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Abstract

The probabilistic model building performed by estimation of distribution algorithms
(EDAs) enables these methods to use advanced techniques of statistics and machine
learning for automatic discovery of problem structures. However, in some situations, it
may not be possible to completely and accurately identify the whole problem structure
by probabilistic modeling due to certain inherent properties of the given problem. In
this work, we illustrate one possible cause of such situations with problems consisting
of structures with unequal fitness contributions. Based on the illustrative example, we
introduce a notion that the estimated probabilistic models should be inspected to reveal
the effective search directions, and further propose a general approach which utilizes
a reserved set of solutions to examine the/built model for likely inaccurate fragments.
Furthermore, the proposed approach isimplemented on the extended compact genetic
algorithm (ECGA) and experiments are performed on several sets of additively sep-
arable problems with different [scaling setups. The results indicate that the proposed
method can significantly assist ECGA to handle problems comprising structures of
disparate fitness contributions and therefore may potentially help EDAs in general to
overcome those situations in which the entire problem structure cannot be recognized
properly due to the temporal delay of emergence of some promising partial solutions.

Keywords

Sensible linkage, effective distribution, linkage sensibility, probabilistic model, model
pruning, estimationrof distribution algorithm, extended compact genetic algorithm,
evolutionary computation.

1 Introduction

Estimation of distribution algorithms (EDAs; Miihlenbein and Paaf3, 1996; Larrafiaga
and Lozano, 2001; Pelikan, Goldberg, et al., 2002) are a class of evolutionary algorithms
that replace the traditional variation operators, such as mutation and crossover, by
building a probabilistic model on promising solutions and sampling the built model to
generate new candidate solutions. Using probabilistic models for exploration enables
these methods to automatically capture the likely structure of promising solutions and
exploit the identified problem regularities to facilitate further search. It is presumed that
EDAs can detect the structure of the problem by recognizing the regularities within the
promising solutions. However, for certain problems, EDAs are unable to identify the

*To whom correspondence should be addressed.
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entire structure of the problem at a given time because the set of selected solutions on
which the probabilistic model is built contains insufficient information regarding some
parts of the problem and renders EDAs incapable of processing these parts accurately.

This paper starts by observing the evolutionary process of an EDA when dealing
with an exponentially scaled problem, and recognizing that the population on which
the probabilistic model is built does not necessarily contain sufficient information for all
problem structures to be detected completely and accurately. Based on this observation,
this study proposes a general concept that estimated probabilistic models should be
inspected to reveal the effective search directions, and we provide a practical approach
that utilizes a reserved set of solutions to examine the built model for the fragments
that may be inconsistent with the actual problem structure. Furthermore, the proposed
approach is implemented on the extended compact geneticralgorithm (ECGA; Harik,
1999) and experimented on several sets of additively separable problems with different
scaling difficulties (Goldberg, 2002) to demonstrate the applicability.

The following section briefly reviews the research topics concerning this study. Sec-
tion 3 then demonstrates the interaction between the scaling difficulty and probabilistic
model building performed by EDAs. More specifically, we will investigate how the scal-
ing difficulty shadows the ability of EDAs to recognize problem structures and causes
inaccurate processing on the part of some solttions. Accordingly, a general approach
will be proposed in Section 4 to resolve this issue and enforce accurate processing dur-
ing the optimization process. In Section 5, an implementation of the proposed approach
on the extended compact genetic algorithm will be detailed. Section 6 presents the
empirical results, followed by discussion,and analysis in Section 7. Finally, Section 8
concludes the paper.

2 Background

Genetic algorithms (GAs; Holland,1992; Goldberg, 1989) are search techniques loosely
based on the paradigm of natural evolution, in which species of creatures tend to adapt
to their living environments through mutation and inheritance of useful traits. Ge-
netic algorithms mimic this;mechanism by introducing artificial selections and genetic
operators to discover and recombine partial solutions. By properly growing and mix-
ing promising partial solutions, which are often referred to as building blocks (BBs;
Goldberg, 2002), GAs|are'capable of efficiently solving a host of problems. The ability
to implicitly process‘a large number of partial solutions has been recognized as an im-
portant source of the computational power of GAs. According to the Schema theorem
(Holland, 1992);short,low-order, and highly fit subsolutions increase their share in the
final combined solution. Further, as stated in the building block hypothesis (Goldberg,
1989), GAs implicitly decompose a problem into subproblems by processing building
blocks. This decompositional bias is a good strategy for tackling many real-world prob-
lems, because real-world problems can oftentimes be reliably solved by combining the
pieces of promising solutions in the form of problem decomposition.

However, proper growth and mixing of building blocks are not always achieved.
GAs in the simplest form employ fixed representations and problem-independent re-
combination operators, which often breaks promising partial solutions while perform-
ing crossovers. This can cause crucial building blocks to vanish, thus leading to a
convergence to local optima. In order to overcome this building block disruption prob-
lem, various techniques have been proposed. In this study, we focus on one line of effort
often called the estimation of distribution algorithm (EDA; Miihlenbein and Paafs, 1996;

2 Evolutionary Computation ~ Volume xx, Number x
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Larranaga and Lozano, 2001; Pelikan, Goldberg, et al., 2002). These methods construct
probabilistic models of promising solutions and utilize the built models to generate
new solutions. Ideally, by detecting dependencies among variables through probabilis-
tic modeling, these approaches can capture the structure of the problem and thus avoid
the disruption of identified partial solutions. Early EDAs, such as population-based
incremental learning (PBIL; Baluja, 1994) and the compact genetic algorithm (cGA;
Harik et al., 1999), assume no interaction between decision variables, that is, decision
variables are assumed to be independent of each other. Subsequent studies progressed
from capturing pairwise interactions, such as mutual-information-maximizing input
clustering (MIMIC; De Bonet et al., 1997), Baluja’s dependency tree approach (Baluja
and Davies, 1997), and the bivariate marginal distribution algorithm (BMDA; Pelikan
and Miihlenbein, 1999), to modeling multivariate interactions, such as the extended
compact genetic algorithm (ECGA; Harik, 1999), the Bayesian optimization algorithm
(BOA; Pelikan et al., 1999), the estimation of Bayesian'network algorithm (EBNA;
Etxeberria and Larrafiaga, 1999), the factorized distribution algorithm (FDA; Miihlenbein
and Mahnig, 1999), and the learning version of FDA (LFDA; Mihlenbein and Hons,
2005). Along this line of research, questions aroseinaturally regarding the ability of
EDAs to solve problems and the probabilistic models employed to learn the problem
structures. Early studies recognized that solving problems composed of higher order
building blocks is not expected to be accomplished by using just any probability density
structure. Bosman and Thierens (1999) demonstrated that even when the set of vari-
ables forming a building block is linked and expressed by the best possible MIMIC-like
chain structure, directly sampling that chain to generate new solutions is not a good
strategy for reliable optimization. More recently, Echegoyen et al. (2007) compared the
behavior of EBNA with approximate and’exact Bayesian network learning. In another
vein, Hauschild et al. (2007) analyzed the structure and complexity of learned proba-
bilistic models and attempted to facilitate the model building process by incorporating
the knowledge acquired from previous models (Hauschild et al., 2008).

Another topic relevant to this study is the impact of disparate scale among different
building blocks on the behavior and performance of the evolutionary algorithms. It is
commonly observed that building blocks with higher marginal fitness contributions—
salient building blocks—conyerge before those with lower marginal fitness contri-
butions. This sequential convergence behavior is referred to as domino convergence
(Thierens et al., 1998)./In real-world applications, it is often the case that some parts of
the problem are more prominent and contribute more to the fitness than other parts.!
Such a situation can pose two types of difficulties. Firstly, because the processing on
the population is statistical in nature, building block scaling can cause inaccurate pro-
cessing of less fit building blocks (Goldberg et al., 1992; Goldberg and Rudnick, 1991).
The second difficulty arises because the lower fitness of a building block generally
causes it to be processed at a later time compared to those of higher fitness. This delay
on timeline can cause the building block to converge under random pressure, instead
of proper selective pressure. Previous studies on this topic include the explicit role of
scale in a systematic experimental setting (Goldberg et al., 1990), a theoretical model

IThe reader may note that this statement cannot be formally proved nor disproved because we do
not know nor even have a way to estimate the distribution of all real-world problems. However, this
intuition can be better articulated by the explanation provided in Goldberg (2002): differences in scale
are likely to be common across the space of likely problems, that is, the chance that we encounter
differences in scale may be much larger than encountering equivalence in scale.
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on the convergence behavior of exponentially scaled problems (Thierens et al., 1998),
an extension of that model to building blocks more than one variable long (Lobo et al.,
2000), and a convergence model of linkage learning genetic algorithms (LLGAs; Harik,
1997) on problems with different scaling setups (Chen and Goldberg, 2005).

Although the aforementioned scaling difficulty exists in a number of problems
and degrades the performance of many evolutionary algorithms (EAs), there are scant
investigations concerning the behavior of EDAs in the presence of scaling difficulties.
Therefore, this study attempts to explore how the scaling difficulty affects EDAs, and
proposes a practical countermeasure to assist EDAs on problems with different scalings.
Specifically, we propose the notion that the estimated probabilistic models should be
examined to enforce accurate processing of building blocks and prevent random drift
from taking place. In the remainder of this paper, our approach will be demonstrated
and evaluated on the test problems constructed by concatenating several trap functions.
A k-bit trap function is a function of unitation? which'canrbe expressed as

o ) k, ifu==k

S$1857 -+ -8 — s
trap; 7172 k k—1—u, “otherwise
where u is the number of ones in the binary string s;5; - - - s¢. The trap functions were used
pervasively in the studies concerning EDAs-and other evolutionary algorithms because
they provide well-defined structures among variables, and the ability to recognize

intervariable relationships is essential to.solve the problems consisting of traps (Deb
and Goldberg, 1993, 1994).

3 Linkage Sensibility

The ability of EDAs to handle the building block disruption problem comes primarily
from the explicit modeling of’selected promising solutions using probabilistic models.
The model construction algorithms, though they differ in their representative power,
capture the likely structures,of good solutions by processing the population-wise statis-
tics collected from the selected solutions. By reasoning the dependencies among differ-
ent parts of the problem and‘the possible formations of good solutions, reliable mixing
and growing of building blocks can be achieved. As noted by Harik (1999), learning
a good probability. distribution is equivalent to learning linkage, where linkage refers
to the dependencies among variables. Bosman and Thierens (1999) further recognized
that in order totachieye reliable optimization, linkage information should be utilized
in a way such that each corresponding building block can be identified and used as a
whole.

In most studies on EDAs, it is presumed that EDAs can detect linkage and recognize
building blocks according to the information contained in the set of selected solutions.
However, in this study, we argue that in some situations, accurate and complete linkage
information cannot be acquired by distribution estimation because the selected set of
solutions on which the model is built contains insufficient information on the lower
fitness parts of the problem. For example, consider a 16-bit maximization problem

2A function in which the function value depends only on the number of ones in the binary input
string.
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Table 1: Marginal product models built by ECGA when solving an exponentially scaled
problem. Each group of variables represents a marginal model in which a marginal
distribution resides. The converged variables are crossed out.

Generation Marginal product model

1 [s1 52 83 841 [s5 510 516] [56 571 [s8 89 $12] [511 514 515] [513]

2 fsrd fs2d Essd fsad [s5 6 57 s8] 59 513 516] [510 814 5151 [s11512]

3 fsrd b5 fs51 Bsad fs51 s Bs73 s [0 §10 511 8121 [543 516 [514 5151

4 {&r}{h}{fﬂ%{fﬂ{fﬁ}%}{ﬂs}ﬁe}w%{#ﬂ}[ﬁs 514 515 S16]

formed by concatenating four 4-bit trap functions as subproblems,

3

y
fGs152++516) = Y (57 furap, (a1 4154i 284 4354i 14))
i=0

where 5157 - - - 516 is a solution string. Note thatin contrast to other studies of EDAs, in
which the test problems are scaled uniformly, that'is, the subproblems are of equal fit-
ness, in this problem, each elementary trap function is scaled exponentially. This scaling
is an abstraction for problems of distinguishable;prominence or solving priority among
the constitutive subproblems. Suppose that we choose ECGA (Harik, 1999), which uses
a class of multivariate probabilistic models'called marginal product models (MPMs), to
tackle this problem.® By observing subsequént generations of the optimization process,
a series of models built by ECGA can be obtained like those listed in Table 1. In this
table, the variables enclosed by the same pair of brackets are considered dependent and
are modeled jointly. Each group of variables represents a marginal model in which a
marginal distribution resides, and the converged variables are crossed out.*

It can be observed that the models shown in Table 1 are only partially correct in
each generation. More specifically,in each generation, only the most fit building block
on which the population has'not converged is correctly modeled. This is due to the
fact that some part of the problem contributes much more than all others combined. If
one part of the problem is‘worth more than the others, then this part of the solution
solely determines the chance regarding whether or not the solution will be selected.
As a consequence, only the.most fit building block can provide sufficient information
to be modeled correctly, since the model searching is performed based on the selected
solutions. The remainingparts of the model are primarily the result of low fitness partial
solutions “hitchhiking” on the more fit building blocks.

From the/above example, we can see that not all building blocks can be detected
from a given set of selected solutions by probabilistic model building. Model building
algorithms cannot “see” the entire structure of the problem from the selected set of
solutions because the disparate scale among different building blocks prevents complete
linkage information from being included in the selected population. In this work, we
will refer to this concept as linkage sensibility and those problem structures that can be
identified properly using the given set of solutions are called sensible linkage. Based on
this notion, we reexamine EDAs on the building block disruption problem. It is clear

3See Section 5.1 for a more detailed description of ECGA and marginal product models.

“The convergence of a variable is defined as all solutions in the population possessing the same
value for that variable, that is, no further changes for that variable will occur.
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that the disruption problem still exists in the insensible portion of the problem because
that part of the problem cannot be modeled properly. Although the above example is
an extreme case of scaling, in that each subproblem is exponentially scaled, in real-
world problems, it is often the case that the constitutive subproblems are weighted
significantly differently, which implies that the linkage might be only partially sensible.
In addition to the building block disruption problem, the random drift of the less
salient parts of the problem mentioned in Section 2 further worsens the situation. These
situations and issues are usually handled by increasing population size when EDAs are
adopted. However, we may gain a new way to deal with these situations if it is possible
to distinguish a sensible linkage from an insensible linkage.

4 Effective Distributions

The idea of sensible linkage can be closely mapped into.another notion called effective
distributions. By effective distributions, we mean that by sampling these distributions,
the solution quality can be reliably advanced. Hence, the crucial criteria for effective dis-
tributions are the consistency with building blocks.and the provision of good directions
for further search. If it is possible to extract effective marginal distributions from the
built probabilistic model, we can perform partial sampling using only these marginal
distributions, and leave the remaining parts of the solutions unchanged. Thus, the diver-
sity is maintained and we are free from the building block disruption and random drift
problems. For instance, returning to the earlier/16-bit optimization problem, if it is pos-
sible to identify those partial models that'are built on the sensible linkage like [s; 57 53 s4]
in the first generation and [s5 s¢ s7 s3] in-the'second generation, we can sample only the
corresponding marginal distributions which are, in this case, effective. That is, in the first
generation, for each solution string;we resample only 51525354 according to the marginal
distribution and keep sss¢ - - - 516 unchanged. In the second generation, we resample only
s1 to sg according to the marginal'distributions and keep sos1¢ - - - 516 With the same values
(note that s15,5354 are converged). In'this way, we do not have to resort to increasing the
population size to deal with the problems caused by the disparate building block scaling.

The above thoughts leave us one complication: the identification of effective distri-
butions. However, the direct:identification of effective distributions may be a difficult
if not impossible task. It may be wise to adopt a complementary approach—to iden-
tify those marginal distributions that are not likely to be effective. If there is a way to
identify the ineffective distributions, we can bypass them and use only the rest of the
probabilistic model;and thus approximate the result of knowing effective distributions.
Our idea is that we can split the entire population into two subpopulations, use only
one of the subpopulations for building the probabilistic model, and utilize the other
subpopulation to collect some statistics for possible indications of ineffectiveness of cer-
tain marginal distributions in the probabilistic model built on the first subpopulation.
That is, with some appropriate heuristics or criteria, we can prune the likely ineffective
portions of the model.

In the next section, our implementation in ECGA of the proposed concept will
be detailed. More specifically, a judging criterion will be proposed to detect the likely
ineffective marginal distributions of a given marginal product model.

5 ECGA with Model Pruning

This section starts with a brief review of the (ECGA; Harik, 1999). Based on the idea
of detecting the inconsistency of statistics gathered from two subpopulations of the
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Table 2: Anexample of a marginal product model that defines a probability distribution
over four variables. The variables enclosed in the same brackets are modeled jointly,
and each variable subset is considered independent of the other variable subsets.

[s1] [s2 54] [s5]

P(S1:0):04 P(SZZO,S4:O)202 P(S3:0):05
P(sp=1 =06 P(s=0,5,=1)=0.1 P(s; =1 =05
P(S2=1,S4=0)=0.1
P(S2 = ],S4 = ]) =0.6

same source, a mechanism is devised to identify the possibly ineffective parts of the
built probabilistic model. Finally, an optimization algorithm incorporating the proposed
technique is described in detail.

5.1 Extended Compact Genetic Algorithm

ECGA uses a product of marginal distributions on a partition of the variables. This kind
of probability distribution belongs to a class'of probabilistic models known as marginal
product models (MPMs). In this kind of model;subsets of variables can be modeled
jointly, and each subset is considered independent of other subsets. In this work, the
conventional notation is adopted that variable subsets are enclosed in brackets. Table 2
presents an example of MPM defined overfour variables: s, 52, 53, and s4. In this
example, s, and s4 are modeled jointly and-each of the three variable subsets ([s1], [s2 541,
and [s3]) is considered independent of the other subsets. For instance, the probability
that this MPM generates a sample sysp535; = 0101 is calculated as follows,

P(S1S2S3S4 = 0101) E P(S1 = 0) X P(Sz = 1,S4 = 1) X P(S3 = 0)
=04x06x05.

In fact, as its name suggests, a marginal product model represents a distribution that is
a “product” of the marginal distributions defined over variable subsets.

In ECGA, both the structure and the parameters of the model are searched and
optimized in a greedy fashion to fit the statistics of the selected set of promising solu-
tions. The measure of asgood MPM is quantified based on the minimum description
length (MDL) principle (Rissanen, 1978), which states that any regularity in a given
set of data can be used to compress that data, and the success of a model in capturing
those regularities can be measured by the cost of expressing the model and the length
of the data compressed according to the model. The MDL principle thus penalizes both
inaccurate and complex models, thereby leading to a descriptive yet not overly com-
plicated distribution. Specifically, the search measure is the MPM complexity which is
quantified as the sum of model complexity, C,,, and compressed population complexity,
Cp. The greedy MPM search first considers all variables as independent and each of
them forms a separate variable subset. In each iteration, the greedy search merges two
variable subsets that yield the greatest reduction in C,, + C,. This process continues
until there is no further merge that can decrease the combined complexity.

The model complexity, C,,, quantifies the model representation in terms of the
number of bits required to store all the marginal distributions. Suppose that the given
problem is of length £ with binary encoding, and the variables are partitioned into m
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subsets each of size k;, i =1...m, such that¢ = )", k;. Then the marginal distribution
corresponding to the ith variable subset requires 2% — 1 frequency counts to be com-
pletely specified. Taking into account that each frequency count is of length log,(n + 1)
bits, where n is the population size, the model complexity, C,,, can be defined as

Cn =logy,(n + 1)) (2 —1).

i=1

The compressed population complexity, C,, quantifies the'suitability of the model
in terms of the number of bits required to store the entire selected population (the
set of promising solutions picked by the selection operator) under an ideal compres-
sion scheme. The compression scheme is based on the partition of the variables. Each
subset of the variables specifies an independent “compression block” on which the
corresponding partial solutions are optimally compressed. Theoretically, the optimal
compression method encodes a message of probability p; using —log, p; bits. Thus,
taking into account all possible messages, the expected length of a compressed mes-
sageis ) ; —p;log, p; bits, which is optimal. In information theory (Cover and Thomas,
1991), the quantity — log, p; is called the information of that message and ), —p; log, p;
is called the entropy of the corresponding distribution. Based on information theory, the
compressed population complexity, C,,, cansbe'derived as

mo 2k

Cp=nYy Y —pilog, p.

i=1 j=1

where p;; is the frequency of the jith possible partial solution to the ith variable subset
observed in the selected population.

Note that in the calculation of C,, it is assumed that the jth possible partial solution
to the ith variable subset is_encoded using —log, p;; bits. This assumption is funda-
mental to our technique of identifying the likely ineffective marginal distributions.
More precisely, the information’of the partial solutions, —log, p;;, is a good indicator of
inconsistency of statistics gathered from two separate subpopulations.

5.2 Model Pruning

Our technique/of identifying the possibly ineffective fragments of a marginal product
model is based onithenotion that ECGA uses compression performance to quantify the
suitability of a probabilistic model for a given set of solutions. The degree of compression
is a quite representative metric to the fitness of modeling, because all good compression
methods are based on capturing and utilizing the relationships among data (Griinwald,
2007). Thus, if the compression scheme of the MPM built on one set of solutions is
incapable of compressing another set of solutions produced under the same condition,®
then we can speculate that some of the constitutive marginal models observed in the
first set of solutions are likely inconsistent with the distribution of the corresponding
partial solutions observed in the second set of solutions. Such inconsistency can be seen

SFor example, if all individuals are produced by sampling the same probabilistic model and selected
using the same selection technique under the same pressure.
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as a disagreement on the direction of further search. However, under the premise that
these two sets of solutions are produced under the same condition, they are supposed
to reveal similar directions of further search. Thus, we can reasonably speculate that
proper selection pressures were not applied on these partial solutions (causing them to
drift toward two different directions), and the true linkage structures on these parts of
the problem is not sensible under this condition. Recalling our definition in Section 4, an
effective distribution should be capable of providing good direction for further search
and consistent with the linkage structure. Thus, if the abovementioned inconsistency
is found, we can expect that with a high probability,® the inconisistent marginal models
are ineffective. Based on the reasoning, we can perform a systematic checking on the
given MPM for the likely ineffective portions.

Suppose that the population of solutions, P, is split into'two subpopulations S and
T. The model searching is performed on ', the set of promising solutions selected from
S. Then we can use the statistics collected from T, the set of solutions selected from
T, to examine the built probabilistic model, M. Since ‘each marginal model functions
independently, they can be inspected separately. Recall the former description that a
variable subset, which specifies a marginal model,is viewed as a “compression block”
that encodes each possible partial solution according to the marginal distribution. The
jth possible partial solution to the ith variable'subset is encoded using —log, p;; bits,
where p;; is the frequency of the jth possible partial solution to the ith variable subset
observed in §’. Assuming that the given problem is of length £ with binary encoding,
and there are m variable subsets with each/ofsize k;, i = 1...m, in the built model M,
for the ith marginal model, i = 1...m, we can check whether or not

2ki

ZCIU(— log, pij) > ki,

j=1

where ¢;; is the frequency of the jth possible partial solution to the ith variable subset
collected from 7. If the inequality holds, then the compression scheme employed in
the ith marginal model is not a good one for compressing the corresponding partial
solutions in 7’ because it encodes a k;-bit partial solution to a bit string with an expected
length of more than k; bits. Based on the earlier reasoning, such a condition indicates
that the marginal model islikely ineffective because 7’ does not agree on this part of the
model. Otherwise, the scheme should be able to compress the partial solutions in 7".
Further explained from a machine learning perspective (Mitchell, 1997), a good
model should/generalize well to unseen instances. Otherwise, it captures coincidental
regularities among the training data or what it has observed. If model building is
performed on the portion where linkage is not sensible from the given set of solutions,
it will “overfit” these partial solutions (i.e., take on hitchhikers) that were not subject
to proper selection pressures. Consequently, the regularities captured by this part of
modeling tend to be inconsistent with the true problem structure. Furthermore, the
partial solutions that were not subject to proper selection pressure appear to be random,
and such a situation brings about the phenomenon of random drift mentioned in
Section 2. By its nature, drift is random, and two different subpopulations tend to drift
in two different directions. Thus, we can use the statistical inconsistency between S’ and

®Because the solutions are generated probabilistically, we cannot be absolutely sure.
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Algorithm 1 ECGA with Model Pruning

Initialize a population P with n solutions of length £.
while the stopping criteria are not met do
Evaluate the solutions in P.
Divide P into two subpopulations S and T at random.
S’ < apply t-wise tournament selection on S.
T’ < apply t-wise tournament selection on 7.
M < build the MPM on §" with greedy search.
M’ < prune M based on the inconsistency with 7'.
for each remaining marginal distribution D in M’ do
for each solution s = 515, - - -5, in P do
Change the values in s partially by sampling D.
end for
end for
end while

T’ to locate the possible drift portions of the solutions and identify the likely ineffective
parts within the whole model. By removing these likely ineffective parts, we can forge
a partial but more effective model.

An issue in practice concerning the calculation of the inequality is that sometimes
one or more possible partial solutions are absent in the set of selected solutions, leaving
—log, pi; undefined because p;; = 0. In the present work, we handle this practical
problem by assigning a very small yvalue, smaller than 1/n, to the p;;’s that are zero and
normalizing them such that p;;’s sum to 1 (i.e., Zj pij =1.

5.3 Integration

In this section, the optimization process incorporating ECGA and the proposed tech-
nique is described. This combination helps ECGA to achieve better performance when
a disparate scale exists among different parts of the problem.

The procedure is presented in Algorithm 1. This process starts with initializing a
population of solutions. After initialization, the solutions are evaluated, and then the
entire population.is randomly split into two subpopulations. Selection operations are
performed on the two subpopulations separately with the same operator and selec-
tion pressure/Model building is performed on one of the subpopulations. The other
subpopulation is used to prune the built model using the technique described pre-
viously. Finally, all solutions in the population are altered by sampling the remaining
marginal distributions, which are considered effective, in the pruned model. These steps
are repeated until the stopping criteria are satisfied.

A prominent difference between the above process and the regular EDAs is that
the sampling might not include all variables. As introduced in Section 4, the existing
solutions are altered by sampling only the marginal distributions surviving the model
pruning process. Thus, a solution string might not be entirely modified in an iteration.
This technique hence avoids random drift and inaccurate processing of low-fitness
building blocks by postponing the processing until sufficient linkage information is
available. Similar to the concept proposed by Bosman and Thierens (1999) that link-
age information estimated from the selected solutions has to be utilized to recognize
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Table 3: Marginal product models before and after pruning when solving a 16-bit
exponentially scaled problem with the proposed approach.

| Generation | Marginal product model (before and after pruning) |

1 Before | [sq 52 55 54] [s5 513 s16] [s6 57 s12] [s5 5111 [59 510] [574 515]
After [S] S2 83 S4]

2 Before | fsrd fs2d fssd fsad [s5 s6 57 58] [s9 514] [s10 8151 [s11 513 516] [512]
After | fsrlfsod bsst fsad [s5 56 57 s3]

3 Before | fsl 521 fs3) fsad fssd fsed fs7d fssd [so 10511 s12] [s13 5141 [s15 5161
After | fstd Isod Is5d sad st el Bsd Bssd [s9 510 811 512]

4 Before | fstd {523 fs5d Fsad fssd fsed F573 bssd Bsod Bspod fsrrd oot [ 514 515 516]
After | fsrd bs fsad bsad fsst ssd b5 bssd fsod srod Bsrd Bsrod [is13 514 515 516]

building blocks, we further address that the validity of the linkage information should
be confirmed beforehand. In this way, better performance in terms of function evalua-
tions can be achieved if a disparate scale exists among different parts of the problem.

In order to confirm that the proposed method'meets its design purpose, Table 3 lists
the models before and after pruning when the earlier exponentially scaled problem is
solved by Algorithm 1. It can be seen that the proposed approach appropriately removes
the ineffective parts during each stage of the optimization process. In order to further
illustrate the behavior and effect of the proposed approach, the algorithm is applied to
another problem with a different scaling called overloaded scaling”

1
f(s152+++516) = Y\ firap) (541-4154i 12541 13541 +4)
i=0
3

+ 5 Jirap, (S4i154i-254i354i-4) -
i—2

where 5157 - - - 516 is a solution string. The overloaded cases are those with two scales,
where some subproblems-are-at the high level and the rest are at the low one. The
models before and after pruning when such a problem is solved are shown in Table 4.
It can be observed thatthe proposed method works as expected in splitting the solving
process according to'the scaling structure. The two subproblems of higher fitness are
handled first, and the two subproblems of lower fitness are solved later.

6 Experiments

The experiments are designed to reveal the behavior of the proposed approach in han-
dling sets of problems with different scaling difficulties. Because ECGA is limited in
handling overlapped building blocks, we use only test problems that are additively
separable. In this study, three bounding models of scalings (Goldberg, 2002) are consid-
ered: exponential, power law, and uniform. While the uniform and exponential cases

7 As mentioned by Goldberg (2002), the word “overloaded” is a reference to the application of this
idea in the early messy GA work (Goldberg et al., 1990), where such distributions were used to try
to overload or overwhelm the ability of the messy GA to keep all building blocks present through all
phases of the process.
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Table 4: Marginal product models before and after pruning when solving a 16-bit
problem of the overloaded scaling with the proposed approach.

| Generation | Marginal product model (before and after pruning) |
1 Before | [sq1 52 53 54] [s5 56 57 53] [59 516] [$10 514 515] [511 813] [572]
After [S] 52 83 S4] [S5 S S7 Sg]
2 Before | [s1 52 53 54] [s5 56 57 581 [59 513 514] [510 5121 [511 515] [536]
After [S] S2 83 S4] [S5 S 87 Sg]
3 Before | fsrl fsod {5t fsad f551 fsed B3 Bl 5o 810 511 5121 [513 514 515 8161
After | fst}sod bssd bsad fss] Is6d Tsd st [so s10811 s12] [s13 514 515 516]
4 Before | fsrd fs2d bssd bsad st Esed s fssd [s0 510,811 $12] [s13 514 515 5161
After | fsrdfsod fssd tsad fsst fsel fs7d bssd [/ 510 511 8121 [s13 514 515 516]

bound the scaling performance of an algorithm at two extremes, the power law cases
enable us to see the behavior in between. Based on the different scalings, three sets of
test functions are constructed using firap, as the'elemental function:

m—1

Exponential: Z(k + 1" ferapp(Skxi+18kxi+2 * * * Skxi+k)
i=0
m—1

. : 3

Power law: Z(l + 1) frap( (Skxi+1Skxi+2 * * * Skxi-+k)
i=0
m—1

Uniform: Z Ferap, Crxi+15kxi42 * * * Skxi+k)

i=0

By adopting different scaling settups, we can compare the original ECGA with our
approach under different degrees of linkage sensibilities. By varying k and m, we can
observe the behavior of the“proposed method with respect to different problem and
subproblem sizes in a controlled manner. Furthermore, various selection pressures are
also taken into consideration to make a more thorough observation.

The purpose of the following experiments is to understand the impact of the pro-
posed method on the computational resource (population size and function evaluations)
required to solve.a problem. Thus, we do not use solution quality as a measure of
comparison but treat'it as a minimum requirement. More precisely, we use a bisection
method (Sastry;»2001)/to bound the minimum population size capable of achieving
reliable convergence to the optimum. Of course, solution quality can be an important
indicator for evaluating a newly invented approach. However, the primary goal of this
study is to design a more economic approach for solving problems, and the experiments
are designed to evaluate the ability of the proposed approach in this aspect.

6.1 Effect of Selection Pressure

This section describes the experiments designed for observing the effect of selection
pressure on both the original ECGA and the ECGA combined with the proposed ap-
proach. The purpose of these experiments is twofold.

¢ First, we want to determine the range of selection pressure with which the pro-
posed approach works as we designed. Appropriate selection pressure is quite
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Figure 1: Empirical results of the proposed method'and original ECGA on 40- and 80-
bit (k = 4, m = 10 and 20) exponential scaled problems. Five tournament sizes ranging
from 8 to 24 were used to observe the behavior.of the algorithms under different
selection pressures.

important to the proper functioning,of,our approach because the pruning mech-
anism is designed according to the, statistical inconsistencies between the two
subpopulations.

® Second, because the proposed approach will be compared with the original ECGA
in the subsequent experiments;in order to make a fair and meaningful compar-
ison, the selection pressure. must/'be set to an appropriate value for the original
ECGA to work under good conditions.

6.1.1 Experimental Settings

Because tournament selection is adopted, the selection pressure is altered by changing
the tournament size. We"consider tournament sizes ranging from 8 to 24, and the
problem instances used to make the observations are of length 40 bits and 80 bits with
4-bit trap functions assubproblems (k = 4, m = 10 and 20, respectively).

For simplicity, the.splitting of population is performed in the way that the two
resulting subpopulations are disjoint and of equal size. The stopping criterion is set
such that a run is terminated when all solutions in the population converge to the
same fitness value. For each tournament size, the minimum required population size is
determined by a bisection method (Sastry, 2001) such that on average, m — 1 building
blocks converge to the correct values in 50 runs for each of the two problem instances.

