can find that all the possible solutions have the same number of multipliers, number
of adders and number of registers usage under the throughput constraint.

Pease architecture bases on the radix-2 algorithm. Observing the raidx-2 flow graph, each
butterfly is followed by a multiplication operation at the output of subtraction operation.
Therefore, Pease architecture is a very regular architecture. However, the radix-2 algorithm
contains many trivial multiplications which do not need multipliers to calculate. For example,

multiplication of —j involves only real-imaginary swapping and sign inversion, as shown in

Figure 8.
A
Zj 2T
j z
1 —
2 1 0 1 2
.j,,
Zj’=-2
20T Zj*=-zj

Figure 8 Illustration of —j multiplication

The radix-2? algorithm considers the multiplication of —j and merges the multiplication of —j
into odd-numbered columns. And the architecture of radix-2> algorithm contains two kinds of
butterflies, BFI and BFII. From the view of architecture, the radix-2? algorithm is more irregular
than the radix-2 algorithm.

The R2°MDC [6] is a pipeline architecture that implements the radix-2% algorithm with
throughput%, so R22MDC architecture is more irregular than Pease architecture. In the

following subsections, we introduce how we make the trade-off between hardware and

throughout based on R2°MDC and R2MDC architecture.
7

BFI

B. R2*MDC Vertical Expansion Architecture

A general form of R22MDC vertical expansion architecture is shown in Figure 9. Parameter N
indicates the FFT transform size, where N =2",m=1,2,3....Parameter t indicates the degree of
parallelism, where t=1,2,4...,.2™" . The number of registers of each original R22MDC
architecture decreases as the degree of parallelism increases, and the number of interconnection

permutation matrix also increases. With the interconnection permutation matrix, data dependence

would be kept. From Figure , we can derive the number of multipliers is #(2[log, /']-2), the

number of adders is 2¢1og, &, the number of registers is & —2¢ and the throughput is % :

ﬂ ﬁ d 1

S | [[]) 1 I X
N- BFl| W BFII BFI mﬁ BFII : BFL | | BFII ; Lo BFI BFII

P

N N . N) L2
E 8t T - L =
S) | | X —|]
X CHeeb® BFII BFI mﬁ BFII| BFI grir| — | |Lv2 _Bf HBFII
MO SR TN e ool [el e

Figure 9 General form of R2°MDC vertical expansion architecture

Figure 10 shows the case when t =1, the original R2’MDC architecture, the number of

multiplier is 2, the number of adders is 8, the number of registers of datapath is 14, and the

throughput is% :

— L2 b PO 2 (I N

BFI BFII BFI BFII

—_ A NS A T -

Figure 10 Example of R22MDC vertical expansion architecture for t=1

Figure 11 shows the case when t =2, the number of multipliers is 4, the number of adders is

16, the number of registers of datapath is 12, and the throughput is% :

— [z 1o b® 11 K
BFI BFII BFI BFII

s P 1] ><

—] 2 | @] >'| 1 H —>
BFI BFII BFI BFII

— P2] S 1]

Figure 11 Example of R22MDC vertical expansion architecture for t=2

Figure 12 shows the case when t =4, the number of multipliers is 8, the number of adders is

32, the number of registers of datapath is 8, and the throughput is% :

- |8 I4

— { 1] S)——— —>

BFI BFII BFI BFII
N o >< ~
— { 1] >

BFI BFII BFI BFII
s R o B
— 1 —

BFI BFII BFI BFII

1 — ><

— 1 — >

BFI BFII BFI BFII
—/ &)

Figure 12 Example of R22MDC vertical expansion architecture for t=4

Figure 13 shows the case when t =8, namely, a fully parallelized R2°MDC vertical

expansion architecture, the number of multipliers is 16, the number of adders is 64, the number of

registers of datapath is 0, and the throughput is% :

BFI

l16

BFI

.

