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a b s t r a c t

Helicobacter pylori is a potent carcinogen associated with gastric cancer malignancy. Recently, H. pylori
Heat shock protein 60 (HpHSP60) has been reported to promote cancer development by inducing chronic
inflammation and promoting tumor cell migration. This study demonstrates a role for HpHSP60 in angi-
ogenesis, a necessary precursor to tumor growth. We showed that HpHSP60 enhanced cell migration and
tube formation, but not cell proliferation, in human umbilical vein endothelial cells (HUVECs). HpHSP60
also indirectly promoted HUVEC proliferation when HUVECs were co-cultured with supernatants col-
lected from HpHSP60-treated AGS or THP-1 cells. The angiogenic array showed that HpHSP60 dramati-
cally induced THP-1 cells and HUVECs to produce the chemotactic factors IL-8 and GRO. Inhibition of
CXCR2, the receptor for IL-8 and GRO, or downstream PLCb2/Ca2+-mediated signaling, significantly abol-
ished HpHSP60-induced tube formation. In contrast, suppression of MAP K or PI3 K signaling did not
affect HpHSP60-mediated tubulogenesis. These data suggest that HpHSP60 enhances angiogenesis via
CXCR2/PLCb2/Ca2+ signal transduction in endothelial cells.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Helicobacter pylori is a gram-negative microaerophilic bacte-
rium that colonizes the human stomach [1] and is associated with
numerous pathologies, including gastritis, peptic ulcer, gastric
adenocarcinoma, and mucosa-associated lymphoid tissue (MALT)
lymphoma [2]. Importantly, epidemiological studies reveal that
H. pylori infection is found in over half of the world population
[3]. Persistent infection by H. pylori can trigger chronic inflamma-
tion and ultimately cancer malignancy [4,5]. H. pylori Heat shock
protein 60 (HpHSP60) is an adhesion molecule that interacts with
host gastric epithelial cells and mucin [6] and acts as a potent
immunogen to induce host inflammation [7]. HpHSP60 stimulates
human monocyte cells, macrophages, and gastric epithelial cells to

produce pro-inflammatory cytokines, including IL-1b, IL-6, and IL-8
[7–11]. We have previously shown that HpHSP60 plays a role in
gastric carcinogenesis. HpHSP60 induces monocyte inflammation,
gastric epithelial cell migration, and endothelial cell proliferation.
Gastric cancer patients are found to have low anti-HpHSP60 anti-
body titers. This clinical finding correlates with our in vitro results,
because HpHSP60 may down-regulate host immunity and acceler-
ate tumor malignancy [11].

Angiogenesis, the process of new blood vessel formation, is
critical for tumor growth and metastasis. Numerous studies dem-
onstrate a positive correlation between chronic inflammation,
angiogenesis, and cancer development. Thus, the dysregulation of
inflammation and angiogenesis are likely prerequisites to aggres-
sive tumor progression [12]. Patients with H. pylori-positive gastri-
tis have significantly higher vessel density in the gastric mucosa
compared to those with H. pylori-negative gastritis [13]. It sug-
gested that inflammation promotes angiogenesis during H. pylori
infection [14]. By interacting with TLR2/TLR9, H. pylori significantly
increase cyclooxygenease-2 (COX-2) expression, and up-regulation
of COX-2 is critical for the inflammatory changes and tissue
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damage associated with chronic H. pylori infection [15]. Addition-
ally, H. pylori may promote the expression of angiogenesis-promot-
ing factors such as IL-8, IL-6, TNF-a, and growth related oncogene
(GRO) in endothelial cells [16]. As previously mentioned, HpHSP60
induces expression of pro-inflammatory genes related to angiogen-
esis, and recent evidence suggests that HpHSP60 directly enhances
blood vessel formation [11].

Chemokines comprise a family of approximately 50 low molec-
ular weight chemotactic cytokines that were initially described as
being important for leukocyte recruitment to sites of infection and
inflammation [17]. Interestingly, a subset of these cytokines has
been shown to promote blood vessel growth and repair. In human
tissues, the glutamic acid-leucine-arginine (ELR+) CXC chemokines,
such as GRO and IL-8, are known to promote angiogenesis via G-
protein coupled receptor binding to CXCR1 and CXCR2 to promote
systemic endothelial cell proliferation and migration [18,19]. Both
H. pylori and HpHSP60 stimulate the secretion of angiogenic CXC
chemokines, including IL-8, growth related oncogene-alpha
(GRO-a, and epithelial neutrophil activating protein-78 (ENA-78)
[11,20].

