
1

國科會計畫：NSC 98-2221-E-009-081-MY3

一商業流程規格中 Artifacts 異常使用偵測之研究

A Study to Detecting Artifact Anomalies in Workflow

Specifications

摘要

一個結構良好的工作流程仍然可能由於錯誤的資料存取而發生執行期錯誤，在過去，由

於結構衝突造成的資料存取錯誤已經被充分地研究，然而混合了時序與結構因素所造成

的資料存取錯誤，也就是 artifact 異常使用，則仍然缺乏討論，在本計畫中，我們發展

了一個可以針對時序結構化工作流程規格進行分析，找出隱藏於其中，由於時序與結構

化因素同時作用而造成的資料存取錯誤，我們嶄新的分析方法，藉由將工作流程中的迴

圈簡化可以達成快速的分析，幫助工作流程設計者除去規格中隱藏的資料存取錯誤，進

一步減少工作流程在執行期可能發生的問題。

關鍵字：工作流程、時序結構化工作流程、工作流程規格分析、artifact 異常使用、資料

存取錯誤

2

Abstract

A well-structured workflow may still fail or produce unanticipated run-time behavior
because of abnormal data manipulation generated from twisted temporal and structural
relationships between activities. These abnormal data manipulations, notated as artifact
anomalies, should be analyzed and eliminated from workflow schemas before execution. The
methodologies for eliminating artifact anomalies caused by structural factors have been
studied in several previous works; however, the temporal issues are still seldom addressed in
such analyses. In this project, we develop an approach discovering artifact anomalies caused
by twisted temporal and structural relationships between activities in temporal structured
workflow (TS workflow). With reasonable loop reduction, the methodology for acyclic
workflows is adopted in our approach without loss of generality. Several novel techniques are
developed for efficient analysis of complex temporal and structural relationships in TS
workflow specifications. With our approach, workflow designers may eliminate artifact
anomalies from workflow specifications, and prevent potential run-time problems resulted from
abnormal data manipulation.

Keywords: workflow, temporal structured workflow, analysis of workflow schema, artifact
anomaly, abonormal data manipulation

3

1. Introduction

A workflow is a set of tasks systematized to achieve certain business goals by completing
the tasks in a particular order under automatic control (WfMC, 1999). Structural conflicts
among tasks such as deadlocks might cause run-time errors, and should be eliminated. Analyses
of workflow specifications are helpful in reducing such conflicts. By mapping workflow
specifications into petri-nets, Adam’s methodology can detect inconsistent dependencies
among tasks to assure the safety of a workflow (Adam et al., 1998). Van der Aalst develops a
petri-net based methodology to verify deadlocks, livelocks (infinite loops), and dead tasks in
workflow specifications (van der Aalst and ter Hofstede, 2000; van der Aalst et al., 1999).
Kiepuszewski et al. (2000) define the structured workflow model which is free from deadlock
and multiple active instances of the same activity, i.e. the structured workflow is well-behaved.
Kiepuszewski et al. claim that although structured workflow model is less expressive, most
arbitrary well-behaved workflows can be transformed into a structured workflow, and
structured workflow is a good tool for workflow analysis (Kiepuszewski et al, 2000).

However, a well-structured workflow may still fail or produce unanticipated run-time
behavior because of abnormal data manipulation, the artifact anomalies. Detect artifact
anomalies in workflows checks possible data misuse buried in workflow specifications. Various
methodologies have been developed for detection of artifact anomalies generated from
structural relationships between activities in a workflow (Sadiq et al., 2004; Wang et al., 2006;
Hsu et al., 2007; Wang et al., 2009; Hsu et al, 2009). Sadiq et al. (2004) present seven basic
data validation problems, redundant data, lost data, missing data, mismatched data, inconsistent
data, misdirected data, and insufficient data in structured workflow model. Hsu et al. define
preliminary improper artifact usages anomalies, and introduce the analysis of such anomalies in
design phase of a structured workflow (Wang et al., 2006; Hsu et al., 2007). Wang et al. (2009)
introduce a behavior model to describe the data behavior in a workflow and refine the work
accomplished by Hsu et al. (2007) through improving its efficiency. Hsu et al. (2009) raise the
issues about analyzing artifact anomalies in workflows adopting message passing data models,
and describe a formal description for such anomalies. Nevertheless, how temporal factors may
affect the analysis of artifact anomalies is still seldom addressed. The methodology detecting
artifact anomalies generated from twisted temporal and structural relationships between
activities in workflows should be further discussed on the basis of the previous studies.

Besides, analysis of workflows may not be completed without considering temporal issues.
Li et al. (2004a) indicate that analysis of temporal factors is essential for validation of the
interval dependencies with temporal constraints in a workflow schema. Adam et al. (1998)
consider timing constraints as the external conditions for structural correctness of a Petri-net
based workflow model. Chen and Yang (2008) develop an approach for dynamic verification of
fixed-time constraints in grid workflow syste. From a graph based workflow model, Eder et al.

4

(1999a; 1999b) develop a timed graph model to illustrate the working duration of activities
among workflows with the corresponding earliest and latest finish time, and calculate the
deadlines among internal activities to meet the overall temporal constraints on the basis of the
model. Marjanovic (2000) build the timing model based on duration and instantiation space,
and model the absolute and relative deadline constraints for dynamic verification.

Analysis of temporal relationships between processes in a workflow is another important
issue. For example, two processes which are expected to be executed in parallel might never be
activated at the same time because their active durations do not overlap. Zhuge et al. (2001)
consider durations of activities for temporal checking in both design-time and run-time. On the
basis of the work made by Zhuge et al. (2001), Li et al. (2004b) estimate the active intervals of
activities, and develops an algorithm to detect and remove resource conflicts with respect to
both temporal and structural issue. Besides, Li and Yang (2005) also analyze the resource and
temporal constraints between distinct workflow instances dynamically. On the basis of
pre-specified reference points in workflows, Li’s methodology may adjust the temporal
dependencies between the processes involved in some resource conflicts. Hsu et al. (2005)
construct an incremental algorithm to notify the workflow designers about the resource
conflicts generated from twisted temporal and structural relationships between activities.
Nevertheless, there is still little discussion about how temporal factors may affect the analysis
of artifact anomalies.

In this project, structured workflow modeled in (van der Aalst et al., 1999) is extended as
temporal structured workflow (TS workflow) model with the temporal issues considered in the
studies made by Li et al. (2004b) and Li and Yang (2005). Based on define-use-kill operations,
a formal model describing artifact anomalies in TS workflow is established, and the algorithms
detecting the artifact anomalies produced from twisted structural and temporal relationships
between activities are developed. The rest parts of this report are organized as following. In
section 2, TS workflow is modeled, and the methodology for analysis of structural and temporal
relationships between processes in a TS workflow is depicted. In section 3, artifact operations
and corresponding artifact anomalies are introduced, and the methodology detecting artifact
anomalies in TS workflow is developed in section 4. In section 5, several case studies are
discussed to illustrate the feasibility of our methodology. The related works are described and
compared with our approach in section 6. Finally, the conclusion and future works are
described in section 7.

5

2. Temporal Structured Workflow Model

2.1 Basic Elements

A workflow is composed of a start process, an end process, some activity processes and
some control processes. The start (ST) process represents the entry point of a workflow, and the
end (END) process indicates the termination point. An activity (ACT) process stands for a piece
of work to be performed and describes one logical step within a workflow (WfMC, 1999).

A control process is a routing construct used to control the divergence and convergence of
sequence flows. The control processes can be classified as AND-split (AS), AND-join (AJ),
XOR-split (XS), and XOR-join (XJ). An AND-split process within a workflow splits a single
sequence of control into two or more sequences to allow simultaneous execution of activities;
on the contrary, an AND-join process merges multiple parallel executing sequences into a
single common sequence of control (WfMC, 1999). An XOR-split process within a workflow
is the point where a single sequence of control decides a branch to take from multiple
alternative branches, and an XOR-join process converges multiple alternative branches in a
workflow (WfMC, 1999).

Processes are connected by directed flows, the flow(s) leading to a process are called the
in-flow(s) of the process, and the flow(s) departing from a process are called the out-flow(s) of
the process. The process starting a flow is the source process of the flow, and the process ending
a flow is the sink process of the flow. In a workflow, only AND-split and XOR-split processes
have multiple out-flows, and only AND-join and XOR-join processes have multiple in-flows.
Figure 1 illustrates the notation of the basic elements described above.

Figure 1 The Graphic Notations of the Basic Workflow Elements

With all the descriptions above, a workflow is modeled as following:

Definition 1 (Workflow Model)
A workflow w, w = (Pw, Fw, s, e). and
Pw represents the set of the processes in w, and

pPw, p.type{ACT, AS, AJ, XS, XJ, ST, END}
FwPwPw represents the set of flows in w.

6

fFw, f = (p, q) is the in-flow of process q and the out-flow of process p, and
p is the source process of f, and q is the sink process of f.
sPw represents the start process of w, s.type = ST,  no in-flow to s.
ePw represents the end process of w, e.type = END,  no out-flow from e.

* In this report,“=”denotes an assignment operator and“==”denotes a Boolean equality operator

A sequence of flow(s) forms a path, and is formally modeled as following:

Definition 2 (Path)
A path is notated as a series of processes quoted by a pair of angle brackets.
For a workflow w, a path, <p1, p2, …, pk>, from p1 to pk exists if and only if (p1, p2),
(p2, p3), … (pk-1, pk)Fw.

2.2 Structured Workflow

A structured workflow is a workflow that is syntactically restricted in a number of ways.
Control processes are organized in pair, an XOR-split process is paired with an XOR-join
process, and an AND-split process is paired with an AND-join process. A control block is
composed of a pair of control processes and the processes placed in between the pair of control
processes. According to the type of the control processes, the control blocks can be classified as
parallel structures, decision structures, and structured loops as Figure 2 illustrates. Each process
in a structured workflow has at least one path from the start process to it, and at least one path
from it to the end process. Such restriction keeps a structured workflow well-behaved
(Kiepuszewski et al., 2000), i.e. a structured workflow is free from deadlocks and multiple
active instances. Most arbitrary well-behaved workflows can be transformed to be structured
without loss of their contexts (Kiepuszewski et al., 2000). Figure 2 shows the building blocks of
a structured workflow according to the basic elements and constraints described above.