/

BFI

0 O A A

BFI

/
XY

BFI

BFI

BFI

AN
\

BFI

| Ll 1] 1]

\

Figure 13 Example of R2°MDC vertical expansion architecture for t=8

C. Summary

In this project, we proposed two directional trades-off approaches based on R2°MDC
architecture and R2MDC architecture. In vertical direction, we provide an expansion approach
for R22MDC architecture to increase the throughput. Under the throughput constraint, our
approach can provide only one exact solution. Table 1 lists the hardware and throughput
comparison between our approach and previous work, where R2°EMDC indicates the vertically

expanded R22MDC architecture. Table 2 gives the normalized hardware and throughput

|4
BFII BFI BFII
>
BFII BFI BFII
BFII BFI BFII
<
BFII _ng BFI BFII
BFII BFI BFII
>}
BFII BFI BFII
BFII BFI BFII
<
BFII _*gb BFI BFII

comparison with the same throughput by replacing jk with tlog, N .

10

Table 1 Hardware Requirement Comparison

FFT length (N) multipliers adders registers throughput
p " ok N 2 jk
ease i j Nioa N jog, N
2t
R2?2EMDC | t(2[log, N |-2) 2tlog, N N-2t N

Table 2 Hardware Requirement Comparison with the same throughput

FFT length (N) multipliers adders registers throughput
2t
Pease tlog, N 2tlog, N N N
2t
R2’EMDC | t(2[log, N |-2) 2tlog, N N-2t <t

N

11

N S
The FFT processor is an important computing block in communication and signal processing
systems. To improve productivity and shorten time-to-market, an automatic FFT generator can be
used to design a specified FFT processor. In this thesis, we propose a parameterizable FFT
generator with two approaches to make good design trade-off between throughput and area under
the design constraints. First, the vertical expansion approach parallels the datapath to increase the
throughput. Second, the horizontal compression approach folds the datapath to reduce the
hardware usage. Besides, only the best FFT architecture is generated under the user-specified
throughput constraint to reduce the computation time in our proposed FFT generator. Compared
with the Pease architecture, for the length of 256 and 1024 cases, the generated FFT processor
saves about 30.8% area under throughput constraints.
Various FFT architectures are proposed in literature. It can be implemented into our
proposed FFT generator. In the future, more FFT algorithms such as the R2*MDC FFT
algorithm, mixed-radix FFT [17] algorithm will be considered to enlarge the search space.

Besides, the bitwidth optimization techniques proposed in [18] will also be considered.

N N

[1] H. Keding, M. Willems, M. Coors, and H. Meyr, “FRIDGE: A fixed-point design and
simulation environment,” in Proceedings of IEEE Design, Automation and Test in Europe
(DATE °98), pp. 429-435, Paris, France, Feb. 1998.

[2] G. A. Constantinides, G. J. Woeginger, “The complexity of multiple wordlength assignment,”
Applied Mathematics Letter, pp. 137-140, 2002.

[3] Synopsys Inc. (2001). CoCentric SystemC Compiler Behavioral Modeling Guide.[online].
Avaible:www.synopsys.com

[4] Synopsys Inc. (2000). Synopsys CoCentric Fixed-Point Designer Datasheet [online].
Avaible:www.synopsys.com

[5] C.Fang, R. Rutenbar, T. Chen, “Fast, accurate static analysis for fixed-point finite-precision
effects in DSP designs,” 2003 International Conference on Computer-Aided Design,
ICCAD-2003., vol., no., pp. 275-282, Nov. 2003

[6] D. Lee, A. Abdul Gaffar, R. Cheung, O. Mencer, W. Luk, and G. Constantinides,
“Accuracy-guaranteed bit-width optimization,” IEEE Trans. Computer-Aided Design
12

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Woeginger:Gerhard_J=.html

Integrated Circuits and Systems, vol. 25, no. 10, pp. 1990-2000, Oct. 2006.

[7] W. Osborne, R.C.C. Cheung, J. Coutinho, and W. Luk, “Automatic accuracy guaranteed
bit-width optimization for fixed and floating-point systems,” in IEEE International
Conference on Field-Programmable Logic and Applications (FPL), Netherlands, Aug. 2007.