6.1.2 Results and Observations

The results for exponential, power law, and uniformly scaled problems are presented in
Figures 1, 2, and 3, respectively. It can be observed from Figures 1(b), 2(b), and 3(b) that
for all three scalings, the original ECGA works best (in terms of the number of function
evaluations) under tournament size 12 or 16. Based on that, we will use these two
tournament sizes in the following sets of experiments to ensure that the improvement
of our approach over the original ECGA is not a result of improper selection pressure. In
fact, we also performed experiments using a tournament size of 4, of which the results
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Figure 2: Empirical results of the proposed methodand original ECGA on 40- and 80-bit
(k =4, m =10 and 20) power law scaled problems. Five tournament sizes ranging from
8 to 24 were used to observe the behavior of the algorithms under different selection
pressures.
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Figure 3: Empirical results of the proposed method and original ECGA on 40- and 80-bit
(k = 4, m = 10'and 20) uniformly scaled problems. Five tournament sizes ranging from
8 to 24 were used to observe the behavior of the algorithms under different selection
pressures.

are listed in Table 5. This demonstrates that adopting a lower selection pressure does
not yield better performance for ECGA or for our approach.

The results of these experiments give some insights into the pruning mechanism. It
can be observed that the appropriateness of a particular selection pressure is related to
the linkage sensibility of the problem at hand. This property could cause inconvenience
in choosing selection pressure for the algorithm because when dealing with black box
optimization, we usually do not have any information about the problem at hand.
Fortunately, Figures 1(b), 2(b), and 3(b) also suggest that under tournament sizes ranging
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Table 5: Empirical results of the proposed method and original ECGA using a tour-
nament size of 4. Experiments were conducted on 40- and 80-bit problems formed by
concatenating 4-bit trap functions with three different scalings. The symbols ¢, n, and
fev denote problem size, population size, and function evaluations, respectively.

14 n Sev std. of f.,
Exponential ECGA 40 1,719 44,487.72 2,682.02
80 3,748 187,549.92 5,912.06
ECGA+MP 40 1,405 37,373.00 2,027.11
80 4,221 210,881.16 8,568.54
Power law ECGA 40 1,604 32,946.16 2,105.37
80 5,507 163,557.90 6,017.21
ECGA+MP 40 1,248 27,755.52 1,929.44
80 4,361 141,034.74 5,884.63
Uniform ECGA 40 1,346 17,228.80 1,489.44
80 3,479 58,308.04 3,411.61
ECGA+MP 40 2,181 30,446.76 2,411.81
80 5,598 100,540.08 5,535.96

from 8 to 16, our approach works better than'the original ECGA in the exponential and
power law scaled cases. Under this range of tournament sizes (8 to 16), the behavior of
the proposed approach in uniformly scaled cases is relatively stable compared to that
under higher selection pressure. This observation demonstrates that for a broad range
of selection pressure, the improvement obtained by using the pruning mechanism can
be expected in cases of limited linkage sensibility, while in cases for which linkage
information is completely sensible, the overhead is relatively stable.

6.2 Impact on Population Requirement with Increasing m

This section describes experiments designed to reveal the behavior of the proposed
approach when the number of subproblems within a problem is growing (i.e., increasing
m with fixed k). In order toillustrate the effectiveness and benefit of adopting the pruning
mechanism and to estimate the overhead when it is not needed, the proposed approach
will be compared with the original ECGA on three sets of problems with different
scaling setups.

6.2.1 Experimental Settings

The problem instances used in this set of experiments are composed of 4-bit trap func-
tions and ranging from 40 to 80 bits (k = 4, m = 10...20). Two selection pressures are
adopted by setting tournament size 7 to 12 and 16. The reason for using these two tour-
nament sizes is because our approach is compared with the original ECGA, which seems
to perform better with t = 12 or t = 16 according to the previous set of experiments.
Otherwise, a question might arise as to whether or not the inferior performance of the
original ECGA under some scaling difficulties comes from the inappropriate setting of
selection pressure.

As in the previous experiment, the splitting of population is also performed in the
way that the two resulting subpopulations are disjoint and of equal size. The stop-
ping criterion is set such that a run is terminated when all solutions in the population
converge to the same fitness value. For each problem instance, the minimum required

Evolutionary Computation =~ Volume xx, Number x 15




L QU
Evolutionary Computation =~ EVCO/EVCO_a_00010-Chen  July 19,2010  15:58

C.-Y. Chuang and Y.-p. Chen

x 10"

3000 5 - @ -ECGA, t =12 é
- ©-ECGA, t =12 6 . 21
2500 | = © = BECGA, t =16 =& - ECGA =16 G
- & —ECGA, t = i A
_-" oY || —=B&—ECGA+MP, ¢ =12 ‘,
—O— ECGA+MP, t =12 Ped 0 5 X,
] —O— ECGA+MP, t = 16 ’
2O . i - =) .
5 2000 | —&— ECGA+MP, ¢ =16 L PR £ \ B
E] Y
3 o-"" 48’_ _-0O E ‘é
s - - ] -
£ 1500 - - =
= LT g3
3 g
= 2

1000

500

{
A%}
AN

40 44 48 52 56 60 64 68 T2 76 80 40 44 48 52 56 60 64 68 72 76 80
Problem Sizes (Bits) Problem Sizes (Bits)

(a) Population Sizes (b) Function Evaluations

Figure 4: Empirical results of the proposed method compared to the original ECGA on
exponential scaled problems with tournament sizes t = 12 and ¢ = 16. Problem sizes
ranging from 40 to 80 bits (k = 4, m = 10...20) were used to observe the performance
of the algorithms.

population size is determined by a bisection'method such that on average, m — 1 build-
ing blocks converge to the correct values in 50 runs.

6.2.2 Results and Observations

The empirical results for exponentially scaled problems are shown in Figure 4. The
minimum population sizes required by the proposed method are much smaller than
the sizes needed by the original ECGA, and grow at a relatively slow rate. The same sit-
uation is also observed in the/function evaluations for which our approach performed
remarkably well. This improvement can be explained by the previous discussion on
random drift and linkage sensibility presented in earlier sections. If simultaneous de-
tection and processing of all building blocks cannot be achieved, additional costs have
to be paid for the inaccurate processing and random drift of subsolutions. By adopting
the pruning mechanism, we can save these costs by detecting possibly ineffective partial
models and postponing:the changes on them until accurate processing can be made.

Figure 5 shows the results for power law scaled problems. The results of the mini-
mum population sizes are similar to those obtained in the previous set of experiments.
The proposed method still uses fewer function evaluations, but the differences are re-
duced. This is because the linkage sensibility of the power law scaled problems is less
limited compared to that of the exponential scaled problems.

The empirical results for uniformly scaled problems are presented in Figure 6. As
expected, the proposed method requires larger population sizes than which was needed
by the original ECGA. Due to the fact that for uniformly scaled problems, the model
building process can correctly identify all building blocks, the verification on the built
model may just be useless and wasteful. The results also suggest that the function
evaluations used by the proposed method are about twice as the number of what was
needed by the original ECGA.

In order to support the significance of the observations, we have also performed
Welch’s t-test on the results. For each problem size, a ¢-test of the null hypothesis that the
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Figure 5: Empirical results of the proposed method compared to the original ECGA
on power law scaled problems with tournament sizes + = 12 and ¢ = 16. Problem sizes
ranging from 40 to 80 bits (k = 4, m = 10...20) were used to observe the performance
of the algorithms.
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Figure 6: Empirical results of the proposed method compared to the original ECGA
on uniformly scaled problems with tournament sizes ¢t = 12 and ¢ = 16. Problem sizes
ranging from 40 to 80 bits (k = 4, m = 10...20) were used to observe the performance
of the algorithms.

number of function evaluations spent by ECGA and the number of function evaluations
spent by the proposed approach are with equal means against the alternative that
the means are not equal was performed. The significance level was set to 5%, and
the respective statistics are listed in Table 6. The resulting statistics suggest that the
outcomes of the proposed approach are significantly different from those of the original
ECGA for all three scaling setups.

6.3 Impact on Population Requirement with Varying k

This section describes the experiments that accompany the previous ones to further
demonstrate the performance of the proposed approach. The experiments were designed
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Table 6: Welch's t-test on empirical results presented in Figures 4, 5, and 6. The null
hypothesis is that the number of function evaluations spent by ECGA and the number
of function evaluations spent by ECGA-MP with equal means against the alternative
that the means are not equal. The first three rows indicate whether the null hypothesis
is rejected, the p-value, and the ¢-statistics from the tests, respectively. The last row lists
whether the number of average function evaluations needed by ECGA-MP is smaller
(<) or larger (>) than the number needed by the original ECGA.

Problem size 40 48 56 64 72 80

(a) Exponential scaled cases with tournament size 12
Reject null True True True True True True
p-value 4.409 x 107 2,137 x 1070 2.031 x 107% 1.102 x 105%0.2.053 x 10770 5.563 x 10~
t-statistics 41.9194 64.0567 82.6409 66.3387 97.2660 82.4819
Comparison < < < < < <

(b) Exponential scaled cases with.tournament size 16
Reject null True True True True True True
p-value 1.458 x 10748 6.409 x 10733 2.149 x 1075:1.847 x 1078 4.341 x 107%* 8.518 x 10~
t-statistics 40.7834 60.9651 71.7845 81.9204 89.1136 87.8952
Comparison < < < < < <

(c) Power law scaled cases with tournament size 12
Reject null True True True True True True
p-value 1.094 x 1072 1.208 x 10~ 5.515 x/107*® 4.294 x 107! 6.05 x 107> 1.608 x 1072
t-statistics 14.5298 18.4542 29.4004 48.5933 44.0576 63.2243
Comparison < < < < < <

(d) Power law scaled cases with tournament size 16
Reject null True True True True True True
p-value 1.582 x 1072 6.032 x 1072%/1.047 x 10~% 1.717 x 107 3.383 x 107 7.91 x 10~%
t-statistics 12.7581 30.2641 28.5023 37.5145 38.8386 49.2693
Comparison < < < < < <

(e) Uniformly:scaled cases with tournament size 12
Reject null True True True True True True
p-value 3.356 x 1073 1.23 x 107% 4.264 x 107 3.399 x 1073* 4.006 x 10~* 4.903 x 107>
t-statistic -25.4683 -26.7928 -23.7365 —-22.9905 —29.0505 -33.4524
Comparison > > > > > >

(f) Uniformly scaled cases with tournament size 16
Reject null True True True True True True
p-value 1.126 x 1073 1.776 x 1073 8.802 x 10740 6.649 x 10732 3.684 x 10738 4.062 x 10~#
t-statistic =25.7066 -25.9356 -31.5460 -25.0263 -28.6037 -34.0405
Comparison > > > > > >

to observe the behavior of the proposed approach when the size of the constitutive sub-
problem changes (i.e., varying k while fixing m). As in the previous set of experiments,
the original ECGA will also be tested for comparison.

6.3.1 Experimental Settings

In contrast to the previous set of experiments, we use trap functions of different sizes to
form our test problems. While the size of constituting subproblem varies, the number of
the subproblems remains fixed. The problem instances are constructed by concatenating
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Figure 7: Empirical results of the proposed method compared to the original ECGA for
exponential scaled problems composed of subproblems of sizes 3,4, and 5 (k = 3, 4, and
5). In this experiment, tournament size t = 16 wasused and the number of subfunctions
forming the test problems was fixed at 10 (i.e., m = 10).

10 trap functions of size 3,4, or 5 (k = 3, 4, or.5,m = 10). Tournament size r = 16 is used
in this set of experiments.

As in the previous experiments, the splitting of the population is also performed so
that the two resulting subpopulationssare disjoint and of equal size. The stopping crite-
rion is set such that a run is terminated when all solutions in the population converge
to the same fitness value. For each problem instance, the minimum required population
size is determined by a bisectionnmethod such that on average, m — 1 building blocks
converge to the correct values in'50 runs.

6.3.2 Results and Observations

The results for exponential'and power law scaled problems are presented in Figures 7
and 8, respectively. It can be observed that for these three different subproblem sizes,
the proposed approach uses‘smaller population sizes and fewer function evaluations
to solve the test problems. Furthermore, the degree of improvement over the original
ECGA seems to increaseiwith the size of the constituting subproblems. As can be seen in
the problems composed of 5-bit trap functions, the pruning mechanism achieves great
savings in function evaluations compared to the original ECGA.

On the other hand, for the uniformly scaled problems, our approach still requires
larger population sizes than what was needed by the original ECGA. This result is
no surprise, as it can be conjectured that in solving uniformly scaled problems, the
verification on the built model may be useless and wasteful. A further observation is
that these results seem to be consistent with what we observed in the previous set of
experiments in which the function evaluations used by the proposed method are about
twice the number needed by the original ECGA.

6.4 Building versus Verifying

This section describes the sets of experiments on the proposed method to reveal the
change in performance when different splitting ratios of the two subpopulations are
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Figure 8: Empirical results of the proposed method compared to the original ECGA for
power law scaled problems composed of subproblems of sizes 3,4, and 5 (k = 3, 4, and
5). In this experiment, tournament size t = 16 was used and the number of subfunctions
forming the test problems was fixed at 10 (i.e., m = 10).
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Figure 9: Empirical results'of the proposed method compared to the original ECGA for
uniformly scaled problems composed of subproblems of sizes 3, 4, and 5 (k = 3, 4, and
5). In this experiment, tournament size t = 16 was used and the number of subfunctions
forming the testproblems was fixed at 10 (i.e., m = 10).

adopted. It presents the experimental results to illustrate the behavior under different
scalings. The purpose for performing these experiments is twofold:

¢ First, we would like to observe how the splitting ratio is related to the scaling or
linkage sensibility of a problem.

¢ Second, we wish to empirically study the change in performance obtained from
decreasing or increasing the proportion of population for checking the model.

It is important in practice to spend function evaluations wisely. Since using too large a
proportion of the population for pruning may result in a waste of resources, it should
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Figure 10: Empirical results of the proposed methodfor a 60-bit exponential scaled
problem with different splitting ratios between. the two subpopulations. The splitting
ratio (|T'|/|S + T|) ranging from 0.0 (ECGA withoutpruning) to 0.8 was used to observe
the change in performance of the proposed;approach.

be estimated to what degree the expense/on checking the built model yields savings,
and how the scaling of the problem is related-to this matter.

6.4.1 Experimental Settings

The problem instances used in this set of experiments were of 60 bits formed by con-
catenating 4-bit trap functions (k;=4,n = 15). The splitting ratio (|T'|/|S + T|) ranged
from 0.0 to 0.8. The ratio 0.0 represents the result of running the original ECGA (without
pruning), which serves as a baseline. Two selection pressures were adopted by setting
tournament size ¢ to 12 and 16.

As in the previous experiments, the stopping criterion is set such that a run is
terminated when all solutions‘converge to the same fitness value. For each splitting
ratio, the minimum required’ population size was determined by a bisection method
such that on average, m*— 1 building blocks converge to the correct values in 50 runs.

6.4.2 Results and Observations

The empirical'results for exponential scaled problems are presented in Figure 10. For
both tournament sizes, the required population size decreases as the splitting ratio
increases. However, the number of generations increases with the splitting ratio. The
combined effect is that the minimum required function evaluation is obtained when
the splitting ratio is 0.6, and the required function evaluation grows when the splitting
ratio either increases or decreases.

Figure 11 shows the results for power law scaled problems. In contrast to the
previous case, the required population size does not strictly decrease with the increment
of the splitting ratio. The population size first decreases as the splitting ratio grows and
then hits a turning point at 0.5 (+ = 16) or 0.6 (¢ = 12). Similar to the exponential scaled
case, the number of generations increases with the splitting ratio. The combined effect
is that the number of function evaluations first decreases and then increases. For both
tournament sizes, the minimum is obtained when the splitting ratio = 0.3.
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Figure 11: Empirical results of the proposed method«for a 60-bit power law scaled
problem with different splitting ratios between. the two subpopulations. The splitting
ratio (|T'|/|S + T|) ranging from 0.0 (ECGA withoutpruning) to 0.8 was used to observe
the change in performance of the proposed;approach.
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Figure 12: Empirical results of the proposed method for a 60-bit uniformly scaled
problem with different splitting ratios between the two subpopulations. The splitting
ratio (|7'|/|S + T|). ranging from 0.0 (ECGA without pruning) to 0.8 was used to observe
the change in performance of the proposed approach.

Figure 12 shows the results for uniformly scaled problems. As expected, Figures 12(a)
and 12(b) both share a common pattern in which the population size and the number of
function evaluations increase with the splitting ratio. This is because in the uniformly
scaled case, the linkage is always completely sensible, and there is no need to verify or
prune the built probabilistic model.

These experimental results demonstrate that under different scaling setups, the
behavior of the proposed approach corresponding to the splitting ratio varies differently.
The empirical results suggest that if the given problem is evidently with distinguishable
prominence among the constituting subproblems, using higher splitting ratios will yield
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better performance. Lower ratios are more suitable if the problem at hand is composed
of subproblems with roughly equal salience.

Another insight provided by this set of experiments is that reducing the size of the
proportion of population spent on the pruning mechanism can considerably improve
the performance. As shown in Figures 10(b) and 11(b), compared to the original ECGA
(splitting ratio = 0.0 in the figures), significant performance gain can be obtained by
using a mere 10% of the population to validate the built model. On the other hand,
Figure 12(b) also demonstrates that using this small percentage of population on the
pruning mechanism will not bring serious overhead for the'overall performance.

6.5 Splitting Ratio versus Subproblem Size

This section describes the experiments extending the previous set of experiments for
observing the interaction between the splitting ratio and the performance. The focus of
this set of experiments is to study the effect of different splitting ratios when the size of
the constitutive subproblem changes (i.e., varying k while fixing m). Our main purpose
is to see whether the result of adopting a particular splitting ratio changes significantly
when the complexity of the problem varies. Furthermore, we want to empirically ex-
amine whether or not the improvement of tising just 10% of the population to validate
the built model is still prominent for different sizes of the constitutive subproblems.

6.5.1 Experimental Settings

In this set of experiments, we use trap.functions of different sizes to construct our
test problems. While the size of constitutive subproblems varies, the number of the
subproblems forming the test problems remains the same. The problem instances are
built by concatenating 10 trap functions of sizes 3, 4, or 5 (k =3, 4, or 5, m = 10).
Tournament size r = 16 is adopted in.this set of experiments.

As in the previous set of experiments, the splitting ratio (|7'|/|S + T|) ranges from
0.0 to 0.8. The ratio 0.0 represents the result of running the original ECGA (without
pruning), which serves as a.baseline. The stopping criterion is set such that a run is
terminated when all solutions in the population converge to the same fitness value.
For each splitting ratio, the minimum required population size was determined by a
bisection method such that on average, m — 1 building blocks converge to the correct
values in 50 independent,runs.

6.5.2 Results and Observations

The results for exponential, power law, and uniformly scaled problems are presented
in Figures 13, 14, and 15, respectively. We can see that the result of adopting a particular
splitting ratios does not change significantly relative to other splitting ratios for all
three subproblem sizes. It can also be observed that several kinds of behavior similar
to what we have seen in the previous experiments are presented in these results. For
the uniformly scaled problems, the results presented in Figure 15(b) shows a similar
pattern to what is observed in the previous set of experiments in which the number of
function evaluations increased with the splitting ratio. In addition, similar to the results
from the previous set of experiments, we can see that using a small percentage (10%) of
population on the pruning mechanism does not bring serious overhead to the overall
performance for all three subproblem sizes.

On the other hand, for exponential and power law scaled problems, the greatest
improvements are obtained when using 10% of the population to validate the built
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Figure 13: Empirical results of the proposed method using different splitting ratios
(IT|/1S + T|) for exponential scaled problems composed of subproblems of sizes 3, 4, or
5 (k =3, 4, or 5). In this experiment, tournament size + = 16 was used and the number
of subfunctions forming the test problems was fixed at 10 (i.e., m = 10)
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Figure 14: Empirical results of the proposed method using different splitting ratios
(IT1/1S + T|) for power law scaled problems composed of subproblems of sizes 3, 4, or
5 (k = 3, 4, or’5)uln this experiment, tournament size + = 16 was used and the number
of subfunctions forming the test problems was fixed at 10 (i.e., m = 10)

model. Furthermore, similar to what we have observed in the experiments described
in Section 6.3, the degree of improvement over the original ECGA (splitting ratio = 0.0)
increases with the size of the constitutive subproblem.

7 Discussion

We utilized the existence of disparate scales in problems to create a controlled experi-
mental environment in order to study the situation in which complete, accurate linkage
information may or may not be available for the estimation of distribution algorithms.
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Figure 15: Empirical results of the proposed methodusing different splitting ratios
(IT1/1S + T|) for uniformly scaled problems composed of subproblems of sizes 3, 4, or
5 (k = 3,4, and 5). In this experiment, tournament size:r = 16 was used and the number
of subfunctions forming the test problems was fixed at 10 (i.e., m = 10)

According to the obtained results shown'in Figures 4(b) and 5(b), the proposed ap-
proach does improve the original ECGA for the test problems where disparate scales
exist among building blocks. In this section,;we discuss some interesting aspects of the
proposed approach and possible extensions of this work.

7.1 Overhead in Uniformly Scaled Problems

The empirical results presented.in Figure 6(b) show that for the uniformly scaled cases,
the proposed approach uses nearly twice as many function evaluations as the original
ECGA does. We speculate that this double expenditure is a general property of the
proposed approach when dealing with uniformly scaled problems.

This speculation can be explained through a reverse thinking on a hypothetical
situation described as follows. Suppose that given a uniformly scaled problem, the
original ECGA with appropriate selection pressure needs a population of size n to
handle that problem properly. Now, consider adopting the proposed approach to handle
the same problem. If we use a population of size 2n, then in our algorithm, the entire
population will'be divided into two subpopulations of size 1, assuming that the splitting
of population is disjoint and of equal size. If the original ECGA is capable of detecting
the accurate problem structure with a population of size n, then in our algorithm, a
subpopulation of size n will also do the job. In the ideal case, there will be no statistical
inconsistency between the built model and the set of promising solutions selected from
the second subpopulation. As a result, we waste half of the population for the use of
pruning which causes the extra cost compared to the original ECGA.

In order to support the inference, we performed an experiment based on the scenario
just described. Table 7 lists some of the empirical results obtained from the experiments
described in Section 6.2. This table shows that for 40-bit and 80-bit uniformly scaled
problems formed by concatenating 4-bit trap functions, the original ECGA needs pop-
ulations of sizes 646 and 2,042, respectively, to solve the given problem. Based on these
results, we used population sizes that are twice that to run our approach. The results are
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Table 7: Empirical results of the original ECGA using tournament size 12. Experiments
were conducted on 40-bit and 80-bit uniformly scaled problems formed by concatenat-
ing 4-bit trap functions. The symbols ¢, n, g, and f,, denote problem size, population
size, generation, and function evaluations, respectively.

V4 n g SDg Jeu SD fo
ECGA 40 646 8.36 0.92 5,400.56 594.65
80 2042 10.72 1.01 21,890.24 2,064.38

Table 8: Empirical results of the proposed approach using a tournament size of 12.
Experiments were conducted on 40-bit and 80-bit uniformly scaled problems formed
by concatenating 4-bit trap functions. The symbols ¢, 21, g, and/f,, denote problem size,
twice of the population size required by the original ECGA, generation, and function
evaluations, respectively.

ECGA+MP 40 1,292 9.24 0.89 11,938.08 1,154.42
80 4,084 10.58 0.70 43,208.72 2,868.90

listed in Table 8. It can be observed that the function evaluations spent by the proposed
approach for 40-bit and 80-bit problems are about twice the amount of the original
ECGA needed in each case.

Although the inference together with the empirical validation can serve as an
intuitive explanation, it cannot fully explain the results presented in Section 6.2. As il-
lustrated in Figure 6(a), the minimum population sizes needed by the proposed method
is not exactly twice that required by the original ECGA. In fact, the numbers are much
lower than twice what is needed by the original ECGA. On the other hand, our approach
uses more generations compared tojthe original ECGA because the subpopulation for
model building was not sufficiently large for all problem structures to be detected
properly in the beginning of the process. In this situation, the processing was slowed
down because the pruning mechanism removed certain parts of the model exhibiting
statistical inconsistencies. As a consequence, the originally expected simultaneous pro-
cessing of building blocks'was not fully achieved and delay of convergence occurred.
Nevertheless, spending more generations seems to yield an equivalent use of function
evaluations as the-hypothetical case described above. We think that the pruning mech-
anism introduces an additional interaction between population size and generations.
Further empirical or theoretical studies are needed to investigate such an interaction.

7.2 A Deeper Look at the Pruning Criterion

This section provides a more detailed elaboration on the adequacy of the proposed
pruning metric. To start this discussion, let

2ki
Ai = Z%‘j(— log, pij)
j=1
which is the quantity to be examined by the pruning criterion (i.e., whether A; > k;).

Based on 1;, we can reformulate the issue of adequacy more concisely as “is it possible
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that p; is not effective but A; < k; or p; is effective but A; > k;?” To elaborate on this, we
have to separate the discussion into two cases:

1. p;is not effective and A; < k;, and
2. p;iseffective and A; > k;.

For the first case, if p; is not effective and its ineffectiveness is caused by drift, it
is possible that A; < k; if the set of solutions on which gy is estimated also drifts in
the same direction. However, by its nature, drift is random;and two different sets of
solutions tend to drift in two different directions. Thus, we.can éxpect the chances of
this situation to be small and our empirical results also support this conjecture.

For the second case, if p; is effective, that is, it provides a'good direction for further
search, then the (sub)solutions on which p; is estimated must be subjected to proper
selection pressure. Based on the premise that these two sets of solutions are produced
under the same conditions, we can expect that the (sub)solutions on which ¢; is esti-
mated should also be subjected to the same pressure. In this case, if these two sets of
solutions are produced under the same conditions and the selection pressure is properly
applied (i.e., no drifting), it would be unreasonable ‘to see inconsistencies between p;
and ¢; (i.e., A; > k;.) However, the above discussion is based on the assumption that
the population size is sufficiently large. If the population size if not sufficiently large,
inconsistencies tend to be observed because there are too few samples to reveal the true
statistical property.

Using the above discussion, we can further analyze what would happen if we use
more than one set of solutions to prune the built model. This kind of techniques is
used frequently in machine learning research to assess the performance of a learning
algorithm, in which multiple reserved subsets of testing instances are examined. Ex-
tending from the above discussion, let P be the probability of the above case 1 (p; is not
effective and A; < k;) and use r sets'of solutions for validating the built model. Then the
probability that we cannot detect the ineffectiveness of a marginal model will be P,
for it is tested independently on r different sets, which is smaller than the probability
of using only one set of solutions (i.e., P). However, in this paper, we focused on the
baseline behavior of the proposed approach, since we know that employing a larger r
should yield better performance and should also incur higher costs.

7.3 Pruning Network-Based Probabilistic Models

In this work, we have introduced a technique to prune a given marginal product model
based on the statistics/collected from a reserved set of solutions. It is possible to extend
the fundamental idea and concept to design pruning mechanisms for other EDAs.
For example, consider the EDAs that use network-based probabilistic models with the
Bayesian information criterion (BIC; Schwarz, 1978) as the model scoring metrics, such
as EBNA (Etxeberria and Larrafaga, 1999) and a variant of BOA (Pelikan et al., 2001).
In the binary case, BIC assigns a given network structure B of £ variables a score

Jé
$(B) = Z (_” x H(X;|TT;) — 2|Hiloizn)

i=1

4 4
log, n
= H(X|TT) =) 2l =52
S x ey - 32

i=1 i=1
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where X;, i =1...¢, are variables, H(X;|I1;) is the conditional entropy of X; given its
parent IT; in the network, and » is the population size. The conditional entropy H (X;|T1;)
is given by

H(X;|T;) = — Z p(xi, ) log, plxi|m:),

Xy T

where p(x;, 7;) is the probability of instances with X; = x; sI1; = m;, and p(x;|r;) is the
conditional probability of instances with X; = x; given that TI; = ;.

The term Y'_, n x H(X,|I1;) provides the same functionality as the compressed
population complexity (C,) in ECGA because H(X;|I1;) denotes the average number of
bits required to store a value of X; with compression given the information of IT;. Thus,
we can check whether or not variable X; should be pruned away by using the following
inequality

- Z‘](Xu ;) log, px;|m;) > 1,

Xi T

where q(x;, 7;) is the frequency of X; = x;, and TTjy= 7; is observed in the set of solutions
selected from the reserved subpopulation. Using the idea described in Section 5.2, if this
inequality holds, X; should be removed because it encodes a one-bit partial solution to
a bit string with an expected length of, more.than one bit.

However, despite the similarities in‘ideas, some technical complications remain
to be overcome before we can finish the design of a pruning mechanism for network-
based probabilistic models. For instance, what if a variable which we intend to pruneis a
parent node of some other variables?In summary, pruning network-based probabilistic
models is potentially feasible, but requires further investigation.

8 Summary and Conclusions

This paper reviewed previous studies on EDAs and scaling difficulties. It then illus-
trated how the scaling difficulty shadows the EDA ability in recognizing building
blocks. Following that, a'notion called linkage sensibility was introduced to describe the
observation, and we used the term sensible linkage to refer to the problem structures
that can be extracted by inspecting only the set of selected solutions. Based on this
concept, we briefly defined the effectiveness of distributions estimated by probabilistic
model building.and proposed a general approach to achieve more effective modeling.
Finally, an implementation of the proposed approach on ECGA was introduced and
experiments were done using several test functions of different scaling difficulties. In
this section, we briefly summarize the major results derived from this work and outline
the possible future extensions of this research.

8.1 Contributions

In this work, we have shown that the underlying facilities for EDAs to solve problems
efficiently and reliably do not work as expected when the problem at hand is composed
of subparts of unequal fitness contributions. More specifically, under this situation, the
model built from the selected solutions cannot fully reflect the true problem structures.
Although there are previous studies and discussion on the parameter selection (Pelikan
et al., 2002; Lima and Lobo, 2004; Pelikan and Lin, 2004; Yu et al., 2007), selection
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mechanisms (Lima et al., 2007, 2008), and model building algorithms (Echegoyen et al.,
2007) related to the model accuracy, we consider the conditions discussed in this paper
to be more fundamental and closer to the problem nature than those other factors.
This is because in our discussion, the condition that suppresses modeling accuracy
is embedded in the problem inherently. For some situations, we can reasonably fine-
tune algorithmic parameters or select between alternative model building approaches,
however, in general we do not have a way to remove a property (e.g., scaling) that exists
inherently within the problem to improve modeling accuracy.

Alongside the modeling inaccuracy is the phenomenon/of random drift. In a fi-
nite population, the selection process can cause convergence to some subsolutions for
reasons other than the fitness contribution of these subsolutions. The converged sub-
solutions might be hitchhikers that appear with other high'quality building blocks in
selected solutions, or just a result of stochastic errors of sampling due to small pop-
ulation accumulated over generations. As demonstrated-in the earlier sections with
problems having disparate scalings among subparts, a‘problem property (e.g., scaling)
can cause drift in population as well as making some parts of the problem structure
undetectable to the model building process. This situation is usually resolved by in-
creasing the population size to maintain diversity in response to the possible drift. In
contrast, our approach handles this situation by.relating these two co-occurring events
and by using a pruning mechanism to avoid, building models on, and sampling from,
the possible drift portions. In this way, we effectively save the cost that we originally
have to pay for the maintenance of diversity by using larger populations.

Empirical results show that our approach improves the original ECGA in cases
where disparate scales exist among (constitutive subproblems and in the uniformly
scaled problems (i.e., all the constitutivessubproblems have the same fitness contribu-
tion), the overhead of using the proposed pruning mechanism is about the amount
of function evaluations spent by the original ECGA. The experimental results further
suggest that this constant overheadiin uniformly scaled cases is not affected by the size
of the subfunction (i.e., k) forming the problem, and the improvement in nonuniformly
scaled cases seems to increase'with the size of the problem. Moreover, we also demon-
strated through experiments that in the nonuniformly scaled cases, a small proportion
(10%) of population spent on the pruning mechanism can greatly reduce the amount of
required function evaluations compared to that spent by the ECGA without pruning.

The experiments ‘with-different scaling setups also led to another consideration
that whether uniformly-or near-uniformly scaled problems adopted by many previous
studies are suitable to.fully test the performance of an algorithm designed for solving
black box optimization problems. In our humble opinion, presuming a black box opti-
mization problem to be handled that is uniformly scaled is too strong an assumption,
because there will be no information to confirm this assumption prior to the application
of the algorithm. Thus, we believe that in order to generalize beyond the assumption
that all subproblems are uniformly scaled, the constant-time overhead for solving the
uniformly scaled cases is a reasonable tradeoff.

In addition, several efficiency enhancement techniques for EDAs (Sastry and Gold-
berg, 2004; Sastry et al., 2004, 2005, 2006; Lima et al., 2005, 2006) rely on the structure
information delivered from the probabilistic models. Their good functioning crucially
depends on the structural accuracy of the built models. Thus, it is conceivable that if
the built model does not properly capture the true structure of the underlying problem,
the model-based enhancement mechanism will not fully work as expected. Further-
more, as we demonstrated in this paper, the condition that hinders the model building
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algorithm from constructing models that truly reflect the problem structure may be an
inherent property of the underlying problem (e.g., different scales among constitutive
subproblems). Thus, we think that adapting pruning mechanisms will provide a more
appropriate circumstance for the model-based enhancement techniques to work.