We previously showed that HpHSP60 promotes tumor-associ-
ated angiogenesis; however, the underlying mechanism behind
this observation remains unclear. Here, we elucidate the signal
transduction pathways responsible for HpHSP60-mediated angio-
genesis. Our findings are important for the development of tumor
malignancy prevention treatments.

2. Materials and methods

2.1. Cell culture

AGS gastric epithelial cells (BCRC, Hsinchu, Taiwan) were cul-
tured in RPMI 1640 medium (Invitrogen, MD, USA) supplemented
with 2 g/L sodium bicarbonate (BIO BASIC Inc., Canada), 10% heat-
inactivated fetal bovine serum (FBS) (Invitrogen, MD, USA), and
50 lg/ml penicillin/streptomycin (Biological Industries, Beit-
haemek, Israel). Human Umbilical Vein Endothelial Cells (HUVECs)
(BCRC, Hsinchu, Taiwan) were cultured in M199 medium (Invitro-
gen, MD, USA) supplemented with 10% heat-inactivated FBS,
50 lg/ml penicillin/streptomycin, 30 lg/mL endothelial cell growth
supplement (Sigma–Aldrich, Steinheim, Germany), and 25 U/mL
heparin (Sigma–Aldrich, Steinheim, Germany). Human acute mono-
cytic leukemia (THP-1) cells (BCRC, Hsinchu, Taiwan) were cultured
in RPMI 1640 medium supplemented with 0.05 mM 2-mercantoeth-
anol (Amresco Inc., OH, USA), 2 g/L sodium bicarbonate, 50 lg/ml
penicillin/streptomycin, and 10% heat-inactivated FBS.

2.2. Protein preparation of HpHSP60

HpHSP60 was prepared as described previously [7]. Briefly, a
DNA fragment containing the Hsp60 gene was amplified from H.
pylori genomic DNA and cloned into the T7 promoter-driven pET
30a (+) expression vector (Novagen, Darmstadt, Germany). The
gene was expressed in Escherichia coli (BL21 strain), and the pro-
tein was purified using HisTrap affinity (Ni–NTA) chromatography
(General Electric, NY, USA) followed by a Sephadex G-25 column
(General Electric, NY, USA) to remove any salts associated with
the proteins.

2.3. MTT assay

Cell viability was assessed using the 3-(4,5-dimethylthiazol-2-
yl]-2,5-diphenyltertrazolium bromide (MTT) assay (Sigma–Al-
drich, Steinheim, Germany) [11]. AGS and THP-1 cells were seeded
in 24-well plates (1 � 105 cells/well) with 1 ml growth medium.
Cells were incubated at 37 �C for 2 h, after which 10 lg of HpHSP60

was added. After 24 h, supernatants were harvested. HUVECs were
seeded in 96-well plates (2 � 104 cells/well) and incubated in pre-
viously-collected HpHSP60-treated AGS or THP-1 supernatant for
48 h at 37 �C. Next, 0.5 mg/ml MTT solution was added to each
well, and the cells were cultured for 4 h at 37 �C. Conversion of
MTT into purple formazan by metabolically active cells indicated
the extent of cell viability. Formazan crystals were dissolved with
DMSO, and the optical density was measured at 570 nm using a
microplate reader.

2.4. Cell migration assays

HUVECs were incubated in serum-free medium for 24 h prior to
seeding in Transwell cell culture chambers (Corning, NY, USA). The
cell suspensions with or without HpHSP60 were added to the
upper side of the Transwell chambers (3 � 104 cells) for 8 h at
37 �C and 5% CO2. After incubation, the wells were washed, the
cells were stained with 50 lg/mL propidium iodide (PI) (Sigma–Al-
drich, Steinheim, Germany), and the membranes were examined
using a fluorescent microscope. The migration rate was calculated
as the number of cells that moved to the lower side of the Trans-
well insert as a fraction of the total number of cells seeded.

2.5. Human angiogenesis antibody array

HUVEC, AGS, or THP-1 cells were seeded in 24-well plates
(1 � 105 cells/well) with 1 ml growth medium and incubated at
37 �C for 2 h. Next, 10 lg of HpHSP60 was added to each well
and cultured with the cells for 24 h. After incubation, the superna-
tants were harvested and assayed using the human angiogenesis
antibody array (RayBiotech, GA, USA) according to the manufac-
turer instructions. Briefly, membranes were treated with blocking
buffer for 30 min, incubated with 1 ml of supernatant from
HpHSP60-treated or untreated cells and cultured at room temper-
ature for 2 h. After incubation, the membranes were treated for 1 h
with biotin-conjugated anti-cytokine antibodies, reacted with
horseradish peroxidase–streptoavidin, and then developed using
ECL detection. To determine the relative concentrations of angio-
genic factors in the media, the densities of individual spots were
measured by the ImagePro software (Media Cybernetucs, Silver
spring, MD, USA) for image capturing and analysis. The results
were expressed as relative densities compared with positive con-
trols included in each membrane.