[8] C.Fang, R. Rutenbar, Puschel M. and T. Chen, “Toward efficient static analysis of
finite-precision effects in DSP applications via affine arithmetic modeling,” Design
Automation Conference, 2003. Proceedings , vol., no., pp. 496-501, Jun. 2003

[9] H. Choi and W. P. Burleson, “Search-based wordlength optimization for VLSI/DSP
synthesis,” in Proceedings of IEEE Workshop on VLSI Signal Processing, VII, pp. 198-207,
La Jolla, Calif, USA, Oct. 1994.

[10] W. Sung and K. I. Kum, “Simulation-based word-length optimization method for
fixed-point digital signal processing systems”, IEEE Transactions on Signal Processing, vol.
43, no. 12, pp. 3087-3090, Dec. 1995.

[11] J. Babb, M. Rinard, C.A. Moritz, W. Lee, M. Frank, R. Barua, S. Amarasinghe,
“Parallelizing applications into silicon”, Field-Programmable Custom Computing Machines,
1999. FCCM '99. Proceedings. Seventh Annual IEEE Symposium on , vol., no., pp.70-80,
1999.

[12] S. Roy and P. Banerjee, “An algorithm for trading off quantization error with hardware
resources for MATLAB based FPGA design,” IEEE Transactions on Computers, Vol. 54,
Issue 7, Jul. 2005.

[13] A. Mallik, D. Sinha, H. Zhou, and P. Banerjee, “Low power optimization by smart bit-width
allocation in a SystemC based ASIC design environment,”IEEE Transactions on Computer
Aided Design of Integrated Circuits, (to appear).

[14] M.L. Ku and C.C. Huang “A complementary codes pilot-based transmitter diversity
technique for OFDM systems,” IEEE Transactions on Wireless Communication, pp. 504-508
2006.

[15] K. Han and B.L. Evans, “Optimum wordlength search using sensitivity information,”
EURASIP Journal on Applied Signal Processing, pp. 1-14, 2006

[16] K. Han, I. Eo, K Kim and H. Cho, “Numerical word-length optimization for CDMA
demodulator,” Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International
Symposium on , vol.4, no., pp.290-293 vol. 4, May 2001.

[17] SystemC 2.0.1 Language Reference Manual, 2003 Available from the Open SystemC
Initiative (OSCI) http://www.systemc.org.
[1] J. W. Cooley and J. W. Turkey, “An Algorithm for Machine Computation of Complex
Fourier Series,” Math. Computation, Vol. 19, pp. 297-301, April 1965.

13

http://www.systemc.org/

[2] L. R. Rabiner and B. Gold. Theory and Application of Digital Signal Processing.
Prentice-Hall, Inc., 1975.

[3] E. H. Wold and A. M. Despain, “Pipeline and Parallel-Pipeline FFT Processors for VLSI
Implementation,” IEEE Trans. Computers, vol. 33, no. 5, pp. 414-426, May 1984.

[4] A.M. Despain. “Fourier Transform Computer using CORDIC Iterations,” IEEE Trans.
Comput., C-23(10):993-1001, Oct.1974.

[5] S. He and M. Torkelson, “A New Approach to Pipeline FFT Processor,” in Proc. 10" Int’l
Parallel Processing Symp. (IPPS ’96), pp.766-770, 1996.

[6] R. Storn. “Radix-2 FFT-pipeline Architecture with Reduced Noise-to-signal Ratio,” IEE
Proceedings- Vision, Image and Signal Processing, 141:81-86, 1994,

[7] S. He and M. Torkelson, "Designing Pipeline FFT Processor for OFDM (de)Modulation”,
International Symposium on Signals, Systems, and Electronics, pp. 257- 262, Oct. 1998.

[8] P. Duhamel, H. Hollmann, “Split Radix FFT Algorithm,” Electronics Letters, vol. 20,
pp.14-16, January 1984.

[9] P. Duhamel, and H. Hollmann, “Split Radix FFT Algorithm,” Electronics Letters, vol. 20,
pp. 14-16, Jan. 5, 1984,

[10] D. Takahashi, “An Extended Split-Radix FFT Algorithm,” IEEE Signal Processing Letters,
vol. 8, no. 5, pp. 145-147, May 2001.