Figure 2 Building Blocks of a Structured Workflow

7

All the processes between the start and the end process in a structured workflow are
organized with the building blocks shown in Figure 2. For Figure 2(c) and Figure 2(d), the
blocks X1, X2, …, and Xn represent the branches split and converged in a parallel structure or a
decision structure. Besides, in Figure 2(e), the structured loop acts like a do-while loop when
block Y is null, and acts like a while loop when block X is null. Figure 3 illustrates the control
graph of a sample structured workflow.

Figure 3 A Sample Structured Workflow

Two processes are reachable from one to the other if there exists a path between them,
parallel if they reside on different branches of a parallel structure, and exclusive to each other if
they reside on different branches of a decision structure. Take Figure 3 for example. The path
<v1, xs1, v2, v3> indicates that v1 is reachable to v3. v3 and v4 are parallel because they reside on
different branches split from as1. v2 and v8 are exclusive because they reside on different
branches of the decision structure quoted by xs1 and xj1. In this report, the above structural
relationships between processes are notated as following Boolean functions:

Definition 3 (Structural Relationships in a Structured Workflow)
For a structured workflow w,

Reachable: PwPw {true, false}
Reachable(p, q) holds if and only if there exists a path from p to q.

Parallel: PwPw {true, false}
Parallel(p, q) holds if and only if p and q reside in different branches of a

parallel structure.
Exclusive: PwPw {true, false}

Exclusive(p, q) holds if and only if p and q reside in different branches of a
decision structure.

2.3 Temporal Structured Workflow

A timed workflow is modeled by describing the maximal and minimum working durations
for each activity (Zhuge et al., 2001). In this report, a timed and structured workflow named as
Temporal Structured Workflow (TS workflow) is formally modeled as following:

8

Definition 4 (TS workflow)
A workflow w is temporal structured with following properties:
(1) w is structured, and
(2) pPw, d(p) and D(p) represents the minimum and maximum working duration

of process p.

To facilitate discussion, we assume that if p is an activity process, 0 < d(p) D(p);
otherwise, d(p) = D(p) = 0. Figure 4 illustrates a sample TS workflow.

Figure 4 A Sample TS workflow

2.4 Analysis of Structural and Temporal Relationships between Processes in TS workflow

2.4.1 Loop Reduction

The structural and temporal relationships between processes are the bases of any further
analysis of a TS workflow. Hsu et al. (2007) give several approaches to reveal the structural and
temporal relationships between processes in acyclic structured and timed workflows. Hsu et al.
(2007) and Wang et al. (2009) claim that in a structured workflow, all the possible state
variations of the artifact operated in loops with more than two iterations are the same as those
with exact two iterations. Therefore, they reduce a structured loop into a decision structure with
three branches representing for no iteration, a single iteration, and two iterations for the analysis
of artifact anomalies with better efficiency. In this project, we adopt an approach similar to the
methods developed by Sadiq et al. (2004) and Wang et al. (2006) to reduce the structured loops
in a TS workflow as decision structures to retrieve structural and temporal information in a TS
workflow as in Hsu et al. (2007) did.

In a TS workflow, the number of iterations of a loop affects the active timing of processes
succeeding to the loop. The loop reduction introduced in the study made by Sadiq et al. (2004)
and Wang et al. (2006) may bring inaccuracy to the analysis of temporal factors, and is
therefore not feasible for TS workflow. Leong and Si (2009) consider the worst case scenarios
for loops in a workflow and develops a methodology to detect whether the workflow possibly
exceeds its deadline during run-time. Here, we combine Leong and Si's (2009) concept and the
methods developed by Sadiq et al. (2004) and Wang et al. (2006) to describe a refined loop

9

reduction method for the analysis of TS workflow.

First, it is assumed that the maximal number of iterations for a structured loop in a TS
workflow is finite. In other words, the infinite loops are not discussed in this study. Based on the
assumption, a structured loop is transformed into a decision structure with three branches: no
iteration, a single iteration, and maximal iterations as Figure 5 illustrates.

Figure 5 Refined Loop Reduction for TS Workflow Model

The refined loop reduction bring following advantage: (1) All the possible state variations
of artifacts between iterations are still completely captured, (2) the active intervals of the
processes succeeding to the structured loop can still be accurately estimated because the worst
case scenario is considered, and (3) the methodology for acyclic structured workflow can be
adopted in TS workflow because the structured loops are reduced. In this project, loop-reduced
TS workflows (LRTS workflows) are widely adopted in our methodology.

2.4.2 Analysis of Structural Relationships between Processes in LRTS workflow

The structural relationships between activity processes are the groundwork for analysis of
TS workflow, and are described and proved in the following lemma.

Lemma 1
For an LRTS workflow w, p and qPw, and p.type == q.type == ACT, one and

exactly one of the following statements, Reachable(p, q), Reachable(q, p),
Parallel(p, q), and Exclusive(p, q), holds.

Proof:
An LRTS workflow is still structured, and the lemma can be proved through the

discussion of the construction rules of a structured workflow. Because a single activity
process is a basic building block of a structured workflow, p and q can always be distributed
into two different building blocks combined in a sequence, a parallel structure, or a decision

10

structure illustrated in Figure 2.
Let bp and bq be the building blocks containing p and q separately. If bp and bq is

combined in a sequence block, p and q are reachable from former to the later. Since w is
loop-reduced, i.e. w is loop free, if Reachable(p, q) holds, Reachable(q, p) is false, and vice
versa. Besides, according to the construction rules, there exist no paths between the building
blocks split from an XOR/AND-split process. Therefore, Parallel(p, q) and Exclusive(p, q)
can not hold in this case.

Otherwise, if bp and bq is combined in a decision block, bp and bq represents different
branches split from the XOR-split process starting the decision structure. In other words, p
and q resides in different branches of a decision structure, and therefore, Exclusive(p, q) holds.
Since w is loop-reduced, there exist no paths between p and q, both Reachable(p, q) and
Reachable(q, p) are false. On the other hand, according to the construction rules, since bp and
bq reside on different branches of a decision structure, they can not reside in different branches
of a parallel structure. Therefore, Parallel(p, q) does not hold. With similar reason, we can
also show that when Parallel(p, q) holds, none of Reachable(p, q), Reachable(q, p), and
Exclusive(p, q) holds, and hence, Lemma 1 is shown correct with all the statements above. □

Hsu et al. (2009) use a data structure, ABStack, to record the structural information of
processes, and achieve an efficient analysis of the structural relationships between processes in
an acyclic structured workflow. In this project, the similar approach is adopted. All the flows in
an LRTS workflow are tagged with a branch mark. The branch mark is a natural number ID for
each out-flow split from an XOR/AND split process, and is -1 for any other flow in the LRTS
workflow. The branch mark in this project is formally defined as following.

Definition 5 (Branch Mark)
For an LRTS workflow w,

BMw: Fw INTEGER

(p,p’)Fw,








otherwise1
AS)(XS,ifnumbernaturala

))',((BM
p.type

ppw

For p, q,q’Pw, p.type{XS, AS}, and (p, q), (p,q’)Fw,
BMw((p, q))≠BMw((p,q’))

A process in an LRTS workflow might reside in nested decision/parallel structures, and the
structures are recorded in the ABStack corresponding to the process. Each of the structures is
presented as a structural item composed of the split process starting the structure and the branch
mark mapped to one of the out-flows of the split process. In the project, an ABStack is notated
as a series of structural items quoted by a pair of double angle brackets,“«” and“»”. The items
representing the inner structures are recorded higher in the ABStack, where the leftmost item is
the top of the stack and the rightmost item is the bottom. The definition of an ABStack is
formally described as following.

11

Definition 6 (ABStack)
pPw, p.abstack represents the ABStack corresponding to p.

A structural item, stitem = (sp, bm), is included in p.abstack if and only if
(1) spPw, sp.type{AS, XS}, and a path <sp, …, p, …, jn> in w where jn is the

corresponding join process of sp.
(2) bm = BM((sp,p’)) wherep’== p or Reachable(p’, p) == true.

p.abstack == « » if and only if p resides in no decision/parallel structure.
p.abstack == «(sp1, bm1), (sp2, bm2), …, (spk, bmk)» exists if and only if a path

<spk, …, sp2, …, sp1, …, p, …, jn1, …, jn2, …, jnk> exists.
To calculate ABStacks of the processes in an LRTS workflow, push and pop

functions associated with ABStack are defined as following:
Let an ABStack abs == «(sp1, bm1), (sp2, bm2), …, (spk, bmk)»

Push(abs, (sp, bm)) returns a new ABStackabs’, where
abs’== «(sp, bm), (sp1, bm1), (sp2, bm2), …, (spk, bmk)»

Pop(abs) returns a new ABStackabs’, where
abs’== «(sp2, bm2), …, (spk, bmk)»

Figure 6 illustrates how push and pop functions work for the calculation of the ABStacks
corresponding to the processes in an LRTS workflow.

Figure 6 Calculation of ABStacks for Processes in an LRTS Workflow

12

Figure 7 illustrates a sample LRTS workflow decorated with ABStacks. Take process v5

for example. The items (as1, 2), and (xs1, 1) in the ABStack of v4 shows that v4 resides on #2
branch split from the AND-split process as1 and #1 branch split from the XOR-split process xs1.
The order of (as1, 2) and (xs1, 1) indicates that the parallel structure started from as1 is nestedly
contained by the decision structure started from xs1.

Figure 7 A Sample TS workflow with ABStacks and EAIs

Besides, the structural items (as1, 1) and (as1, 2) in the ABStacks of v4 and v5

correspondingly indicate that v4 and v5 reside on different branches split from AND-split
process, as1. In other words, v4 and v5 are parallel. The parallelism or exclusiveness between
processes can be identified through comparing the ABStacks of the corresponding processes,
and Lemma 2 shows how ABStacks work for identification of structural relationships between
processes in an LRTS workflow.

Lemma 2
For an LRTS workflow w, and p, qPw

(1) Parallel(p, q) holds if and only if
(sp, bm)p.abstack and (sp, bm’)q.abstack where spPw, sp.type == AS and
bm≠ bm’.

(2) Exclusive(p, q) holds if and only if
(sp, bm)p.abstack and (sp, bm‘)q.abstack where spPw, sp.type == XS and
bm≠ bm’.

Proof:
Consider the if-part of statement (1), according to Definition 6, if (sp, bm)p.abstack

and (sp,bm’)q.abstack where spPw, sp.type == AS and bm≠ bm’, there exists a process m
that bm == (sp, m), and m is either equivalent to p or Reachable(m, p) holds. Similarly, there
exists another process n for q. bm ≠ bm’indicates that m≠ n, and p and q reside on different
branches split from the AND-split process, sp. Thus Parallel(p, q) holds and the if part is
shown correct.