2.6. In vitro capillary-like tube formation assays

To examine whether HpHSP60 enhances angiogenesis via
CXCR2-dependent signaling, HUVECs were seeded on matrigel-
coated 96-well plates (1.5 � 104 cells) and incubated in 100 ll of
serum free-medium 199 with or without 50 nM SB225002 (Calbio-
chem, Darmstadt, Germany), 3 lM BAPTA (Invitrogen, MD, USA),
5 lM PD98059 (Calbiochem, Darmstadt, Germany), or 10 nM wort-
mannin (Calbiochem, Darmstadt, Germany) for 1 h. Next, cells
were treated with 100 ll of medium with or without 20 lg/ml
HpHSP60 for 6 h. Tube formation was then assessed by quantifica-
tion of tube branch points with a phase contrast microscope at
100� magnification. Branch points were defined as area where a
single point gave rise to two divergent outgrowths. The results
were expressed as percentage compared with controls (HUVECs
cultured in normal media) whose tube numbers were set as 100%.

2.7. Statistical analysis

Results are expressed as the mean ± SEM, and statistical signif-
icance was determined using the two-tailed Student’s t test. Differ-
ences were considered statistically significant at p < 0.05.
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3. Results

3.1. HpHSP60 promotes HUVEC migration and proliferation

We previously showed that HpHSP60 promotes gastric tumori-
genesis together with increased blood vessel tube formation. Be-
cause endothelial cell proliferation and migration are important
steps during angiogenesis, we wondered if HpHSP60 promotes
endothelial cell migration and proliferation. Co-culturing HpHSP60
with HUVECs found that cell migration was significantly enhanced
in the presence of HpHSP60 (Fig. 1, p < 0.01) compared to un-
treated cells. HUVECs incubated with HpHSP60 did not display in-
creased cell proliferation (Fig. 2A); however, a significant increase
in proliferation rate was observed when HUVECs were cultured in
the supernatants harvested from HpHSP60-treated THP-1 or AGS
cells (Fig. 2B, p < 0.05; Fig. 2C, p < 0.01). Together, these data sug-
gest that HpHSP60 directly stimulates HUVEC migration and indi-
rectly promotes HUVEC proliferation by inducing the secretion of
proliferation-promoting factors in AGS or THP-1 cells.

3.2. HpHSP60 stimulates the differential expression of angiogenic
factors in HUVEC, THP-1, and AGS cells

Thus far, we showed that HpHSP60 enhanced endothelial cell
migration and cell proliferation; however, the downstream mole-
cules involved in HpHSP60-induced angiogenesis are still un-
known. We performed an angiogenesis-related protein array to
determine the factors involved in HpHSP60 signaling in HUVEC,
THP-1, and AGS cells. IL-8 and GRO were both up-regulated in
HpHSP60-treated HUVEC and THP-1 cells, while IL-6 was increased
only in HUVECs. Additionally, HpHSP60 was found to stimulate
epidermal growth factor expression in AGS cells, albeit at very
low levels (Fig. 3 and Table 1).

3.3. HpHSP60 enhances angiogenesis via a CXCR2-dependent signaling
pathway

Angiogenic array results indicated that HpHSP60 triggers high
expression of IL-8 and GRO in HpHSP60-treated HUVEC and THP-1
cells. IL-8 and GRO are ELR+ CXC chemokines and share the same
CXCR2 receptor. Therefore, inhibitors of CXCR2 signaling were used
to determine if HpHSP60 signals through CXCR2 to promote angio-
genesis (Fig. 4A). Our data showed that the increased tube formation
induced by HpHSP60 was rescued by the CXCR2 inhibitor SB225002

and the calcium signaling inhibitor BAPTA but not by the MEK inhib-
itor PD98059 or the PI-3 inhibitor wortmannin (Fig. 4B). These data
suggest that HpHSP60-mediated angiogenesis is dependent on
CXCR2 signaling. Furthermore, the calcium chelator BAPTA sup-
pressed angiogenesis, revealing that phospholipase C (PLC) b2 /
Ca2+ pathway acts downstream of CXCR2 to promote angiogenesis.