[11] G. Nordin, P. A. Milder, J. C. Hoe, and M. Pischel, “Automatic Generation of Customized
Discrete Fourier Transform IPs,” In Proc. of ACM/IEEE Design Automation Conf., pp.
471-474, 2005.

[12] P. A. Milder, M. Ahmad, J.C. Hoe, and M. Puschel, “Fast and Accurate Resource
Estimation of Automatically Generated Custom DFT IP Cores,” In Proc. of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pp. 211-220
2006.

[13] P. A. Milder, F. Franchetti, J. C. Hoe, and M. Pischel, “Formal Datapath Representation
and Manipulation for Implementing DSP Transforms,” In Proc. of ACM/IEEE Design
Automation Conf., pp. 385-390, 2008.

14

[14] J. Takala, T.Jarvinen, P. Salmela, and D. Akopial. Multi-port Interconnection Networks for
Radix-r Algorithms. In Proc. IEEE International Conference Acoustics, Speech, Signal
Processing, pp. 1177-1180, 2001.

[15] Synopsys DesignWare[Online], Available: http://www.synopsys.com .

[16] Matlab [Online], Available: http://www.mathworks.com .

[17] R.C. Singleton, “An Algorithm for Computing the Mixed Radix Fast Fourier Transform,”
IEEE Trans. on AudioElectroacoust., vol. 1, no. 2, pp. 93-103, June 1969.

[18] C.Y. Wang, C.B. Kuo, and J.Y. Jou, “Hybrid Word-Length Optimization Methods of
Pipelined FFT Processors™ , IEEE Trans. Computers, vol. 56, no. 8, pp. 1105- 1118, Aug.
2007.

[19] P.D. Welch, “A Fixed-Point Fast Fourier Transform Error Analysis,” IEEE Trans. Audio
Electroacoustics, vol. 17, pp. 151-157, June 1969.

[18] A. Pomerleau, H.L. Buijs, and M. Fournier, “A Two-Pass Fixed Point Fast Fourier
Transform Error Analysis,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 25,
pp. 582-585, Dec. 1977.

15

http://www.synopsys.com/
http://www.mathworks.com/

Ao PR
This year, we have developed:

1) An expandable multipath delay commutator based FFT architecture

2) An FFT generator to produce a synthesizable FFT core under a given throughput constraint

EPEOEL S REM APEEA- BEFLEADT - EEFLAREHEH
A

v - REERHGHY 0 B AAREERL o A K B E A

BoRAEL O G E R Pk F A RRENF H G L BhE & AT
LR EF 2R ST T 23278 T 5044 24 - cELiEmgd ~ -

FALFLE T 4 0 P o) RAFOE R o

Submitted journal articles

[1] Bu-Ching Lin, Juinn-Dar Huang, and Jing-Yang Jou “Bitwidth-Aware Multiple Constant
Multiplication (MCM) Synthesis for FIR Filters,” submitted to IEICE Transactions
Fundamentals.

[2] Bu-Ching Lin, Jhih-Hong Lu, Juinn-Dar Huang, and Jing-Yang Jou “Delay Optimal
Compressor Tree Synthesis for LUT-Based FPGAs,” submitted to ACM Transactions on
Reconfigurable Technology and Systems.

International conference proceedings

[1] Bu-Ching Lin, Yu-Hsiang Wang, Juinn-Dar Huang, and Jing-Yang Jou “Delay Optimal
Compressor Tree Synthesis for LUT-Based FPGASs,” submitted to IEEE International SOC
Conference.

[2] Yu-Hsiang Kao and Juinn-Dar Huang, “High-Performance NAND Flash Controller
Exploiting Parallel Out-of-Order Command Execution,” Proc. of IEEE International
Symposium on VLSI Design, Automation, and Test, pp.160-163, Apr. 2010.