13

As for the only-if-part, if Parallel(p, q) == true, p and q reside on different branches of a
parallel structure. Let sp be the AND-split process starting the parallel structure, and jn be the
AND-join process terminating it. The nodes in the path from sp to p are totally different from
those in the path from sp to q. Besides sp and jn, two distinct paths, <sp, …, p, …, jn> and
<sp, …, q, …, jn>, exist. Therefore, there exists a process m that (sp, m)Fw and either m is
equivalent to p or Reachable(m, p) == true. Similarly, there also exists such a process n for q.
m and n can not be the same process because they reside on different branches split from sp,
and thus, BM(sp, m) ≠ BM(sp, n). According to Definition 6, (sp, BM(sp, m)) is included in
p.abstack, and (sp, BM(sp, n)) is included in q.abstack. The only-if part of statement (1) of
the lemma is proved.

Part (2) can be proved similarly and the proof is omitted here. With the paragraphs above,
Lemma 2 is shown correct.□

2.4.3 Analysis of Twisted Temporal and Structural Relationships between Processes in LRTS
workflow

In a TS workflow, the temporal and structural relationships between processes are twisted.
This section firstly shows how to identify the temporal property between processes.

Figure 8 The Temporal Relationships between Time Intervals (Allen, 1983)

A time interval is duration of a segment of time. Allen (1983) defines seven reasoning
relationships between time intervals. Figure 8 illustrates the temporal relationships adopted in
this project on the basis of Allen’s definition, and Definition 7 describes the formal definition of
time intervals and the temporal relationships between time intervals adopted in this project.

14

Definition 7 (Time Intervals)
A time interval ti = [S(ti), E(ti)] indicates a duration from the time point S(ti) to

E(ti), E(ti)S(ti).
A time point tp can be represented as a time interval [tp, tp], and ctime is the time

point indicating the current time.
For any two time intervals ti1 and ti2,

ti1 is before ti2, notated as ti1 TI ti2, if and only if E(ti1)S(ti2).
ti1 is after ti2, notated as ti1 TI ti2, if and only if ti2 is before ti1.
ti1 overlaps ti2, notated as ti1 TI ti2, if and only if

MIN({E(ti1), E(ti2)})–MAX({S(ti1), S(ti2)}) > 0

In Definition 7, two utility functions MAX and MIN are invoked. Function MAX returns
the element with the maximum value among the parameter set, and function MIN returns the
minimal one.

Figure 9 Calculation of EAIs in an LRTS Workflow (Li et al., 2004b; Hsu and Wang, 2008)

Minimum and maximum working durations are used to estimate the active duration of a
process corresponding to the start of workflow (Li et al., 2004b; Hsu and Wang, 2008). The
Estimated Active Interval (EAI) of a process is a time interval indicating when the process can
be initialized and when it should be terminated. In this project, the Estimated Active Interval of
a process p, notated as EAI(p) is defined as following:

Definition 8 (Estimated Active Interval)
For a TS workflow w and a process pPw,

EAI(p) = [EST(p), LET(p)], and corresponding to when w starts:

15

EST(p) indicates the earliest time that p can be initialized.
LET(p) indicates the latest time that p must terminate.

With the assumption that the EST and LET of the start process of a TS workflow are zero,
the methodologies made by Li et al. (2004b) and Hsu and Wang (2008) can be adopted to
calculate the EAIs of processes in an LRTS workflow as Figure 9 illustrates.

With Lemma 1 and Lemma 2, whether two processes in an LRTS workflow are
exclusive, parallel, or reachable from one to the other is identified with corresponding
ABStacks. The path direction of two reachable processes can be further derived according to
the corresponding EAIs, and the following lemmas show how EAIs can be adopted in
analysis of LRTS workflow.

Lemma 3
For an LRTS workflow w, p and qPw, q.type == ACT,

if Reachable(p, q), LET(p) < LET(q)

Proof:
Reachable(p, q) represents that the path <p, m1, m2, …, mn, q> exists. Now we prove the

lemma with mathematical induction. For n = 0, (p, q)Fw, since q.type = ACT, D(q) > 0 and
LET(q) = LET(p) + D(q). LET(p) < LET(q) holds.

Hypothesis: The lemma holds when n < k.
For n = k, LET(q) = LET(mk) + D(q) and LET(mk) < LET(q). According to the

construction rule of TS workflow, mk.type≠ S, E, and mk.type{AS, XS, AJ, XJ, ACT}. The
following conditions should be discussed:

For any 1ik, if there exists an mi where mi.type = ACT, according to the hypothesis,
LET(p) < LET(mi) and LET(mi) < LET(q). Therefore, LET(p) < LET(q). Otherwise, for any
1ik, mi.type{AS, XS, AJ, XJ}, according to the EAI calculation methods, for any (u, mi)
Fw, LET(u)LET(mi). Since there exists a path from p to mi, LET(p)LET(mi). On the
other hand, according to the hypothesis, LET(mi) < LET(q). Therefore, LET(p) < LET(q).
With statements above, we know the lemma holds for n = k, and on the basis of mathematical
induction, Lemma 3is proved. □

Lemma 4
For an LRTS workflow w, p and qPw, p.type == q.type == ACT,
if Parrallel(p, q) == Exclusive(p, q) == false, and LET(p) < LET(q),

Reachable(p, q) == true.

Lemma 4 can be shown correct with Lemma 1 and the construction rule of LRTS
workflow. Lemma 4 describes that if two activity processes in an LRTS workflow are not
mutually parallel or exclusive, the process with larger LET is reachable from the process with
smaller LET. From Lemma 1, we know that in an LRTS workflow, two processes are either

16

parallel, exclusive, or reachable from one to the other. Therefore, Lemma 4 can be re-stated as
Lemma 5 that if two activity processes in an LRTS workflow are reachable from one to the
other, the activity processes with larger LET is reachable from the one with smaller LET.

Lemma 5
For an LRTS workflow w, p, qPw, p.type == q.type == ACT,

If (Reachable(p, q)Reachable(q, p)) == true, and LET(p) < LET(q),
Reachable(p, q) == true.

On the other hand, two processes are concurrent if and only if they are structurally parallel
and overlapped in EAIs. On the basis of Lemma 5, a process is before another one if one of the
following statements holds, (1) the latter is structurally reachable from the former, and (2) they
are structurally parallel and the EAI of the former is before the EAI of the latter. The definition
of the structural and temporal relationships in LRTS workflow is formally described as
following.

Definition 9 (Structural and Temporal Relationships in LRTS workflow)
For an LRTS workflow w,

Concurrent: PwPw {true, false}
Concurrent(p, q) == true if and only if

(Parallel(p, q)EAI(p) TI EAI(q)) == true.

Before: PwPw {true, false}
Before(p, q) == true if and only if

(Reachable(p, q)(Parallel(p, q)EAI(p) TI EAI(q))) == true.

After: PwPw {true, false}
After(p, q) == true if and only if Before(q, p) == true.

17

3. Artifact Anomalies in TS workflow

3.1 Artifact Operations

In this project, we assume that an activity process in a TS workflow may operate an
artifact as one of the following ways: define (Def), use (Use) and kill (Kill). Defining an artifact
is to assign a value to the artifact, and when an artifact is first defined, it is initialized. An
activity process references an artifact through using it, and an artifact can not be used without
definition. Killing an artifact is to remove the definition of the artifact, and using a killed
artifact before it is defined again leads to errors during execution. As for the control processes
in a TS workflow, it is assumed that they all do no operation (Nop) on any artifacts.

An artifact in a TS workflow is initially stated undefined (UD), and turns to
defined&no-use (DN) after it is defined. When a DN artifact is used, its state becomes
defined&referenced (DR). A DR artifact remains DR after being used, and transits to DN after
being defined again. An artifact in any states becomes UD after being killed.

On the other hand, the artifact operations made by concurrent processes are executed with
undetermined order and might generate ambiguity to artifacts. When several concurrent
processes operate on the same artifact, they race against each other for accessing the artifact and
anomalies might thus be generated. For example, let one process make a definition to an artifact,
and another one kills the artifact concurrently. The existence of the definition of the artifact
becomes ambiguous because the execution order between the kill and the definition is not
determined during design-time. These operations, called Racing Operations, require additional
consideration during analysis, and are categorized according to the operations involved as
following:

(1) Racing Definition(s)&Kill(s), abbreviated as RDK, represents a racing operation
composed of both definition(s) and kill(s) with none or any usage(s).

(2) Racing Definitions, abbreviated as RDS, represents a racing operation composed of
multiple definitions and no kills with none or any usage(s).

(3) Racing Kills, abbreviated as RKS, represents a racing operation composed of no
definitions and multiple kills with none or any usage(s).

(4) Racing Definition&Usage(s), abbreviated as RDU, represents a racing operation
composed of a single definition, any usage(s) and no kills.

(5) Racing Usage(s)&Kill, abbreviated as RUK, represents a racing operation composed of no
definitions, any usage(s), and a single kill.

(6) Racing Usages, abbreviated as RUS, represents a racing operation composed of multiple

18

usages only.

As the example mentioned above, an RDK or an RDS introduces state ambiguous (AB) to
the artifact. Besides, an artifact transits to state UD after an RKS or an RUK, and state DR
after an RDU. Since the artifact state after a usage varies based on the input state of the
artifact, the artifact state after an RUS requires additional consideration in merging the input
states of the usages involved in the RUS. The artifact and its related operations are modeled in
Definition 10, and Figure 10 illustrates how artifact transits its state with different artifact
operations.

Figure 10 The Artifact State Transit Diagram

Definition 10 (Artifact Model in TS workflow)
For an LRTS workflow w,

The set of all the artifacts operated in w is notated as Aw.
aAw, a.state{UD, DN, DR, AB}.

The artifact operation made by processes in w is described as a relationship AOP:
AOP: {p | pPw, p.type == ACT}Aw {Nop, Def, Use, Kill}

{p | pPw, p.type≠ ACT}Aw {Nop}

3.2 Artifact Anomalies

Artifact anomalies are generated from various structural and temporal relationships
between artifact operations, and can be classified into four classes: Useless Definition,
Undefined Usage, Null Kill, and Ambiguous Usage:

(1) Useless Definition:

19

Killing or defining a DN artifact makes the previous definition useless because the
definition is destroyed (or redefined) without any usage. If an artifact remains DN at the end
process, its definition is also useless because it is not used before the end of the workflow. A
useless definition is a kind of redundancy indicating there might be logic error in the workflow
schema and should be warned to designers.