8.2 Future Work

In this paper, we demonstrated a pruning mechanism design and its integration into
ECGA. It may also serve as a basis for developing other techniques for more efficient
and robust optimization. Some possible extensions of this work are outlined as follows.
First of all, the immediate direction is to design pruning mechanisms for other
EDAs. As illustrated in Section 7.3, we can extend the pruning metric described in
this paper to handle network-based models with a Bayesian information criterion.
However, a pruning mechanism for network-based models requires more than that. We
also need to consider the possible disruption of variable dependencies after pruning a
particular variable. The simplest solution is to consider only those variables that are not
depended upon by other variables as possible ‘candidates for pruning. However, the
validity of such an approach requires further investigation. A more promising yet more
sophisticated approach is to first identify the tightly related components (e.g. cliques
or strongly connected subgraphs) in the model, and then process each component as a
unit which is similar to how we process the marginal product models in this work.
Another direction for future research is to assist efficiency enhancement techniques
that use the information contained in the"built model. As described previously in
Section 8.1, some model-based efficiency enhancement techniques for EDAs crucially
rely on the structural accuracy of the probabilistic models. However, most of those
studies implicitly assume the information contained in the given population is suffi-
cient for learning accurate model strictures. As demonstrated in the previous sections
by nonuniformly scaled problems, this assumption does not always hold. From this
perspective, incorporating pruning mechanisms to preprocess the built model for these
enhancement techniques is a promising direction for designing more robust approaches.
From an abstract point/of view, this work also demonstrates an instance of a new
class of techniques operating.on built models to control, adapt, or regulate the opti-
mization process. Another example based on this viewpoint is the termination criterion
proposed by Ocenasek.(2006) which uses an entropy-based measurement to evaluate
the built model for detecting an appropriate stopping point. According to the informa-
tion collected in‘the model, we can gain better control over the process compared to
the conventional evolutionary algorithms. Such an idea may be carried over to other
designs of EDAs se that more robust and efficient optimization can be realized.
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ARTICLE INFO ABSTRACT

Keywords: o In this paper, we analyze the behavior of particle swarm optimization (PSO) on the facet
gar?c}e ,S"‘éarmt?pt‘mlza“o“ of particle interaction. We firstly propose a statistical interpretation of particle swarm
articie interaction optimization in order to capture the stochastic behavior of the entire swarm. Based on

Social-only model h istical i . . . he eff f icle i ion by fi .
Statistical interpretation the statistical interpretation, we investigate the etfect of particle interaction by focusing

Theoretical analysis on the social-only model and derive the upper and lower bounds of the expected particle
Progress rate norm. Accordingly, the lower and upper bounds of the expected progress rate on the sphere
Convergence function are also obtained. Furthermore, the sufficient and necessary condition for the
Sphere function swarm to converge is derived to demonstrate the PSO convergence caused by the effect

of particle interaction.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Particle swarm optimization (PSO), introduced by Kennedy and Eberhart [1] in 1995, was proposed based on an
inspiration from the social behavior of insects or animals that the exchanging and sharing of information among a group of
individuals benefit the group survival by improving the group capability of foraging. In the framework of PSO, the insects
or animals are considered as particles flying through the multi-dimensional search space and searching for the optimal
position. The movement of particles is affected by three factors: the inertia, personal experience (the cognitive part), and
particle interaction (the social part).

Since its introduction, PSO has been empirically shown to be a very useful and effective optimization framework [2]
for the easiness to implement and flexibility to use. Although PSO is widely applied in many research fields nowadays,
the theoretical analysis on PSO is still quite limited. To the best of our knowledge, the first analysis was proposed by
Kennedy [3]. Particle trajectories for design choices were shown. Ozcan and Mohan [4,5] assumed fixed attractors and
constant coefficients to demonstrate the particle trajectory as a sinusoidal wave. With similar assumptions, Maurice and
Kennedy [6] simplified PSO to a deterministic dynamical system and analyzed its stability. Such simplified, deterministic
versions of PSO or similar systems, employing a single particle, fixed attractors, or constant coefficients, were analyzed by
many researchers for stability, convergence, and parameter selection [7-11]. Kadirkamanathan et al. [12] and Jian et al. [13]
started to consider the randomness in acceleration coefficients, but attractors were still fixed. Away from the common PSO
configuration, Emara and Fattah [14] as well as Gazi and Passino [15] analyzed PSO in a continuous time setting.

Most of the existing studies do not provide analysis on the facet of particle interaction, which is definitely an essential
mechanism of PSO. In this paper, under more practical assumptions, including multiple particles, unfixed attractors, and
stochastic acceleration coefficients, we make the first attempt to analyze the effect of particle interaction. In particular, we
consider the PSO system from a macrostate viewpoint, analyze the swarm behavior, and obtain theoretical results on the
progress rate as well as the convergence criterion.

The paper is organized as follows. In Section 2, we will describe the particle swarm optimization algorithm and propose
the statistical interpretation. In Section 3, we will analyze the mean positions of particles by considering the effect of particle

* Corresponding author.
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interaction and derive the expected progress rate of the swarm on the sphere function. Next, we will look into the variance
of the particle positions and show that the swarm will converge under certain condition in Section 4. Finally, Section 5
summarizes and concludes this paper.

2. PSO and particle interaction

In this section, we will firstly describe the standard PSO algorithm and then discuss the operations of PSO step by step,
followed by the proposal of our statistical interpretation.

2.1. The standard PSO algorithm

First of all, for easily making an abstraction of PSO based on statistics and probabilistic distributions, we restate the
standard PSO system as the following algorithm:

Algorithm 1 (Standard PSO).
procedure STANDARD PSO(Objective function £ : R" — R)
Initialize a swarm of m particles
while the stopping criterion is not satisfied do
Evaluate each particle

for particlei,i=1,2,...,mdo > Update the best positions
if }'(Xl) < \{/:'(Pb.) then
Pbi < Xi
if #(Pb;) < F (Nb) then
Nb « Pbi
end if
end if
end for
for particlei,i=1,2,...,mdo > Generate the next generation

Vit +1) < wVi(t) + C, @ (Pb; — X;) + C, ® (Nb —Xj)
Xi(t+1) < X;(t) + Vit + 1)
end for
end while
end procedure

Throughout this paper, boldface is used to distinguish vectors from scalars, and ||-|| denotes the L? norm of a vector. The
notation ® indicates component-by-component multiplication. According to Algorithm 1, we can see that a standard PSO
system comprises the following two main operations regarding the information sharing and utilizing;:

(1) Updating attractors: Update the personal best position, Pb;, found by each particle, and the neighborhood best position,
Nb, found by any member within the neighborhood. Since Pb; and Nb exert gravity on other particles, they are referred
to as attractors in this study.

(2) Updating particles: Update the velocities at time t by using a linear combination of the inertia, V;(t), and the gravitation
from the cognitive part, Pb;, and the social part, Nb, respectively. w is the weight for the inertia and is usually a constant.
Cp and C, are random vectors with each component sampled from uniform distributions U (0, ¢;) and U(0, ¢,) with
¢, > 0andc, > 0 as acceleration coefficients. The position is then assigned according to the current position with
application of the updated velocity.

As we can observe, the inherent characteristics of PSO - the interactions among particles — are implemented with the
shared knowledge on the best position found by neighbors. When a particle within the neighborhood locates a position of
an objective value which is better than # (Nb), the other particles will make corresponding adjustments and tend to go
toward that position. Therefore, the neighborhood attractor can be viewed as a channel through which each particle can
emulate the others, and the update of the neighborhood attractor can be considered as a signal urging the swarm to adjust
their movements in order to respond to the new discovery in the search space.

2.2. A macroscopic view of PSO

In spite of its importance, the effect of particle interaction in PSO is hardly investigated in the literature. Although there
are a number of remarkable theoretical studies that bring insights into the properties and behavior of PSO conducted in
the past, most of those studies are based on the assumption that the attractor is fixed, e.g., the trajectory analysis [4,5]
mentioned in Section 1. Such a setting seems an inevitable path to simplify the PSO system to the extent that rigorous
analysis can be done because the highly decentralized property of a particle swarm leads the system away from a unified
depiction of the entire swarm. Each particle keeps its own position and memory, in the form of the inertia and the cognitive
part, Pb;. In addition to the personal experience, the swarm also shares collective knowledge, Nb, and any slight change in
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these quantities substantially defines a new state of the whole system. The analysis on the overall behavior of a swarm is
thus beyond tractable due to the complication of state transition, and the simplification of invariant attractors becomes an
unpleasant but necessary means that makes a particle able to be observed independently without the interference from the
other factors of the entire swarm.

As a consequence, in order to take particle interaction into consideration in a theoretical analysis, an alternative
interpretation of PSO that regards the swarm as a unity becomes necessary. With this point of view, the state of a PSO system
should be considered as a measurement that reflects the overall behavior and characteristics of a swarm rather than as a
detailed configuration directly related to each individual particle. For this purpose, the development of statistical mechanics
may be a good example to learn from, especially the employment of statistical methods to bridge the macroscopic and
microscopic descriptions. Accordingly, the state of the entire swarm can be considered as the “macrostate” — an abstraction
of the detailed description of particles, i.e., the “microstate.” Hence in the macrostate space, the precise configuration of
particles are converted into a statistical abstraction and characterization of the entire swarm.

More specifically, the exact locations of particles are no longer traced but instead modeled and expressed by using a
distribution 0(t) over R". The velocities on each dimension are viewed as a random vector V(t) € R". To concentrate on
the social behavior, i.e., particle interaction, we use the social-only model of PSO categorized by Kennedy [16], in which PSO
works without the cognitive component, to make the system more concise. The swarm size m is considered as the number
of realizations or samples of the distribution. As to the neighborhood attractor, since the geographic knowledge about the
search space is embodied in the positional distribution, it can be viewed as the best observed value of the current time
step. When the neighborhood attractor is determined, the social gravitation is also accordingly determined. Formally, each
particle P; is a random vector sampled from 6(t), and its velocity vector V; is distributed as V(t). Since the neighborhood
attractor is the best observed value, it can be defined as

P* = argmin{?(P1)7 ?(P2)5 s ?(Pm)} ’

and each particle P; updates its position to P; + wV; + C ® (P* — P;). The distributions of the next time step (¢t 4+ 1) and
V(t + 1) are thus the statistical characterization, denoted as functions 7» and 7+, of the observed values:

9(t+ 1) <~ “T:/O(Pl’P27aPm) ;
v(t+ 1) < TV(P17P27 "'7Pm;v17‘,27 ---’vm) .

By considering PSO in this way, the search/optimization process is conducted through the repeated observations on
the search space by realizing particles and modifying the distribution to accommodate the newly discovered results.
Furthermore, going deeper into the notion of distribution, since the inertia weight w is usually a constant, V(t) can be
considered redundant and may be removed because given two random vectors X ~ 6(t) and V ~ V(t), where the notation
“ ~ " indicates “is distributed according to,” we can simply let 6(t) be the distribution of X' := X + wV that includes the
effects of both the position and the velocity. Therefore, in the following, we will alter the notation 6 to denote this compound
distribution and parameterize it based on varied contexts.

The remaining questions would be what distribution is suitable for the description of a swarm without sacrificing too
much essence of PSO and how to update the distribution as the search process proceeds. We can consider the random vector
X ~ 6(t), denote E [X] = n, and decompose the region

R:={yeR"|Prob{X=y} > 0}

into s disjoint regions Ry, R, ..., Ry such that Prob{X € R;} = 1/sforalli € {1, 2, ..., s}. Each region is associated with
a random variable of velocity V; ~ V(t). If one point X; is respectively selected from each region R;, when s is sufficiently
large, the average behavior of a swarm can therefore be characterized by

N

1 ‘1 1
Z;(Xi-l-vi):Z;Xi-i-;;Vi

i=1 i=1
*1
~ + =V 5
n ; s |

and each component of the term Zle(l /$)V; can be approximated with a normal distribution according to the central
limit theorem. Thus, as an attempt to characterize the overall behavior of a swarm, the normal distribution should be a
reasonable starting point. It is assumed that, at time t, each particle is sampled from c(t) + Z, where ¢(t) € R" is the center
of distribution and Z € R" is a random vector of which each coordinate is distributed according to N(0, o), where N(0, ¢2)
denotes the normal distribution with zero mean and variance o2. In this paper, ¢(-) and @ (-) are used as the probability
density function (pdf) and the cumulative distribution function (cdf) of the standard normal distribution, respectively. We
can then reparameterize 6(t), the distribution of c(t) + Z, as 8 (c(t), o2).

The update of distributions can now be simplified into the modification of the mean and the variance. The mean is the
arithmetic average of updated positions of particles, and the variance is estimated by a maximum likelihood estimation
(MLE) which will be addressed later. Under such an interpretation, the PSO system can be described with the following
algorithm:
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Table 1
Average p-values of normality tests.

Swarm size ~ Normality tests
Shapiro-Wilk [17]  Anderson-Darling [18]  D’Agostino-Pearson [19]

10 0.3879 0.3621 0.3985
20 0.3257 0.2842 0.3393
30 0.2903 0.2518 0.2876

Algorithm 2 (Statistical interpretation of PSO).
procedure PSO(Objective function ¥ : R" — R)
Initialize 6
while the stopping criterion is not satisfied do

fori=1,2,...,mdo
P, ~ 0
end for
P* = argmin{F (Py), F (P2), ..., F (Pm)}
fori=1,2,...,mdo
P; <~ P+ G ® (P*—P)
end for

e < Q- P)/m
o2, < MLE(P}, P}, ..., P)
0 <« 9(ut+1v Ut2+1)
t<—t+1
end while
end procedure

In order to validate the utilization of normal distributions for describing swarms, we conducted three well-known
normality tests: the Shapiro-Wilk test [17], the Anderson-Darling test [18], and the D’Agostino-Pearson test [19] on the
social-only PSO on the sphere function. Table 1 displays the test results, which were obtained for 100 independent runs and
10 iterations in each run. The weight for the inertia is 0.73 and the acceleration coefficient is 1.49. Since all p-values of the
three normality tests significantly surpass the conventional significance level 0.05, none of these tests are able to reject the
null hypothesis. As a result, in this study, adopting the normal distribution as the description of swarms is an acceptable
assumption.

In summary, the macrostate model transforms the detailed configuration of PSO into a corresponding stochastic
representation embodied by normal distributions. As a consequence, the update of particles is simplified as the modification
of the parameters of normal distributions. In each iteration, Algorithm 2 generates a swarm of particles by means of
sampling from the current distribution, and thereafter, the distribution is updated according to particle interaction. In
others words, a state of Algorithm 2 is a distribution, and the sampled swarm serves as a medium for state transition.
In this manner, the analysis of the behavior of the entire swarm is thus reduced to the analysis of parameterized
distributions. The inclusion of particle interaction into analysis supplies numerous facets of PSO typically absent in related
theoretical studies, e.g., the progress rate and the influence of objective functions, because the restriction of fixed attractors
makes objective functions irrelevant. Since the No-Free-Lunch theorem states that all optimization algorithms perform
identically on average [20], the effectiveness of PSO can hardly be theoretically identified unless the scope of functions is
specified.

In the remainder of this paper, Algorithm 2 will be the study subject and be formally investigated on the sphere
function, which is commonly adopted in the theoretical analysis of evolutionary algorithms (e.g.,[21]) and can be formulated
as

n
FX) =) x.
i=1
where X = (X1, X2, ..., X,) € R".

3. Progress rate analysis

The major benefit to develop and adopt the abstraction based on probabilistic distributions of PSO is that the
mathematical model can be analyzed without the assumption of fixed attractors, because particles are in essence random
vectors in the search space and consequently their behavior can be described and predicted in a statistical sense. In this
section, we will demonstrate how the statistical interpretation of PSO proposed in the present work facilitates the analysis
of inter-particle effects and how these effects are accounted for the progress rate of a swarm. We will begin with the n-ball
hitting probability.
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3.1. n-ball hitting probability

Given a distribution 0 over R", the term n-ball hitting probability refers to the probability that a random vector sampled
from 6 that “falls” into a specific n-dimensional ball. This probability is fundamental to the sphere model, because in the
sphere model the objective function is simply the squared L> norm, and a subset of R" constructed by collecting all the
vectors with their norms bounded by a specific non-negative quantity forms an n-ball located at the origin with a radius
defined by that non-negative quantity. Therefore, n-ball hitting probability is equal to the probability that the norm of a
random vector is less than or equal to the radius. In other words, it is essentially the cumulative distribution function (cdf)
of the norm of a random vector.

Given the center of distribution at time t, c(t) = (cq, ¢3, ..., ) € R", we would like to calculate the probability, denoted
as Bi(0), that ¢(t) + Z ~ 6 is in an n-ball located at the origin with radius k, where Z = (Z;, Z, ..., Z,) € R" is arandom
vector and each coordinate of Z is normally distributed. Since Z;, Z,, . .., Z, are independent and identically distributed
(i.i.d.) random variables, Z is an isotropic random vector, i.e., all directions of Z are equally likely to occur [22]. We elaborate
this property as follows. Given Zy, Z,, ..., Z, ~ N(0, 02), forall X = (x1, X2, ..., X;) € R,

L —(xi — ¢))?
Prob {c(t) + Z = x} 111 N exp ( 2 )

n
Lo > i — )
i=1
= ex B —
<«/2no> P 202

(1Y (—dx, c()?
_< 2710) exp( 202 )

where d(-, -) denotes the Euclidean distance. It is obvious that the density at point X is determined by d(x, c(t)), regardless
of the direction in which x is relatively to c(t). Therefore, without loss of generality, we may assume that c(t) is on the
first axis by conducting a coordinate transformation. Let r := d(c(t), 0) > 0. As a result, c(t) can be expressed, after the
coordinate transformation, as (r, 0, 0, .. ., 0), and the distribution is denoted as 6 (r, o%). Now, the n-ball hitting probability
can be formally defined as follows.

Definition 1. Given an n-ball By(0) € R" and a random vector c(t) + Z ~ 6(r, 0?) € R", where ¢(t) = (1, 0,0, ..., 0) and
all coordinates of Z are distributed according to N (0, o'2), the n-ball hitting probability

Hg(k, 0(r, 0%)) := Prob {c(t) + Z € By(0)} .

The analysis approach adopted in the present work is similar to that used by Beyer in 2001 [21]. The vector Z is decomposed
into two orthogonal vectors: Z;e; = (Z1,0,0,...,0)and Z' = (0, Z,, Z3, ..., Z,). We can take a closer look at the n-ball
hitting probability Hz(k, 6(r, 02)):

Hg(k, 0(r, o)) = Prob{c(t) + Z € Bi(0)}
= Prob {||(r + Z1)es + Z'|| <k}
= Prob {(r + 21)* + |Z|* < k*}
=Prob{—k—r <z <k—r, 0<|Z|* <k - (+2)*}.

The equation shows that the n-ball hitting probability is the joint distribution of Z; and W := ||Z||?. Since Z; ~ N(0, 0?),
the probability density function can be expressed as

1 —x?
7Z1,X) :=Prob{Z; =x} = e — ],
p(Z1, %) {Z1 =x} N XP(202>

and W is a chi-square random variable with n’ := n — 1 degrees of freedom:

/

y 771 —y
1 (‘ﬁ> €Xp (202)
p(W,y) :=Prob{W =y} = = .

27 (1)

SIS
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As aresult, we can get

Hg(k,0(r,0%)) =Prob{—k—r <z <k—r, 0<|Z|* <K — (r +Z1)*}

k2 —(x+1)2
f / p(Zy, x)p(W, y) dy dx
—=—k—r

y 5o

k—r Rt q (;) exp (—Jg)
:/ p(ZhX)/ - ’ dydx
y

X=—k—r =0 o? 2%]" (%,)
2 X 1’2 1’1/
i) = AT T exp ()
(letu:=y/o°) = p(Z1,x) du dx
=—k—r 22 r (%)

k—r ’
n ok —(x+r1)?
= Z1,X)P — ) dx,
»/);:k rp( ! X) <2 202 ) g

where £ (-) is the regularized Gamma function.

Remark 2. If an asymptotic approximation is desired for the n-ball hitting probability, Hg(k, 6 (r, o2)), we can utilize the
normal approximation to the regularized Gamma function [23, chapter 7] as

/ 2 2 2 2
» n_’k—(x—l—r) ~ o 1 k= (x+r1) - .
2 202 2 o2

For the asymptotic approximation, when n is sufficiently large, the term (1/+4/2n')[k?* — (x + r)?]/0? vanishes. Thanks to
the continuity of @ (-), we can obtain

/ IZ_ 2 /
NS AV N Ay
2 202 2

s =o(5) [ s
(5[ () ()]
= (+/3)[+(5) -+ ()]

In addition to the asymptotic properties of Hz(k, 6 (r, o)), it would be helpful to derive a lower bound for Hg(k, 0 (r, '?))
to facilitate our analysis in the present work.

Lemma 3 (Lower Bound for Hg(k, 6(r, 2))).

Hg(k, 0(r, %))

Q

k

2 't r_JLﬁ —k\1"
HB(k,@(r,o*))z|:<D< - )—q>< - [1—2@(\/50)} .

Proof. Let Y := c(t) + Z, where c(t) = (r,0,0,...,0),and Z = (Z1, Z, ..., Z,).Let D := [—k//n, k//n]" C R". For all
X € D, because ||X|| < /n|X|loo < v/N(k/+/n) =k, we can know that x € B(0). Hence, D C By (0), and

Prob {Y € By(0)} > Prob{Y € &} =P b{ k <Z; < k }ﬁl’ b{ k <Z < k}
ro k = I'TO = I'r0 —— I <4l =X —F=—-T TO ——= =4 S —F=
v Vn i2 Vn
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For the notational purpose, we let

ol (]

and the antiderivative is defined as ¥ (k) := ftkzo ¥/ (t) dt.
Remark 4. Similarly, we can also define the n-sphere hitting density Hs(k, 6 (r, ¢'?)) for random vector c(t) + Z as

Hs(k, 0(r, 0%)) := Prob{|lc(t) + Z| = k}
= Prob{—k—r <z <k—r,W =K —x*}

k—r

= / p(Z1, X)p(W, k? — x?) dx.
X=—k—r

Therefore, the n-ball hitting probability, Hz(k, 8 (r, 6?)), as the cumulative function of Hs(k, 6(r, o)), can be alternatively

defined as

k y—r
/ / p(Z1, )p(W,y* —x%) dxdy.
y=0 Jx=—y—r
However, the density function Hs (k, 6 (r, o)) serves no purpose other than a definition in the following analysis. We left it
as a side note for completeness without further discussion.

3.2. Expected particle norm

The entire PSO system can be decomposed into two fundamental components: (1) the update of attractors to share and
exchange information among particles, and (2) the update of particle positions through the interaction between particles and
attractors. Hence, as we gain understandings of the characteristics of attractors and particles, we may capture the stochastic
behavior of the PSO system. More specifically, because the distance from the origin is the most important characteristic of
the sphere model for its unimodality, in this section, we highlight the expected distance between particles and the global
optimum. Given a probabilistic model according to which particles are distributed, we would like to know how close to the
global optimum in expectation the sampled particles are. Since the global optimum is simply the origin in the sphere model,
we concentrate on the L?>-norm of sampled particles. The expected norms of the attractor and of particles are examined,
respectively. As the analysis proceeds, it can be shown that these two expectations influence the progress rate of PSO.

Given the center of a particle distribution ¢(t) = (r,0,...,0)and Z = (Zy, 25, ..., Zy) withZy,2Z,, ..., Z, ~ N(O, o?),
suppose that there are m particles, Py, Py, . . ., Py, sampled as ¢(t) + Z, the expected norm of particles can be defined as

P:=E[lle®) +ZII],

which can be considered as the mean solution quality of the current swarm on the sphere function. The following lemma
gives an upper bound for P.

Lemma 5 (Upper Bound for the Expected Particle Norm). If ¢(t) = (r,0,0,...,0) and Z = (Z,2,,...,Z,) with
21,22, ..., Zn ~N(0,0%), P < /12 4 no2.
Proof. For all positive random variable X, since the square root is a concave function, we have E [\/)_( ] < J/E[X] according

to Jensen’s inequality. By utilizing this property, we can have the following derivation:

P =E[llct) +Z||]

n
=E| @ -n*+) 2

i=2

< |E {(21 -+ Zzﬁ}

i=2

= |E[r?] —2rE[z:] + Xn:E[z,?]
\ i=1
= V1?2 +no2.

Because Z; ~ N(0, o2), we have E [Ziz] = 02 and E[Z;] = 0. An upper bound for the expected particle norm, P, is therefore
obtained. O
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The expected particle norm describes how close on average a swarm is to the global optimum, i.e., the origin, of the
sphere function. In order to capture the characteristic of the essential mechanism of PSO - particle interaction - we also
need to investigate the attractor. As stated in the previous section, the attractor is the best observed value, i.e., in our case,
the particle with the minimum objective value within the neighborhood in the current swarm. Under the adopted statistical
interpretation of PSO, the expected minimum objective value of a swarm becomes traceable through order statistics, because
particles are viewed as random vectors over R".

Let P;m) denote the ith order statistic of [|P1]], |P2]], ..., [Pmll. €.8., P1,my = min{||Py1][, [[P2]], ..., |Pmll}. Denoting the
event ||P;|| = x as {||P;|| = x}, the density of P(; ;) at a non-negative real number x can be given as
m
Prob {P(1,m = x} = Prob { |_J [{IPill =x}[) N {iIpl >«
i=1 j€(1,2,....m)\{i}

k—r
= / <n11>Hs(x, 0(r,0%) [1— Hp(x,0(r, 02))];11 dx .

=—k—r
Denoting E [P(l,m)] as P(1,m), a naive upper bound for P ;) is derived in the following lemma.
Lemma 6. P(; ;) < P
Proof. The general upper bound for the expected ith order statistic states

— 1 i—1
Pim <P+ (Var[|c(t) +Z||D2,/ ——— .
G.m < (Var [[le(t) +Z|[]) ‘/m—H—l

As a result,

_  _ 1 1-1 —
Pam <P+ (Var[lle®t) +Z|] 2,/ moir1 P.

Lemma 6 causes no surprise. The expected minimum particle norm is obviously less than or equal to the expected norm.
However, inspired by Lemma 6, we can seek another upper bound for P(q ,,, by definition.

Lemma 7 (Upper Bound for P(1,m)). (1)

P(],m) = / [1 - HB(Xa 9(r7 Uz))]m dx9
x=0
and (2)

Pam < <hlij)10[h — 1/f(h)]> .

Proof. (1) For any random variable X, E[|X|]" = r f;~ t"~'Prob {|X| > t} dt with r > 0[24]. Since P(; ) is a non-negative
random variable, by letting r = 1 we have

00
P(]ym) = / OProb {P(l,m) >X} dx
X=

= /oo Prob{ﬂ{HPiH >x}} dx

=0 i=1

= /OO [1— Hp(x, 6(r, 0?))]" dx.

=0
(2) Based on the result of (1), we obtain

Pam = /Oo [1—Hp(x, 6(r,0?)]" dx < /Oo [1-v'®]" dx.

=0 x=0

By resorting to Holder’s inequality, we can move m outside of the integration to obtain a more comprehensible bound as

[n-velecs ([T -l )

=0 =0

([

7
= (hlim [h— W(h)]> .
The last equation follows from [h — ¥ (h)]|;,—o = 0. O
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Because this upper bound is presented in a limit form, a subsequent question would be whether or not it converges. The
following theorem guarantees the convergence of the quantity.

Lemma 8. (limy_.[h — ¥ (h)]) 7 s convergent.

Proof. Denote th:o [1 - w’(h)] dx as G(h). Since mis a constant, (limy,_, oo[h— (h)]) b converges iflimy,_, o, G(h) converges.
G(h) is incremental because 1 — v/’(x) is always non-negative. Thus, it is sufficient to show that G(h) is bounded from above.
When h > r/n,

h
G(h) :/ [1—v' (W] dx

=0

L[ () (TN ()
[Fo [ ([ (58) o (5] (&
i [L L) (N (50 ) =
s L ()] -

When x > r/n,

r— =% 1
<p(_«ﬁ)<_.
o -2

By applying Bernoulli’s inequality, we can get

h r— %X
c(h)grﬁ+/ (1—[1—2;@( ﬁ)D dx
x=ry/n o
h r— X
:rﬁ+2n/ qﬁ( ﬁ) dx
x=ryn o

=r/n+2n |:(—rﬁ+x)¢ (r;\/iﬁ) _g\/ﬁ.¢<r_diﬁ):|

IA

x=h

o

x=ry/n
The integration of the normal distribution is given in [25]. When h — o0, the term

)

o

vanishes. Thus, now we only need to show

hlingo |:(—r\/r_l+h)¢ (r _G*/_ﬁ):| < 00.

Here we apply Mill’s ratio to replace & (-) with ¢(-) and get

oo () oewmfioe (5]

o
=0 ash — 0.

Therefore, G(h) is bounded from above. The proof is completed. O



2110 Y.-p. Chen, P. Jiang / Theoretical Computer Science 411 (2010) 2101-2115
3.3. Lower and upper bounds for the expected progress rate

After the work was done in the previous sections, the progress rate of the social-only model PSO can now be formally
investigated under the proposed statistical interpretation. The term “progress rate” was introduced by Rechenberg in
1973 [26]. As the name suggests, progress rate should be a quantity indicating how a particle swarm progresses, and hence
in the present work, it is defined as the difference of the norms of the two distribution centers in successive time steps,
because the distance to the optimum is the L? norm for the sphere function. Given the current center of distribution c(t) =
(r,0,0,...,0) and a random vector Z = (Zy, Z, ..., Z,) with Zy, Z,, ..., Z, ~ N(0, o), the m particles Py, P,, ..., Ppn
are sampled as c(t) + Z. Let P; m) denote the ith order statistic of ||Py|[, |P2|], ..., ||Pm||. Let P* := arg min{F (P1), ¥ (P2),
..., F (Pp)}. By definition, ||P*|| = P(;,m). According to the update rules described in Section 2.2, the updated position P;
is computed as P; = P; 4+ C; ® (P* — P;), where each coordinate of C; is distributed according to U(0, c) with c being the
coefficient representing the compound effect of both the inertia weight and the acceleration coefficient of the social part.
For simplicity, we still call ¢ the acceleration coefficient in this paper because the inertia weight is usually constant. The
center of distribution in the next step c(t + 1) is the mean of P;, P}, ..., P, ie,c(t+ 1) = (3, P))/m.

Definition 9. Given c(t) = (r,0,0, ..., 0), the progress rate A; := ||c(t)|| — [ct+ D] =1 — |[c(t+ 1)].

The following theorem shows that, when ¢ < 1/2, the expected norm of the center of distribution in the next time step
is bounded from above by a linear combination of the expected particle norm P and the expected minimum of the particle
norm Py ).

Lemma 10. Suppose C = (Cq, Gy, ..., Cy) is a random vector of R" with i.i.d. components and X is a random vector of R". If C
and X are independent, then E[||C ® X||] < /i, E[|IX]|], where 1), is the second moment of C;.
Proof. For any fixed vector X = (x1, X2, ..., Xp) € R",
E[Ic®x||] = E[ > c,-zx%}
i=1:n
< |E |:Z Cfxiz]
i=1:n
= [ E[?]x
i=1mn
= /15 Il

Since C and X are independent, by the law of total expectation conditional on X, this lemma is proved. O

Theorem 11 (Upper Bound for the Expected Norm of the Next Center). (1) E[[lc(t + 1)||] < E[|1 — C|1]P + E[|C|] P(1.m); and
(2)Ifc < 1/2,E[|le(t+ D] < (1 — ¢)P + cPymy; otherwise, E[|lc(t + 1)||] < [(2c? — 2¢ + 1)/2¢]P + cP(1.m).