Patent

[1] F&EEF2 4B F ¥ BF B 435250 FPGA SR GHtut B g1 & &
FEED P EFARE Y %50 098144372,98 £ 12 7 23 B

2] sk ~25md kA5 ~ 2 FH, 7 S ERNEE O ERRANE S B Y
EARE Y 5% 50099100407,99 &£ 1 7 8 p

[3] Juinn-Dar Huang, Jhih-Hong Lu, Bu-Ching Lin, and Jing-Yang Jou, “Delay optimal
compressor tree synthesis for LUT-based FPGAs,” US12/717,520, May 4, 2010

16

k- WG E AP L S % 5 EH L RN 3k WIHY 4F 0 &
FARwmETIEEE D T L 06 £ L ke 3R oWk 35 2 3 K%t IEEE
WA eHkbeF L T EFLERHBYLE PTHh> 3K ¥3 35E%HIEEEH T ¢
BmFE2 BEFLERRY LA PTNHY 25 £ F 2HHN EEEH 7 § R °

F4 000 EF L ERB 25 WK 3F K 2K % IEEE W £ R 4 -

Number of Papers

Year Domestic International SCI
Conference | Journal | Conference | Journal

2006 0 0 3 4 4
(IEEE: 2)

2007 1 0 2 3 3
(IEEE: 2)

2008 0 0 1 3 3
(IEEE: 3)

2009 0 0 2 2 2
(IEEE: 2)

2010 1 0 1 3 2
(IEEE: 1)

fo- A HTEPMT A S

17

i B VPRI YR A —

m-ysi W FEEBE P#:99#5" 3079
G R SE S rEE SR VE4 R AN ES L
% (2/3)

R A3 %

FEIFEAERY
B N IR T = PG o 4
-4 4% © NSC98-2220-E-009-039 5 AE g 0 EW

AR A

BACAH D MR AV SRR B E A A SR
A Parameterlzable Generator for High-Performance and Low-Cost FFT
Cores

FP A e 4

L

i@ & E @#@ﬂ%@g%&m@?*mﬁaﬂﬂwﬁﬁ%~
¢ o&gggﬁ,r;,&’rzo‘gkﬁfﬁ” 5P S RIL B R
BG4 Bl N T e ”*&ﬁbmﬁ#xw{— Bipy £ &

‘;’ﬁi}}t,{ﬁ:ﬂ: E‘TO-—I]}};‘_fyﬁ 'Tﬁ_ﬁ%ﬁwsgé_imaﬂm?ui\aét
CREEE: RN S R EE R e L Rk AR ey
éﬂ’%ﬂﬁﬁ?ﬁ“m‘ﬁ@ﬁwﬁﬁ PR B R R 4T

Bk T p R E A2 HRH R PSR ET A P
AR U2 T > T AL MG) hEE

F_L
=y
.o l;mb
3

The Fast Fourier Transform (FFT) processors are widely used in signal
processing systems and communication systems. Many FFT
architectures are proposed in literature to meet different applications.
While designing an FFT processor, one of the most difficult issues is to
choose the best architecture under the design constraints. An FFT
generator can not only improve the productivity but also shorten
time-to-market. In this thesis, we propose approaches which can make
appropriate design trade-off between throughput and area of pipeline
FFT architectures, and automatically generate the corresponding
hardware design. The experimental results show that the proposed
methodology can generate area-efficient architectures under throughput
constraints.

R UES %

2

TREZLAS

W I Y L o2p 2L o\ =
é_ﬁ:‘-lc‘i}‘%,ﬁfvbaﬂa1;}:;J'é.;

B B

VR MARAER R AR ER
FoAv i Pt] E A egT B2 B

A2 ET

O|O O

MELEE o~ >"">IH")‘¥§/J SAHh P ASRERAE
0 P51 A S B TR A A

O LE B S

ZF AR

O2XHAE S

FHEB-NC R - PESERLERAE - P FH
H o (Jgrﬁmﬁyﬁv‘) e

o

>:< 3* ?Zﬁié'ﬂ' ’ %—E f’f‘al:r’|§3+o

18