4. Discussion

In this study, we provide the first evidence that HpHSP60 acti-
vates a CXCR2/PLCb2/Ca2+ signaling pathway to promote angio-
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Fig. 1. HpHSP60 promotes HUVEC migration. HUVEC migration assays were
performed in basal medium with or without (control) 10 lg/ml HpHSP60 for 8 h.
Cells were stained with PI, and the number of migrated cells was scored in three
random microscopic fields (100� magnification). Migration rate was expressed as
percent migration following HpHSP60 treatment, where untreated cell migration
equals 100%. The data are expressed as the mean ± SEM, **p < 0.01. The experiments
were performed in triplicate.
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Fig. 2. The effects of HpHSP60 on HUVECs proliferation. (A) HUVECs were treated
with or without (control) 10 lg/ml of HpHSP60 for 24 or 48 h. (B,C) HUVECs were
cultured for 24 or 48 h in supernatants from THP-1 or AGS cells that were cultured
with or without 10 lg/ml HpHSP60 for 24 h. Proliferation rates are expressed as
percent proliferation, where untreated cell proliferation is equal to 100%. The data
are expressed as the mean ± SEM, *p < 0.05 and **p < 0.01. All experiments were
performed in triplicate.

C.-S. Lin et al. / Biochemical and Biophysical Research Communications 397 (2010) 283–289 285



genesis, and that chemokines play an important role in HpHSP60-
induced angiogenesis. CXCL8/IL-8 and GRO, which are expressed
by HpHSP60-treated HUVEC and THP-1 cells, are important ELR+
CXC chemokines (Table 1). Both of these chemokines bind to
CXCR2 to trigger endothelial cell chemotaxis and angiogenesis
[21]. CXCR2 signaling can promote tumor malignancy by promot-
ing tumor angiogenesis, and CXCR2 antagonists are found to inhi-
bit tumor growth [22]. Both MEK1-ERK1/2 and PI3K-AKT signaling
pathways are known to act downstream of CXCR2 [23,24]. In addi-
tion, PLCb2/Ca2+ signaling is also activated by IL-8 binding to

CXCR2 [25] and able to promote endothelial progenitor cell hom-
ing [26]. Our results indicate that HpHSP60 only activates the
CXCR2/PLCb2/Ca2+ signal transduction arm to enhance angiogene-
sis (Fig. 4).

During tumor progression, mammalian HSP family members
are known to play essential roles in tumor growth both by promot-
ing autonomous cell proliferation and by inhibiting death path-
ways [27]. Several reports also suggest that microbial HSPs affect
carcinogenesis. Chlamydia trachomatis, an obligate intracellular
bacterium, is associated with the development of cervical and

Fig. 3. Protein array analysis of HpHSP60-treated HUVEC, THP-1, and AGS cells. Supernatants collected from HpHSP60-treated HUVEC, THP-1, and AGS cells were subjected to
angiogenic arrays to assess expression profiles of angiogenesis-promoting factors.

Table 1
Angiogenic factors released from HpHSP60-treated HUVEC, THP-1, and AGS cells. Expression intensities of angiogenic cytokines stimulated by HpHSP60 in HUVEC, THP-1, and
AGS cells were recorded by densitometer analysis and normalized relative to the intensities of untreated cell cytokine levels. Fold change for specific cytokines are indicated. ‘‘—”
indicates undetectable changes in expression.