Proof. This result is derived from the triangle inequality for L*>-norm and the previous lemma:

m

Y [PtGe P —p)

Eflct+ D] =E

(| |
(%) <g5[ua ~ ) P+ mE[IG® P”‘l'])

< (¢3—c+1)"P+(23)" Pam. O

m

m
Z(l—ci)®l’i+mci®l’*

i=1

IA

Corollary 12 (Lower Bound for the Progress Rate). E[A¢] > 1 — (c?/3 —c + 1)1/2 P— (C2/3)1/2 Pa.my-

After the lower bound for E[A,] is established in Corollary 12, the next theorem sets a lower bound for E [||c(t + 1)|[]. An
upper bound for E[A,] will be accordingly obtained as a corollary.
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Theorem 13 (Lower Bound for the Expected Norm of the Next Center). If ¢ < 1, E[||lc(t+ 1)|]] > r(1 — exp(—2n'[®(—r/
a)I™).
Proof. Since ||c(t 4+ 1)|| is a non-negative random variable, from Markov’s inequality, we have, for any positive number a,
Prob {|c(t + 1| > a} < a 'E[|]lct+ D] .
Substituting a with r,
rProb {|jc(t + 1)|| > r} < E[|lc(t+ D]].
Let the jth coordinate of P;, G, and c(t + 1) be P;;, Cj;, and c(t + 1);, respectively. If there exists a coordinate j such that
min{Py;, Py, ..., Py} > r, then

le(t+ DI = [c(t + 1)

m

> [Py + Gy (B —Py)]

i=1

m

m
Z Gjj u+CuP]

i=1

m
[(1 = Cy) mr + Cymr]
- m
=r.
Similarly, max{Pyj, Py, ..., Pyj} < —r implies ||c(t + 1)|| > r. Let E].Jr be the event that min{Pyj, Py, ..., Ppj} > r and Ej*

be the event that max{Py;, Py, ..., Pmj} < —1.LetE; := E | JE~ and E := [ JI, E;, we have

Prob (E} = Prob {E () Ey | + Prob {E (") (Ef)°}
> Prob {E{ } + Prob { (U E,) () (E }

= Prob {E{"} + (1 — Prob {Ef Prob{UE}

Because Pq, P, ..., Py arei.i.d. and for each particle all of its coordinates other than the first one are identically distributed,
for all i > 1 the symmetry and disjointness of Ei+ and E; imply that Prob {E;} = 2Prob {El+} =2[1 — &(@r/o)]" =
2[@(—r/o)]™. Let q := 2[®(—r /o )]™ for convenience of notation. By using the inclusion-exclusion principle, we have

Prob {LHJZE,-} _ i (r;’)qi(_1)i+1

im1
n’ n ;
=1- ; ( l. )(—q)
1-(1-q"
1—exp(—n'g).

%

As a result,
E[lle(t+ D] = r (Prob {ES} + (1 — Prob {Ef}) (1 — exp (—n'q)))
> r (Prob {E{} + 1 — Prob {E{"} — exp (—n'q))

=r(1—exp(=2n'[@(-r/0)]")). O

Corollary 14 (Upper Bound for the Progress Rate). If c < 1, then E[A.] < rexp (—2n'[®(—r/5)]™).

With Theorems 11 and 13, we established the upper and lower bounds of the expected particle norm. Accordingly, with
Corollaries 12 and 14, we derived the lower and upper bounds of the expected progress rate of a swarm in the social-only
model. As aforementioned, by statistically interpreting the social-only model PSO, we can describe the “macrostate” of the
particle swarm and therefore are able to analyze the stochastic behavior of PSO based on the facet of particle interaction.
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4. Convergence analysis

As stated in Section 2.2, the transition from the current time step to the next time step consists of updating positions
of particles, calculating the distribution center by means of the updated positions, and using the maximum likelihood
estimation to calculate the distribution variance. The issues related to the centers of distributions have been addressed
in Section 3. Thus, the part of variance is considered in this section. While the center of a distribution can be viewed as the
indication of the average quality of the swarm at a specific time step, the variance is a direct measurement of convergence,
because from the viewpoint of statistical interpretation, a swarm converges as the variance of the distribution reduces to
zero. The word “converge” is not a unified term in the research domain of PSO [27, p. 132]. It has been used to describe
the behavior of a swarm approaching the local optimum in some papers, while it simply indicates the phenomenon that
a swarm of particles crowds into a specific point, sometimes called the equilibrium, not necessarily the local optimum, in
the search space in other papers. Here in the present work, we adopt the latter definition. We concentrate on the condition
under which a swarm of particles may go into a stable state. We will demonstrate that if certain condition of the relationship
between the swarm size and the acceleration coefficient is satisfied, a swarm in the social-only model does converge under
the mechanism of particle interaction.

Given m observed vectors yq, y3, - . ., Ym that stand for the updated positions and the distribution center is denoted
asc(t+1) =y := (Z2,yi)/m. Let Y1, Y2, ..., Yy be random vectors sampled from 6 (||y||, O’t2+1). These vectors are
n-dimensional random vectors centered at y, and the coordinate on each dimension is a random variable sampled from
N (O 02+1) where 62, is the variance that we wish to estimate. In order to estimate the variance, the likelihood function of

02,1, L(o2, ), can be defined as the joint probability:

n RS —d (yi,y)’
Lo, = (_) exp [ 29 Y°
Tit ll;[ \/ﬂot+l P( 2 t2+1 )
Zd(yl,y)

(\/_Ut+l) 20t+l

_ —mn
= KcrtJrl exp
t+1
where

1 mn m
K'_<E> ., R: ;(yl,y)

In order to get the o2,

/ R\ R R
Lok, = — > M. o 7" - exp (202 )—i— SK-oy S exp (20 ) .
t+1 t+1

that maximizes L(O't 1), we differentiate L(o[ 1) With respect to at -

L'(6Z;) = 0implies 62 ; = R/(mn), and it is routine to check the maximality. Since both m and n are fixed, the only
quantity needs to be examined is R, the sum of square of the distance between each updated particle and the center.
Given c(t) = (r,0,0,...,00and Z = (Z1,2,,...,Z,) with Z1,2,,...,Z, ~ N(O, otz), the m particles Py, P3, ..., Py
are sampled from c(t) + Z, and the updated position is calculated as P; + C; ® (P* — P;), where P* is the attractor. Since
ct+1) = ZL [P; + G ® (P* — P;)] /m, R, as a random variable, can be defined by Py, P, . .., Py and P*:

Z +Cl (P* - _]))

=1

2

m
=) |Pi+CGo® —P) -
— m

Denoting Py’s and P*’s kth coordinate as Py and Py, respectively, the expectation of R, E [R], can be derived in the following
lemma:

Lemma 15. Given the swarm size, m, and the variance of distribution at time t, 0} = o2,

(m—1)o? {(5 N V3(m — 1))

E[o},] < o " (:2—6c+12}.
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Proof. Defining R; as

m 2

> (P + Cy(P; — Pyy))

k=1

m
Ri:= ) 1Pi+GCy (P —Py) - -
i=1

yieldsR=)_.

i—1:n Rj and that we can obtain forj > 1,

m—1

B[R] = (W) {"2 (4c? — 6c + 12) + CE [(pj*)z]}
= (%) {02 (5¢2 —6c + 12)} .

The last inequality follows from the fact that the independence of coordinates implies E [(P]*)z] < o2, Moreover,

E[R,] = (%) {02 (4 — 6c +12) + e[ (P - 1)?]} -

Since E [(P;‘ — r)z] is less than or equal to the expected value of the extreme order statistics of T2, T22, ..., T?, where

s Imy

T; ~ N(0, o), by using the upper bound for the extreme order statistics [28],

E[(P;‘ — r)z] < g2 (1 +\/m) .

As a consequence,

E[o?;] =EIR]/(mn) <

— 2 / —
12m n

2

While Lemma 15 is under the assumption that crt2 is given or more formally, the conditional expectation E [at e |(7t2 = 02] is

derived, the following theorem indicates the relationship between E [atz] and E [afﬂ] and gives a sufficient and necessary
condition that the sequence {E [of]} converges to zero. Without loss of generality for the normal operation of PSO, we
assume that E [o7 ] < oo.

Theorem 16 (Convergence of the Expectation of Variance). Let k := /3(m — 1)/n. If c satisfies the condition that
60+5 60+5
3—./9+ r{( 34,/9+ le
_— << —,
S5+« 5+«
lime, o {E[0?]} = 0.
Proof. The law of total expectation and Lemma 15 imply that

E[o? ]su{<5+—m>

2 2
ol o c —6C—|—12}E[at].

Therefore, {E [0?]} is upper-bounded by the geometric sequence with the first term E [0 ] and the ratio

-1 J3(m -1
(m— 1) <5+L)cz—66+12
12m n
By solving
-1 J/3(m—1
("12 ) <5+L)c2—6c+12 <1,
m n

the theorem is proved. O

Since o takes the value on non-negative real numbers, the convergence of sequence {E[0?]} implies sequence {o?}
converges to zero in probability, as shown in the following corollary.

Corollary 17 (Convergence of Variance). If lim;—oc {E[0?]} = 0, then lim_ o of L 0 ie, for every € >
0 lim;_. Prob {o? > €} = 0.
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Proof. Suppose for contradiction that there exists some ¢ > 0andé > 0such that, forall Ny € N, there existsan N(Ng) > Ny
with Prob {013(1\10) > e} > §. However, since Prob {Uﬁ(wo) > e} > § implies E [Uﬁ(wo)] > ¢4, for all Ny € N, there exists an

N(Ng) > Ng such that E [‘713(1\10)] > €8, limy_, oo {E [0[2]} = 0is contradicted. O

Theorem 16 and Corollary 17 indicate that as long as the specified condition is satisfied, a swarm will converge in
probability. However, it must be noted that the acceleration coefficient, c, used in this study is the coefficient for the
compound effect of both the inertia weight and the common acceleration coefficient for the neighborhood or global best
position as described in Section 3.3. Therefore, further investigations are needed to gain understandings on the compound
effect and clarify the relationship of these parameters such that the derived results in the present work can be applied in
practice.

5. Summary and conclusions

In this study, we made the first attempt to analyze the behavior of particle swarm optimization on the facet of particle
interaction. We firstly proposed a statistical interpretation of particle swarm optimization and modeled the essential PSO
mechanisms with the operations on probabilistic distributions. In order to investigate the PSO behavior based on particle
interaction, we focused on the social-only model of PSO, in which the personal experience of particles is ignored. From the
viewpoint of macrostates, we obtained the lower and upper bounds of the expected progress rate for a swarm on the sphere
function. By examining in detail the variance of the particle distribution, we further showed that under certain condition, a
swarm will converge in probability due to the mechanism of particle interaction, i.e., exchanging and sharing information,
which is commonly believed to be an essential mechanism of PSO but seldom theoretically analyzed in the literature.

With regard to the practical implications of this study, we demonstrated that the optimization process of PSO can be
interpreted as the interplay between the attractor and the overall swarm, as shown in Theorem 11 that the expected norm
of the next center is upper-bounded by a linear combination of P and P(; ) as well as that the acceleration coefficient is the
weight balancing the effects of these two quantities. The major resistance in the optimization process of PSO on the sphere
function is the number of dimensions, as it can be observed in Corollary 14 that the progress rate deteriorates drastically with
respect to the number of dimensions. On the other hand, the swarm size is the primary factor counteracting the increasing
dimensions, for the exploratory capability of the swarm is augmented in accordance with the number of particles. It is
noteworthy that in a variety of theoretical studies on PSO, the effect of the objective function has been rarely taken into
consideration due to the assumption of fixed attractors. By means of characterizing a swarm as a unity, the analysis of the
influence of the objective function becomes possible.

With this study, we propose an alternative way to analyze particle swarm optimization from the viewpoint of macrostates
instead of tracing the trajectory of each particle. The immediate follow-up work of this study includes the clarification of the
compound effect of the inertia weight and the neighborhood acceleration coefficient for carrying over the theoretical results
to practice and for suggesting applicable parameter settings. Moreover, tighter bounds may be derived to more accurately
describe the behavior of PSO, and a complete PSO model may be considered instead of the social-only model adopted in the
present work. Finally, in the long run, a unified behavioral model of PSO might be established by integrating the theoretical
results from the two ends - macrostates and microstates — such that better, more robust optimization frameworks can be
accordingly designed and developed.
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Detecting General Problem Structures with Inductive Linkage
Identification

Yuan-wei Huang and Ying-ping Chen

Abstract— Genetic algorithms and the descendant methods
have been deemed robust, effective, and practical for the past
decades. In order to enhance the features and capabilities of
genetic algorithms, tremendous effort has been invested within
the research community. One of the major development trends
to improve genetic algorithms is trying to extract and exploit
the relationship among decision variables, such as estimation
of distribution algorithms and perturbation-based methods. In
this study, we make an attempt to enable a perturbation-based
method, inductive linkage identification (ILI), to detect general
problem structures, in which one decision variable can link
to an arbitrary number of other variables. Experiments on
circular problem structures composed of order-4 and order-5 trap
functions are conducted. The results indicate that the proposed
technique requires a population size growing logarithmically with
the problem size as the original ILI does on non-overlapping
building blocks as well as that the population requirement is
insensitive to the problem structure consisting of similar sub-
structures as long as the overall problem size is identical.

I. INTRODUCTION

As practical optimization frameworks, genetic algorithms
(GAs) have shown properties of flexibility, robustness, and
easy-of-use since they were proposed [1], [2]. These methods
usually get good performance when the adopted genetic oper-
ators are aware of the relationship among decision variables.
Crossover operators in early genetic algorithms are likely to
break promising solutions of sub-problems, which are referred
to as build blocks (BBs) [3]. As a consequence, the overall
performance is greatly reduced, or the problem cannot be
solved [4]. In order to alleviate this issue, in recent studies,
crossover operators or equivalent mechanisms that maintain
the structure and diversity of building blocks have been
proposed, developed, and examined. These techniques sig-
nificantly increase the performance of genetic algorithms. To
provide the capability of appropriately and effectively handling
sub-solutions/building blocks, two key mechanisms, building-
block identification and building-block exchange, have to be
utilized and integrated. In this study, we focus on the mech-
anism of building-block identification, generalize the concept
regarding the detection of building blocks, and propose the
use of inductive linkage identification [5] to detect general
problem structures.

Most of building-block/linkage identifying methods pro-
posed and utilized in previous studies can be broadly classified
into the following three categories [6]:

1) Estimation of distribution algorithms;
Yuan-wei Huang and Ying-ping Chen are with the Department of Computer

Science, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu,
TAIWAN (email: {ywhuang, ypchen}@nclab.tw).

2) Linkage learning techniques;

3) Perturbation-based methods.

In the first category, estimation of distribution algorithms
construct probabilistic models from the selected individuals of
the population and describe the relationship among decision
variables in a statistical way [7]. Early studies assume no
interaction among variables, such as the population-based
incremental learning [8] and the compact genetic algorithm
[9]. Subsequent researchers use conditional probabilities to
capture pairwise and/or multi-variate interactions, e.g., the
mutual information maximizing input clustering [10], Baluja’s
dependency tree approach [11], the bivariate marginal distribu-
tion algorithm [12], the factorized distribution algorithm [13],
and the Bayesian optimization algorithm [14]. Methods in
this category are usually quite efficient from the traditional
viewpoint of computational cost in evolutionary computation
because they do not need additional fitness evaluations. Never-
theless, less salient building blocks, which contribute little to
the total fitness, are less statistically significant and therefore
might be ignored and undetected [15].

For the methods of the second category, building-block
identification is oftentimes viewed as the (gene/variable) order-
ing problem. By rearranging variables during the evolutionary
process, interdependent variables are put closer according to
the adopted coding scheme such that these variables are less
likely to be split apart by subsequent operations. In these
studies, the messy genetic algorithm [4] and its more efficient
descent, the fast messy genetic algorithm [16], exploit building
blocks to identify linkages. Since the rearranging mechanism
often acts too slow to cooperate with the selection operator,
such a condition usually leads to premature convergence. The
linkage learning genetic algorithm [17] performs two-point
crossover on a specifically designed circular chromosome
representation such that tight linkages among related variables
can be formed on the chromosome and preserved during the
evolutionary process.

Methods in the last category analyze the fitness differ-
ence caused by perturbing variables to identify linkages. For
example, the gene expression messy genetic algorithm [18]
incorporates a special genotype for pairwise relations and a
function involving perturbation to find linkage sets. Linkage
identification by nonlinear check [6] uses the linear summation
of different and non-overlapping building blocks to detect
linkages. Borrowing the idea from estimation of distribution
algorithms, the dependency detection for distribution derived
from the fitness difference [15] clusters variables according to
the fitness difference values caused by perturbation. Because a



perturbed variable only effects the building blocks containing
itself, information can be obtained on less salient building
blocks from fitness difference values. However, since extra
fitness evaluations are required every time a variable is per-
turbed, methods in this category cost more function evaluations
to identify linkages, although the actual overall computational
cost might be less.

From the viewpoint of extracting the problem structure
and exploiting the obtained information in order to conduct
optimization, estimation of distribution algorithms can be
considered as approaches at the “global” end or organizing
the obtained information in a “top-down” manner. Estimation
of distribution algorithms assume a probabilistic model and
adjust the model parameters to fit the promising solutions. On
the other hand, linkage learning techniques and perturbation
methods are at the "local” end and processing the information
in a “bottom-up” manner. These methods implicitly or ex-
plicitly extract information out of the selected individuals and
recognize the problem structure parts by parts. In this study,
we aim at enhancing the global problem structure detection
capability of perturbation-based methods and at blurring the
line between estimation of distribution algorithms and methods
in the other two categories.

In particular, we firstly extend the notion of building blocks
commonly adopted in perturbation-based methods from over-
lapping building blocks to general problem structures. Then, a
linkage identification technique, called inductive linkage iden-
tification [5], utilizing the ID3 decision tree [19] is modified
and adopted to detect global problem structures. Experiments
on the scalability and flexibility are conducted to examine
the capability of the modified inductive linkage identification.
The results demonstrate that the proposed technique requires
a population size growing logarithmically with the problem
size. The population requirement is insensitive to the problem
structure consisting of similar sub-structures as long as the
overall problem size is identical.

For the remainder of this paper, the background of linkage
identification is briefly introduced in section II. Why and
how inductive linkage identification works are reviewed with
illustrative examples in section III. Experiments and results
are provided and discussed in section IV, followed by the
summary and conclusions given in section V.

II. LINKAGES, BUILDING BLOCKS, AND PROBLEM
STRUCTURES

De Jong et al. [20] defined the term dependency, which
is also referred to as linkage, as “two variables in a problem
are interdependent if the fitness contribution or optimal setting
for one variable depends on the setting of the other variable.”
Moreover, the order of a problem is also stated as “the order
is the largest number of variables that are interdependent.” To
obtain the complete information of linkages, the contribution
of each possible pair of variables needs to be examined.
Although it is usually an expensive work to process all possible
pairs of variables, dependencies should be examined as much

as possible in a reasonable time such that the employed genetic
algorithm can perform well.

The Schema theorem [1] states that short, low-order, and
highly fit sub-solutions increase their market shares to be
combined. Furthermore, the building block hypothesis [3]
implies that combining small partial solutions is essential for
genetic algorithms and also consistent with human innovation.
According to these observations, a problem model called the
additive decomposable function (ADF) and written as a sum
of low-order sub-functions is proposed.

Let a string of length ¢, s = s1S253...8¢, present a
solution, where s is a permutation of the decision variables
X = 21223 . . . ¢¢ determined by the adopted coding scheme.
The fitness function for s is then defined as

m

f(s) = Z filsv,)

where m is the number of sub-functions, f;(-) is the i-th
sub-function, and sy, is the solution string for f;(-). For
example, if v; = (4,2,3,6), sy, = s4525386. If f;(-) is also a
sum of other sub-functions, it can be replaced by these sub-
functions. Therefore, without loss of generality, each f;(-) can
be assumed a non-linear function, and the number of variables
of f;(-) is referred to as its order, i.e., complexity. In the
ADF model, variables in the same set v; are interdependent.
These sets referred to as linkage sets, and the related term
building block (BB) is used for the candidate solutions to the
corresponding sub-functions.

For complex problems, sub-functions are oftentimes over-
lapping. Similar to interdependent variables, shared variables
affect the respective contributions of the overlapping building
blocks to the total fitness of the problem and make these
building blocks interdependent. Under such a circumstance,
considering the interdependent sub-functions as either a sin-
gle, longer building block or separate, shorter ones become
inappropriate. Reviewing previous studies on pairwise inter-
actions, building blocks, and order-k linkage sets, researchers
attempt to capture structures of certain orders. However, if the
overall structure can somehow be recognized as that obtained
by the model building process in estimation of distribution
algorithms, perturbation-based methods should also be able
to provide sufficient understandings of the problem for those
linkage-aware operations.

Therefore, in this paper, we firstly generalize the concept
of overlapping building blocks to the notion of the problem
structure such that interactions among variables can be de-
scribed as general as possible. The term sub-problem is used
to describe how the overall problem structure is constructed
instead of decomposed. The terms interaction and linkage are
still used for the dependency between any two variables.

IITI. INDUCTIVE LINKAGE IDENTIFICATION

In this section, the perturbation-based method called induc-
tive linkage identification (ILI) is reviewed. Firstly, a brief
introduction of the ID3 decision tree is given, followed by
how ILI adopts ID3 into the fitness perturbation and linkage
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identification procedure. Then, we describe the modified ver-
sion of ILI for detecting general problem structures. A simple
example is also given for illustration.

A. ID3 for Recognizing Linkage

The ID3 decision tree construction algorithm is a supervised
categorization method working on discrete data sets, in which
the datum entries consist of several decision variables and
each decision variable is limited to certain predefined values.
ID3 aims to build a decision tree according to entropy and
information gain. By eliminating the most useless variable, the
training data set can be split into two subsets. One contains the
datum entries using that variable, and the other does the rest.
Then, the described procedure is applied to these two subsets
recursively.

For the perturbation procedure, the fitness difference values,
denoted as df, are obtained by subtracting the fitness value af-
ter perturbation from the original fitness value. This operation
implicitly isolates the affected portions of the whole problem
structure and reveals them as fitness difference values. The
k-trap function [21], [22] is employed in this study as an
illustrative example as well as the elementary sub-problem for
composing larger problem instances:

k, if u = k;
k—u—1, otherwise.

trapi(s18283...8;) = { ,
where v is the number of 1’s in the solution string. Figure 1
shows the characteristic of a k-trap function.

With k-trap functions as elementary sub-problems, more
complicated problem instances can be created following the
ADF model. For example, an 8-bit function composed of a
3-trap and a 5-trap function can be defined as

f(s18285...88) = traps(s15283) + traps(s4s556575s) -

518283...88 | f | df
111 01001 5 3
111 10100 5 3
111 01111 3 3
000 11111 7 1
000 00100 5 1
000 00001 5 1
000 10110 3 1
000 11100 3 1
001 01000 4 1
001 00011 3 1
001 00011 3 1
001 10100 3 1
010 01000 4 1
010 00100 4 1
010 01100 3 1
010 10100 3 1
010 00111 2 1
010 11011 1 1
100 00000 5 -1
100 00100 4 -1
110 11111 5 -1
110 01101 1 -1
110 01111 0 -1
110 11011 0 -1
101 10000 3 -1
101 01101 1 -1
101 11110 0 -1
011 00001 3 -3
011 00110 2 -3
011 01111 0 -3
TABLE 1

RESULTS OBTAINED BY PERTURBING VARIABLE S7.

By conducting perturbation on a binary variable s;, the
fitness difference df is obtained as
df = f(s15283...58) — f(S15253...58)
= (traps(s1s2s3) + traps(sasssesrss))
— (traps(S1s283) + traps(s48556578s))

= traps(s15253) — traps(S1s283)

(1)

Equation (1) gives a mathematical explanation that df is
only affected by the perturbed variable s; and those variables
belonging to the same sub-problem as s;. Table I is the
example of Equation (1) and shows that permutations of s,
S92, and s3 yield the identical df value.

ILI considers the distinct df values as the classification
categories and each variable as the decision variable for the
ID3 algorithm. By performing ID3 on the perturbed variable
as the tree root, a decision tree is accordingly constructed.
The internal nodes on the decision tree are then collected
as a linkage set V,. Figure 2 shows the built decision tree
corresponding to Table I, and the internal nodes si, s2, and
s3 forms a linkage set.

B. Original ILI

The original ILI [5] can handle only those problem struc-
tures composed of non-overlapping sub-problems. After per-
turbing a variable and constructing a decision tree as shown in
Figure 2, a linkage set is identified, and the used variables are
removed from the variable set. The procedure of perturbation



Fig. 2
THE DECISION TREE CONSTRUCTED FOR TABLE I.

and decision tree construction is repeated on one of the uncat-
egorized variables until all variables are categorized. Taking
Table I for example, after Vi = {s1,$2,s3} is identified,
ILI then perturbs variable s; and constructs a decision tree
with {s4, s5, S6, $7, Ss} and the next uncategorized variable.
In this example, the final linkage sets are Vi = {s1, 2,53}
and Vo = {sy, s5, S¢, 7, S8 }-

When there is no overlapping building blocks, experiments
[23] demonstrate that the required population size grows sub-
linearly with the problem size while the complexity of sub-
problems is fixed. On the other hand, the population size
requirement grows exponentially with the complexity of sub-
problem while the problem size is fixed. Such a result indicates
that ILI is not sensitive to the overall problem size as well as
the number of sub-problems but sensitive to the complexity of
sub-problems.

C. Proposed Modifications on ILI

As mentioned in section II, overlapping sub-problems may
form large, complicated problem structures and may be dif-
ficult or inappropriate to be identified as separate building
blocks. Taking overlapping sub-problems ¢rap4(s1s2s3s4) and
traps(sssisssg) as an example, {s1,s2} indirectly interacts
with {ss5,s6} via {s3,s4} since they belong to both of the
sub-problems. These direct and indirect interactions do form
a dependency structure of the two sub-problems. Instead of
viewing them as either one building block or two, the actual

0O
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(a) Two non-overlapping trapa
functions.

G
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(b) Two overlapping traps func-
tions.

(c) Circular structure.

(d) Complete graph.
Fig. 3
PROBLEM STRUCTURE EXAMPLES: VARIABLES OF SUB-PROBLEMS ARE
CIRCLED BY DASHED ECLIPSES.

structure should be found and reported to the subsequent
linkage-aware operations.

In order to visualize these problem structures, a graph
notation is adopted. Each variable is represented as a graph
node, and direct interactions between any two variables are
represented as edges between the corresponding graph nodes.
E.g, Figure 3(a) shows the graph representation for two non-
overlapping trap, functions because variables in the same
sub-problems are interdependent, interactions among the four
related variables are represented as a complete graph of four
nodes. Since these two sub-problems are not overlapping,
there exists no edge connecting the two separate sub-graphs.
Figure 3(b) is the example for two overlapping sub-functions,
trapy(s1828384) and traps(ssssssse), and shows that the
shared variables interact with all other variables, while the
unshared variables only interacts with the variables of the
same sub-problems. Using the graph representation, complex
dependency structures can be illustrated. E.g., Figure 3(c)
shows a circular structure consisting of six overlapping trapy
sub-problems with two shared variables between adjacent sub-
problems. Figure 3(d) is the case in which each variable
depends on all others to create a very complex overlapping
problem structure.

To extend ILI to general problem structures composed of
arbitrary overlapping sub-problems, a key modification on ILI
is proposed. As described in section III-B, a variable is re-
moved from the variable set V' when it is categorized. Such an
operation makes the removed variable invisible at later stages
of ID3 and thus renders the linkages to other sub-problems
undetectable. For example, thinking of Figure 3(b), when



Algorithm 1 Modified ILI for general problem structures.

1: procedure ILI(f, ¢, n)

2: Initialize a population P with n strings of length ¢
3 Evaluate the fitness of strings in P using f

4 V « Shuffle(1,2,3,...,¢)

5: Mysp < Ogxe

6 for each v in V do

7 for each s' = sisis...s! in P do

8 Perturb s

9: df? « calculate the fitness difference

10: end for

11: Build an ID3 tree using (P, df) with v as root
12: for each internal node v; in the tree do

13: My — 1

14: My« 1

15: end for

16: end for

17: Return the structure matrix M

18: end procedure

the perturbation and ID3 tree construction are performed on
variable sy, the resultant linkage set is {s1, s2, s3, $4} and the
rest elements are {s5, sg} where the relations between {s3, s4}
and {s5, s¢} are lost. One of the proposed modifications is to
perturb and perform ID3 on each variable s; without removing
any variable such that all variables can be examined repeatedly
by ID3.

Another modification is to make ILI not directly return
linkage sets corresponding to sub-problems, which are also
referred to as building blocks. As aforementioned, the concept
of building blocks is not very clear when sub-problems are
overlapping. In order to determine the overall problem struc-
ture, a £-by-¢ matrix My, is employed, where / is the number
of variables. The element m;; = 1 if there is a connection
between variables s; and s;; otherwise, m;; = 0. In this
study, we make linkages undirected. After s; is perturbed and
a linkage set containing s; is constructed, not only m; ; but
my; are also marked.

Algorithm 1 shows the modified inductive linkage identifi-
cation procedure. For further illustration, the modified ILI is
demonstrated by an example composed of two 4-trap functions
with two shared variables defined as

f(s18283848556) = traps(s1828384) + traps(s3sassss) (2)

and shown in Figure 4. Initially, the structure matrix Mgxg
is a zero-matrix indicating that there is no known interaction
among any variables as showed in Figure 4(a). After initializa-
tion, ILI begins to perturb variables in a randomly determined
order: s1, S3, S2, S5, S4, and sg. By perturbing and performing
ID3 on variable s1, a linkage set {s1, sa, 3, S4} is recognized
and indicates that s; interacts with so, s3, and s4. Figure 4(b)
shows the detected partial structure. Notice that although so,
s3, and s4 belong to the same sub-problem as defined in
Equation (2), there is no interaction among them detected at
the current iteration. Next, when s3 is perturbed, ID3 identifies

&) &3 65 &1 €3 &5
§2 &4 69 &2 9 &6

(a) Initial state. (b) After perturbing sj.

(d) After perturbing sa.

(e) After perturbing ss.

(f) Final state.
Fig. 4
PROBLEM STRUCTURES DETECTED DURING THE ILI PROCESS. DASHED
AND SOLID LINES REPRESENT KNOWN AND NEWLY DISCOVERED
INTERACTIONS RESPECTIVELY.

that s3 interacts with all other five variables since it belongs to
both sub-problems as shown in Figure 4(c). The procedure is
repeated on s, S5, S4, and sg sequentially. After all variables
are proceeded, the final structure is constructed as shown in
Figure 4(f).

Because there is no controlling parameter for the problem
order/complexity, the obtained linkage information of the
overall problem structure is unconstrained by any assumptions
on the complexity of sub-problems. The only key factor in
this condition regarding the correctness is whether or not the
employed population is large enough for ILI to avoid getting
confused by the fitness difference noise. Our preliminary
experiments involving different problem structures have shown
that the proposed ILI modification is able to construct correct
problem structures as long as sufficiently large populations are
utilized. For the purpose of gaining more understanding of the
population size requirement by the modified ILI, in the next
section, we design and conduct more experiments to observe
the scalability and flexibility of the proposed modification.

IV. EXPERIMENTS AND RESULTS

Experiments and results on circular structures are examined
in this section. Circular structures hold certain good properties
for experimental control. The number of linkages increases
linearly with the number of sub-problems and so does the
number of nodes. These easily controlled properties enable us
to concentrate on the population requirement.



The required population size is determined by a bisection
method. For a given problem structure and a range of popula-
tion sizes [boundy,, boundy], if the modified ILI can correctly
detect the given problem structure for at least 29 times out
of 30 independent runs with the population size Ps;,. =
(boundy, +boundy ) /2, we consider that Ps;.. is large enough
for the modified ILI to detect this problem structure and set
Py;.. as the new boundy for the next iteration. Otherwise,
Ps;.. is too small to provide sufficient statistics, and thus, the
next iteration will be conducted on interval [Py;,., boundy].
This bisection procedure repeats until the interval is smaller
than 2, and the final mean value, P;;.., is regarded as the
required population size. For all the experiments in this study,
the bisection process is performed for 50 interdependent trails,
and the mean value and the standard deviation are calculated
accordingly. Please note that in the experiments for simplicity,
building blocks are arranged with consecutive variables on
the chromosome, but they can actually be arbitrarily arranged
because the same result will be obtained on all possible
permutations of the variables.

A. Scalability on Circular Structures

In this series of experiments, the scalability of the modified
ILI is examined by using the trap, and traps functions with
circular overlapping problem structures. In the experiments
with trapy, each sub-problem shares two variables with one
of its neighbor sub-problem and the other two variables with
the other neighbor. The circular overlapping structure can be
described as

C4n(818283 e SQn) =

n—1

Z tTap4(52i—152i52i+152i+2) + tmp4(52n—152n8182) )

i=1
where n is the number of sub-problems and greater than 2 to
form a circle. For example, C'43(s18283 . ..S6) = traps(s182
$384) + traps(s3sassse) + traps(sssesise) is the smallest
circular problem structure for ¢{rap, under this definition as
shown in Figure 5(a), and inserting one more sub-problem
will form a structure shown in Figure 5(c).

The overlapping scheme for the ¢raps function is similar,
except that each sub-problem has one unshared variable. For
example, the minimal circular structure of 3 traps functions,
shown in Figure 5(b), can be put as

= traps($152538485)
+traps(s455565758)
+traps(s788595182) ,

053(818283 . 89)

where s3, sg, and sg are unshared.

The experimental results of C'4,, and C5, are shown in
Figure 6. The results demonstrate that the modified ILI is
capable of correctly detect linkages among variables even
when the problem size gets large. The first observation is
that the results can be well fitted by using logarithmic curves.
Such a phenomenon implies that the required population size
grows logarithmically with respect to the number of sub-
problems and indicates the modified ILI is quite efficient and

(c) 4 traps

(d) 4 traps
Fig. 5
THE MINIMAL CIRCULAR PROBLEM STRUCTURES.

scalable on these problem structures in the experiments. The
population size growth rate is similar to that required by the
original ILI on non-overlapping building blocks as given in
the literature [23]. Secondly, since the growth of required
population sizes can be well fitted with logarithmic curves for
both trap, and traps functions, for the problems composed
of traps, the modified ILI should require a population size
growing logarithmically with the problem size.