(2) Undefined Usage:

An activity process might not be correctly executed if the essential artifact is not properly
defined. Therefore, an undefined usage, i.e. using an UD artifact, is an error leading to faulty
execution, and is necessary to be handled by the workflow designers.

(3) Null Kill:

A null kill represents a process try to remove an inexistent definition; e.g. to kill a UD
artifact. A null kill is a kind of redundancy, and designers should be noticed about it.

(4) Ambiguous Usage:

An ambiguous usage means that an activity process uses an artifact which is ambiguous in
definitions or in states. Therefore, the direct usage of an AB artifact is an ambiguous usage. The
usage(s) involved in an RDS, an RDK, or an RDU are also ambiguous usages. Besides, if an
artifact is stated DR/DN before an RKU, the usage(s) involved in the RKU is also ambiguous.
Similarly, when an UD artifact meets an RDU, the definition in the RDU may not be made in
time for the usages, and the usage(s) involved in the RDU is also ambiguous.

20

4. The Methodology to Analyzing Artifact Anomalies in LRTS workflow

In this section, the methodology analyzing artifact anomalies in TS workflow is
introduced. To simplify our discussion, the structured loops in all the TS workflows under
analysis are first reduced with the methodology introduced in section 2.4.1, and the anomaly
detection is made for LRTS workflows.

Our methodology is divided into three parts. In section 4.1, we first describe how to
traverse an LRTS workflow to collect the structural and temporal relationships between the
processes and the artifact operations. In section 4.2, according to the structural and temporal
relationships gathered in the first part, the methodology analyzing relationships between the
artifact operations are described. Finally, on the basis of the analysis made in the second part,
the methodology detecting artifact anomalies in an LRTS workflow is concluded in section 4.3

4.1 Gathering Structural, Temporal, Artifact Information in LRTS workflow

In this section, we describe an algorithm to traverse an LRTS workflow to collect the
ABStacks, EAIs, and the artifact operations made by activity processes in the LRTS workflow.
The EAIs and ABStacks are calculated with the methods illustrated in Figure 6 and Figure 9
correspondingly. For each artifact a, an artifact operation list, notated as AOPLa, is established.
The definition of the list is formally described as following:

Definition 11 (Artifact Operation List)
For an LRTS workflow w and aAw,

AOPLa is the list of artifact operations working on a,
opAOPLa, op = (p, a, est, let, type),

pPw, p.type{ACT, END},
est = EST(p), and let = LET(p), and
type = AOP(p, a).

With the definition, the algorithm gathering structural, temporal, artifact information in
LRTS workflow is described as following:

Algorithm 1 Information Gathering - IG
Input: an LRTS workflow w
Pre-Condition: w.s.mark == true, EAI(w.s) == [0, 0], w.s.abstack == « »

pPw\{w.s}, p.mark == false
IG {
01: Queue tq;
02: (w.s, n)Fw,
03: tq.enqueue(n);

21

04: loop {
05: Process p = tq.dequeue();
06: if((p.type{AJ, XJ}) && ((p’, p)Fw,p’.mark == false)) continue;
07: p.mark = true;
08: calculate EAI(p);
09: calculate p.abstack;
10: if(p.type == ACT)
11: aAw, AOP(p, a) ≠ Nop,
12: add (p, a, EST(p), LET(p), AOP(p, a)) to AOPLa;
13: else if(p.type == END) {
14: aAw, add (p, a, EST(p), LET(p), AOP(p, a)) to AOPLa;
15: break;
16: }
17: (p,p’)Fw, tq.enqueue(p’);
18: }
19: aAw, Sorting AOPLa by LET
}

In Algorithm 1, a traverse queue is introduced to hold the order of traversal of processes in
an LRTS workflow. Starting from the start process, the processes in a TS workflow is traversed
along with flows. The EAIs, ABStacks, and artifact operations lists are calculated and collected
correspondingly. To prevent unnecessary redundancy, a Boolean flag mark is given to each
process. Besides the start process, the mark of each process in w is initialized as false, and when
a process is calculated, its mark turned to true. Since a join process may have several in-flows, a
Boolean expression is checked at line 6 to assure that the join process is calculated only when
each of its source process is calculated. Algorithm 1 records the artifact operation made by each
activity process at line 12 and the“no operation”made by the end process in AOPLa at line 14
for further analysis of the definitions remaining useless at the end of w. At line 19, artifact
operation list corresponding to each artifact is sorted by LET.

4.2 Collecting Structural and Temporal Relationships between Artifact Operations in LRTS
workflow

Artifact operations are made by activity processes. Based on the structural and temporal
relationships between the processes, the operations effective on the same artifact can be before,
after, concurrent, or exclusive to each other. To identify these relationships between artifact
operations is the foundation of analysis of artifact anomalies. Here, we first define the structural
and temporal relationships between artifact operations as following:

22

Definition 12 (Relationships between Artifact Operations)
For an LRTS workflow w and aAw,

opi, opjAOPLa,
Before(opi, opj) == true if and only if Before(opi.p, opj.p) == true.
After(opi, opj) == true if and only if After(opi.p, opj.p) == true.
Concurrent(opi, opj) == true if and only if Concurrent(opi.p, opj.p) == true.
Exclusive(opi, opj) == true if and only if Exclusive(opi.p, opj.p) == true.

According to Definition 9, Definition 12, Lemma 1, and Lemma 3, the following lemma
holds.

Lemma 6
For two operation op and op’AOPLa,

(1) If Before(op, op’), op.let < op’.let
(2) If op.let < op’.let, After(op, op’) == false

Algorithm 2 is introduced to collect operations concurrent to each operation in an AOPLa.
To facilitate our discussion, it is assumed that each AOPLa is indexed, and opiAOPLa

indicates the ith operation in the list. Because AOPLa is sorted by LETs at the last part of
Algorithm 1, for 0 < i < j, LET(opi.p)  LET(opj.p). Besides, for any opi in AOPLa,
ConcD_opi, is the set collecting the definitions concurrent to opi, and ConcK_opi collects kills
correspondingly. These sets are defined as following:

Definition 13 (Records of Relationships between Artifact Operations)
For an LRTS workflow w and aAw,
opiAOPLa,

ConcD_opi =
{op | opAOPLa, op.type == Def, Concurrent(opi.p, op.p) == true}

ConcK_opi =
{op | opAOPLa, op.type == Kill, Concurrent(opi.p, op.p) == true}

With the records, Algorithm 2 is constructed as following:

Algorithm 2 Identifying Concurrent Operations - ICO
Input: an artifact a
Pre-Condition: aAw, and w is manipulated by Algorithm 1
ICO {
01: for(i = 1 to |AOPLa|) {
02: if(opi.p.abstack≠« » {
03: j = i + 1;
04: while(j|AOPLa|) {

23

05: if (Concurrent(opi.p, opj.p)){
06: if(opi.type == Def) add opi to ConcD_opj;
07: else if(opi.type == Kill) add opi to ConcK_opj;
08: if(opj.type == Def) add opj to ConcD_opi;
09: else if(opj.type == Kill) add opj to ConcK_opi;
10: }
11: j++;
12: }
13: }
14: }
}

Because AOPLa is sorted by LETs in Algorithm 1, Algorithm 2 checks each operation in
AOPLa in order. For any opiAOPLa, Algorithm 2 first checks if it resides in some parallel or
decision structure(s) at line 2. If not, opi can not be concurrent or exclusive to any other
operations. From line 3 to line 14, the algorithm checks the operations which are succeeding to
opi in AOPLa in order. If the operation under checking is concurrent to opi, the records for both
operations are updated.

For an artifact operation, the operations directly before it generate/carry its input artifact
state, and might make it an artifact anomaly. For example, when a kill directly before a usage,
i.e. no other operations between them, the usage is an undefined usage. We define the
relationship directly before between artifact operations on the basis of Definition 12 as
following:

Definition 14 (Directly Before)
For an LRTS workflow w and aAw,

op, op’AOPLa, op is directly before op’if and only if op is before op’, and 

noop”AOPLa thatop”is after op and before op’.
opAOPLa, DB4op = { op’| op’AOPLa and op’is directly before op}

According to Definition 9, Definition 12, and Lemma 5, for any two artifact operations
effective on artifact a, op andop’, ifop’is before op,op’.let < op.let. Therefore, the operations
directly before op can be identified by analyzing the sub-list of AOPLa where the operations in
the sub-list are all with smaller index in AOPLa than op. The sub-list is defined as following:

Definition 15 (The List of Operations with Smaller LET than Operation op)
opAOPLa,

OPLop = {op’| op’AOPLa , and op’.let < op.let}
Similar to AOPLa, OPLop is sorted and indexed with LETs

24

The algorithm collecting the operations directly before one another operation is described
as following.

Algorithm 3 Collecting Directly Before Operations–CDBO
Input: an artifact operation op,
Pre-Condition: AOPLa has been produced by Algorithm 1, opAOPLa

Operation Set CDBO {
01: DB4op = Ø;
02: for(i = |OPLop| to 1) {
03: if ((Concurrent(op, opi) || Exclusive(op, opi)) == false) {
04: if (DB4op == Ø) add opi to DB4op;
05: else if(noop’ DB4op that Before(opi, op’) == true)
06: add opi to DB4op;
07: }
08: }
09: return DB4op;
}

For the input artifact operation op, Algorithm 3 calculates DB4op from its corresponding
artifact operation list. Algorithm 3 checks the operations in OPLop with reverse order.
According to Lemma 1 and Definition 9, the processes in an LRTS workflow are either before,
after, concurrent or exclusive to each other, and so are the operations. The operations concurrent
or exclusive to op are excluded at line 3. With Lemma 4, the first operation found passing the
checking at line 3 is directly before op. According to Definition 14, if op’and op”are both
directly before op,op’can not be beforeop”and vice versa. Therefore, the algorithm continues
gathering the other directly before operations with the statement at line 6 after the first one is
found.

To show Algorithm 3 is correct, the following lemma is depicted and proved.