Symbol Name Biological function Fold change

HUVECs THP-1 AGS

IL-8 Interleukin-8 Pro-inflammatory cytokine 4.453 7.185 0.387
GRO Growth related oncogene Neutrophil chemoattractants 5.318 5.811 0.566
IL-6 Interleukin-6 Pro-inflammatory cytokine 3.23 0.251 —
MCP-1 Monocyte chemoattractant protein-1 Monocyte chemoattractants 0.625 3.924 0.017
RANTES Regulated on activation normal T cell expressed Chemoattractants of T cells, eosinophils and basophils 0.002 0.477 0.055
EGF Epidermal growth factor Mitogen for endothelial cells �0.026 — 0.248
TIMP1 Tissue inhibitor of metalloproteinase-1 Prevent extracellular matrix degradation (ECM) �0.065 0.122 1.131
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Fig. 4. Signaling through CXCR2 is required for HpHSP60-mediated angiogenesis. (A) Potential signaling pathways for HpHSP60-induced angiogenesis. IL-8 and GRO could
engage with CXCR2 and turn on downstream molecules including MAP kinase [23,38], PI3 kinase [23,39], and PLCb2 [26] to promote angiogenesis. Inhibitors to these specific
signal pathways are used to investigating underlying molecular mechanisms. (B) HUVECs were treated with or without (control) 10 lg/ml HpHSP60 for 6 h after pre-
treatment with SB225002 (50 nM), BAPTA (3 lM), PD98059 (5 lM), or wortmannin (10 nM) for 1 h. Tube branch points were then scored and are represented as % tube
branch points where un-stimulated cells were equal to 100%. The data are expressed as the mean ± SEM, *p < 0.01 compared to HpHSP60 treatment alone. All experiments
were performed in triplicate.
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ovarian cancers and, C. trachomatis HSP60 inhibits apoptosis during
persistent infection [28]. Large quantities of C. trachomatis HSP60s
were produced and transported to the cytosol of the host cells [29],
which formed a complex with cleaved caspase-3 and Bax and Bak
to inhibit apoptosis [30]. Aside from its anti-apoptosis role, HSP60
also promotes tumorigenesis by inducing inflammatory cytokine/
chemokine secretion. Chlamydial pneumoniae HSP60 promotes dif-
fuse pneumonia by inducing IL-6 production, which promotes infil-
tration of neutrophils into lung tissue and results in increased
production of bronchoalveolar lavage fluid. HSP65 of Mycobacteria
leprae induced release of TNF-a, IL-6, and IL-8 from human mono-
cytic cells [31]. Moreover, H. pylori HSP60 has been reported to in-
duce the expression of pro-inflammatory cytokines, including IL-6
and IL-8, from human monocytic cells and/or gastric epithelium
cells [10,11,32]. Inflammatory responses are associated with cell
migration and angiogenesis [12], and the data presented herein
further confirmed these findings, because HpHSP60s induces IL-8
and GRO expression in HUVEC and THP-1 cells and activates
CXCR2-mediated signal transductions to enhance endothelial cell
migration, proliferation, and tube formation (Fig. 4).

IL-8 is secreted by both normal and tumor cells that are exposed
to pro-inflammatory cytokines such as IL-1 and TNF-a [12]. H. py-
lori infection was found to induce chronic inflammation with per-
sistent IL-1, TNF-a, and IL-8 production, and HpHSP60 induces the
expression of these pro-inflammatory cytokines [7]. It seems that
IL-8 itself is sufficient to promote angiogenesis, while IL-1 and
TNF-a act to promote IL-8 production in host cells to synergize
the neovascularizing effects. IL-8 was the first angiogenic chemo-
kine to be characterized, and it is the prototype ELR+ CXC chemo-
kine. IL-8 mediates endothelial cell proliferation in vitro and
angiogenic activity in vivo by up-regulating MMP-2 and MMP-9
to promote the degradation of extracellular matrix, a prerequisite
to endothelial cell migration [33,34]. IL-8 also regulates angiogen-
esis in an autocrine manner. Wuyts et al. demonstrated that in
addition to non-endothelial cell expression of IL-8, endothelial
cells themselves also produce CXCL8/IL-8 and CXCL6/GCP-2 to fur-
ther promote angiogenesis [35].

Both HpHSP60-treated AGS and THP-1 cells secrete soluble fac-
tors that stimulate HUVEC proliferation (Fig. 2). While THP-1 cells
produce IL-8 and GRO, AGS cells produce trace amount of the endo-
thelial mitogen epidermal growth factor (EGF) (Table 1). EGF is pri-
marily expressed in luminal and glandular epithelium and in
stromal cells [36]. Interestingly, EGF/EGF receptor engagement pro-
motes angiogenesis both directly, by inducing HUVEC migration/
invasion and proliferation, and indirectly, by promoting VEGF
expression in tumor cells [37]. AGS cells are derived from gastric
epithelium, while THP-1 cells originate from monocytes, and it is
possible that the cell lines elicit different responses to EGF stimula-
tion because they are different cell types. Our results indicate that
HUVEC proliferation is triggered by HpHSP60-induced chemokine
and/or EGF production in the surrounding non-endothelial cells.

Taken together, extracellular microbe-derived HpHSP60 was
proven as a potential promoter of carcinogenesis. The clarification
of angiogenic mechanism of HpHSP60 would provide one of the
promising solutions to postpone tumor formation. Our serial inves-
tigations of HpHSP60s also offer the declaration that microbial
HSPs are more than foreign immune activators, they also intervene
physiological functions of host cells and lead them to abnormal cell
transformation.
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