B. Insensitivity on Sub-structures

The series of experiments in this section aims to examine
the capability of detecting problem structures composed of
sub-structures. Separate circular problem structures form a
large problem structure, and the population requirement of
the modified ILI is compared to that for larger structures of
the same problem size. In these experiments, circular problem
structures composed of m smaller sub-structures are defined
as

m—1
04;” = Z C4n(51+ni52+ni33+ni cee 32n+ni) .
i=0
Figure 7 shows examples of circular structures composed of
two and three sub-structures of five trap, sub-problems.

Figure 8 shows the experimental results of C'4,,, C4,27,, and
C43. As shown in the figure, when the overall problem sizes
are identical, the required population sizes of C42 and C43
are very close to that of C4,. All the experimental results
are also well fitted by the same logarithmic curve that fits the
results of C4,,. It indicates that the modified ILI is able to
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correctly identify the isolated as well as the interdependent
parts of a large problem structure without additional cost.

V. SUMMARY AND CONCLUSIONS

In this paper, we extended the inductive linkage identi-
fication to detect general problem structures composed of
overlapping sub-problems and conducted experiments by using
circular overlapping structures for gaining more insights and
understandings. According to the experimental observations,
the proposed technique was found able to correctly detect
circular problem structures and require a population size
growing logarithmically with the problem size. The population
requirement was observed insensitive to the problem structure
consisting of similar sub-structures for the identical overall
problem size.

One of the major differences between ILI and most of the
other existing linkage learning methods is the absence of algo-

(a) C42 (b) C43

Fig. 7
CIRCULAR PROBLEM STRUCTURES COMPOSED OF SEPARATE
SUB-STRUCTURES, WHERE . = 5.
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CIRCULAR PROBLEM STRUCTURES COMPOSED OF ONE, TWO, AND THREE
SUB-STRUCTURES WITH traps AS THE ELEMENTARY SUB-PROBLEMS.

rithmic parameters for the complexity of sub-problems. The
proposed modification of ILI keeps this feature unchanged.
Since ILI performs the task of linkage identification without
assumptions on the problem structure, such as the chosen
probabilistic model or the maximum degree of interactions, the
relationship among variables should be extracted as authentic
as possible.

Since the modified ILI is capable of detecting general
problem structures, it may be applied in two ways. Firstly,
by serving as a preprocessing step of genetic algorithms, the
proposed techniques describes the variable dependencies with
a graph such that delicately-designed genetic operators or
processing mechanisms can utilize the linkage information to
preserve the building blocks. Secondly, the proposed technique
can be used as a tool to inspect and extract the relationship
among decision variables for understanding the inner structure
of the problem at hand in order to assist any further applicable
operations.
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XCS with Bit Masks

Jia-Huei Lin and Ying-ping Chen

Abstract—In this paper, a modified XCS is proposed to reduce
the numbers of learned rules. XCS is a type of learning classifier
systems and has been proven able to find accurate, maximal gen-
eralizations. However, XCS usually produces too many rules such
that the readability of the classification model is greatly reduced.
As a result, XCS users may not be able to obtain the desired
knowledge or useful information from the learned rule set. In
our attempt to handle this problem, a new mechanism, called bit
masks, is devised in order to reduce the number of classification
rules and therefore to improve the readability of the generated
model. A series of n-bit multiplexer experiments, including 6-bit,
11-bit, and 20-bit multiplexers, to examine the performance of
the proposed framework. For the problem composed of integer-
typed variables, two synthetic oblique datasets, Random-Data2
and Random-Data9, are adopted to compare the performance
of XCS and that of the proposed method. According to the
experimental results, XCS with bit masks can perform similarly
as XCS on n-bit multiplexers and generates significantly fewer
rules on integer-typed problems.

I. INTRODUCTION

Learning classifier systems (LCS) [1] are machine learning
systems designed to combine reinforcement learning, evolu-
tionary computation, and other heuristics to produce efficient
adaptive systems. These rule-based machine learning algo-
rithms originated and have evolved in the cradle of evolution-
ary computation and artificial intelligence. There have been
a number of studies on the architecture and performance of
LCS. In recent years, a simplified version of LCS, XCS [2], [3]
has become one of the most important XCS variations since
XCS was shown to be able to solve real-world classification
problems with high accuracy. XCS is designed to evolve a
representation of the best solution as well as to evolve a
complete and accurate payoff map of all possible solutions
for all possible problem instances. That is, XCS evolves rules
that improve the ability to obtain the environmental reward
and mine the environment for prediction patterns, which are
expressed in the form of classifiers. The repeatedly refined
prediction patterns allow the XCS system to make better
decisions for consecutive actions.

However, some shortcomings still exist in XCS. For real-
world applications, frequent pattern mining [4] often incurs
numerous frequent item sets and rules, which much decrease
the effectiveness of data mining since users have to go through
a large number of mined rules in order to find useful ones. The
great number of classification rules lowers the readability of
the classification model in real-world applications. Since the
XCS also produces numerous rules, in this study, XCS with bit
masks is proposed to handle such a problem. The developed

Jia-Huei Lin and Ying-ping Chen are with the Department of Computer
Science, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu,
TAIWAN (email: {jhlin, ypchen}@nclab.tw).

mechanism of bit masks is used to detect stable building
blocks in classifiers and to prevent crossover and/or mutation
operators from unnecessarily altering them. Consequently, the
resultant classification model needs fewer rules than that
evolved by the original XCS to achieve the same level of
accuracy. A series of n-bit multiplexer experiments, including
6-bit, 11-bit, and 20-bit multiplexers, are exploited to examine
the performance of the proposed method. For the integer-typed
problems, two synthetic oblique datasets [5], Random-Data2
and Random-Data9, are used to compare the performance of
XCS and that of the proposed method. According to the exper-
imental results, XCS with bit masks can perform similarly as
XCS on n-bit multiplexers and generates significantly fewer
rules on integer-typed problems.

For the remainder of this paper, section II briefly reviews
XCS. Section III introduces the representation and the algorith-
mic structure of XCS with bit masks. Section IV describes the
experiments and provides the experimental results, followed by
section V which concludes this paper.

II. A BRIEF REVIEW OF XCS

In this paper, we firstly describe the framework of XCS,
followed by an introduction of XCSI, which is an adaptation
of XCS for integer-typed problems. Finally, we discuss the
related work of this research.

A. XCS

XCS, introduced by Wilson in 1995 [2], is an important
branch of LCS [1]. XCS has become known as one of the most
reliable learning classier systems for handling data mining
and machine learning problems. In this section, we give
an overview of the key components of XCS, including the
representation, the performance component, the reinforcement
component, the discovery component, the macroclassifiers,
and the covering and subsumption deletion.

1) Representation: XCS evolves a set of condition-action
rules which are called the population of classifiers. The
condition-action rules is the representation of the knowledge
gained from the environment. Each classifier consists of five
main components and several additional estimates.

o Condition: The condition part C' checks if the classifier
matches the environment event.

o Action: The action part A specifies the decided action
when the condition matches the environment event.

o Payoff prediction: The payoff prediction p estimates the
average payoff after executing the action in response to
the environment event.

o Prediction error: The prediction error e estimates the
average error of the payoff prediction.
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Fig. 1. The framework of XCS.

« Fitness: The fitness F’ reflects the scaled average relative
accuracy of the classifier.

In the binary case, C' € {0,1,#}’ given a problem of /
attributes. The symbol # represents the “don’t care” condition.
A defines a possible action or classification when the condition
matches the environment event. p updates the results in a
moving average measure of encountered payoff iteratively.
Similarly, e estimates the moving average of the absolute
error of the payoff prediction. F' estimates the average of the
accuracy of the payoff prediction of a classifier relative to
other classifiers that are applicable at the same time.

2) Performance: The performance component presents the
overall XCS framework, shown in Figure 1. The population of
XCS starts with randomly generated classifiers or no classifier.
When an event occurs, out of the whole population [P], XCS
forms a match set [M] of classifiers which match the event.
Then, the system prediction is measured for each action. The
system prediction for each action is placed in the prediction
array for action selection. If no classifier matches, a covering
mechanism is applied to create classifiers that match each of
the possible actions and place them in [M]. The system selects
an action from the prediction array and forms an action set [A].
Finally, the chosen action is executed, and an environmental
payoff may be returned.

3) Reinforcement: In this component, the parameters of
classifiers in [A] are adapted in order to achieve higher
accuracy and to complete mappings of the problem space. The
procedure of updating parameters is

1) The errors are updated: €; < ¢; + B(|P — pj| — €;).

2) The predictions are updated: p; <— p; + S(|P — p;l).

3) The accuracy of a classifier £; is measured: k; « 0.1 x

exp[lna(e; — eo)/ej]./

4) A relative accuracy k; of each classifier is determined:

ki — ki) S k(A).
5) The fitness F; are updated: F; — F; + 3(k; — F}).

The definitions of symbols are
e « : The fall of rate in the fitness evaluation;
e [3: Learning rate for updating fitness, prediction, predic-
tion error, and action set size estimated in XCS classifiers;
e P : Environment return payoff;

e ¢; : Prediction error of classifier j;
e p; : Prediction of classifier j;
e kj : Accuracy of classifier j;

o I} : Fitness of classifier j.

Butz et al. [6] indicated that the operation is faster for simple
tasks if the prediction update comes before the error update,
but this may create problems for complex tasks. Butz and
Wilson [7] proposed that putting the error update before the
prediction update seems to work better in complex cases.

4) Discovery: The discovery component is used to generate
new classifiers. XCS executes a genetic algorithm (GA) on
the current action set [A] when the average time exceeds
a threshold 60,4,. GA usually uses one-point crossover and
bitwise mutation to generate new rules. Two classifiers are
selected with a probability proportional to their fitness values
first. After reproducing, crossing, and mutating the parent
classifiers, two offspring classifiers are generated. The result-
ing offspring are inserted into the population [P]. If the size
of population [P] reaches the bound, a proposed method by
Kovacs [8] can be adopted to determine the probability of
deleting classifiers and to remove the low-fitness classifier.

5) Macroclassifiers: Macroclassifiers are a type of classi-
fiers with the numerosity parameter num in XCS. A macro-
classifier is used to speed up processing and provide a more
perspicuous view of the population. Whenever XCS generates
a new classifier, at the initialization step or at later stages,
the population [P] is scanned to examine whether the new
classifier has the same condition and action as any existing
macroclassifier does. If so, the new classifier is not actually
inserted into the population, and the numerosity of the existing
macroclassifier is incremented by one. Otherwise, the new
classifier is added to [P] with its own numerosity field set to
one. Similarly, when a macroclassifier suffers a deletion, its
numerosity is decremented by one, instead of being actually
deleted. If the numerosity of a macroclassifier becomes zero,
the system removes the macroclassifier from [P)].

6) Covering and Subsumption: Covering and subsumption
are two important components of XCS. Covering is another
method to introduce new classifiers into the population. When
an environment event occurs and the match set does not
contain all possible actions defined for the environment, the
covering operation will generate classifiers to match this event
for improving the accuracy. The condition of the new classifier
created through covering is made to match the current event.
Each attribute in the condition is mutated to “don’t care” (#)
with a probability. Finally, the system puts the newly generated
classifier into the population.

In addition to introducing new classifiers into the popula-
tion, we also have to deal with rules of the same meaning in
XCS. The subsumption operation is designed to make a rule
that absorbs other rules if it is more general and to improve



the generalization capability of XCS. There are two forms
of subsumption, GA-subsumption and Action-subsumption. In
GA-subsumption, when new classifiers are generated, they are
examined to see whether their conditions are subsumed by
their parent classifiers or not. If the parent classifiers are more
general than the new classifiers, the new classifiers are sub-
sumed by the parents. The new classifiers will not be added to
[P], but the numerosity of the parent classifiers is incremented.
Otherwise, the system puts the new classifiers into [P]. Action-
subsumption is different from GA subsumption. Each action
set is searched for the most general classifier R. All other
classifiers in the set are compared to R to see whether R
subsumes them. The subsumed classifiers are deleted from [P].

7) Flow of XCS: Firstly, XCS initializes the rule set with
zero reward randomly. There are four steps for the rule
evaluation cycle. The steps are

1) The state of the environment is detected by detectors.

2) The system examines the condition part of each rule to
determine the match set.

3) The match set will be grouped into different sets based
on their own actions, and the prediction payoff for each
action is calculated to determinate the chosen action.

4) Effectors implement the action in the environment, get
the reward, and distribute it to the rules in the action set.

After a specified period of time, GA is executed to generate

new rules and delete unfit rules in the rule discovery cycle.
Wilson [3] indicated that they can find the classification rules
with high accuracy with this framework.

B. XCSI

Since many problems involve integer attributes, a variation
of XCS, called XCSI [5], for integer-typed problems is pro-
posed. The modification in XCSI includes the presentation,
mutation, covering, and subsumption. In XCSI, the presenta-
tion of the classifier condition part is changed from a string
of {0,1,#} to a concatenation of the interval predicates,
int; = (I;,u;), where [; and wu; are integers and denote the
lower bound and the upper bound. A classifier matches an
event x with attributes x; if and only if Vx; [; < x; < u;.

For the mutation operator in XCSI, Wilson indicated that the
best method to mutate an allele is adding a value +rand(my),
where my is a fixed integer, rand picks an integer randomly
from (0, mg], and the sign is selected equiprobably. The cover-
ing operator occurs if there is no classifier matches . In XCSI,
the new condition has components {lo, ug, ..., ly, un}, where
each [, = z; —rand;(r¢) and each u; = x; + rand;(rg). ro is
also a fixed integer and rand; picks an integer randomly from
[0,70]. An interval predicate ¢ subsumes another predicate j
if I; <l; and u; > ;. The subsumption of a classifier defined
if every interval predicate in the first classifier’s condition
subsumes the predicate in the second classifier’s condition.

III. XCS wITH BIT MASKS

As aforementioned, XCS is a promising methodology be-
cause of its versatility and capability. However, XCS is known
to generate too many rules, which lower the readability of the

resultant classification model. That is, the XCS user may be
unable to get the needed knowledge or useful information out
of the generated model.

XCS with bit masks is proposed in this study to handle such
a problem. The proposed mechanism is used to detect stable
building blocks in classifiers and to prevent crossover and
mutation operators from unnecessarily altering these building
blocks. Consequently, the resultant classification model needs
fewer rules than that evolved by the original XCS to achieve
the same level of accuracy.

In this section, we will firstly introduce the concept and
mechanism of bit masks into XCS. Then, we discuss how bit
masks are implemented in the XCS framework, followed by
describing how XCS with bit masks is applied in different
environments.

A. Representation

In order to introduce bit masks to XCS classifiers, the repre-
sentation of XCS rules is modified to make capable of finding
a set of stable building blocks composed of the attributes that
should not be altered. For this purpose, a parameter, bit masks
(BM), is added into the classifier representation as

< Classifier >::= < Condition >:< Action >:< BM >:
< Payoff prediction >:< Payoff error >:
< Fitness >

BM indicates the condition attributes that should not be altered
in mutation and/or crossover operators. Rules with BM will
be stabler than the standard XCS rules, and fewer classifiers
will be created when the mutation and crossover operation is
triggered. For example, if the rules of the condition and the
action are set as Table I, attributes B and D are determined
as stable building blocks in BM. Different from the standard
XCS, when the mutation and crossover operation occur, the
condition attributes in BM will not be altered to avoid gener-
ating redundant rules.

TABLE 1
EXAMPLE OF A BIT MASK DATA SET (BM = {B, D}).

| [A[B[C[D][E]Chas|
Event 1 0 1 0 1 2
Rulel 1 0 1 0 1 2
Rule2 # 10 1 0 1 2
Rule3 1 0O # 1|0 1 2
Rule4 1 0 1 0 | # 2

The purpose of BM is to prevent unnecessary alteration.
The rules generated by mutation and crossover operations in
the standard XCS may not match the original event and some
redundant rules might be created. Through the mechanism
of bit masks, rules with BM can prevent stable building
blocks from being altered. The collection of rules will strongly
support the input event and may cover more subset of cases.



1: procedure FIND STABLE BUILDING BLOCKS (clset)
2 clset: the current action set

3 for ¢ «— each condition attribute do

4 isStable « true

5: for j < each classifier in clset do

6 if ¢ of classifier j != ¢ of input then

7 1sStable «— false

8

9

end if

: end for
10: if isStable then
11: attribute ¢ is in a stable building block
12: else
13: attribute ¢ is not in a stable building block
14: end if
15: end for

16: end procedure

Fig. 2. Find Stable Building Blocks.

B. Algorithmic Components of XCS with Bit Masks

In XCS, each rule contains one condition and one action,
and the condition contains n attributes. Because of the relation
between conditions and actions, attributes also have influence
on actions. That is, when one attribute is changed, it may
produce a different action. The connection between attributes
and actions inspires the main idea of adopting bit masks. Given
an environmental state, a match set will be formed in the usual
way [9], and the action is chosen by the system. Once an action
is chosen, the system forms an action set which consists of the
classifiers in the match set advocating the chosen action. If the
chosen action is the same as the environmental action, each
attribute of the classifiers in the action set will be scanned.
For all &, if the k-th attribute of classifiers in the action set is
identical to the k-th attribute of the environmental input, the
k-th attribute will be considered belonging a stable building
block. The definition of variables and the pseudo code for
Find Stable Building Blocks are shown in Figure 2.

The set of attributes, considered as a stable building block,
called bit masks (BM). The current BM can be set to a
classifier if the BM of that classifier has not been set. If the BM
of a classifier has been set, it is modified by being compared
with the current BM. If the current k-th attribute is also in
the stable building block of the classifier, the k-th attribute
will be kept. Otherwise, the k-th attribute will be removed,
and the new, combined BM will be set to the classifier. The
definition of variables and the pseudo code for Set Stable
Building Blocks are shown in Figure 3.

The crossover and mutation operators in the GA component
are modified for handling BMs. For mutation, the attributes in
BM will not be mutated. For crossover, if the two condition
attributes are in both BMs, the attributes will be fixed, and the
other attributes will be exchanged to create offspring. The new
classifier will be inserted into the population. If the number
of classifiers is greater than that of the system events, the
compensating deletion occurs as in the standard XCS.

1: procedure PROCEDURE SET BIT MASK(cl, BM)
2: cl: classifier

3 BM: BM found in the current action set

4: cl.BM: BM of classifier cl

5: if classifier ¢/ has no BM then

6 cl.BM — BM

7 else

8 cl.BM «— BM N c¢l.BM

9: end if

10: end procedure

Fig. 3. Set Bit Mask
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Fig. 4. Framework of XCS with bit masks.

C. Framework of XCS with Bit Masks

The overall framework of XCS with bit masks is shown in
Figure 4. XCS with bit masks can be applied to problems in
many domains and categories. In this paper, we focus on the bit
mask mechanism and problems of classification. With the bit-
mask capable representation and the corresponding operations,
the flow of XCS with bit masks can be described as what
follows. Firstly, we consider the data set of a classification
problem as an environment. To simulate the occurrence of
events, data items of the data set to classify are selected
randomly or sequentially as the system input/event. The cov-
ering action on the match set is executed as the original XCS
does. Thus, action sets can be formed. The BM mechanism
is applied on the action set to detect stable building blocks
and to record stable building blocks in classifiers. When the
genetic algorithm component is triggered, the BM mechanism
will prevent the attributes contained in the BM from being
altered in mutation and crossover. Compared to the operations
conducted in the standard XCS, the BM mechanism may result
in generating fewer redundant rules.



IV. EXPERIMENTAL RESULTS

We employ XCS and XCS with bit masks to handle three
series of experiments and compare their performance, system
errors, and population sizes. Performance refers to the fraction
of the last 50 exploit trials that were correct. System error
refers to the average of the absolute difference between the
system prediction for the chosen action and the actual external
payoff, divided by the total payoff range, which is 1000 in this
study, over the last 50 exploit trials. Population size refers
to the number of macroclassifiers. We use the XCS system
implementation publicly available on the Internet [10]. The
XCS system is modified to integrate with the BM mechanism.
Each experiment is conducted for 200 independent runs, and
the averaged statistics are reported.

A. Experimental Datasets

1) Boolean Multiplexers: Firstly, we use XCS and XCS
with bit masks to tackle Boolean multiplexers of three different
sizes: 6 bits, 11 bits, and 20 bits. Boolean multiplexers are
defined for binary strings of length ¢ = k + 2*. The function
value is determined by treating the first k bits as an address
that indexes into the remaining 2k bits, and the value of the
indexed bit, either O or 1, is the function value.

2) Integer Test Functions: Secondly, we use XCS and XCS
with bit masks to deal with integer datasets. The integer
datasets are synthetic oblique data sets [5]. The first dataset,
Random-Data2 is constructed by random vectors (z1,z3),
with each z; a random integer from [1,10]. The outcome
o(x1,x2) for each vector is defined as

1 + > 11
o(z1,w2) = { o1 = (1)

0 Otherwise
An instance of Random-Data2 is composed by a vector and
its outcome. The second integer dataset, Random-Data9, is
constructed similar to Random-Data2 as follows. Random-
Data9 has 9 dimensions, and the expression determining the
outcome is defined as

o(7) = { 0 Otherwise 2)
3) Wisconsin Breast Cancer (WBC): Finally, we use XCS
and XCS with bit masks to handle a real-world problem, which
is the Wisconsin Breast Cancer (WBC) database, donated to
the UCI repository [11] by Prof. Olvi Mangasarian. WBC
contains 699 instances collected over time by Dr. William H.
Wolberg. Each instance in WBC has 9 attributes which are
Clump Thickness, Uniformity of Cell Size, Uniformity of Cell
Shape, Marginal Adhesion, Single Epithelial Cell Size, Bare
Nuclei, Bland Chromatin, Normal Nucleoli, and Mitoses. Each
attribute has a value between 1 and 10 inclusive. Data rows
look like
1000025,5,1,1,1,2,1,3,1,1,2
1017122,8,10,10,8,7,10,9,7,1,4
1016277,6,8,8,1,3,4,3,7,1,2
The first number is a label, the following 9 numbers are the

attributes, and the last number is the class level, where 2 stands
for Benign and 4 for Malignant.

TABLE I
EXPERIMENTAL PARAMETERS FOR BOOLEAN MULTIPLEXERS

l | N [a B[] v [Oufelx [ n [Py]
6-bit || 400 [ 0.1 [ 0.2 [ 095 | 25 [ 10 [ 0.8 | 0.04 | 05
Ti-bit || 800 | 0.1 | 0.2 | 0.95 | 25 | 10 | 0.8 | 0.04 | 05
20-bit || 1600 | 0.1 | 02 | 0.95 | 25 | 10 | 0.8 | 0.04 | 0.5

B. Results for Boolean Multiplexers

Boolean multiplexers of three different sizes, 6-bits, 11-bits,
and 20-bits, are experimented on in this series of experiments,
and the parameters are listed in Table II.

1) 6-bit Multiplexer: Figure 5(a) shows the experimental
results for the 6-bit Boolean multiplexer. As we can observe,
XCS gets approximately 100% performance in around 8000
exploit trails, and XCS with bit masks also gets approximately
100% performance in around 8000 exploit trails. For the
system error, XCS gets approximately 0.5% system error in
around 8000 exploit trails, and XCS with bit masks gets
approximately 0.3% system error in around 8000 exploit trails.
Finally, XCS evolves a population with 29.47 classifiers on
average, and XCS with bit masks evolves a population with
25.01 classifiers on average.

We can find that XCS and XCS with bit masks can achieve
similar performance and system error rate the number of
exploit trails is appropriate. Hence, that XCS and XCS with
bit masks have the same speed of convergence is shown, and
the effect of integrating bit masks into XCS appears. XCS
with bit masks can save on average 15.13% of the population
size for the 6-bit multiplexer over 200 runs.

2) 11-bit Multiplexer: Figure 5(b) shows the results for the
11-bit Boolean multiplexer. From the figure, the performance
of XCS reaches approximately 99% in around 9000 exploit
trails, and the performance of XCS with bit masks also reaches
approximately 99% in around 90000 exploit trails. The system
error of XCS gets approximately 1% in around 13000 exploit
trails, and the system error of XCS with bit masks gets
approximately 0.8% in around 13000 exploit trails. For the
population size, XCS creates 81.51 classifiers on average, and
XCS with bit masks creates 74.85 classifiers on average.

From the experimental results, we can know that the out-
come for the 11-bit Boolean multiplexer is similar to that for
the 6-bit one. In this experiment, XCS with bit masks saves
on average 8.17% of the population size over 200 runs.

3) 20-bit Multiplexer: Figure 5(c) demonstrates the exper-
imental results for the 20-bit Boolean multiplexer. From the
result, XCS gets approximately 99% performance in around
39000 exploit trails, and XCS with bit masks also gets approx-
imately 99% performance in around 39000 exploit trails. XCS
gets approximately 1% system error in around 60500 exploit
trails, and XCS with bit masks also gets approximately 1%
system error in around 60500 exploit trails. For the population
size, XCS evolves a population with 261.52 classifiers on
average, and XCS with bit masks evolves a population with
247.67 classifiers on average. XCS with bit masks saves on
average 5.30% of the population size.
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Fig. 5. Results for Boolean multiplexers averaged over 200 runs. Explore
problems are in exploit trails divided by 50.

TABLE III
EXPERIMENTAL PARAMETERS FOR INTEGER TEST FUNCTIONS

l [ NTalBT1 v [Oule[x[ nr [P]
RD2 [[ 400 [ 0.1 [ 0.2 [ 0.95 | 25 | 10 [ 0.8 [ 0.04 [ 05
RD9 || 800 | 0.1 | 0.2 | 0.95 | 25 | 10 | 0.8 | 0.04 | 05

C. Results for Integer Test Functions

Two integer datasets, Random-Data2 and Random-
Data9 [5], are experimented on in this series of experiments,
and the parameters are listed in Table III.

1) Random-Data2: Figure 6(a) shows the experimental
results for the 2-dimensional integer dataset, Random-Data?2.
XCS gets approximately 94% performance in around 26000
exploit trails, and XCS with bit masks also gets approximately
94% performance in around 26000 exploit trails. For the
system error, XCS gets approximately 10% system error in
around 18000 exploit trails, and XCS with bit masks also
gets approximately 10% system error in around 18000 exploit
trails. For the population size, XCS evolves a population with
51.3 classifiers on average, and XCS with bit masks evolves
a population with 32.73 classifiers on average.

Based on the experimental results for Random-Data2, we
can find that XCS and XCS with bit masks provide similar
performance and system error rate on handling the synthetic
oblique data. However, for the population size, the effect
of adopting bit masks becomes clear and significant in this
experiment. As we can see, XCS with bit masks saves on
average 36.20% of the population size over 200 runs.

2) Random-Data9: Figure 6(b) demonstrates the experi-
mental results for the 9-dimensional integer dataset, Random-
Data9. Firstly, For the performance, XCS gets approximately
88.5% performance in around 37000 exploit trails, and XCS
with bit mask gets approximately 87% performance in around
37000 exploit trails. Secondly, XCS gets approximately 23%
system error in around 26000 exploit trails, and XCS with bit
masks gets approximately 25% system error in 26000 exploit
trails. XCS evolves a population with 542.38 classifiers on
average, and XCS with bit masks evolves a population with
356.23 classifiers on average. We can observe that XCS with
bit masks sacrifices little performance and saves on average
34.32% of the population size over 200 runs.

D. Results for the WBC database

Figure 7 shows the experimental results for the WBC
database. XCS gets approximately 95% performance in around
7000 exploit trails, and XCS with bit masks also gets ap-
proximately 95% performance in around 7000 exploit trails.
For the system error, XCS gets approximately 10% system
error in around 7000 exploit trails, and XCS with bit masks
also gets approximately 10% system error in around 7000
exploit trails. For the population size, XCS finally evolves a
population with 271.23 classifiers on average, and XCS with
bit masks finally evolves a population with 94.58 classifiers on
average. Parameters of the experiment are N = 400, a = 0.1,
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Based on the experimental results for the WBC database,
we can find that XCS and XCS with bit masks obtain similar
performance and system error rate, while for the population
size, the effect of adopting bit masks becomes remarkably
significant that XCS with bit masks saves on average 65.13%
of the population size over 200 runs.

In order to further justify the results on the WBC database,
a tenfold cross-validation test is conducted on the WBC
database. Table IV shows the results. We can observe that
on average, XCS gets an accuracy of 93.20%, and XCS
with bit masks gets 92.50%. The cross-validation reveals
that compared to XCS, XCS with bit masks trades in an
insignificant amount of performance for a significant save on
the population size.
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Fig. 7. Experimental results for the WBC database averaged over 200 runs.
Population sizes are divided by 350. Explore problems are in exploit trails
divided by 100.

TABLE IV
RESULTS OF A TENFOLD CROSS-VALIDATION ON THE WBC DATABASE.

[ [[ XCS ] XCS with bit masks |

# 0.94 0.90
B || 094 091
#B || 097 0.94
# || 091 0.93
#_ || 090 0.96
# || 096 091
# || 096 0.90
#_ || 090 091
# | 093 0.96
#0 || 091 0.93

[Avg. ]| 09320 | 09250

E. Discussion

Based on the experiment results presented in the previous
sections, we can find two interesting points. The bit mask
mechanism can help XCS to save the population size more in
integer domains than it can in Boolean domains. As for the
6-bit, 11-bit, and 20-bit Boolean multiplexers, XCS with bit
masks only saves less than 20% of the population size, while
in integer domains, it saves more than 30%, or even more than
60% for the WBC database, of the population size.

Thus, we can know that the difference between Boolean
attributes and integer attributes is quite significant in classi-
fication problems. When XCS is applied to handle Boolean
multiplexers, the representation of rules is {0, 1, #}, and it is
relatively easy to for the classification system to gain knowl-
edge from the environment by matching events and modifying
rules. However, in integer domains, the rule representation is
int; = (l;,u;), where l; and u; are integers, denoting the
lower bound and the upper bound. A rule matches an event
z if and only if |; < z; < w; for all attribute z;. It is
easy to see that flexibility embedded in the representation not
only help to handle the high cardinality of integers but also



introduces difficulties for the classification system to learn.
When integrating the bit mask mechanism into XCS, stable
building blocks within rules are preserved. As a consequence,
redundant rules are not necessary in this case to counter
the destructive effect of crossover/mutation operators, and the
number of rules can be greatly reduced.

Furthermore, it is worth noting that the bit mask mechanism
save 65% rules for the WBC database but saves only 30-40%
rules in the two synthetic oblique integer datasets. According
to the idea of adopting bit masks in XCS, such a situation
is quite reasonable. The class level of the synthetic datasets,
Random-Data2 and Random-Data9, is solely determined by
the sum of the integer attributes. If the sum of attributes
is greater than the given threshold, the class level is set
to 1 and otherwise 0. The attributes under such a class-
attribute relationship actually have no particular relationship
among subsets of attributes. However, in the case of the WBC
database, it is believed that the class may be determined by
certain combinations of attributes. Since XCS with bit masks
has mechanisms to capture and model relationships among
subsets of attributes, fewer rules are needed to describe the
total class-attribute mapping of this problem. It is the reason
why XCS with bit masks works better on the WBC database
than it does on Random-Data2 and Random-Data9.

V. CONCLUSIONS

In this paper, we firstly reviewed XCS, followed by the
introduction of the concept of bit masks. After integrating bit
masks into XCS, we described the purpose of the mechanism
of bit masks and show the framework of XCS with bit masks in
detail. Finally, we implemented XCS with bit masks by mod-
ifying an existing XCS implementation provided by Martin
V. Butz and conducted experiments on Boolean multiplexers,
integer datasets, and a real-world problem by using both XCS
and XCS with bit masks. After obtaining and observing the
experimental results, two major points were discussed. In our
study, XCS with bit masks performed better in integer domains
than it did in Boolean domains. Since the mechanism of
bit masks is to capture and model the relationship among
attributes and to help XCS construct the mapping between
attributes and classes, XCS with bit masks handled the real-
world data better than it did the synthetic oblique datasets.
The experimental results confirmed that the mechanism of bit
masks can detect stable building blocks to avoid unnecessary

alteration and thus deliver classification models of a slightly
lower accuracy with much fewer rules.

Much work along this line of research is needed, in a
variety of environments, to gain better understanding of the
technique of using bit masks. In particular, bit masks do not
deliver better performance in simple datasets such as Boolean
multiplexers. There may be other ways to assist bit masks
to improve the XCS framework. In addition to Boolean and
integer datasets, real-world datasets should also be carefully
examined. As for the bit mask itself, some research topics and
directions, including theoretical understanding and algorithmic

improvement, are waiting to be explored. Studies relating to
these topics should be continuously pursued and conducted

in order to develop classification systems that are not only
feasible in theory but also viable in practice to further advance
all the related domains and disciplines.
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ABSTRACT—

Estimation of distribution algorithms (EDAs) are a class of evolutionary algorithms which can be
regarded as abstraction of genetic algorithms (GAs) because in the design of EDAs, the population,
one of the GA distinctive features, is replaced by probabilistic models/distributions. Building and
sampling from the models substitute for the common genetic operators, such as crossover and
mutation. Due to their excellent optimization performance, EDAs have been intensively studied and
extensively applied in recent years. In order to interest more people to join the research of EDAs,
this paper plays as an entry level introduction to EDAs. It starts with introducing the origination and
basic ideas of EDAs, followed by presenting the current EDA frameworks, which are broadly
applied in many scientific and engineering disciplines. Finally, this paper also describes some
ongoing topics and potential directions in the hope that readers may get further insights into EDAs.