Lemma 7
For any artifact operation op and op’, op’is directly before op if and only if

op’CDBO(op)

Proof:
We first show the if-part is correct. B.W.O.C, it is assumed that op’CDBO(op), but is

not directly before op. According to the algorithm, the result set of Algorithm 3 is a sub-set of
OPLop. Therefore, op’OPLop, op’.let < op.let, and op’can not be after op on the basis of
Lemma 6. Besides, op’must pass the checking at line 3, op’is not concurrent or exclusive to
op. Based on Lemma 4 and Definition 12, op’is before op. Since op’is not directly before op,
according to Definition 14, there must exist another operation op”which is after op’and

25

before op. Because op’CDBO(op), op’must be collected in the result set at line 4 or line 6
in Algorithm 3. Since op”is after op’, op’.let < op”.let. op”has a larger index than op’in
OPLop, and is touched by Algorithm 3 earlier than op’does. Therefore, either op”is directly
before op or not, op’can not be collected in the result set at line 4 or line 6. op’CDBO(op)
which is a contradiction, and the if-part of Lemma 7 is shown correct.

As for the only-if-part, B.W.O.C, we assume that op’is directly before op and
op’CDBO(op). The assumption indicates that op’is before op. According to Lemma 6,
op’.let < op.let, and thus op’belongs to OPLop. op’also passes the checking at line 3 based on
Lemma 4 and Definition 12. If the result set is empty when Algorithm 3 touches op’, op’is
inserted into the result set at line 4 because op’is before op. Otherwise, op’is added into the
result set at line 6 because op’is directly before op and there exist no other operations after
op’in OPLop. Therefore, op’CDBO(op) which is a contradiction, and the only-if-part of
Lemma 7 is shown correct. With the proofs of the both direction, Lemma 7 is proved.□

For an artifact operation op, multiple operations directly before it might exist. According
to Definition 14, the operations are not before or after each other. On the basis of Lemma 1 and
Definition 9, the operations are mutually concurrent or exclusive, and are possibly organized as
the following cases:

(1) All the operations are concurrent to each other.

(2) All the operations are exclusive to each other.

(3) The operations can be divided into several distinct groups where the operations in the
same group are concurrent to each other, and the operations belonging to different
groups are all mutually exclusive.

(4) The operations can be organized into several varied groups where the operations in the
same group are concurrent to each other, and the operations belonging to different
groups are either identical or mutually exclusive.

The operations in case (1) compose a racing operation. In case (2), each operation is
considered separately during analysis because only one of the operations is executed during
run-time. Case (3) and (4) happen when the operations are made by processes reside in nestedly
organized decision and parallel structures. Since only one of the branches in a decision structure
is taken during run-time, the operations reside in different branches of a decision structure are
separately analyzed with the operations concurrent to them. Figure 11 illustrates two partial
LRTS workflow schemas as the examples of case (3) and (4).

26

Figure 11 Examples for Nestedly Organized Decision and Parallel Structures

In Figure 11, we assume that the EAIs of the activity processes with footnotes are all
overlapped, and all the operations made by them are thus directly before op. Figure 11(a)
illustrates an example of case (3) mentioned above. In Figure 11(a), the operations directly
before op can be divided into two distinct groups {op1, op2, op3} and {op4, op5, op6}. The
operations are concurrent to the ones within the same group and are exclusive to the ones
belonging to different groups. Figure 11(b) illustrates an example of the case (4). op1, op2, and
op3 are mutually exclusive and should be separately considered when analysis. However, each
of them is concurrent to op4 and op5. Therefore, the operations are organized with three groups,
{op1, op4, op5}, {op2, op4, op5}, and {op3, op4, op5}. The operations in the same group are
concurrent to each other, and the exclusive operations are distributed among different groups.

Definition 16 (Set of Operation Sets derived from DB4op)
opAOPLa,

DB4OPSop = {OPS | OPSDB4op, op’, op”OPS, Concurrent(op’, op”) ==

true, and op3DB4op\OPS, op4OPS that Exclusive(op3, op4) == true }

Each of the groups, the operation sets, in which all the operations are mutually concurrent
represents an execution case during run-time. With Definition 14, the set of the operation sets
derived from DB4op is defined as above.

However, to retrieve all such operation sets from DB4op is equivalent to solve the
well-known NP-hard problem “Maximal Clique Enumeration Problem”(Pardalos and Xue,
1994). Although many studies and efficient algorithms such as the approaches made by
Tsukiyama et al. (1977) and Makino and Uno (2004) has been developed for this problem, to
discuss the solution for maximal clique enumeration problem is beyond the scope of this project.
To illustrate our methodology, we describe a polynomial algorithm to manufacture DB4OPSop

satisfying the cases (1), (2), (3) completely and case (4) partially from DB4op. The algorithm is
described as following.

27

Algorithm 4 Collecting Directly Before Operation Sets - CDBOPS
Input: an operation op,
Pre-Condition: DB4op has been calculated by Algorithm 3
Set of Operation Sets CDBOPS {
01: DB4OPSop = Ø;
02: duplicate DB4op to BaseSet;
03:while(BaseSet ≠ Ø) {
04: CurrentOPS = Ø;
05: choose and remove arbitrary operationop’from BaseSet;
06: duplicate DB4op \{op’} to CountSet;
07: addop’to CurrentOPS;
08: while(CountSet ≠ Ø) {
09: choose and remove arbitraryop”from CountSet;
10: if(op3CurrentOPS, Concurrent(op”, op3) == true) {
11: addop”to CurrentOPS;
12: removeop”from BaseSet;
13: }
14: }
15: add CurrentOPS to ResultSet;
16: }
17: return DB4OPSop;
}

First, the algorithm duplicates DB4op to BaseSet at line 2. The codes from line 3 to 16 form
a loop. In the loop, an operation op’is arbitrarily chosen from BaseSet, and all the operations
concurrent to op’and each other are gathered and put into CurrentOPS. CurrentOPS is added to
the result set as one of the operation sets found by the algorithm at the end of the loop. The
operations in CurrentOPS are removed from BaseSet, and the next loop starts if there is still
operation remaining in BaseSet. Because any operations in DB4op are mutually concurrent or
exclusive, the operation chosen in the next loop is exclusive to at least one of the operations
gathered in this loop. Besides, the algorithm starts collecting an operation sets from different
operations every loop, and thus none of the operation sets collected in Algorithm 4 are identical.
After each operation in BaseSet is distributed into some operation set, the algorithm returns the
calculated DB4OPSop at line 17.

To depict the correctness and the effectiveness of Algorithm 4, we show that the following
lemmas hold.

Lemma 8
The result set returned by Algorithm 4 follows Definition 16.

28

Proof:
Let OPS be one of the operation set collected in CDBOPS(op). According to the

pre-condition of Algorithm 4, DB4op has been calculated by Algorithm 3, and according to
Lemma 1, Definition 9, and Definition 14, the operations in DB4op are either mutually
concurrent or exclusive. From line 7 and line 11 of Algorithm 4, we know that all the
operations collected in OPS are mutually concurrent. The operations gathered in OPS are
removed from BaseSet at line 12. Therefore, for any operation remaining in BaseSet, there
exists at least one operation exclusive to it in OPS. Because BaseSet is duplicated from DB4
at line 2, OPS follows Definition 16, and Lemma 8 is thus shown correct.□

Before Algorithm 4 is introduced, four possible cases of the set of operation sets derived
from DB4op are described, and we claim the capability of Algorithm 4 based on the cases. Here,
we show the claim holds with the following lemma.

Lemma 9
Algorithm 4 is able to find the operation sets for case (1), (2), and (3) completely,
and for case (4) partially.

Proof:
The cases are separately discussed as following:
(1) All the operations in DB4op are concurrent to each other.

In this case, the algorithm collects all the operations in the first loop of the
algorithm. Only one operation set is included in the result set of Algorithm 4.

(2) All the operations in DB4op are exclusive to each other.
In this case, an operation is collected in an individual operation set in each

loop. Let the size of DB4op be N. As the result, N particular operation sets are
collected in DB4OPSop, and the union of the sets is identical to DB4op.

(3) The operations in DB4op can be divided into several distinct groups where the
operations in the same group are concurrent to each other, and the operations belonging
to different groups are all mutually exclusive.

In this case, DB4op can be divided into several distinct operation sets following
Definition 16. However, the operations included in different sets are all mutually
exclusive. According to Lemma 8, the operation sets collected by Algorithm 4
follow Definition 16. On the basis of the algorithm, each operation in DB4op is
collected into some operation set in DB4OPSop. Therefore, all the operation sets in
this case can be found by Algorithm 4.

(4) The operations in DB4op can be organized into several varied groups where the
operations in the same group are concurrent to each other, and the operations belonging
to different groups are either identical or mutually exclusive.

In Algorithm 4, at least one operation is removed from BaseSet in the loop

29

starting from line 3, and therefore the algorithm derives at most N operation sets
from DB4op. For case (4), the number of operation sets identified by Algorithm 4 is
less than N, but the number of operation sets in this case might exceed N. The
operation sets in case (4) follow Definition 16, and so is Algorithm 4. Since the
number of operation sets in case (4) might exceed the maximal capability of
Algorithm 4. Obviously, Algorithm 4 identifies the operation sets for case (4) only
partially.□

4.3 Detecting Blank Branch

Besides the cases described above, analysis of blank branches, i.e. the branches in a
decision structure where no process residing in the branch has operations effective on the same
artifact, is still ignored. Figure 12 illustrates parts of an LRTS workflow that the definitions
made by v1 and v2 are directly before the usage made by v4. The definitions should be
considered separately during analysis because they are exclusively executed during run-time.
However, if the third branch is taken during execution, the usage made by v4 is undefined
because the definition of a is killed by v0, and no further definition is made by activity processes
on the third branch. The third branch is a blank branch which generates a blind spot in our
methodology.

Figure 12 An Example of a Blank Branch

For any operation op, to eliminate the effect brought by blank branches when calculating
its input states, all the operations reside in the decision structure with blank branches should be
removed from OPLop, and DB4op can then be recalculated for analysis. Algorithm 5 detects
blank branches from the directly before operations of the input operation.

Algorithm 5 Detecting Blank Branch - DBB
Input: an operation op,
Pre-Condition: DB4op has been calculated by Algorithm 3
Branch Set DBB {
01: XSSet = Ø;
02: AllBranch = Ø;
03: OpBranch = Ø;
04: op’DB4op {
05: si(op’.p.abstack\op.p.abstack) where si.p.type == XS {

30

06: if(si.pXSSet) {
07: out-flow of si.p, f, add (si.p, BM(f)) to AllBranch;
08: add si.p to XSSet;
09: }
10: add si to OpBranch;
11: }
12: }
13: BlankBranch = AllBranch\OpBranch
14: return BlankBranch;
}

The temporary sets used in the algorithm are initialized from line 1 to 3. At line 5, the
algorithm checks if there exists a decision structure that (1) the structure is converged before op
and (2) an operation in DB4op resides in the structure. At line 7, Algorithm 5 records the
structural items representing all the branches of the decision structure in AllBranch. For any
operation in DB4op, if the operation resides in some decision structure, the algorithm collects
the branch of the structure where the operation resides in OpBranch at line 10. At line 13, the
blank branches are derived from the difference between AllBranch and OpBranch as
BlankBranch. BlankBranch is then returned as the result set for further analysis.