Key Words: Estimation of distribution algorithm, probabilistic model building genetic algorithm,
global optimization, evolutionary algorithm, evolutionary computation, computational intelligence.

1. INTRODUCTION

Genetic algorithms (GAs) were proposed by Holland [1] with the inspiration of Darwinian view on the
evolutionary mechanisms in nature. They were initially designed for generating classifiers in learning
classifier systems as well as handling combinatorial optimization problems. Brought to the attention of
many researchers by Goldberg’s book [2], genetic algorithms have been widely and successfully applied to
solving all kinds of search and optimization problems existing in numerous disciplines for the past decades.
The proposal of genetic algorithms is remarkably intriguing because it strongly connects several seemingly
not-so-related fields, such as biology, mathematical programming (optimization), artificial intelligence, etc.,
places itself in a unique position among these fields to stir innovations, and makes a major contribution to
the creation of evolutionary computation. Similar to the progress of most scientific and engineering
development, soon after its birth, the GA taskforce splits and focuses on topics of different origins and
requirements. Some researchers explore potential applications of GAs, while others try to improve GA
performance by incorporating natural, biological mechanisms or by advancing algorithmic designs with
mathematical techniques. Among these attempts to devise better genetic algorithms or, more broadly,
evolutionary algorithms, is the development of estimation of distribution algorithms.

By focusing on the performance and discarding the biological plausibility, estimation of distribution
algorithms (EDAs) successfully achieve the design goal and can be viewed as abstraction of GAs because
in EDAs, the population, one of the GA distinctive features, is replaced by some mathematical construction,
and genetic operators are correspondingly changed to work with the adopted mathematical construction.
According to the traditional GA performance indicator, function evaluations vs. solution quality, EDAs
outperform GAs in most cases because the design of EDAs makes the search explicitly centralized by
processing global statistics. Even if the significant computational cost of the mathematical construction is
taken into consideration, the performance of EDAs is still usually superior to that of GAs. Thanks to their
desirable features and properties, EDAs have been studied, improved, and broadly utilized for more than
fifteen years. Given their importance in evolutionary computation and usefulness in application domains,
an entry level introduction to EDAs is needed for those interested in getting familiar with and utilizing
EDAs in a short time. Consequently, this paper is written to fulfill such a purpose. In particular, basic ideas,
existing frameworks, and potential research directions of EDAs are briefly described. Note that this paper is
not intended to be a complete survey or to provide details of EDAs. Interested readers may refer to [3, 4].
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(a) Genetic Algorithm (b) Estimation of Distribution Algorithm
Figure. 1 Diagrams for a simple genetic algorithm and a basic estimation of distribution algorithm

This paper is organized as follows. Section 2 introduces the origination and basic ideas of EDAs, and
section 3 presents existing EDA frameworks according the adopted mathematical construction. Section 4
describes some of the recent research issues of EDAs as the future directions, followed by section 5 which
summarizes and concludes this paper.

2. BASIC IDEAS AND ORIGINATION

In this section, we will start with revisiting genetic algorithms and presenting the basic ideas of
estimation of distribution algorithms, followed by a brief history of estimation of distribution algorithms.

2.1 Genetic Algorithms

Genetic algorithms are a class of evolutionary algorithms developed for conducting search and
optimization by mimicking the evolutionary process in biology. GAs, use a population of solutions, called
individuals, to gather the information regarding the search space and to implicitly process the statistics [3]
in order to find the optimal solutions. Figure 1(a) shows a genetic algorithm in its simplest form. In the
beginning, a solution population is initialized by random generation. Each of the individuals is evaluated by
the fitness function to indicate how well it “fit” the environment, i.e., the optimization problem at hand.
The individuals with better fitness have better chances to reproduce their offspring, and the parental
selection process implements the idea of natural selection on the procreation side. The process to create
new individuals is designed by emulating the recombination (crossover) and alteration (mutation) of
genetic materials. After the next generation of individuals is created, each individual is also evaluated by
the fitness function, and the GA procedure repeats until certain stop criterion is satisfied. The operation can
be considered as explicitly sampling the search space and implicitly exploiting the obtained information.

2.2 Probabilistic Models vs. Populations

As we can see in Figure 1(a), the components of which the functionality is implicitly processing and
exploiting the information, i.e., the individuals, in a distributed manner are identified by a dashed box.
Discarding the biological plausibility, one possible algorithmic way to improve GA performance is to make
the implicit mechanism explicit. In order to achieve the explicit processing of the obtained information,
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probabilistic models are the chosen mathematical construction to “describe” populations. Since the process
to find a probabilistic model for a given population is to estimate the probabilistic distributions on decision
variables, such algorithms are called estimation of distribution algorithms, or sometimes, probabilistic
model building genetic algorithms (PMBGAs). After gathering and mining the information existing in the
form of individuals, the offspring individuals are then created by sampling the built probabilistic model to
implement the process of information exploitation. Figure 1(b) shows an EDA in its simplest form. We can
see between Figure 1(a) and Figure 1(b) that the key differences between GAs and EDAs are using
probabilistic distributions to model populations and replacing genetic operators with the functionally
equivalent mechanisms—probabilistic model building and sampling.

2.3 Estimation of Distribution Algorithms

There have been numerous variants of estimation of distribution algorithms proposed in the literature.
Some of them adopt probabilistic models of different types or complexities, while others employ different
techniques to build model. All these studies and developments on estimation of distribution algorithms
started after the proposal of population-based incremental learning (PBIL) by Baluja [4] in 1994, while the
name of “estimation of distribution algorithms” was firstly proposed by H. Miihlenbein and G. Paal3 [5] in
1996. PBIL uses a probability vector to replace the population. Slightly different from most existing EDAs
in which the probabilistic model is built from scratch at every generation as shown in Figure 1(b), PBIL
retains some memory or experience of which the weight can be adjusted by the user. If the weight is set to
zero, PBIL becomes a commonly structured EDA which is exactly the univariate marginal distribution
algorithm (UMDA) proposed by Miihlenbein in [6] 1997. Early studies on EDAs began with simple
probabilistic models of which the decision variables of optimization problems were assumed independent
of each other. More and more complicated probabilistic models were used in the follow-up work along this
line, which will be discussed in the following section.

3. EXISTING EDA FRAMEWORKS

This section will introduce some popular EDA frameworks proposed in the literature and widely used
in both research and practice. Since probabilistic models are the key component in EDAs, we will introduce
the EDAs employing simple models first and then those adopting complex models. Although the EDAs that
adopt complex models usually provide excellent performance, one must keep in mind that complex models
themselves may induce spurious variable relationships. If such spurious relationships become an obstacle
which prevents the EDA from solving problems, EDAs with simpler models, i.e., more suitable for the
problem structure, should be used to obtain better performance. Because the frameworks described in this
section will be only a fraction of all existing EDAs, interested readers should consult other materials [7, 8].

3.1 All Variables Are Considered Independent

The simplest, reasonable probabilistic model to work with EDAs is assuming that no interaction exists
between variables. EDAs employing such a model estimate the probabilistic distributions of values in
different ways, including PBIL [4], UMDA [6], and the compact genetic algorithm (cGA) [9]. These EDAs
work very well on problems composed of building blocks of order one and may encounter difficulties when
facing problems consisting of longer, misleading building blocks.

3.2 Interactions between Two Variables Are Considered

In order to take into account the interactions between variables, probabilistic models considering
pairwise interactions are intuitive choices. The mutual information maximization for input clustering
(MIMIC) [10] algorithm assumes that the pairs of interacting variables are chained by their relationships,
while the combining optimizers with mutual information trees (COMIT) [11] algorithm models the all the
pairwise relationships with a dependency tree. The bivariate marginal distribution algorithm (BMDA) [12]
further considers that all the pairwise relationships can be modeled with several independent dependency
trees, i.e., a forest.

3.3 Interactions among More Than Two Variables Are Considered
Finally, the probabilistic models considering multivariate dependencies are adopted in EDAs. As a rule
of thumb, EDAs with more general, complicated probabilistic models are able to handle more difficult



problems as long as the adopted models do not induce harmful spurious dependencies. The extended
compact genetic algorithm (ECGA) clusters variables into separate linkage groups and considers the joint
distribution for each group. With the help of human experts, the factorized distribution algorithm (FDA)
utilizes a fixed model as the problem structure and provides excellent, theoretically proven performance.
Adopting Bayesian networks as the probabilistic model, the Bayesian optimization algorithm (BOA) [13]
and the estimation of Bayesian networks algorithm (EBNA) [14] uses different criteria to judge the quality
of candidate Bayesian networks.

4. ISSUES AND FUTURE DIRECTIONS

In this section, we will describe several important research issues and potential future directions of
EDAs. Because the design of EDAs is based on the properties and characteristics of probabilistic models,
knowing the intrinsically embedded limitations and reducing the computational cost are no doubt essential.
Moreover, obtaining information by examining the built models and hybridizing EDAs with techniques of
other origins are promising research directions. Please note that the materials included in this section are far
from complete. Many other topics worth pursuing are available in the recent literature.

4.1 Can Models Be Misleading Or Always Partially Meaningful?

Since probabilistic models are used in EDAs as tools for optimization, an obvious question rises: Is it
possible that we build an appropriate probabilistic model according to a given population, while the built
model leads us away from the optimal solution? This question is about the intrinsic properties of the
problems that we want to solve by using EDAs. If some problems upon which the probabilistic model built
correctly is actually misleading, EDAs, no matter what kinds of probabilistic models are adopted, will not
be able to handle these problems. Coffin and Smith [15, 16] investigated whether the parity functions are
such deal breakers. Furthermore, Chen and Yu [17] theorized the difficulty of probabilistic model building
with mathematical formalization and obtained certain theoretical results. Another question regarding
problem intrinsic properties is: Is it possible that, for certain problems, the built model is always partially
meaningful? Chuang and Chen [18, 19] demonstrated that the problems composed of disparate importance
weights might render EDAs building partially correct models at any time. In addition to proposing the
concepts of linkage sensibility and effective distributions, they provided a technique to work with ECGA.

4.2 Can Models Be Built More Easily?

The main computational cost of EDAs is apparently caused by building probabilistic models. Research
along this line is always active and important. To know EDAs better, Chen et al. [20] analyzed the average
time complexity of EDAs. Techniques that can build models more efficiently were proposed by Ding et al.
[21], Echegoyen et al. [22], and Iclanzan et al [23]. For BMDA, probability model migration [24] and
aggregation [25] were proposed to be used in a parallel configuration. For BOA, in order to reduce the
model building cost, previously built Bayesian networks, were utilized to predict next network structures
[26, 27] or were viewed as a prototype for incremental changes [28].

4.3 Can Models Provide Useful Information?

After building and using the probabilistic models, it seems wasteful to put the models aside. As a
consequence, looking into the built probabilistic models to collect useful information is worth trying. In
addition to getting information for help building the subsequent models as aforementioned [26, 27],
Santana et al. [29] tried to conduct data mining on the built probabilistic models, and Echegoyen et al. [30]
investigated the interaction as well as relationship between the optimization problem and the probabilistic
model via analyzing the probability to the optimal solutions.

4.4 Can EDAs Be Hybridized with Other Techniques?

A common feature of evolutionary algorithms is their flexibility to work or to interface with all kinds
of methods from other realms. EDAs are no exception. In order to enhance EDAs for different purposes, a
host of mechanisms, methodologies, and frameworks have been integrated, including multi-objective
optimization [31, 32], niching [33], adaptive variance scaling [34], Spearman’s rank correlation index [35],
particle swarm optimization [36], etc.



5. CONCLUSIONS

In this paper, estimation of distribution algorithms (EDAs) as a popular class of evolutionary
algorithms have been reviewed. EDAs can be regarded as abstraction of genetic algorithms (GAs) because
in EDAs, the population, one of the GA distinctive features, is replaced by probabilistic models, and the
common genetic operators, e.g., crossover, mutation, etc., are replaced by building and sampling from the
adopted probabilistic model. By pursuing optimization performance instead of insisting on biological
plausibility, EDAs successfully accomplish their design goal and become more and more popular in recent
years. This paper was written with the intention to provide an entry level introduction to EDAs for
researchers and practitioners who are in need and interested in knowing and using EDAs in a short time.
Basic ideas, existing frameworks, and potential research directions of EDAs were briefly described in the
hope that more and more taskforces will join the research as well as applications of EDAs.
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Abstract— Luby Transform code (LT code) has been a popular ~ Luby Transform code (LT code) [3] proposed by Luby
and practical technique in the field of channel coding since its jn 2002 is the first practical framework of fountain code.
proposal. One of the key components of LT code is a degree o noye| coding mechanism based on a specifically designed

distribution which is used to determine the relationship between d distribution i dinthe i ducti f LT cod
source data and codewords. Luby in his proposal suggested two egree distribution is proposed In the introduction o coae.

general methods to construct feasible degree distributions. Such The performance of LT code totally depends on the adopted
general designs work appropriately in typical situations but not degree distribution. In his proposal, Luby deigned general
optimally in most cases. To explore the full potential of LT code, methods to construct an appropriate degree distribution to
inl thisr\]/vork, we make tt;]e ert atte(;npt LO introduce evglutionary be used in LT code, and the degree distribution was named
algorithms to optimize the degree distribution in LT code. Degree . L . . . o
digtributions arg encoded as ?eal-valued vectors and evaluat%d by sol!ton d!str!but!on. Via theorengal ana!yS|s, the feasibility of
numerical simulation of LT code. For applications of different = Soliton distribution was proven in the literature [4]. Recently,
natures, two objectives are implemented to search good degreeresearchers started to optimize the degree distribution in order
distributions with different decoding behavior. Compared with  to improve the performance of LT code [5], [6], but the ob-
the original design, the experimental results are quite promising tained improvement is quite limited. In these studies, only the

and demonstrate that the degree distribution can be customized . Lo .
for different purposes. In addition to manually adjusting the parameters of soliton distribution were tuned and considered

degree distribution as the common practice, the work presented @s decision variables, while in the present work, we directly
in this paper provides an efficient alternative approach to use consider the degree distribution itself as our decision variables.
and adapt LT code for both practitioners and researchers. Based on LT code, an improved framework cRlaptor
codes[7], [8] was proposed by Shokrollahi. Shokrollahi in-
tegrated LT code with a pre-coding layer. Compared with
Digital fountain code [1] is a popular class of erasurpure LT code, the design of Raptor codes requires a degree
code in the field of communication. The concept of fountaidistribution, calledweakened LT, with some very different
code was first introduced by Byers et al. [2] in 1998. Firstljpehavior and properties. Several instances were given in [9]
source data are divided into several pieces with an identi¢at certain particular sizes of source symbols, but there are no
length. The length of each piece can be any bits or everisting guidelines regarding how to construct suitable degree
several bytes. Sender generates encoding packets, or callisttibutions for other sizes. In this regard, we demonstrate
encoding symbols when the packet length is one bit, ltlge use of optimization techniques proposed in evolutionary
some patrticular encoding operation. The encoding and sendaagnputation for generating degree distributions of different,
procedure may repeat independently and unlimitedly. Infiniteesired properties.
encoding packets are sent out continuously like a fountain,In this paper, according to our limited knowledge, we
which is an important property of fountain code caltateless. make the first attempt to utilize evolutionary computation
If a receiver is interested in receiving the data, it can receitechniques to optimize the degree distribution for LT code and
the packet flow at any time and collect the packets in amemonstrate the feasibility of customizing degree distributions
combination. Once sufficient packets, of which the amoufdr different purposes. Particularly, we adopt the covariance
is usually slightly more than that of the source data, areatrix adaptation evolution strategy (CMA-ES) [10] to di-
obtained, the source data can be fully recovered. During thestly optimize degree distributions for two goals: reducing
process, no further communication is required between senttee overhead and lowering the failure rate. The experimental
and receiver. Encoding information can be embedded in eaelsults are remarkably promising and show that significantly
packet. As a result, digital fountain code is especially useftéduced overheads and lower failure rates can be achieved for
in broadcast or other situations in which back channels are wi- code with the obtained degree distribution for a wide range
available. Moreover, because source data can be reconstrucfesource symbol sizes.
no matter which packets are received, fountain code is alsoThe remainder of this paper is organized as follows. Sec-
considered reliable to handle the problem of packet loss. tion Il describes the detailed operations of LT code, including
the coding process and soliton distribution proposed by Luby.

Chih-Ming Chen, Ying-ping Chen, Tzu-Ching Shen, and John K. Zagection |1l introduces the evolutionary algorithm used in this
are with the Department of Computer Science, National Chiao Tung Uni-

versity, 1001 Ta Hsueh Road, Hsinchu, TAIWAN (email: ccming@nclab.tvpap?r' Experiments anq results are given in section IV. Fina"y'
ypchen@nclab.tw, Stecko.cs97g@nctu.edu.tw, jkzao@cs.nctu.edu.tw).  Section V concludes this paper.
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Il. LT coDE

Luby introduced a new fountain code framework and gave
the detail of coding operation in 2002 [3]. Similar to other
fountain codes, source symbols are randomly chosen to be
encoded into codewords (encoding symbols). The encoding
operation is achieved by a simple boolean operaX@®R
The relation between source data and encoding symbols can
be modeled as a sparse bipartite graph. A critical change
in LT code is to decide the degree of each vertex in the
bipartite graph with a probability distribution. The cowtigity

Distribution

can be recorded as a encoding matrix and each column ¢ ° “ Degree ® 3"
represents an encoding symbol. Originaltysource symbols (a) Ideal soliton distribution

can be fully decoding by Gaussian elimination if there ekist

linearly independent columns. However, Gaussian elironat 05

is prohibitively expensive for its computational complgxof 045

O(k3). Therefore, the belief propagation (BP) algorithm [11] o4

is introduced to replace the expensive Gaussian elimimétio

the LT decoding phase. Overhead of coding is used to trade
computing time because belief propagation is more efficient
but more encoding symbols are needed for successful decod-
ing. Moreover, the performance of LT code is very sensitive t
the degree distribution. A good degree distribution is ssagy

to co-operate with belief propagation. Luby suggestedmoli

Distribution

distributions for LT framework in his proposal of LT code. 5 5 10 = % P %0
According to the mathematical verification, the propertiés Degree

soliton distribution have been confirmed. In this sectiatads (b) Robust soliton distribution

of coding operations and soliton distributions are desctib Fig. 1

EXAMPLE OF SOLITON DISTRIBUTIONS(K = 30)

A. Encoding and decoding

Given the source data, we suppose that the source data
can be cut intok source symbols with the same length of
¢ bits. Before every codeword is generated, a degieis important because the decoding process fails when theerippl
chosen at random according to the adopted degree distnibutfjueue is empty and some source symbols remain uncovered.
p(d), wherel < d < k and Zfl:l p(d) = 1. The degreel In other words, more encoding symbols are required in the
decides the how many distinct source symbols will be chosdecoding process. Ideally, the process succeeds if alceour
to compose an encoding symbal. source symbols, called symbols are recovered at the end of the decoding process.
neighbors are chosen uniformly randomly and accumulated
by XOR. In the design of LT code, random numbers pla
an essential role during the encoding process. The approacfihe behavior of LT code is completely determined by the
employed by LT code for a sender to inform receivers of aflegree distributiory(d), and the number of encoding symbols
encoding information is achieved by synchronizing a randoraceived,K, by receiver. The overhead= K/k denotes the
number generator with a specified random number seed. performance of LT code, and depends on a given degree

At the receiver side, wheR encoding symbols were arriveddistribution. Based on his theoretical analysis, Luby psgul
which is usually slightly larger that, belief propagation is the ideal soliton distribution of which the overhead is 1g th
used to reconstruct the source data step by step. All engodirest performance, in the ideal case.
symbols are initially covered in the beginning. For the firddeal soliton distributionp(d):
step, all encoding symbols with only one neighbor can be ( 1 for d=1

p(d) = {

. Soliton distribution

directly released to recover their unique neighbor. When a 1 for d=2.3 o (1)
source symbol has been recovered but not processed, it is d(d—1) S omey

called aripple and will be stored in a queue. At eachdeal soliton distribution guarantees that all the releasdb-
subsequent step, ripples are popped as a processing tasgetabilities are identical td /k at each subsequent step. Hence,
by one. A ripple is removed from all encoding symbols whicthere is exactly one expected ripple generated at each pro-
have it as neighbor. If an encoding symbols has only omessing step when the encoding symbol size:.isAfter k
remaining neighbor after the removing, the releasing actiprocessing step, the source data can be ideally recovered.
repeats and may produce new ripples to maintain a stabiig. 1(a) shows an example of ideal soliton distribution for
size of the queue. Maintaining the size of the ripple queue fis= 30.
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However, ideal soliton distribution works poorly in pragi The covariance matrix adaptation evolution strategy (CMA-
Belief propagation may be suspended by a small varianE&) [10] was firstly introduced by Hansen in 1996 and is one
of the stochastic encoding/decoding situation in which naf the most popular real-parameter optimization methods in
ripple exists, because the expected ripple size is only dnee&olutionary computation. There are some variants of CMA-
any moment. According to the theory of random walk, thES proposed in the literature [12], [13], [14]. The searciitgb
probability with which a random walk of length deviates of CMA-ES has been theoretically analyzed and empirically
from its mean by more thaim(k/6)Vvk is at mostd. It is a verified on certain classic optimization problems, such els-A
baseline of ripple sizes which must be maintained to corapléey’s function, Griewank’s function, and Rastrigin’s fuion.
the decoding process. Hence, in the same paper by LubynaCMA-ES, only a few algorithmic parameters need to be
modified version calledobust soliton distributionu(d), was decided because CMA-ES inherits the mechanism to adapt

also proposed. strategic parameters during the evolutionary processhim t
Robust soliton distribution(d): work, CMA-ES is utilized to optimize the degree distributio
in LT framework for a wide range ok, the size of source
R = C'ln(k/‘s)\/% symbols. In the remainder of this section, the way to adopt
CMA-ES to handle the optimization of degree distributions
R/ik for d=1,...,k/R—1 are presented in detail.
m(d) = é%ln(R/é)/k Ig: Z; Z;gjL Lk - @ A. Decision Variables

The first step to use an evolutionary algorithm is to encode
the decision variables of the optimization problem. It is

g = Zk:(p(d) +7(d)) not difficult in this study because a degree distribution can
= directly form a real-number vector. In the evaluation phase
p(d) + 7(d) a real-number vector of arbitrary values can be interpreted

wd) = B — ford=1,....k (3) as a probability distribution, i.e., a degree distribufievith

normalization. Such an operation does not change the fea-

c andJ are two parameters for tuning robust soliton distribusibility, although the problem complexity may be slightly
tion. c controls the mean of the degree distribution. Smalléficreased. The definition of degree distributions tells hat t
values ofc increase the probability of low degrees and larger < k. For a specific source symbol size obviously the
ones decrease if.estimates that there ahe(k/5)v/k expected problem dimensions is at mo&t However, according to the
ripple size as described. Fig. 1(b) is an example of robust encoding/decoding operations, we usually do not need a
soliton distribution withc = 0.1 and§ = 0.1. Robust soliton non-zero probability on every single degree. Observing the
distribution can ensure that onlif = & + O(In*(k/5)Vk) soliton distributions and considering the belief propagyat
encoding symbols are required to recover the source date Wilgorithm, there is no necessary degree except 1, whicheisu
a successful probability at leastd1- the start of belief propagation. As a result, we optimize a

Robust soliton distribution is not only viable but alsaelected subset of degrees in the present work. We choose
practical. The analysis of robust soliton distribution éa®n some degrees calledgsto form the vectorv(i) of decision
probability and statistics is sound if is infinite. However, variables according to the Fibonacci numbers smaller tlain h
in practice, source data cannot be divided into infinite @#ec of k. A degree distribution used in this paper hence can be
and as a consequence, the behavior of LT code will not exaciépresented as the following formula.
match the mathematical analysis, especially whea small. Optimized degree distribution(d):
Furthermore, robust soliton distribution is a general psg ) . . .
design. It provides a convenient way to construct a distidbu w (d) = { S(Z) gt:etrr\:\i;:h Fibonacci number] < /2
works well but not optimally. In this work, we try to custoreiz
the degree distribution by using optimization tools praabs (4)
in the field of evolutionary computation. B. Objectives

We try to use two indicators to evaluate degree distribgtion
for LT code in this paper. The first one is the efficiency of

Evolution strategies (ES) are a major branch of evolutipnathe LT code with the optimized degree distribution which has
computation and have been developed since early 1960s. been discussed in section II-B.denotes the expected rate of
key idea of ES is to evolve strategic parameters as well @s dasverhead to transmit data. For examgles 1.2 means that in
sion variables. ES is well-known to be quite capable of deali addition to the size of source data, 20% extra data are needed
with continuous optimization problems. One of the simplesd recover the complete source data. This objective is taiobt
ES is (1+1)-ES where only one child is produced by Gaussigome degree distribution for a specificwith the smallest
mutation to compete with its parent in each generation, apd LT code is rateless, and the coding process depends on
the other is (1, 1)-ES which is equivalent to random wallkandomness and probability. Source data recovered by a fixed
Current general versions of ES are denoted /a$ X)-ES. amount of encoding symbols cannot be guaranteed. Therefore

IIl. OPTIMIZATION METHOD
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EVOLUTIONARY PROCESS DURING THE OPTIMIZATION OF OVERHEAD AVERAGE PERFORMANCE INDICATORS ARE COMPARED BETWEEN ROBUST

SOLITON DISTRIBUTION AND OPTIMIZED DEGREE DISTRIBUTIONS BR
DIFFERENT NUMBERS OF SOURCE SYMBOL$k)

TABLE |
THE BEST INDIVIDUALS FOR THE OPTIMIZATION OF OVERHEAD
[ Degree][[ k=100 | k=400 | k=400 [ k= 1000 | IV. EXPERIMENTS AND RESULTS
; 8-(32?1’(1)22‘71 8-;22%? é)-llfg;fg 8-;221% Two series of experiments are implemented for the two
3 5357553 0 307a T DA 55T 0351385 different ob_jectlves as descnbeq in the p.rewous.sectlnn.
5 0.042648 | 0.112072 | 0.119163| 0.077045 each experimentags are determined by Fibonacci numbers
8 0.053247| 0.071726| 0.052843| 0.124503 and the specified source symbols sizeTags are encoded
%i 8-8‘1‘22‘7‘2 8-8?2%8 8-853{% 8-828;32 as an individualp(i), and represent that only these degrees
37 0073776 0.0303971 0017738 0.033607 have non-zero probabilities. Initial valu_es of _tags are set
55 0 0.000264 | 0.002094| 0.01543 as 1/|v| uniformly, and then CMA-ES is applied without
89 0 0.01109 | 0.009837| 0.00095 any customization or modification. After a new individual is
;‘3‘; 8 0'03939 g'ggiigg 06%%%17‘;3 created, it is normalized to be a valid probability disttibo
377 0 0 -0 0.010391 and evaluated for the fitness value by simulating the LT apdin

process. One hundred independent runs of simulation are
conducted for each function evaluation. In the first series o
experiments, we minimize the expected number of encoding
symbols for full decoding. In the second, the average number
in order to evaluate, we provide infinite encoding symbols,of source symbols that cannot be recovered for a constant
in the form of a stream of encoding symbols, to simulate— 1 1 js considered. We call the second indicatorfaiture
the decoding process until all source data are recoveresl. Thte The default parameter settings given in the source code
average of required encoding symbols per simulation is tge CMA-ES are adopted in this study except for= 10.
fithess value of degree distributions.

A. Overhead

The second indicator is the amount of source symbols . . .
y In these experiments, we minimize the overhedor differ-

h nn recovered when nstant ratio of encodin ) ) .
that cannot be recovered when a constant ratio of e COde k sizes, and the results are shown in Table | and Figs. 2—

symbols are received. In raptor codes, Low-density-pari : : . .
check (LDPC) [15] is introduced as a second layer pre-coditrgs' Fig. 2 presents the improvement during the evolutionary

into LT code. LDPC is a kind of forward error correction® CC€SS: Individuals are initially uniform distributionk is

codes. More information on LDPC can be found in [16], [17preCted that overheads are quite high in the b_eglnnlngrm_ldt
. ; . . curves descend quickly after around 100 function evalaatio
LDPC can fix errors of data without extra information as lon

. . L Einally, the fitness almost converges after 200 functionuasa
as the error rate is lower than certain restriction. In such, a

o - ; . fions. Fig. 3 shows the comparisonzobetween robust soliton
condition, the mission of LT code is no longer to achieve fu(!. . L SN
|satr|but|on and the optimized distributions. The expdcte

decoding. Instead, most of source symbols can be recovere . T
. ) o . Pverhead of robust soliton distribution is given as
with a small overhead is sufficient. For this purpose, wedry

minimize the number of un-recovered source symbols givena  k + O(log?(k/8)Vk) 140 log?(k/9)
constant overhead. k =1+ VE
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FOR THE COMPARISON WITH SAMEKL’S, ROBUST SOLITON DISTRIBUTIONS AND THE CORRESPONDING PERF®RNCE INDICATORS ARE SHOWN SIMILAR
TO THAT IN FIG. 4. NOTE THAT ONLY PARTS OF ROBUST SOLITON DISTRIBUTIONS ARE PLOTED FOR CLARITY

3536



e
3

0 ¢ ——k =100 ] 0
—B—k = 400
—©—-k =700
—A—k = 1000

o
o

e
@

o
=

Probability
o
©

o
~

Fail rate of symbols

—&— Uniform
% 01 —*— Robust Soliton
= 10t i _|[=©=Optimized
K 10 71 2 3 5 8 13 21 oy 105 11 115 12
L Degree Overhead
B8 2 (@) k =100
0.4
0.35 10 B
03 0
10 0 100 200 300 400 500 600 700 800 900 1000 % 0.2 -g Ly
Function Evaluations 8 P
a 0.15 ©
Flg 6 ot T'E —B— Uniform
EVOLUTIONARY PROCESS DURING THE OPTIMIZATION OF FAILURE RAE 0.05 —= Robust Soliton
_,|[=©— Optimized
0 1 2 3 5 8 13 21 34 55 89 144 © 1 1.05 11 115 12
Degree Overhead
TABLE Il (b) k = 400
THE BEST INDIVIDUALS FOR THE OPTIMIZATION OF FAILURE RATE
0.35
[Degree][ k=100 [ k=400 | k =400 | k = 1000 | 0 B il
1 0.083997] 0.102892] 0.116854] 0.115278 oz P
2 0.573671| 0.383164| 0.29678 | 0.333564 . £
3 0.161178| 0.237312| 0.31115 | 0.241065 5" z
5 0.08038 | 0.186475| 0.171342| 0.184027 Bois 2
8 0.096245| 0.030706| 0.033393| 0.046818 o L
13 0.001267| 0.039075| 0.025977| 0.022223 & ==-uniorm
21 0.002963 | 0.015193| 0.023452| 0.022914 o0 o optmmen "
34 0000299 0000167 0016096 0020526 0 1 2 3 5 8 13 21 34 55 89 144233 10731 1.05 1,1h d 115 12
55 0 0.001276| 0.002602| 0.00643 Degree Overhea
89 0 0.000303| 0.000268| 0.004594 (€) k = 700
144 0 0.003436| 0.002072| 0.001422
233 0 0 0.000015| 0.000883 05 .
377 0 0 0 0.000257 - 10| e
025 § B
Z o £
The value becomes smaller whénincreases, and that §ms g
is why the trend of Fig. 3 shows a declination. The val- o =
. z .
ues of overhead are reduced at least 10% forkal with ats e Robuet Salton
the optimized degree distributions. Some distributionshef o - o = opmized
. .. . . . . 1 2 3 5 8 13 21 34 55 89 144233377 1 1.05 11 115 12
best individuals are given in Table I. Fig. 4 illustrates leac Degree Overhead
distribution and shows the histogram of successful rate in (d) k = 1000
1000 simulation runs on the right side. Compared with simila Fig. 7
simulation results of robust soliton distribution in Fig. the THE FIGURE SHOWS THE SIGNIFICANT DIFFERENCE OF FAILURE RATE
improvement is quite significant. AFTER OPTIMIZATION. SIMILAR TO THAT IN FIG. 4, ONLY TAGS ARE

. SHOWN IN THE FIGURES
B. Failure rate

Unlike the original LT code, we are concerned with how
many source symbols can be recovered in the second set
of experiments. The objective value is the average numiibe best probability distributions found in the evolutiona
of source symbols that cannot be recovered with a constambcess fork = 100, &k = 400, £k = 700, and k& = 1000.
overheads. Optimization results are shown in Fig. 6. MoreThe simulation results of a constant overhead are presented
function evaluations are needed to search for good degieeFig. 7. The red line denotes the behavior of uniform
distributions. The failure rate of the final results are ldsm distribution, which is the initial value of optimization. &4t
10! for all k's whene = 1.1. In other words, more than of the source symbols remain covered except for those of
90 percent of source symbols can be recovered if extra Which the degree is one, i.e., with probabilityk. The same
percent of encoding symbols are collected. Table Il givesituation happens to robust soliton distributions becahse
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amount of extra encoding symbols is not sufficient to coneplet
the BP decoding process. The behavior of LT process Witﬁ]
the optimized degree distributions is totally differentdally

satisfies the requirement of weakened LT. 2]

V. CONCLUSIONS

In this work, the first attempt to algorithmically optimize
the degree distribution adopted in LT code was proposeéef
Evolutionary computation techniques were introduced to ac
complish the optimization task. Different from the prewsou [4]
studies reported in the literature, each probability ofrdeg
were directly encoded as an individual to optimize. Prongsi [5]
experimental results were obtained in both sets of expetisne
One was to minimize the overhead, and the other was to
reduce the decoding failure rate. Our experiments showagd the]
CMA-ES was indeed capable of finding good degree distribu-
tions for different purposes without any guideline or human
intervention. Compared with robust soliton distributighe [7]
optimized overhead was decreased as least 10% for éviery
the experiments. The results of failure rate minimizaticerev o
also remarkably promising and able to support applicatains
different types and requirements.