In Algorithm 5, all the branches of the decision structures with the operations directly
before op are collected in AllBranch, and the individual branches resided by the operations are
recorded in OpBranch. If all the branches collected in AllBranch are resided by the operations
directly before op, no blank branch exists. Otherwise, the differences between AllBranch and
OpBranch are the branches without operations effective on op.a, i.e. the blank branches.

4.4 Identifying Artifact Anomalies in an LRTS workflow

In this section, the algorithm integrating all the information gathered above to identify the
artifact anomalies in an LRTS workflow is introduced. An operation transits the state of
artifacts as Figure 10 illustrates, and artifact anomalies are produced when operations effective
on artifacts with inappropriate state. For an artifact operation op, the artifact state produced by
op, i.e. op’s output state, is recorded in op.OutState, and its input state is calculated from the
output states of the operation(s) directly before it. Since only one of the mutually exclusive
input operations is executed during run-time, the input states from these operations are
discussed separately, and an operation might thus produce multiple output states accordingly.
States of artifacts are recorded as state items, and are modeled as following.

31

Definition 17 (Records of Artifact States)
state item stItem, stItem = (st, SRC),

stItem.st represents the output artifact state of op.a, and
stItem.SRC indicates the source operations producing the state.

With the definition above, Algorithm 6 describes the methodology to calculate the input
state for each operation.

Algorithm 6 Gathering Input States of an Operation - GIS
Input: an LRTS workflow w,

an operation op
Pre-Condition: DB4OPSop has been calculated by Algorithm 4
Set of State Items GIS {
01: InStates = Ø;
02: if(DB4OPSop == Ø)
03: add (UD, {w.s}}) to InStates;
04: else OPSDB4OPSop {
05: if(OPS is an RDS/RDK)
06: add (AB, {op’|op’OPS, op.type{Def, Kill}}) to InStates;
07: else if (OPS is an RDU)
08: add (DR, {op’|op’OPS, op.type == Def}) to InStates;
09: else if (OPS is an RKS/RKU)
10: add (UD, {op’|op’OPS, op.type == Kill}) to InStates;
11: else if (OPS is an RUS) {
12: if (op’OPS, siop’.OutState that si.st == UD) {
13: UDSRC = Ø;
14: op’OPS and siop’.OutState,
15: if(si.st == UD) UDSRC = UDSRCsi.SRC;
16: add(UD, UDSRC) to InStates;
17: }
18: if(op’OPS and siop’.OutState that si.st(AB, DR)) {
19: ABSRC = Ø;
20: DRSRC = Ø;
21: op’OPS and siop’.OutState {
22: if(si.st == AB) ABSRC = ABSRCsi.SRC;
23: else if(si.st == DR) DRSRC = DRSRCsi.SRC;
24: }
25: if (ABSRC ≠ Ø) add(AB, ABSRC) to InStates;
26: if (DRSRC ≠ Ø) add(DR, DRSRC) to InStates;

32

27: }
28: } else op’OPS, InStates = InStatesop’.outStates;
29: return InStates;
}

The algorithm shows how to collect the input state of operation op from DB4OPSop. An
empty DB4OPSop indicates that no operation is operated before op. In this project, we assume
that all the artifacts are initialized with state UD, and the state item (UD, {w.s}) is inserted to
the result set in this circumstance. If DB4OPSop is not an empty set, the algorithm calculates the
input state of op from each operation set in DB4OPSop. An operation set containing multiple
operations composes a racing operation, and the algorithm gives the input state of op generated
from an RDS, RDK, RDU, RKS, and RKU from line 5 to 10 based on the description in section
3.1. For an RUS, if all the usages involved in the RUS propagate state UD in their output states,
the artifact might be undefined after the RUS, and state UD is included in op’s input states
accordingly. On the other hand, if there exists a usage involving in the RUS propagating state
AB for the target artifact, the target artifact might be ambiguous in definition before op is
operated. Similarly, if the target artifact is defined in one of the usages involved in the RUS, DR
is recorded as one of the input states of op. The method to calculate the artifact states generated
from an RUS is described from line 12 to 26 in the algorithm. Finally, if the operation set
contains only one single operation. The input state of op is simply equivalent to the output state
of the operation, and is handled at line 28. The input states of op are identified for each
operation set collected by Algorithm 4. The completeness of the input states gathered by
Algorithm 6 is restricted by the capability of Algorithm 4.

According to the type of an operation and its corresponding input state, whether an artifact
anomaly is generated from the operation can be detected. The artifact anomalies are recorded in
Artifact Anomaly Table (AAT) modeled as following:

Definition 18 (Artifact Anomaly Table)
Let AATw be the artifact anomaly table for an LRTS workflow w
aarAATw, aar = (op, type, SRC),

aar.op indicates the abnormal artifact operation,
aar.type{Useless Definition, Null Kill, Undefined Usage, Ambiguous Usage}

indicates the anomaly type, and
aar.SRC represents the set of operations leading to the anomaly.

For each record in AATw, the source operations producing the anomaly are recorded. For
example, a usage of an artifact is undefined because a kill removes the definition of the artifact
before it. The kill is recorded in the artifact anomaly record to provide information for fixing of
the anomaly. The following algorithm illustrates detection of artifact anomalies and calculation

33

of the output states for operations with different types.

Algorithm 7 Identifying Artifact Anomalies for No Operations - IAAN
Input: an LRTS workflow w,

an artifact operation op, and
a set of state items InState

Pre-Condition: op.type == Nop
IAAN {
01: stItemInState,
02: if(stItem.state == DN)
03: add(op’ |op’stItem.SRC, Useless Definition, {op}) to AATw;
04: op.OutState = InState;
}

For an artifact a, the no operation made by the end process is recorded in AOPLa to detect
if any useless definition exists at the end of the LRTS workflow. Since only a definition transits
an artifact to state DN, the algorithm records the operations generating DN state directly before
the end of the LRTS workflow as useless definitions.

Algorithm 8 Identifying Artifact Anomalies for Definitions - IAAD
Input: an LRTS workflow w,

an artifact operation op, and
a set of state items InState

Pre-Condition: op.type == Def
IAAD {
01: stItemInState,
02: if(stItem.state == DN)
03: add(op’ |op’stItem.SRC, Useless Definition, {op}) to AATw;
04: op.OutState = { (DN, {op}) };
}

Algorithm 8 identifies the artifact anomalies generated from a definition, and calculate its
output state. For an artifact a, a definition which is not referenced by any usages before being
defined again is a useless definition. Finally, a definition transits a to state DN, and the output
state generated by the definition is recorded accordingly.

Algorithm 9 Identifying Artifact Anomalies for Kills - IAAK
Input: an LRTS workflow w,

an artifact operation op, and
a set of state items InState

Pre-Condition: op.type == Kill

34

IAAK {
01: stItemInState,
02: if(stItem.state == DN)
03: add(op’ |op’stItem.SRC, Useless Definition, {op}) to AATw;
04: else if(stItem.state == UD) add(op, Null Kill, stItem.SRC) to AATw;
05: opi.OutState = { (UD, {opi}) };
}

Algorithm 9 identifies the artifact anomalies generated from a kill, and calculates its
output state. A definition which is killed before being referenced is also useless, and the
anomaly is detected at line 2 and 3. Besides, if an artifact remains undefined before a kill, the
kill is redundant, and a Null Kill is raised accordingly. A kill transits an artifact to state UD, and
the output state generated from the kill is recorded at line 5.

Algorithm 10 Identifying Artifact Anomalies for Usages - IAAU
Input: an LRTS workflow w,

an artifact operation op, and
a set of state items InState

Pre-Condition: op.type = Use
IAAU {
01: stItemInState {
02: if(stItem.state == AB)
03: add(op, Ambiguous Usage, stItem.SRC
04: ConcD_opConcK_op) to AATw;
05: else if(stItem.state == UD) {
06: if(ConcD_op≠ Ø)
07: add (op, Ambiguous Usage, stItem.SRCConcD_op) to AATw;
08: else add(op, Undefined Usage, stItem.SRC) to AATw;
09: }
10: else if(stItem.state{DR, DN})
11: if(ConcD_opConcK_op≠ Ø)
12: add(op, Ambiguous Usage, stItem.SRC
13: ConcD_opConcK_op) to AATw;
14: if(stItem.state == DN) add (DR, stItem.SRC) to opi.OutState;
15: else add stItem to opi.OutState;
16: }
}

Algorithm 10 identifies whether a usage is abnormal, and calculates its output state. The
input state AB indicates that the artifact is ambiguous in definition when the operation being

35

operated, and makes the usage an ambiguous usage. If the input state of the usage is UD, the
algorithm checks if there is any definition concurrent to the usage from at line 6. If no
concurrent definition exists, the usage is undefined. Otherwise, the usage is ambiguous because
it may reference an undefined artifact or the value defined by the concurrent definition(s). If the
input state of the usage is DN or DR, the concurrent definitions or kills which cause ambiguity
to the usage are checked at line 11, and an Ambiguous Usage is raised if any ambiguity exists.
The usage transits a DN artifact to state DR or simply propagates the input states to the
following operations otherwise.

The expressions adopted in Algorithm 7 to Algorithm 10 are stated based on the
description in section 4.1. With all the definitions and algorithms described in this chapter, the
methodology detecting artifact anomalies in a TS workflow is introduced as following.