This study creates a new research topic in which the desid%]
of degree distributions in LT code can now be algorithmigo]
and no longer has to be manually tuning parameters of robust
soliton distribution. We have empirically proved that difg
manipulating the probability value for each degree is \@abf11]
and worth pursuing. Given a specific and some expected
overhead, a degree distribution can be customized with-exis »
ing optimization techniques. In addition, we will extendeth
experiments to largéf for more kinds of potential applications
in the near future. The results empirically obtained by gsiql3
evolutionary algorithms will be theoretically analyzedhda
general guidelines, like robust soliton distribution, tttzae
able to be customized for different goals and requiremer{%é]
for designing degree distributions are expected.
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Abstract— Luby Transform code (LT code) is the first practical ~ specifically designed degree distribution is proposed in the
digittal fountain code and V;_as beerll_ WitdeW UTsﬁd asd'baSil;: ﬁompo-introduction of LT code. The performance of LT code totally
nents in many communication applications. The coding behavior ftriby it ;
of LT code is mainly decided by a probability distribution of depends _on the adopted degree distribution. In his proposal,
codeword degrees. In order to customize a degree distribution Luby Qes!gngd general methods .to construct appropriate de-
for different purposes, multi-objective evolutionary algorithm is ~ gree distributions to co-operate with LT code, and the degree
introduced to optimize degree distributions in this paper. Two distributions were namedoliton distribution. Via theoretical
critical performance indicators of LT code are considered in our analysis, the feasibility of soliton distribution was proven [4].
experiments. Some applications hope to minimize the overhead of Recently, researchers started to optimize the degree distribu-

extra packets and some require to limit the computational cost of . . .
the coding system. To handle this problem, MOEA/D is applied tion in order to improve the performance of LT code [5], [6],

to optimize two objectives simultaneously. We expect to obtain but the obtained improvement is marginal and quite limited.
the Pareto front (PF) formed by partial optimal solutions and In these studies, only the parameters of soliton distribution
provide those available degree distributions to different LT code ere tuned and considered as decision variables, while in our
applications. Not only promising results are represented in this |, asent work, we directly consider the degree distribution itself
paper but also the behavior of LT code is thoroughly explored by decisi iabl
optimizing the degree distribution according to multi-objectives. as our eC|S|9n varianles. .
In the design of LT code, redundant data and encoding
|. INTRODUCTION computation are used to trade for the ability of forward error

Digital fountain code [1] is a popular class of erasure cod@rrection. For most applications, while the error correction
in the field of communication. The concept of fountain codability is maintained, both costs are required to be as lower as
was introduced by Byers et al. [2] in 1998. Firstly, source dappssible, and apparently there is a trade-off among these fac-
are divided into several pieces with an identical length. THers. Furthermore, applications of different types and purposes
length of each piece can be any number of bits or even sevdtave different requirements of each kind of cost. Some LT
bytes. Sender generates encoding packets, or cafledding code applications which transmit data through an expensive
symbols, when the packet length is one bit, by certain encodi#gmmunication channel have to reduce the data overhead.
operation. The encoding procedure may repeat independefiper applications with a huge package size expect fewer
and indefinitely so infinite encoding packets are sent o@xecutions of the encoding operator. In order to simultaneously
continuously like a fountain, which is an important propertgatisfy these applications, multi-objectives are considered for
of fountain code calledateless. If a receiver is interested inoptimizing the LT code degree distribution in the present work.
receiving the data, it can receive the packet flow at any tinéie most important motivation of this study is to fully explore
and collect the packets in any combination. Once sufficiefite LT coding behavior with arbitrary degree distributions
packets, of which the amount is usually slightly more tha@nd to empirically provide a proof of concept that multiple
that of the source data, are obtained, the source data carf@sglirements on LT code can be satisfied via optimizing degree
fully recovered. During the process, no further communicatighstributions with existing optimization techniques.
is required between sender and receiver. Encoding informationrhe remainder of this paper is organized as follows. Sec-
can be embedded in each packet. As a result, digital fount&ien Il describes the detailed operations of LT code, including
code is especially useful in broadcast or other situatioffde coding process and soliton distribution. Section IlI intro-
in which back channels are unavailable. Moreover, becau#i¢ces the background of multi-objective problems and the
source data can be reconstructed no matter which packetseu@utionary algorithm used in this paper. Experiments and
received, fountain code is also considered reliable to hand&sults are given in sections IV and V. Finally, section VI
the problem of packet loss. concludes this paper.

Luby Transform code (LT code) [3] proposed by Luby
in 2002 is the first practical framework and implementation

of fountain code. A novel coding mechanism based on aluby introduced a practical fountain code framework and
gave the details of coding operation in 2002 [3]. Similar to

Chih-Ming Chen, Ying-ping Chen, Tzu-Ching Shen, and John K. Zagther fountain codes, source symbols are uniformly randomly
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¢ bits. Before every codeword is generated, a degteie
chosen at random according to the adopted degree distributi
p(d), wherel < d < k and Zl;:l p(d) = 1. The degreel
decides the how many distinct source symbols will be chosen
to compose an encoding symbal. source symbols, called
neighbors are chosen uniformly randomly and accumulated
by XOR In the design of LT code, random numbers play
an essential role during the encoding process. The approach
employed by LT code for a sender to inform receivers of all
encoding information is achieved by synchronizing a random
20 2 %0 number generator with a specified random number seed.

At the receiver side, wher encoding symbols were
arrived, where K is usually slightly larger thark, belief

Distribution

0 5 10 15
Degree

(a) Ideal soliton distribution

0s : \ \ \ ‘ propagation is used to reconstruct the source data stegpy st
oasf 1 All encoding symbols are initially covered in the beginning
0af 1 For the first step, all encoding symbols with only one neighbo

can be directly released to recover their unique neighboewh
a source symbol has been recovered but not processed, it
is called aripple and will be stored in a queue. At each
subsequent step, ripples are popped as a processing tagyet o
by one. A ripple is removed from all encoding symbols which
have it as neighbor. If an encoding symbols has only one
remaining neighbor after the removing, the releasing actio
repeats and may produce new ripples to maintain a stable

Distribution

20 25 30

0 5 10 15
Degree size of the queue. Maintaining the size of the ripple queue is
(b) Robust soliton distribution important because the decoding process fails when theerippl
Fig. 1 qgueue is empty and some source symbols remain covered.
EXAMPLE OF SOLITON DISTRIBUTIONS(K = 30) In other words, more encoding symbols are required in the

decoding process. Ideally, the process succeeds if alceour
symbols are recovered at the end of the decoding process.

] ) Both encoding and decoding, as the LT coding operations,
XOR The relation between source dat_a and encoding symb_g|% achieved bXOR As a result, the computational complex-
can be modeled as a sparse bipartite graph. A key desjgflof | T code can be measured by how many timeX6fRis
of LT code is to decide the degree of each vertex in thgecutedXORoperator is applied to build the connectivity in
bipartite graph with a probability distribution. The coetieity e conceptualized bipartite graph and to eliminate a eippl
can be recorded as an encoding matrix and each coluggy the neighbors of codewords. It is evident that- 1
represents an encoding symbol. Originallysource symbols xR operators are necessary to generated a codeword with
can be fully decoded by Gaussian elimination if there e’k'Stdegreed or recover an encoding symbol. In the encoding
linearly independent columns. However, Gaussian elifonat ppase all encoding symbols are generated independently, a
IS prgohlbltlvely expensive for its computational complgxf the computational complexity to produce codewords solely
O(k?). Therefore, the belief propagation (BP) algorithm [7}iepends on the mean degree of the adopted degree distnibutio
is introduced to replace the expensive Gaussian eliminatio |, other words, the cost of each encoding symbol is decided
the LT decoding phase. Overhead of coding is used t0 tragle the mean of degree distributions. Hence, in practice, the

computing time because belief propagation is more effiCieffoan degree is an important LT performance indicator since
but more encoding symbols are needed for successful dec@qepresents the operational cost.

ing. Moreover, the performance of LT code is very sensitive t
the degree distribution. A good degree distribution is seagy
to co-operate with belief propagation. Luby suggested@oli B. Soliton distribution
distributions for LT framework in his proposal of LT code.
According to the mathematical verification, the propertiés  The behavior of LT code is completely determined by the
soliton distribution have been confirmed. In this sectimtads degree distributiony(d), and the number of encoding symbols
of coding operations and soliton distributions are desdtib received,K, by receiver. The overhead= K/k denotes the
) ) performance of LT code, and depends on a given degree

A. Encoding and decoding distribution. Based on his theoretical analysis, Luby pszzl

Given the source data, we suppose that the source ddua ideal soliton distribution of which the overhead is lg th
can be cut intok source symbols with the same length obest performance, in the ideal case.

3636



Ideal soliton distributionp(d): [1l. M ULTI-OBJECTIVEPROBLEMS

p(d) = % for d=2,3,....k 1) important in real-world applications. There are two or more
objectives to be considered simultaneously, and these ob-
Ideal soliton distribution guarantees that all the relgas®- jectives usually conflict with each other. The most intuitiv
abilities are identical td /k at each subsequent step. Hencgypproach to deal with MOPs is to transform them into single
there isone expected ripple generated at each processing sigfjective problems (SOPs) by using weights on the objestive
when the encoding symbol size ks After k processing step, and creating a weighted sum. The approach makes the problem
the source data can be ideally recovered. Fig. 1(a) showsgyvable by available tools based on mathematics or hasrist
example of Ideal soliton distribution fdr = 30. for SOPs. However, such weights oftentimes cannot be pre-
However, ideal soliton distribution works poorly in prai determined, especially when the domain knowledge of the
Belief propagation may be suspended by a small varianggsblem is unavailable. Furthermore, the best solutiorhéo t
of the stochastic encoding/decoding situation in which Pansformed Sing|e-objective prob|em is mere|y one sofluti
ripple exists, because the expected ripple size is only 6nega the Pareto front (PF) of the MOP. Hence, better opti-
any moment. According to the theory of random walk, thgization frameworks must be developed to fulfill the need
probability with which a random walk of length deviates of handling MOPs.
from its mean by more that(k/6)v/k is at mosté. Itisa  pue to the limitation of traditional mathematical methods
baseline of the ripple queue size which must be maintainggt MOPs, more and more researchers try to solve MOPs
to complete a decoding process. Hence, in the same papera direct way and to approximate the Pareto front as
by LUby, a modified version callegbust soliton distribution complete as possible. Their goal is to provide a set of smisti
p(d), was also proposed. which are partially optimal. Many advanced multi-objeetiv
Robust soliton distribution(d): algorithms have been proposed in the literature. Some af the
try to approximate the PF by using mathematical models,
R = Oln(k/é)\/% and others are developed based on evolutionary algorithms.
A hybrid framework makes use of decomposition methods in

{ 1 for d=1 Multi-objective optimization problems (MOPs) are very

R/ik for d=1,....k/R—1 mathematics and the optimization paradigm in evolutionary
7(d) =< RW(R/6)/k for d=k/R - (2 computation was proposed and callediltiobjective evolu-
0 for d=k/R+1,... .k tionary algorithm based on decompositigMOEA/D) [8].

MOEA/D was proposed and shown to perform well on MOPs

k with complicated Pareto set shapes [9].
B = Z(P(d)JrT(d)) In this paper, we propose the use of MOEA/D to opti-
d=1 mize the multiple objectives of LT code. Degree distribu-
pd) = p(d) + 7(d) ford=1,... .k 3) tions significantly better thamobust soliton distributionare

expected. Moreover, exploring a complete Pareto front can

c andé are two parameters for tuning robust soliton distribJ]'alp resea_rchers to analyze the frade-off be_ztween _overhead
tion. ¢ controls the mean of the degree distribution. Smallé\nd o_perat|onal cost of LT C.Ode' In the following section, we
values ofc increase the probability of low degrees, and larg ill give the formal_ description of MOPs and the MOEA/D
ones decrease ii.estimates that there ahe(k/5)\/k expected ramework, respectively.

ripples as described. Fig. 1(b) is an example of robustmolit

distribution with ¢ = 0.1 and § = 0.1. Robust soliton A. Formal description of MOPs

distribution can ensure that onlif = k + O(In*(k/6)Vk) In real-world applications, many problems are actually

encoding symbols are required to recover the source data witulti-objective optimization problems, and single-oltjee

a successful probability at leastsl- problems are special cases. A multi-objective problem @n b
Robust soliton distribution is not only viable but alsdormally stated as:

practlcg[. The analy§|§ of .robust solltqn .dIS.,'[I"IbUtlon daon minimize  F(z) = (f1(2), ..., f())

probability and statistics is sound if is infinite. However, e 4)

i i ivi i infini ; subject to ’

in practice, source data cannot be divided into infinite @ec I C(z) = (er(2), er(x)) > 0

and as a consequence, the behavior of LT code will not exactly

match the mathematical analysis, especially whea small. where(2 is called thedecision spacer variable space and
Furthermore, robust soliton distribution is a general psg R™ is the objective spaceC(z) represents the problem con-
design. It provides a convenient way to construct a digtidbu  straints and defines the feasible regions in the decisiooespa
works well but not optimally. In this work, we try to custoreiz according to problem properties [1J].: Q — R™ consists of
the degree distribution by using multi-objective optintiaa m objective functions. If2 is a closed and connected region
tools proposed in the field of evolutionary computation tmm R™ and all the objective functions are continuous, we call
simultaneously satisfy multiple performance requirersent the problem a continuous MOP.
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TABLE |

In order to consider the trade-off between objectives, the
PARAMETER SETTINGS OFMOEA/D

concept ofdominationbetween solutions is defined. Let=

(u1,...,um), v = (v1,...,0,) € R™ be two vectorsuw is [ Parameter | Value ]
said todominatev if u; < wv; foralli =1,...,m, andu # v. N 50
A point z* €  is Pareto optimalif there is nox € Q such = T - 110
tha}tF(;z:) dominatesF'(x*). The set of all the Pareto optimal hjﬁf;?(;'ne rr;fee T/
points is calledPareto set(PS) and the set of all the objective Max Gen. 150

vectors corresponding to the PS is calledreto front (PF),
where PF' = {F(z) € R™|z € PS} [11].

Instead of searching for a single or just a few (Pareto)
optimal solutions as in solving single-objective probleitire
goal of handling multi-objective problems is to find the Rare ¢ Outputs:
front as well as the Pareto set of the problem. Given thedithit — Approximation to thePS z',... z%.
computational resource, including time and storage, how to  — Approximation to thePF: F(z1),..., F(a).
provide good solutions in terms of both quality and spread is
the key and challenging task for multi-objective optimiaat

— stopping criteria.

IV. EXPERIMENTS

The experiment implementation is described in this section
MOEA/D is a well-developed tool and has the characteristic

One of the key ideas of MOEA/D is the use of a deof plack-box optimization like other evolutionary algdmits.
composition method to transform a MOP into a numbexs described in section I1I-B, only input and output shouéd b
of single-objective optimization problems. MOEA/D attet$\p handled properly. Section IV-A shows how to encode a degree
to optimize these single-objective problems collectivalyd gistribution into decision variables, and the objectivediions

simultaneously instead of trying to directly approximalte t are given in section IV-B. Table | lists the other algoritiemi
Pareto front as many other evolutionary algorithms do b&eatharameter settings of MOEA/D.

each optimal solution to these SOPs is a Pareto optimal o _
solution to the given MOP. The collection of these optima. Decision variables

solutions is an approximation of the Pareto front. Weighted The first step to use an evolutionary algorithm is to encode
sum, Tchebycheff approach, boundary intersection, anerotihe decision variables of the optimization problem. It i¢ no
decomposition approaches can serve this purpose. In Hifficult in this study because a degree distribution caratly
present work, the Tchebycheff approach [11] is adopted. #rm a real-valued vector. In the evaluation phase, a real-
single-objective optimization problem obtained by decosp valued vector of arbitrary values can be interpreted as a

B. MOEA based on decomposition

ing the given MOP can be represented as probability distribution, i.e., a degree distribution, tivinor-
minimize  g(z|\, 2*) = maxi<i<m {Ni|fi(x) — 2} ) malization. Such an operation (joes not change thg feagibili
subject to z € Q although the problem complexity may be slightly increased.

] ) ] The definition of degree distributions tells us that< k.

whereA = (Ar,..., Am) i a vector of weights, i.e; > 0 For a specific source symbol siZe obviously the problem

foralli = 1,...,m and Ei:l)‘i.: L z* = (2{,...,2)  dimensions is at mosk. However, according to the LT

is the reference point, i.ez; = min{fi(z)[x € Q} for each gncoding/decoding operations, we usually do not need a non-

i=1,. e m. N i zero probability on every single degree. Observing themoli
Let A,..., A" be a set of N weight vectors. If we use gisgribution and considering the belief propagation atan,

a large N and select the weight vectors properly, all thgyere js no necessary degree except 1, which ensures the star
optimal solutions of the SOPs transformed from decompgs pejief propagation. As a result, we optimize a selected
sition will well approximate the Pareto front. Moreover, W& pset of degrees in the present work. We choose some par-
can define a neighborhood relationship for each SOP gy degrees{1,2,3,4,5,7,9,13,17,23to form the decision
computing Euclidean distances between weight vectorssSSQRyiaples according to the experience. Different subséts o
which are considered neighbors are assumed to have S'”‘H@brees may change the numerical results of experiments

fitness landscapes and their optimal solutions should tEC'?esults, but the soundness of this paper will be not be afiect
in the decision space. MOEA/D exploits the information

sharing among SOPs which are neighbors to accomplish #e Objectives

optimization_task effectively and efficiently. The spedaition In this paper, degree distributions are optimized for two
of MOEA/D s stated as follows: different objectives. The first indicator to evaluate ey
« Inputs: of LT code is overhead. The redundancy is traded for the
— decision variables. benefit of fountain code and those extra encoding symbols
— objective functions. increase the cost when they are transmitted to the receiver.
— N: the number of subproblems. In most application, overhead is required to be as low as

T the number of neighbors for each subproblem. possible because the transmission is usually expensive. In
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EVOLUTIONARY PROCESS DURING THE OPTIMIZATION FOR: = 100 EVOLUTIONARY PROCESS DURING THE OPTIMIZATION OFc = 500
*‘Gen.lo
12001 A Gen.50 || ; i
O Gen. 100 as complete as possible. In other words, solutions shoulld we
1000 3 O Gen. 150 spread to provide sufficient choices to decision markers. In
= 3 our experiments, overhead and operational cost of LT code
§ soof are both minimized together and the minimal value of each
g objective is expected. Clearly, a degree distribution wta
7 %0 minimal operational cost has only non-zero probability on
g degree one because in such a case, no encoding operation is
(o]
400+ . . . .
needed. The case is the pure transmission without any channe
so0L | coding, and it is a special case in the LT code framework.
= As for the other objective, overhead has a lower bound at
oL - - : - © h?lmé ) ratio 1. Each encoding symbol can generate a new ripple to
Overhead recover a source symbol ideally such that at lgaencoding
Fig. 3 symbols are required to reconstruct the original data.eleffit
EVOLUTIONARY PROCESS DURING THE OPTIMIZATION OFk = 300 from the operational cost, such a degree distribution is not

yet discovered and even its existence is not proved. Fig. 2
shows the optimization process and the final result. Aftér 15
generations, a significant PF is represented by fifty indiaid
our simulation of LT code, encoding symbols are generatpdints. The solution with the minimal operational cost in
until source data are fully recovered. The average requiregpectation has been found, but the best overhead is 1.2068.
codewords are calculated as the fitness. The other objastiv&everal individuals are listed in Table I, where the bestiea
the computational cost of the encoding and decoding procestoverhead and operational cost are presented in columns 2
Such an objective value can be estimated with the mean degaed 3, respectively. Columns 4 and 5 give the average ovgrhea
of degree distributions. 1fM,; denotes the mean value ofand execution counts cKOR in the numerical simulation.
a degree distribution, the number of how many timé3R Figs. 3 and 4 display similar results as that shown in Fig. 2
is executed can denote 48/, — 1) « ¢. There is a trade- for k = 300 andk = 500. Fig. 7 presents the distribution and
off betweene and M, because when{; is greater, fewer simulation results for each individual listed in Table II.
encoding symbols may be required, and thereferés less. 1o our limited knowledge, there is no guideline to design a
On the other hand}, is the operational cost, which is therobyst soliton distribution for some particular coding &eh
average number oKOR operations that have to be executediors, In order to fairly compare our optimized results witiat

of robust soliton distribution, MOEA/D is also applied to-op
timize the parameters of robust soliton distribution, whére

In most multi-objective problems, there is usually a trade-and¢. The PF of the optimized robust soliton distributions
off between objectives. For anobjective problem, a solution is presented in Fig. 5. In the dimension of operational cost,
can be represented as a point in thelimensional space. the optimized robust soliton distributions deliver veryngar
All points which denote the non-dominated solutions formesults because robust soliton distributions can alsorbeco
a partial optimal set called the Pareto front. The mission tiie degree distribution with only non-zero probability on
multi-objective algorithms is to approximate the Paretnfr degree one if some appropriate parameters are given. Howeve

V. EXPERIMENTAL RESULTS
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OPTIMIZED ARBITRARY DEGREE DISTRIBUTIONS

TABLE Il

applications of different types and natures, LT code will be
more efficient if choosing a specifically appropriate degree
distribution is possible. Not only more choices of degree di

[_Individual | Best Overhead| Best Cost]| AVG. Overhead[ XOR | triputions are available, but also much better performahaa
1 4.8442 0.00042 5.1958 0.038 | that delivered by robust soliton distribution can be ackiev
25 2.5608 1.29873 2.6655 407.026| b liton distributi dominateitid
35 50294 185193 51485 558667 ecause mpst robust so iton distri u'tlons are omlnat y
45 1.4564 25135 157211 603.742| solutions discovered with MOEA/D in the experiments.
50 1.2068 2.93541 12718 843.669 An alternation solution which designs degree distribution
better than robust soliton is given in the work. While LT
TABLE IlI code is employed in real-world apparitions, the degree dis-
OPTIMIZED ROBUST SOLITON DISTRIBUTIONS tribution can be customized to satisfy different requiratee
by using evolutionary algorithms. Fitter degree distridog
[ Individual [ Best Overhead Best Cost]] AVG. Overhead] XOR | \k/)\”" enhagce the g_erforr?aﬂceborhqse a:cppllcat(;ons._lll\/lhcmEO\%
T 75080 500552 =133 5377 _etter understandings of the be avior o LT code will help t
25 31244 174314 4.1662 125455| improvement of LT code. The final results show that some
35 2.0708 2.76115 2.6217 324.580 | better distributions are beyond the model of robust soliton
45 1.5194 3.41297 1.9278 471.753 | (distribution. The theoretical analysis will also be apgli®
50 1.2530 6.71008 1.3097 1141.46 ) ) . T :
them just like the development of soliton distributions r o
future work. An advanced model in which the performance is
700 w — close to that of the Pareto front is in expectation.
* * Robust Soliton
500 O Optimized || ACKNOWLEDGMENTS
The authors would like to thank Martin Hornansky for
500 . fruitful discussion and conducting certain related nucsdri
§ experiments. The work was supported in part by the National
— 400 % ] Science Council of Taiwan under Grant NSC-98-2221-E-009-
S ) 072. The authors are grateful to the National Center for High
5300 Q)% "** 7 performance Computing for computer time and facilities.
o)
200(- RS 5 1 REFERENCES
***‘* [1] D. J. C. MacKay, “Fountain codes,” iThe IEE Seminar on Sparse-
100k J Graph Codes2004, pp. 1-8.
o e . -
Q)Q)o *S**sk [2] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A dait
0 g ¥ . fountain approach to reliable distribution of bulk datay’Rroceedings
o 5 ; Y s v . a5 RO 5 of th_e ACM SIGCOMM '98 Conference on Applicatio'ns,_Tecrgiem
Overhead Architectures, and Protocols for Computer Communicatid@98, pp.
56-67.
Fig. 5 [3] M. Luby, “LT codes,” in Proceedings of the 43rd Symposium on

COMPARISON BETWEEN THE OPTIMIZED ARBITRARY DEGREE

(4]

DISTRIBUTION AND ROBUST SOLITON DISTRIBUTION

(5]

there are significant differences along the other axis. The
performance is quite limited, and such a situation is causeg
by the fixed formula of robust soliton distribution. The figur
demonstrates numerous better degree distributions tleat ar
very different from robust soliton distribution. These d=g |7
distributions can be discovered by optimization algorihm

proposed in the realm of evolutionary computation. 8]

VI. CONCLUSIONS

This paper proposed the use of multi-objective evolutipnar[®]
algorithms to optimize the degree distribution in LT code.
Overhead and operational cost were considered as two objaot
tives and optimized simultaneously by using MOEA/D. The
experimental results were promising and indicated that the
Pareto front was well described. These results might algp he 1]
researchers to better understand the behavior of LT code. Fo

3640

Foundations of Computer Scienc002, p. 271.

R. Karp, M. Luby, and A. Shokrollahi, “Finite length awyals of
LT codes,” in Proceedings of the IEEE International Symposium on
Information Theory 2004 (ISIT 20042004, p. 39.

E. A. Bodine and M. K. Cheng, “Characterization of lubyrisform
codes with small message size for low-latency decoding,1EEE
International Conference on Communications (ICC 08008, pp.
1195-1199.

E. Hyytia, T. Tirronen, and J. Virtamo, “Optimal degreetdtsution for
LT codes with small message length,” Rtoceedings of the 26th IEEE
International Conference on Computer Communications (QOM
2007) 2007, pp. 2576—2580.

J. Pearl, “Reverend bayes on inference engines: A Higed hierarchi-
cal approach,” irProceedings of the American Association of Artificial
Intelligence National Conference on,Al982, pp. 133-136.

Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutiongialgorithm
based on decompositionlEEE Transactions on Evolutionary Compu-
tation, vol. 11, no. 6, pp. 712-731, 2007.

H. Li and Q. Zhang, “Multiobjective optimization problenwgth com-
plicated pareto set, MOEA/D and NSGA-IIJEEE Transactions on
Evolutionary Computationvol. 13, no. 2, pp. 284-302, 2009.

K. Deb, A. Pratap, and T. Meyarivan, “Constrained tesbbtems
for multi-objective evolutionary optimization,” irFirst International
Conference on Evolutionary Multi-Criterion Optimization Springer
Verlag, 2001, pp. 284-298.

K. Miettinen, Nonlinear Multiobjective Optimization Kluwer Aca-
demic, 1999.



0.8

o
>

Probability
o
=

0.2

AVG :5.2179

0.8

0.6

0.4

0.2

o o
o o

Probability
o
=

o o o
PN W

o
Successful rate

o N

;%\

9]

=
15}

o © o
> N o

o
o

Probability
o o
S

o o
N

=)

o o o o o
w > o o ~

Probability

o
N}

=~
ol
Successful rate
=} o o
o S =2 0

o
o

o

0.5

0.4

o
w

Successful rate

° ° ° °

S = > [ -
ﬁ\\\o

Probability
o
N

0.1

Successful rate
o [N
ﬁo

5 6 7 8 9 10 11 2 4 6 8 10 12
Degree Overhead

(@) Individual 1,¢ = 9.72 and$§ = 0.00107

1 2 3 4
AVG : 4.0975
0.8
0.6
0.4
0.2
-
1 2 3 4
JI |
1 2 3 4

5 6 7 8 9 10 11 2 6 8
Degree Overhead

(b) Individual 25,c = 1.634 andé = 0.185

AVG : 2.5998

0.8

0.6

0.4

0.2

Successful rate
o N
F\

o

5 6 7 8 9 10 11 12 3 4 5
Degree Overhead

(c) Individual 35,c = 2.146 andé = 0.978

-
N

AVG :1.9328

0.2

~

6 7 8 9 10 11 12 13 15 2 .
Degree Overhead

(d) Individual 45,c = 0.96 and§ = 0.601

L

iR
)
o

3 35

AVG :1.3174

% 10 20 30 40 50 1 15 2 25
Degree Overhead
(e) Individual 50,c = 0.0521 andd = 0.931
Fig. 6

SIMULATION RESULTS OF OPTIMIZED ROBUST SOLITON DISTRIBUTI®S

3641



Probability

° o
o S (=) =
- ﬁ
Successful rate
o o o o

o N > o © =
-%
9]

1Y)

Probability

o 0o 0o 0o 0o 0o o o o
o b N w 8N o o N » ©
Successful rate
o -
h

o

Probability

Probability

Probability

AVG : 5.2266

0.8

0.2

2 3 4 5 7 9 13 17 23 2 4 6 10 1
Degree Overhead

(a) Individual 1

AVG : 2.6646

0.8

0.8

0.6

0.4

0.2 0.2

1
N
w

° °

o = > -

[ —
Successful rate

=) N

h

o

2 3 4 5 7 9 13 17 23 4 5
Degree Overhead

(b) Individual 25

AVG :2.1394

0.8

0.6

0.4

0.2

1 2 3 4 5 7 9 13 17 23 3 4
Degree Overhead

(c) Individual 35

-
N

AVG : 1.5682

0.8

0.

0.4

0.