Algorithm 11 Identifying Artifact Anomalies - IAA
Input: an LRTS workflow w
IAA {
01: IG(w);
02: aAw {
03: ICO(a);
04: for(i = 1 to |AOPLa|) {
05: while(true) {
06: CDBO(opi);
07: CDBOPS(opi);
08: InState = GIS(w, opi);
09: if(opi.type == Nop) IAAN(opi, InState, w);
10: else if (opi.type == Def) IAAD(opi, InState, w);
11: else if (opi.type == Kill) IAAK(opi, InState, w);
12: else if (opi.type == Use) IAAU(opi, InState, w);
13: BlankBranch = DBB(opi);
14: if(BlankBranch == Ø) break
15: else
16: opOPLopi,
17: if(siBlankBranch, and si’op.p.abstack, where si.sp == si’.sp)
18: remove op from OPLopi;
19: }
20: }
21: }
}

At line 1, the algorithm first invokes Algorithm 1 to collect structural and temporal

36

information like EAIs, ABStacks, and artifact operation lists for the input LRTS workflow. For
each artifact a, Algorithm 11 then identifies the concurrency between artifact operations with
Algorithm 2 at line 3, and starts analysis of the each operation in AOPLa in order from line 4.
Algorithm 3 is invoked at line 6 to collect the operations directly before opi, and the operation
sets directly before opi is manufactured by Algorithm 4 from the previous result at line 7. At line
8, Algorithm 6 gathers the input state of opi, and invokes corresponding algorithms from line 9
to 12 to detect artifact anomalies and calculate the output state of opi. At line 13, Algorithm 5 is
invoked to detect if there is any blank branch before opi. If not, the anomaly detection work for
opi is accomplished. Otherwise, all the operations residing in the decision structure with blank
branches are removed from OPLopi, and Algorithm 11 repeats analysis of artifact anomalies for
opi until all the blank branches considered. The completeness of the artifact anomalies detected
in our methodology is decided by the completeness of the operation sets identified by
Algorithm 4. Developing an algorithm able to collecting more operation sets is helpful in
enhancing our methodology, and is left as a future work of this study.

37

5. Case Study

In this section, a case study is made to illustrate the feasibility of our methodology.

Figure 13 The Sample TS Workflow for the Case Study in Chapter 4

Figure 13 shows the sample TS workflow for our case study. The processes, flows,
working durations, and the artifact operations made on artifact a are illustrated in the sample.
To analyze the sample TS workflow with our methodology, the structured loops in the TS
workflow should first be reduced. After loop reduction, the LRTS workflow generated from the
sample TS workflow are illustrated as Figure 14.

Figure 14 The Sample LRTS Workflow Derived from Figure 13 with Decoration of EAIs and ABStacks

38

After loop-reduction, Algorithm 1 is invoked to gather the temporal and structural
information such as the EAI and the ABStack for each process, and the artifact operation list for
each artifact. Table 1 illustrates the artifact operation list and the concurrent operations for
artifact a generated by Algorithm 1 and Algorithm 2.

Table 1 Artifact Operation List for a, and the Corresponding Concurrent Operations

opi AOPLa ConcD ConcK

op1 (v1, a, 0, 2, Use) Ø Ø

op2 (v2, a, 1, 4, Def) Ø Ø

op3 (v10, a, 1, 4, Use) {op2} {op7}

op4 (v10
1, a, 1, 4, Use) {op2} {op7}

op5 (v3, a, 2, 6, Use) Ø Ø

op6 (v10
2, a, 2, 6, Use) {op2. op9} {op7}

op7 (v6, a, 3, 8, Kill) Ø Ø

op8 (v10
3, a, 3, 8, Use) {op2. op9} {op7}

op9 (v7, a, 3, 10, Def) Ø Ø

op10 (v9, a, 9, 14, Use) {op9} Ø

op11 (v11, a, 10, 16, Use) Ø Ø

op12 (v12, a, 11, 18, Def) Ø Ø

op13 (e, a, 12, 18, Nop) Ø Ø

To be brief, we do not show all the details of detecting artifact anomalies in this case study,
and focus on two representative examples, op9 and op10. Therefore, we assume that the
operations before op9 are calculated already, and Table 2 shows the output state of the
operations with LETs smaller then op9’s.

Table 2 The Output State of the Operations before op9 is Calculated

opi OutState

op1 { (UD, {s}) }

op2 { (DN, {op2}) }

op3 { (UD, {s}) }

op4 { (UD, {s}) }

op5 { (DR, {op2}) }

op6 { (UD, {s}) }

op7 { (UD, {op7}) }

op8 { (AB, {s, op2, op9}) }

op1 is an undefined usage because it is operated before any activity process gives
definition to artifact a. op3, op4, op6, and op7 are ambiguous usages because there exist

39

definition concurrent to them. Before op9 is calculated, the artifact anomaly table, AATw,
records the following anomalies:

AATw = { (op1, Undefined Usage, {s}), (op3, Ambiguous Usage, {s, op2}), (op4,
Ambiguous Usage, {s, op2}), (op6, Ambiguous Usage, {s, op2, op7}), (op7,
Ambiguous Usage, {s, op2, op7}) }

For op9, Algorithm 11 retrieve all the operations with smaller LET from AOPLa as OPLop9,
{op1, op2, op3, op4, op5, op6, op7, op8}, and invokes Algorithm 3 to calculate DB4op9, {op5, op7}.
Since all the operations directly before op9 are mutually exclusive, i.e. the case (2) described in
section 4, the DB4OPSop9 is calculated from Algorithm 4 as { {op5}, {op7} }. With DB4OPSop9,
Algorithm 6 gathers the input states of op9 as the union of the output states of op5 and op7 as
{ (DR, {op2}), (UD, {op7}) }. op9 is a definition, and Algorithm 8 is invoked for detection of
artifact anomalies and generation of its output state. As a result, no artifact anomaly is found
and the output state of op9 is generated as { (DN, {op9}) }. However, during the blank branch
detection, (xs1, 2) is found a blank branch, and the operation in the same decision structure
should be removed to eliminate the effect of blank branch. op5 and op7 is removed from OPLop9.
DB4op9, DB4OPSop9, and the InState of op9 are recalculated as {op2}, {{op2}}, and { (DN,
{op2}) }. After invoking Algorithm 8 once again, an artifact anomaly (op2, Useless Definition,
{op9}) is raised because the definition made by op2 is not used before redefinition when the
blank branch is taken.

DB4op10 is generated as {op3, op5, op7, op8}, and DB4OPSop10 is generated as { {op3, op5},
{op7, op8} }. Since this case is relatively simple, we can easily identify that the operation sets
{op3, op7} and {op5, op8} is neglected in our methodology. With DB4OPSop10, the input states
of op10 are generated. According to the definition of racing operations introduced in section 3.1,
{op3, op5} is an RUS and {op7, op8} is an RKU, and { (DR, {op2}) } and { (UD, {op7}) } are
generated as op10’s input statescorrespondingly. Algorithm 10 is invoked to detect artifact
anomalies and identify the output state of op10. Two artifact anomalies, (op10, Ambiguous
Usage, {op7, op9}) and (op10, Ambiguous Usage, {op2, op9}), are generated because op9 makes
a definition to a concurrently, and generates ambiguity to op10. The output states of op10 is
{ (DR, {op2}), (UD, {op7}) }. Then the algorithm removes the blank branches for op10, and
finds no further anomalies.

Except for the artifact anomalies listed and described above, (op13, Useless Definition, {e})
are detected and recorded to AATw when Algorithm 11 completes its work throughout w. The
useless definition is detected at the end process of the LRTS workflow because the definition
made by op13 is not used by any other activity process until the end of w.

40

6. Discussion

6.1 Related Works in Analysis of Artifact Anomalies

Sun et al. (2006) extend the Activity Diagram in UML for modeling data flow in a
business process. Three classes of data-flow anomalies, missing data, redundant data, and
conflicting data, are defined. With the routing information defined in a workflow specification,
a detecting algorithm for the data-flow anomalies is constructed (Sun et al., 2006). However,
Sun et al. (2006) do not build an explicit data model in characterizing the data behaviors, and
consider only read and initial write in data operations.

Sadiq et al. (2004) reveal the importance about the validation of workflow data, and
introduce seven basic data validation problems, Redundant Data, Lost Data, Missing Data,
Mismatched Data, Inconsistent Data, Misdirected Data, and Insufficient Data in workflow
models. Redundant Data occur when designers specify an activity to define a data item which is
not required by any other succeeding activities. Lost Data occur when designers specify two
activities that may be executed in parallel to define the same data item, and one of the
definitions is lost when the data item is preempted by the process executed in advance. Missing
Data occurs when designers specify an activity to consume a data item which is never defined
by any preceding activities. Mismatched Data arise when the structure of data is incompatible
between the definition and the usage of the data. Inconsistent data happen when the data
required by a workflow are externally updated by other applications during the workflow
execution, and the polluted data might cause errors of the workflow. Misdirected Data occur
when the direction of the data flow is conflict with the direction of the control flow of the
workflow. Insufficient Data happen when the data specified by designers is insufficient to
successfully complete an activity.

Destruction of artifacts is not considered in both Sun and Sadiq’s studies. Wang et al.
(2006) and Hsu et al. (2007) consider the effect of destroying an artifact and re-model the
inaccurate artifact manipulation by separating initialization and update as two different artifact
operations, and define six inaccurate artifact usages: No Producer, No Consumer, Redundant
Specification, Contradiction, Parallel Hazard, and Branch Hazard. No Producer is a warning
indicating that a data item is operated before it is specified. No Consumer indicates that an
artifact is not requested after its definition (initialization). Redundant Specification indicates
that an artifact is repeatedly specified in a workflow. Contradiction implies the defect that the
state of an artifact is not matched to the pre-condition or post-condition of the activity accessing
it. Parallel Hazard occurs due to conflict interleaving of concurrent artifact operations, and is
recognized if multiple concurrent activities operate on the same artifact. Branch Hazard occurs
when branches in a decision structure contain operations on artifacts have been selected, or
when there is inconsistency between the condition testing in the XOR-split process or the
branches in the decision structure.

41

Wang et al. (2009) develop a systematic notation to describe artifact anomalies and
simplify the description of artifact anomalies from the classification made by Hsu et al. (2007)
into three categories, Missing Production, Redundant Write, and Conflict Write. Missing
Production occurs when an artifact is consumed before it is produced or after it is destroyed.
Redundant Write occurs when an artifact is written by an activity but the artifact is neither
required by the succeeding activities nor a member of the process outputs. Conflict Write
occurs when parallel processes race their access to the same artifact. According to different
structural relationships between activities accessing some artifacts, thirteen abnormal usage
patterns are described for the three categories to follow the previous models made by Sadiq et
al.(2004), Hsu et al (2007), and Sun et al. (2006).

6.2 Comparison between Our Approach and the Related Works

Table 3 lists and compares the features between the related works and our approach.
Artifact anomalies are appealed with different names in previous studies, but can still be
mapped into the three basic categories made by Sun et al. (2006). By comparing the definition
of the artifact anomalies defined in our approach and the related works, we conclude that
Undefined Usage and Useless Definition can be directly mapped into Missing Data and
Redundant Data descri intrduced by Sun et al. (2006). On the other hand, the Conflict Data
defined by Sun et al. (2006) are anomalies generated when multiple definitions are made in
parallel. In our approach, the concurrent definitions are considered being executed with
undetermined order, and generate ambiguity in artifacts. They are not directly considered as an
anomaly because (1) an anomaly actually occurs when a usage refers to the ambiguous
definitions, and (2) similar anomaly may also occur when there exist kills or definitions
concurrent to usages. Therefore, Ambiguous Usage is categorized in this project, and covers
Conflict Data discussed in the previous works. Besides, Sadiq et al. additionally define
Insufficient Data and Mismatched Data in (Sadiq et al., 2004) for conflicts about contents or
format between definitions and usages. Since the studies made by Hsu et al. (2007), Wang et
al, (2009), Sun et al. (2006) and this project do not discuss the contents of artifacts,
Insufficient Data and Mismatched Data are ignored in these studies. Finally, although
destruction of artifacts is considered in Hsu et al. (2007), Wang et al, (2009)’s studies, the
redundancy generated by unnecessary destruction is not discussed in these works. In our studies,
Null Kill is categorized and detected to eliminate such redundancies.

Our approach also considers how temporal factors may affect the detection of artifact
anomalies. The twisted temporal and structural relationships between activity processes are
modeled and analyzed, and the artifact anomalies generated along with them are detected.
Besides, when the previous works only focus on detection of artifact anomalies, our approach
also helps designers locating the problems hidden in a workflow schema with providing the
information about the sources leading to artifact anomalies.

42

Table 3 Comparison between Our Approach and the Related Works

Our

Approach

Sun et al.

(2006)

Sadiq et al.

(2004)

Hsu et al.

(2007)

Wang et al.

(2009)

Undefined

Usage

Missing

Data

Absence of

Initialization
Missing Data

No

Producer

Missing

Production

No Production

Delayed

Initialization
Misdirected Data

Delayed

Production

Improper

Routing

Branch

Hazard

Conditional

Production

N/A
Exclusive

Production

Uncertain

Availability
Misdirected Data

Parallel

Hazard

Uncertain

Production

Useless

Definition

Redundant

Data

Contingent

Redundancy Redundant Data

Mismatched Data

Branch

Hazard Redundant

Write

Conditional

Consumption

after Last Write

Inevitable

Redundancy

No

Consumer

No Consumption

after Last Write

Ambiguous Usage
Conflict

Data

Multiple

Initialization
Lost Data Contradiction

Conflict

Write

Multiple

Parallel

Production

N/A N/A N/A
Insufficient Data

Mismatched Data
N/A N/A N/A

Null Kill N/A N/A N/A N/A

Temporal

Consideration
N/A N/A N/A N/A

Anomaly Source

Tracking
N/A N/A N/A N/A

43

7. Conclusion and Future Works

In this project, the temporal factors in structured workflows are considered with TS
workflow. The twisted temporal and structural relationships between processes in TS workflow
are modeled, and the methodologies to analyze such relationships in TS workflow are presented.
Three classes of artifact operations, Define, Use, and Kill, are discussed, and four kinds of
artifact anomalies, Useless Definition, Undefined Usage, Ambiguous Usage, and Null Kill, are
defined. The racing operations composed by concurrent operations are categorized into seven
classes, the how artifact operations may affect the state transition of an artifact is depicted. With
all the features modeled above, the methodology to detect artifact anomalies in a TS workflow
is established. A case study and comparison between our approach and the related works are
made to show the feasibility and contribution of our work.

Several advanced studies can still be made in this topic. First, a solution to group the
operation sets from the operations directly before another operation can be further studied. The
efficiency and completeness of the solution should be discussed. Second, the methodology
described in this project traverses the whole workflow schema to detect artifact anomalies. In
the future, on the basis of this work, we might construct an incremental algorithm to detect
artifact anomalies generated or eliminated by each design operations made by the designers.
The algorithm analyzes only partial workflow schema which is changed in last design operation
and informs the designers immediately after a design operation is made. Finally, the artifact
operations can be discussed in finer-grained, we may not only summarize the actions which an
activity process made on an artifact into one single artifact operation, but consider all the
operations made by activity processes and discuss the dependency between the operations in
more detail.

44

Reference

(Adam et al., 1998) N. R. Adam, V. Atluri, and W.-K. Huang, 1998, Modeling and Analysis of
Worfklows Using Petri Nets, Journal of Intelligent Information Systems, Vol. 10, Issue 2,
pp. 131-158

(Allen, 1983) J. F. Allen, 1983, Maintaining knowledge about temporal intervals,
Communication of the ACM, Vol. 26, Issue 11, pp. 832–843

(Chen and Yang, 2008) J. Chen, and Y. Yang, 2008, Temporal Dependency based Checkpoint
Selection for Dynamic Verification of Fixed-time Constraints in Grid Workflow Systems,
the Proceedings of the 30th International Conference on Software Engineering, pp. 141-150

(Eder et al., 1999a) J. Eder, E. Panagos, H. Pozewaunig, and M. Rabinovich, 1999, Time
Management in Workflow Systems, the Proceedings of International Conference on
Business Information Systems, pp. 266-280

(Eder et al., 1999b) J. Eder, E. Panagos, and M. Rabinovich, 1999, Time Constraints in
Workflow Systems, Lecture Notes in Computer Science, Vol. 1626, pp. 286-300

(Hsu et al., 2005) H.-J. Hsu, D.-L. Yang, and F.-J. Wang, 2005, An Incremental Analysis to
Workflow Specifications, the Proceedings of the 12th Asia-Pacific Software Engineering
Conference, pp. 122-129

(Hsu et al., 2007) C.-L. Hsu, H.-J. Hsu, and F.-J. Wang, 2007, Analysing Inaccurate Artifact
Usages in Workflow Specifications, IET Software, Vol. 1, Issue 4, pp. 188-205

(Hsu and Wang, 2008) H.-J. Hsu and F.-J. Wang, 2008, An Incremental Analysis for Resource
Conflicts to Workflow Specifications, Journal of Systems and Software, Vol. 81, Issue 10,
pp. 1770-1783

(Hsu et al. 2009) H.-J. Hsu, and F.-J. Wang, 2009, Using Artifact Flow Diagrams to Model
Artifact Usage Anomalies, the Proceedings of 33rd Annual IEEE International Computer
Software and Applications Conference, Vol. 2, pp.275-280

(Kiepuszewski et al., 2000) B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler, 2000, On
Structured Workflow Modelling, Lecture Notes in Computer Science, Vol. 1789, pp.
431-445

(Leong and Si, 2009) I.-F. Leong, and Y.-W. Si, 2009, Temporal Exception Prediction for
Loops in Resource Constrained Concurrent Workflows, the Proceedings of 6th IEEE
International Conference on e-Business Engineering, pp. 310-315

(Li et al., 2004a) J. Li, Y. Fan, and M. Zhou, 2004, Performance Modeling and Analysis of
Workflow, IEEE Transaction on Systems, Man, and Cybernetics - Part A: Systems and
Humans, Vol. 34, Issue 2, pp.229-242

(Li et al., 2004b) H. Li, Y. Yang, and T. Y. Chen, 2004, Resource Constraints Analysis of
Workflow Specifications, Journal of Systems and Software, Vol. 73, Issue 2, pp. 271-285,
2004

(Li and Yang, 2005) H. Li, and Y. Yang, 2005, Dynamic Checking of Temporal Constraints for

45

Concurrent Workflows, Electronic Commerce Research and Applications Vol. 4, pp.
124-142

(Makino and Uno, 2004) K. Makino, and T. Uno, 2004, New Algorithms for Enumerating All
Maximal Cliques, the Proceedings of 9th Scandinavian Workshop on Algorithm Theory,
Lecture Notes in Computer Science, Vol. 3111, pp. 260-272

(Marjanovic, 2000) O. Marjanovic, 2000, Dynamic Verification of Temporal Constraints in
Production Workflows, the Proceedings of the 11th Australian Database Conference, pp.
74-81

(Pardalos and Xue, 1994) P. M. Pardalos, and J. Xue, 1994, The Maximum Clique Problem,
Journal of Global Optimization, Vol. 4, No. 3, pp. 301-328

(Sadiq et al., 2004) S. Sadiq, M. E. Orlowska, W. Sadiq, and C. Foulger, 2004, Data flow and
validation in workflow modeling, the Proceedings of the 15th Conference on Australasian
Database, Vol. 27, pp. 207-214

(Sun et al., 2006) Formulating the data flow perspective for business process management,
Information Systems Research, Vol. 17, Issue 4, pp. 374-391

(Tsukiyama et al., 1977) (Makino and Uno, 2004)S. Tsukiyama, M. Ide, H. Ariyoshi and I.
Shirakawa, 1977, A new algorithm for generating all the maximal independent sets, Society
for Industrial and Applied Mathematics (SIAM) Journal on Computing, Vol. 6, pp. 505–517

(van der Aalst and ter Hofstede, 2000) W. M. P. van der Aalst, and A. H. M. ter Hofstede,
2000, Verification of Workflow Task Structures: A Petri-net Approach, Information System,
Vol. 25, Issue 1, pp. 43-69

(van der Aalst et al., 1999) W. M. P. van der Aalst, K.M. van Hee, and R.A. van der Toorn,
1999, Adaptive Workflow: An Approach Based on Inheritance, the Proceedings of the
Workshop on Intelligent Workflow and Process Management: The New Frontier for AI in
Business, pp. 36-45

(Wang et al., 2006) F.-J. Wang, C.-L. Hsu, and H.-J. Hsu, 2006, Analyzing Inaccurate Artifact
Usages in a Workflow Schema, the Proceedings of the 30th Annual International Computer
Software and Application Conference, Vol. 2, pp. 109-114

(Wang et al., 2009) C.-H. Wang, and F.-J. Wang, 2009, Detecting Artifact Anomalies in
Business Process Specification with a Formal Model, Journal of Systems and Software, Vol.
82, Issue 10, pp. 1064-1212

(WfMC, 1999) Workflow Management Coalition (WfMC), 1999, WFMC-TC-1011 Ver 3
Terminology and Glossary English, Workflow Management Coalition

(Zhuge et al., 2001) H. Zhuge, T.-Y. Cheung, and H.-K. Pung, 2001, A Timed Workflow
Process Model, Journal of Systems and Software, Vol. 55, Issue 2, pp. 231-243