° ° o °
S o 2 o 2 o 8 o

o & B H v B o & =
Successful rate

) ) > [N

ﬁ

1 2 3 4 5 7 9 13 17 23 2 25
Degree Overhead

(d) Individual 45

iR
=
o
w

0.45
04 AVG : 1.2771

0.35

0.25

0.1

0.05

°
2 o °
° S ©
Successful rate
o o o o
o 9 = > © N

1 2 3 4 5 7 9 13 17 23 1.2 1. 1.6 1.8
Degree Overhead

(e) Individual 50
Fig. 7
SIMULATION RESULTS OF OPTIMIZED ARBITRARY DEGREE DISTRIBUTONS

1
N

3642



i

mfﬂgﬁfﬂééﬁgp;ﬁ—%iéjg—r IR R ﬁf%ﬁew 19 45 2,

p#:99 = 8 * 17 p

*E %5 |NSC 98 — 2221 — E — 009 — 072 —
PR LE | FIEFELLESSRRIATHC RGBT S
IR AR . PRI 1 . . e 1
Fi 28 T o B> i~ 8T AR & B KL
e 1 5 B 53 E oo
99#7"% 18p % .
= E A = ia‘, Bi
g R 99 & 71 237 ¢ k¥ 8L | Barcelona, Spain
(¢ ©)2010 IEEE /% i* & B v € %
bk L
(¥ =) 2010 IEEE Congress on Evolutionary Computation
(P ) #7311 CMA-ES i&{7 LT Codes #r4x % 2. B & i i& {7 & if 1
CE X D
2 p (% <) On the Optimization of Degree Distributions in LT Codes with
Covariance Matrix Adaptation Evolution Strategy

-~ S g RSB
£ & (2010) = IEEE & i* 3 & & i ¢ & (IEEE Congress on Evolutionary
Computation) *> 7 * 18 p 2 7 * 23 p A& 73517 ¢ %478 (Barcelona, Spain)
¢11 Centre de Convencions Internacional de Barcelona ¢ 3% ¥ < & {7 o
BB € RARFILE 35§ FoH 420 Plenary Talks ~ -+ #3 Tutorials ~ Workshops -
BAFEFEZAERF - NI R L ORHFLoAEFE o H P F2EE A

2D AR E AR R REENER T H R AR LS

\

bl

wREORINERLEMR




Jui

R SO
= 4 ",ért T ¥ 75 K ¥~ . T Onthe Optimization of Degree Distributions in LT

Codes with Covariance Matrix Adaptation Evolution Strategy ; ¥2 " Optimizing Degree
Distributions in LT Codes by Using The Multiobjective Evolutionary Algorithm Based

on Decomposition ; 2. © Eg3R 4 ¢k o A GBS L ARM AT T W Y 2 U ERAR 0 BB

e v,
B9 % E i 2t

EARE AT R E LS o d ot gk R F B e R

iw,:i

SRR R TE A S B r A ARG E R

AN ARREIFL I AR AR O BNRGERE G 2R F
o RPN REEAME FAFHNY o b §REFEF F v o
EFEFAL I EMZEREHH o 2R RRAZ AP F A 7 e AR AL

PR AR 3FELADTRINF AT R 2Pk TR

CEERFREE(RADEER F )
_'ﬂz °
E R

R REPREREL A A RN E Y L ARSI R R TRk
oo BRHFLEAABRAETAMAEE AT RN AEERD > 8 LB
FAFIR G R D B CHEBFEE L CRB AL B G ] LGP e
REsE 2 FE G {a AR R 5 T wE BEL £ LRI 71 o

FATEEN R AR ED I HY pE L PR E L RELREENE R

N



HAAAAIR > P RS oFBRR A B LR G 2o M D

AerE ok g B 4 o



WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain CEC IEEE

On the Optimization of Degree Distributions in LT Code with
Covariance Matrix Adaptation Evolution Strategy
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Tzu-Ching Shen, and John K. ZaSenior Member, IEEE

Abstract— Luby Transform code (LT code) has been a popular ~ Luby Transform code (LT code) [3] proposed by Luby
and practical technique in the field of channel coding since its jn 2002 is the first practical framework of fountain code.
proposal. One of the key components of LT code is a degree o noye| coding mechanism based on a specifically designed

distribution which is used to determine the relationship between d distribution i dinthe i ducti f LT cod
source data and codewords. Luby in his proposal suggested two egree distribution is proposed In the introduction o coae.

general methods to construct feasible degree distributions. Such The performance of LT code totally depends on the adopted
general designs work appropriately in typical situations but not degree distribution. In his proposal, Luby deigned general
optimally in most cases. To explore the full potential of LT code, methods to construct an appropriate degree distribution to
inl thisr\]/vork, we make tt;]e ert atte(;npt LO introduce evglutionary be used in LT code, and the degree distribution was named
algorithms to optimize the degree distribution in LT code. Degree . L . . . o
digtributions arg encoded as ?eal-valued vectors and evaluat%d by sol!ton d!str!but!on. Via theorengal ana!yS|s, the feasibility of
numerical simulation of LT code. For applications of different = Soliton distribution was proven in the literature [4]. Recently,
natures, two objectives are implemented to search good degreeresearchers started to optimize the degree distribution in order
distributions with different decoding behavior. Compared with  to improve the performance of LT code [5], [6], but the ob-
the original design, the experimental results are quite promising tained improvement is quite limited. In these studies, only the

and demonstrate that the degree distribution can be customized . Lo .
for different purposes. In addition to manually adjusting the parameters of soliton distribution were tuned and considered

degree distribution as the common practice, the work presented @s decision variables, while in the present work, we directly
in this paper provides an efficient alternative approach to use consider the degree distribution itself as our decision variables.
and adapt LT code for both practitioners and researchers. Based on LT code, an improved framework cRlaptor
codes[7], [8] was proposed by Shokrollahi. Shokrollahi in-
tegrated LT code with a pre-coding layer. Compared with
Digital fountain code [1] is a popular class of erasurpure LT code, the design of Raptor codes requires a degree
code in the field of communication. The concept of fountaidistribution, calledweakened LT, with some very different
code was first introduced by Byers et al. [2] in 1998. Firstljpehavior and properties. Several instances were given in [9]
source data are divided into several pieces with an identi¢at certain particular sizes of source symbols, but there are no
length. The length of each piece can be any bits or everisting guidelines regarding how to construct suitable degree
several bytes. Sender generates encoding packets, or callisttibutions for other sizes. In this regard, we demonstrate
encoding symbols when the packet length is one bit, ltlge use of optimization techniques proposed in evolutionary
some patrticular encoding operation. The encoding and sendaagnputation for generating degree distributions of different,
procedure may repeat independently and unlimitedly. Infiniteesired properties.
encoding packets are sent out continuously like a fountain,In this paper, according to our limited knowledge, we
which is an important property of fountain code caltateless. make the first attempt to utilize evolutionary computation
If a receiver is interested in receiving the data, it can receitechniques to optimize the degree distribution for LT code and
the packet flow at any time and collect the packets in amemonstrate the feasibility of customizing degree distributions
combination. Once sufficient packets, of which the amoufdr different purposes. Particularly, we adopt the covariance
is usually slightly more than that of the source data, areatrix adaptation evolution strategy (CMA-ES) [10] to di-
obtained, the source data can be fully recovered. During thestly optimize degree distributions for two goals: reducing
process, no further communication is required between senttee overhead and lowering the failure rate. The experimental
and receiver. Encoding information can be embedded in eaelsults are remarkably promising and show that significantly
packet. As a result, digital fountain code is especially useftéduced overheads and lower failure rates can be achieved for
in broadcast or other situations in which back channels are wi- code with the obtained degree distribution for a wide range
available. Moreover, because source data can be reconstrucfesource symbol sizes.
no matter which packets are received, fountain code is alsoThe remainder of this paper is organized as follows. Sec-
considered reliable to handle the problem of packet loss. tion Il describes the detailed operations of LT code, including
the coding process and soliton distribution proposed by Luby.

Chih-Ming Chen, Ying-ping Chen, Tzu-Ching Shen, and John K. Zagection |1l introduces the evolutionary algorithm used in this
are with the Department of Computer Science, National Chiao Tung Uni-

versity, 1001 Ta Hsueh Road, Hsinchu, TAIWAN (email: ccming@nclab.tvpap?r' Experiments anq results are given in section IV. Fina"y'
ypchen@nclab.tw, Stecko.cs97g@nctu.edu.tw, jkzao@cs.nctu.edu.tw).  Section V concludes this paper.

I. INTRODUCTION

978-1-4244-8126-2/10/$26.00 (©2010 IEEE 3531



Il. LT coDE

Luby introduced a new fountain code framework and gave
the detail of coding operation in 2002 [3]. Similar to other
fountain codes, source symbols are randomly chosen to be
encoded into codewords (encoding symbols). The encoding
operation is achieved by a simple boolean operaX@®R
The relation between source data and encoding symbols can
be modeled as a sparse bipartite graph. A critical change
in LT code is to decide the degree of each vertex in the
bipartite graph with a probability distribution. The cowtigity

Distribution

can be recorded as a encoding matrix and each column ¢ ° “ Degree ® 3"
represents an encoding symbol. Originaltysource symbols (a) Ideal soliton distribution

can be fully decoding by Gaussian elimination if there ekist

linearly independent columns. However, Gaussian elironat 05

is prohibitively expensive for its computational complgxof 045

O(k3). Therefore, the belief propagation (BP) algorithm [11] o4

is introduced to replace the expensive Gaussian elimimétio

the LT decoding phase. Overhead of coding is used to trade
computing time because belief propagation is more efficient
but more encoding symbols are needed for successful decod-
ing. Moreover, the performance of LT code is very sensitive t
the degree distribution. A good degree distribution is ssagy

to co-operate with belief propagation. Luby suggestedmoli

Distribution

distributions for LT framework in his proposal of LT code. 5 5 10 = % P %0
According to the mathematical verification, the propertiés Degree

soliton distribution have been confirmed. In this sectiatads (b) Robust soliton distribution

of coding operations and soliton distributions are desctib Fig. 1

EXAMPLE OF SOLITON DISTRIBUTIONS(K = 30)

A. Encoding and decoding

Given the source data, we suppose that the source data
can be cut intok source symbols with the same length of
¢ bits. Before every codeword is generated, a degieis important because the decoding process fails when theerippl
chosen at random according to the adopted degree distnibutfjueue is empty and some source symbols remain uncovered.
p(d), wherel < d < k and Zfl:l p(d) = 1. The degreel In other words, more encoding symbols are required in the
decides the how many distinct source symbols will be chosdecoding process. Ideally, the process succeeds if alceour
to compose an encoding symbal. source symbols, called symbols are recovered at the end of the decoding process.
neighbors are chosen uniformly randomly and accumulated
by XOR. In the design of LT code, random numbers pla
an essential role during the encoding process. The approacfihe behavior of LT code is completely determined by the
employed by LT code for a sender to inform receivers of aflegree distributiory(d), and the number of encoding symbols
encoding information is achieved by synchronizing a randoraceived,K, by receiver. The overhead= K/k denotes the
number generator with a specified random number seed. performance of LT code, and depends on a given degree

At the receiver side, wheR encoding symbols were arriveddistribution. Based on his theoretical analysis, Luby psgul
which is usually slightly larger that, belief propagation is the ideal soliton distribution of which the overhead is 1g th
used to reconstruct the source data step by step. All engodirest performance, in the ideal case.
symbols are initially covered in the beginning. For the firddeal soliton distributionp(d):
step, all encoding symbols with only one neighbor can be ( 1 for d=1

p(d) = {

. Soliton distribution

directly released to recover their unique neighbor. When a 1 for d=2.3 o (1)
source symbol has been recovered but not processed, it is d(d—1) S omey

called aripple and will be stored in a queue. At eachdeal soliton distribution guarantees that all the releasdb-
subsequent step, ripples are popped as a processing tasgetabilities are identical td /k at each subsequent step. Hence,
by one. A ripple is removed from all encoding symbols whicthere is exactly one expected ripple generated at each pro-
have it as neighbor. If an encoding symbols has only omessing step when the encoding symbol size:.isAfter k
remaining neighbor after the removing, the releasing actiprocessing step, the source data can be ideally recovered.
repeats and may produce new ripples to maintain a stabiig. 1(a) shows an example of ideal soliton distribution for
size of the queue. Maintaining the size of the ripple queue fis= 30.
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However, ideal soliton distribution works poorly in pragi The covariance matrix adaptation evolution strategy (CMA-
Belief propagation may be suspended by a small varianE&) [10] was firstly introduced by Hansen in 1996 and is one
of the stochastic encoding/decoding situation in which naf the most popular real-parameter optimization methods in
ripple exists, because the expected ripple size is only dnee&olutionary computation. There are some variants of CMA-
any moment. According to the theory of random walk, thES proposed in the literature [12], [13], [14]. The searciitgb
probability with which a random walk of length deviates of CMA-ES has been theoretically analyzed and empirically
from its mean by more thaim(k/6)Vvk is at mostd. It is a verified on certain classic optimization problems, such els-A
baseline of ripple sizes which must be maintained to corapléey’s function, Griewank’s function, and Rastrigin’s fuion.
the decoding process. Hence, in the same paper by LubynaCMA-ES, only a few algorithmic parameters need to be
modified version calledobust soliton distributionu(d), was decided because CMA-ES inherits the mechanism to adapt

also proposed. strategic parameters during the evolutionary processhim t
Robust soliton distribution(d): work, CMA-ES is utilized to optimize the degree distributio
in LT framework for a wide range ok, the size of source
R = C'ln(k/‘s)\/% symbols. In the remainder of this section, the way to adopt
CMA-ES to handle the optimization of degree distributions
R/ik for d=1,...,k/R—1 are presented in detail.
m(d) = é%ln(R/é)/k Ig: Z; Z;gjL Lk - @ A. Decision Variables

The first step to use an evolutionary algorithm is to encode
the decision variables of the optimization problem. It is

g = Zk:(p(d) +7(d)) not difficult in this study because a degree distribution can
= directly form a real-number vector. In the evaluation phase
p(d) + 7(d) a real-number vector of arbitrary values can be interpreted

wd) = B — ford=1,....k (3) as a probability distribution, i.e., a degree distribufievith

normalization. Such an operation does not change the fea-

c andJ are two parameters for tuning robust soliton distribusibility, although the problem complexity may be slightly
tion. c controls the mean of the degree distribution. Smalléficreased. The definition of degree distributions tells hat t
values ofc increase the probability of low degrees and larger < k. For a specific source symbol size obviously the
ones decrease if.estimates that there ahe(k/5)v/k expected problem dimensions is at mo&t However, according to the
ripple size as described. Fig. 1(b) is an example of robust encoding/decoding operations, we usually do not need a
soliton distribution withc = 0.1 and§ = 0.1. Robust soliton non-zero probability on every single degree. Observing the
distribution can ensure that onlif = & + O(In*(k/5)Vk) soliton distributions and considering the belief propagyat
encoding symbols are required to recover the source date Wilgorithm, there is no necessary degree except 1, whicheisu
a successful probability at leastd1- the start of belief propagation. As a result, we optimize a

Robust soliton distribution is not only viable but alsaelected subset of degrees in the present work. We choose
practical. The analysis of robust soliton distribution éa®n some degrees calledgsto form the vectorv(i) of decision
probability and statistics is sound if is infinite. However, variables according to the Fibonacci numbers smaller tlain h
in practice, source data cannot be divided into infinite @#ec of k. A degree distribution used in this paper hence can be
and as a consequence, the behavior of LT code will not exaciépresented as the following formula.
match the mathematical analysis, especially whea small. Optimized degree distribution(d):
Furthermore, robust soliton distribution is a general psg ) . . .
design. It provides a convenient way to construct a distidbu w (d) = { S(Z) gt:etrr\:\i;:h Fibonacci number] < /2
works well but not optimally. In this work, we try to custoreiz
the degree distribution by using optimization tools praabs (4)
in the field of evolutionary computation. B. Objectives

We try to use two indicators to evaluate degree distribgtion
for LT code in this paper. The first one is the efficiency of

Evolution strategies (ES) are a major branch of evolutipnathe LT code with the optimized degree distribution which has
computation and have been developed since early 1960s. been discussed in section II-B.denotes the expected rate of
key idea of ES is to evolve strategic parameters as well @s dasverhead to transmit data. For examgles 1.2 means that in
sion variables. ES is well-known to be quite capable of deali addition to the size of source data, 20% extra data are needed
with continuous optimization problems. One of the simplesd recover the complete source data. This objective is taiobt
ES is (1+1)-ES where only one child is produced by Gaussigome degree distribution for a specificwith the smallest
mutation to compete with its parent in each generation, apd LT code is rateless, and the coding process depends on
the other is (1, 1)-ES which is equivalent to random wallkandomness and probability. Source data recovered by a fixed
Current general versions of ES are denoted /a$ X)-ES. amount of encoding symbols cannot be guaranteed. Therefore

IIl. OPTIMIZATION METHOD
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EVOLUTIONARY PROCESS DURING THE OPTIMIZATION OF OVERHEAD AVERAGE PERFORMANCE INDICATORS ARE COMPARED BETWEEN ROBUST

SOLITON DISTRIBUTION AND OPTIMIZED DEGREE DISTRIBUTIONS BR
DIFFERENT NUMBERS OF SOURCE SYMBOL$k)

TABLE |
THE BEST INDIVIDUALS FOR THE OPTIMIZATION OF OVERHEAD
[ Degree][[ k=100 | k=400 | k=400 [ k= 1000 | IV. EXPERIMENTS AND RESULTS
; 8-(32?1’(1)22‘71 8-;22%? é)-llfg;fg 8-;221% Two series of experiments are implemented for the two
3 5357553 0 307a T DA 55T 0351385 different ob_jectlves as descnbeq in the p.rewous.sectlnn.
5 0.042648 | 0.112072 | 0.119163| 0.077045 each experimentags are determined by Fibonacci numbers
8 0.053247| 0.071726| 0.052843| 0.124503 and the specified source symbols sizeTags are encoded
%i 8-8‘1‘22‘7‘2 8-8?2%8 8-853{% 8-828;32 as an individualp(i), and represent that only these degrees
37 0073776 0.0303971 0017738 0.033607 have non-zero probabilities. Initial valu_es of _tags are set
55 0 0.000264 | 0.002094| 0.01543 as 1/|v| uniformly, and then CMA-ES is applied without
89 0 0.01109 | 0.009837| 0.00095 any customization or modification. After a new individual is
;‘3‘; 8 0'03939 g'ggiigg 06%%%17‘;3 created, it is normalized to be a valid probability disttibo
377 0 0 -0 0.010391 and evaluated for the fitness value by simulating the LT apdin

process. One hundred independent runs of simulation are
conducted for each function evaluation. In the first series o
experiments, we minimize the expected number of encoding
symbols for full decoding. In the second, the average number
in order to evaluate, we provide infinite encoding symbols,of source symbols that cannot be recovered for a constant
in the form of a stream of encoding symbols, to simulate— 1 1 js considered. We call the second indicatorfaiture
the decoding process until all source data are recoveresl. Thte The default parameter settings given in the source code
average of required encoding symbols per simulation is tge CMA-ES are adopted in this study except for= 10.
fithess value of degree distributions.

A. Overhead

The second indicator is the amount of source symbols . . .
y In these experiments, we minimize the overhedor differ-

h nn recovered when nstant ratio of encodin ) ) .
that cannot be recovered when a constant ratio of e COde k sizes, and the results are shown in Table | and Figs. 2—

symbols are received. In raptor codes, Low-density-pari : : . .
check (LDPC) [15] is introduced as a second layer pre-coditrgs' Fig. 2 presents the improvement during the evolutionary

into LT code. LDPC is a kind of forward error correction® CC€SS: Individuals are initially uniform distributionk is

codes. More information on LDPC can be found in [16], [17preCted that overheads are quite high in the b_eglnnlngrm_ldt
. ; . . curves descend quickly after around 100 function evalaatio
LDPC can fix errors of data without extra information as lon

. . L Einally, the fitness almost converges after 200 functionuasa
as the error rate is lower than certain restriction. In such, a

o - ; . fions. Fig. 3 shows the comparisonzobetween robust soliton
condition, the mission of LT code is no longer to achieve fu(!. . L SN
|satr|but|on and the optimized distributions. The expdcte

decoding. Instead, most of source symbols can be recovere . T
. ) o . Pverhead of robust soliton distribution is given as
with a small overhead is sufficient. For this purpose, wedry

minimize the number of un-recovered source symbols givena  k + O(log?(k/8)Vk) 140 log?(k/9)
constant overhead. k =1+ VE
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LEFT FIGURES SHOW THE OPTIMIZED DEGREE DISTRIBUTIONSNLY TAGS ARE PRESENTED RIGHT FIGURES ARE THE HISTOGRAM AND
ACCUMULATED CURVE OF SUCCESSFUL RATE INNOOOINDEPENDENT SIMULATION RUNS
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FOR THE COMPARISON WITH SAMEKL’S, ROBUST SOLITON DISTRIBUTIONS AND THE CORRESPONDING PERF®RNCE INDICATORS ARE SHOWN SIMILAR
TO THAT IN FIG. 4. NOTE THAT ONLY PARTS OF ROBUST SOLITON DISTRIBUTIONS ARE PLOTED FOR CLARITY
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The value becomes smaller whénincreases, and that §ms g
is why the trend of Fig. 3 shows a declination. The val- o =
. z .
ues of overhead are reduced at least 10% forkal with ats e Robuet Salton
the optimized degree distributions. Some distributionshef o - o = opmized
. .. . . . . 1 2 3 5 8 13 21 34 55 89 144233377 1 1.05 11 115 12
best individuals are given in Table I. Fig. 4 illustrates leac Degree Overhead
distribution and shows the histogram of successful rate in (d) k = 1000
1000 simulation runs on the right side. Compared with simila Fig. 7
simulation results of robust soliton distribution in Fig. the THE FIGURE SHOWS THE SIGNIFICANT DIFFERENCE OF FAILURE RATE
improvement is quite significant. AFTER OPTIMIZATION. SIMILAR TO THAT IN FIG. 4, ONLY TAGS ARE

. SHOWN IN THE FIGURES
B. Failure rate

Unlike the original LT code, we are concerned with how
many source symbols can be recovered in the second set
of experiments. The objective value is the average numiibe best probability distributions found in the evolutiona
of source symbols that cannot be recovered with a constambcess fork = 100, &k = 400, £k = 700, and k& = 1000.
overheads. Optimization results are shown in Fig. 6. MoreThe simulation results of a constant overhead are presented
function evaluations are needed to search for good degieeFig. 7. The red line denotes the behavior of uniform
distributions. The failure rate of the final results are ldsm distribution, which is the initial value of optimization. &4t
10! for all k's whene = 1.1. In other words, more than of the source symbols remain covered except for those of
90 percent of source symbols can be recovered if extra Which the degree is one, i.e., with probabilityk. The same
percent of encoding symbols are collected. Table Il givesituation happens to robust soliton distributions becahse
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amount of extra encoding symbols is not sufficient to coneplet
the BP decoding process. The behavior of LT process Witﬁ]
the optimized degree distributions is totally differentdally

satisfies the requirement of weakened LT. 2]

V. CONCLUSIONS

In this work, the first attempt to algorithmically optimize
the degree distribution adopted in LT code was proposeéef
Evolutionary computation techniques were introduced to ac
complish the optimization task. Different from the prewsou [4]
studies reported in the literature, each probability ofrdeg
were directly encoded as an individual to optimize. Prongsi [5]
experimental results were obtained in both sets of expetisne
One was to minimize the overhead, and the other was to
reduce the decoding failure rate. Our experiments showagd the]
CMA-ES was indeed capable of finding good degree distribu-
tions for different purposes without any guideline or human
intervention. Compared with robust soliton distributighe [7]
optimized overhead was decreased as least 10% for éviery
the experiments. The results of failure rate minimizaticerev o
also remarkably promising and able to support applicatains
different types and requirements.

This study creates a new research topic in which the desid%]
of degree distributions in LT code can now be algorithmigo]
and no longer has to be manually tuning parameters of robust
soliton distribution. We have empirically proved that difg
manipulating the probability value for each degree is \@abf11]
and worth pursuing. Given a specific and some expected
overhead, a degree distribution can be customized with-exis »
ing optimization techniques. In addition, we will extendeth
experiments to largéf for more kinds of potential applications
in the near future. The results empirically obtained by gsiql3
evolutionary algorithms will be theoretically analyzedhda
general guidelines, like robust soliton distribution, tttzae
able to be customized for different goals and requiremer{%é]
for designing degree distributions are expected.
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Multiobjective Evolutionary Algorithm Based on Decomposition
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Abstract— Luby Transform code (LT code) is the first practical ~ specifically designed degree distribution is proposed in the
digittal fountain code and V;_as beerll_ WitdeW UTsﬁd asd'baSil;: ﬁompo-introduction of LT code. The performance of LT code totally
nents in many communication applications. The coding behavior ftriby it ;
of LT code is mainly decided by a probability distribution of depends _on the adopted degree distribution. In his proposal,
codeword degrees. In order to customize a degree distribution Luby Qes!gngd general methods .to construct appropriate de-
for different purposes, multi-objective evolutionary algorithm is ~ gree distributions to co-operate with LT code, and the degree
introduced to optimize degree distributions in this paper. Two distributions were namedoliton distribution. Via theoretical
critical performance indicators of LT code are considered in our analysis, the feasibility of soliton distribution was proven [4].
experiments. Some applications hope to minimize the overhead of Recently, researchers started to optimize the degree distribu-

extra packets and some require to limit the computational cost of . . .
the coding system. To handle this problem, MOEA/D is applied tion in order to improve the performance of LT code [5], [6],

to optimize two objectives simultaneously. We expect to obtain but the obtained improvement is marginal and quite limited.
the Pareto front (PF) formed by partial optimal solutions and In these studies, only the parameters of soliton distribution
provide those available degree distributions to different LT code ere tuned and considered as decision variables, while in our
applications. Not only promising results are represented in this |, asent work, we directly consider the degree distribution itself
paper but also the behavior of LT code is thoroughly explored by decisi iabl
optimizing the degree distribution according to multi-objectives. as our eC|S|9n varianles. .
In the design of LT code, redundant data and encoding
|. INTRODUCTION computation are used to trade for the ability of forward error

Digital fountain code [1] is a popular class of erasure cod@rrection. For most applications, while the error correction
in the field of communication. The concept of fountain codability is maintained, both costs are required to be as lower as
was introduced by Byers et al. [2] in 1998. Firstly, source dappssible, and apparently there is a trade-off among these fac-
are divided into several pieces with an identical length. THers. Furthermore, applications of different types and purposes
length of each piece can be any number of bits or even sevdtave different requirements of each kind of cost. Some LT
bytes. Sender generates encoding packets, or cafledding code applications which transmit data through an expensive
symbols, when the packet length is one bit, by certain encodi#gmmunication channel have to reduce the data overhead.
operation. The encoding procedure may repeat independefiper applications with a huge package size expect fewer
and indefinitely so infinite encoding packets are sent o@xecutions of the encoding operator. In order to simultaneously
continuously like a fountain, which is an important propertgatisfy these applications, multi-objectives are considered for
of fountain code calledateless. If a receiver is interested inoptimizing the LT code degree distribution in the present work.
receiving the data, it can receive the packet flow at any tinéie most important motivation of this study is to fully explore
and collect the packets in any combination. Once sufficiefite LT coding behavior with arbitrary degree distributions
packets, of which the amount is usually slightly more tha@nd to empirically provide a proof of concept that multiple
that of the source data, are obtained, the source data carf@sglirements on LT code can be satisfied via optimizing degree
fully recovered. During the process, no further communicatighstributions with existing optimization techniques.
is required between sender and receiver. Encoding informationrhe remainder of this paper is organized as follows. Sec-
can be embedded in each packet. As a result, digital fount&ien Il describes the detailed operations of LT code, including
code is especially useful in broadcast or other situatioffde coding process and soliton distribution. Section IlI intro-
in which back channels are unavailable. Moreover, becau#i¢ces the background of multi-objective problems and the
source data can be reconstructed no matter which packetseu@utionary algorithm used in this paper. Experiments and
received, fountain code is also considered reliable to hand&sults are given in sections IV and V. Finally, section VI
the problem of packet loss. concludes this paper.

Luby Transform code (LT code) [3] proposed by Luby
in 2002 is the first practical framework and implementation

of fountain code. A novel coding mechanism based on aluby introduced a practical fountain code framework and
gave the details of coding operation in 2002 [3]. Similar to

Chih-Ming Chen, Ying-ping Chen, Tzu-Ching Shen, and John K. Zagther fountain codes, source symbols are uniformly randomly
are with the Department of Computer Science, National Chiao Tung Un|—h b ded i d d di bols). Th
versity, 1001 Ta Hsueh Road, Hsinchu, TAIWAN (email: ccming@nclab.t\/\g osen to be encoded into codewords (encoding symbols). e
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¢ bits. Before every codeword is generated, a degteie
chosen at random according to the adopted degree distributi
p(d), wherel < d < k and Zl;:l p(d) = 1. The degreel
decides the how many distinct source symbols will be chosen
to compose an encoding symbal. source symbols, called
neighbors are chosen uniformly randomly and accumulated
by XOR In the design of LT code, random numbers play
an essential role during the encoding process. The approach
employed by LT code for a sender to inform receivers of all
encoding information is achieved by synchronizing a random
20 2 %0 number generator with a specified random number seed.

At the receiver side, wher encoding symbols were
arrived, where K is usually slightly larger thark, belief

Distribution

0 5 10 15
Degree

(a) Ideal soliton distribution

0s : \ \ \ ‘ propagation is used to reconstruct the source data stegpy st
oasf 1 All encoding symbols are initially covered in the beginning
0af 1 For the first step, all encoding symbols with only one neighbo

can be directly released to recover their unique neighboewh
a source symbol has been recovered but not processed, it
is called aripple and will be stored in a queue. At each
subsequent step, ripples are popped as a processing tagyet o
by one. A ripple is removed from all encoding symbols which
have it as neighbor. If an encoding symbols has only one
remaining neighbor after the removing, the releasing actio
repeats and may produce new ripples to maintain a stable

Distribution

20 25 30

0 5 10 15
Degree size of the queue. Maintaining the size of the ripple queue is
(b) Robust soliton distribution important because the decoding process fails when theerippl
Fig. 1 qgueue is empty and some source symbols remain covered.
EXAMPLE OF SOLITON DISTRIBUTIONS(K = 30) In other words, more encoding symbols are required in the

decoding process. Ideally, the process succeeds if alceour
symbols are recovered at the end of the decoding process.

] ) Both encoding and decoding, as the LT coding operations,
XOR The relation between source dat_a and encoding symb_g|% achieved bXOR As a result, the computational complex-
can be modeled as a sparse bipartite graph. A key desjgflof | T code can be measured by how many timeX6fRis
of LT code is to decide the degree of each vertex in thgecutedXORoperator is applied to build the connectivity in
bipartite graph with a probability distribution. The coetieity e conceptualized bipartite graph and to eliminate a eippl
can be recorded as an encoding matrix and each coluggy the neighbors of codewords. It is evident that- 1
represents an encoding symbol. Originallysource symbols xR operators are necessary to generated a codeword with
can be fully decoded by Gaussian elimination if there e’k'Stdegreed or recover an encoding symbol. In the encoding
linearly independent columns. However, Gaussian elifonat ppase all encoding symbols are generated independently, a
IS prgohlbltlvely expensive for its computational complgxf the computational complexity to produce codewords solely
O(k?). Therefore, the belief propagation (BP) algorithm [7}iepends on the mean degree of the adopted degree distnibutio
is introduced to replace the expensive Gaussian eliminatio |, other words, the cost of each encoding symbol is decided
the LT decoding phase. Overhead of coding is used t0 tragle the mean of degree distributions. Hence, in practice, the

computing time because belief propagation is more effiCieffoan degree is an important LT performance indicator since
but more encoding symbols are needed for successful dec@qepresents the operational cost.

ing. Moreover, the performance of LT code is very sensitive t
the degree distribution. A good degree distribution is seagy
to co-operate with belief propagation. Luby suggested@oli B. Soliton distribution
distributions for LT framework in his proposal of LT code.
According to the mathematical verification, the propertiés  The behavior of LT code is completely determined by the
soliton distribution have been confirmed. In this sectimtads degree distributiony(d), and the number of encoding symbols
of coding operations and soliton distributions are desdtib received,K, by receiver. The overhead= K/k denotes the
) ) performance of LT code, and depends on a given degree

A. Encoding and decoding distribution. Based on his theoretical analysis, Luby pszzl

Given the source data, we suppose that the source ddua ideal soliton distribution of which the overhead is lg th
can be cut intok source symbols with the same length obest performance, in the ideal case.
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Ideal soliton distributionp(d): [1l. M ULTI-OBJECTIVEPROBLEMS

p(d) = % for d=2,3,....k 1) important in real-world applications. There are two or more
objectives to be considered simultaneously, and these ob-
Ideal soliton distribution guarantees that all the relgas®- jectives usually conflict with each other. The most intuitiv
abilities are identical td /k at each subsequent step. Hencgypproach to deal with MOPs is to transform them into single
there isone expected ripple generated at each processing sigfjective problems (SOPs) by using weights on the objestive
when the encoding symbol size ks After k processing step, and creating a weighted sum. The approach makes the problem
the source data can be ideally recovered. Fig. 1(a) showsgyvable by available tools based on mathematics or hasrist
example of Ideal soliton distribution fdr = 30. for SOPs. However, such weights oftentimes cannot be pre-
However, ideal soliton distribution works poorly in prai determined, especially when the domain knowledge of the
Belief propagation may be suspended by a small varianggsblem is unavailable. Furthermore, the best solutiorhéo t
of the stochastic encoding/decoding situation in which Pansformed Sing|e-objective prob|em is mere|y one sofluti
ripple exists, because the expected ripple size is only 6nega the Pareto front (PF) of the MOP. Hence, better opti-
any moment. According to the theory of random walk, thgization frameworks must be developed to fulfill the need
probability with which a random walk of length deviates of handling MOPs.
from its mean by more that(k/6)v/k is at mosté. Itisa  pue to the limitation of traditional mathematical methods
baseline of the ripple queue size which must be maintainggt MOPs, more and more researchers try to solve MOPs
to complete a decoding process. Hence, in the same papera direct way and to approximate the Pareto front as
by LUby, a modified version callegbust soliton distribution complete as possible. Their goal is to provide a set of smisti
p(d), was also proposed. which are partially optimal. Many advanced multi-objeetiv
Robust soliton distribution(d): algorithms have been proposed in the literature. Some af the
try to approximate the PF by using mathematical models,
R = Oln(k/é)\/% and others are developed based on evolutionary algorithms.
A hybrid framework makes use of decomposition methods in

{ 1 for d=1 Multi-objective optimization problems (MOPs) are very

R/ik for d=1,....k/R—1 mathematics and the optimization paradigm in evolutionary
7(d) =< RW(R/6)/k for d=k/R - (2 computation was proposed and callediltiobjective evolu-
0 for d=k/R+1,... .k tionary algorithm based on decompositigMOEA/D) [8].

MOEA/D was proposed and shown to perform well on MOPs

k with complicated Pareto set shapes [9].
B = Z(P(d)JrT(d)) In this paper, we propose the use of MOEA/D to opti-
d=1 mize the multiple objectives of LT code. Degree distribu-
pd) = p(d) + 7(d) ford=1,... .k 3) tions significantly better thamobust soliton distributionare

expected. Moreover, exploring a complete Pareto front can

c andé are two parameters for tuning robust soliton distribJ]'alp resea_rchers to analyze the frade-off be_ztween _overhead
tion. ¢ controls the mean of the degree distribution. Smallé\nd o_perat|onal cost of LT C.Ode' In the following section, we
values ofc increase the probability of low degrees, and larg ill give the formal_ description of MOPs and the MOEA/D
ones decrease ii.estimates that there ahe(k/5)\/k expected ramework, respectively.

ripples as described. Fig. 1(b) is an example of robustmolit

distribution with ¢ = 0.1 and § = 0.1. Robust soliton A. Formal description of MOPs

distribution can ensure that onlif = k + O(In*(k/6)Vk) In real-world applications, many problems are actually

encoding symbols are required to recover the source data witulti-objective optimization problems, and single-oltjee

a successful probability at leastsl- problems are special cases. A multi-objective problem @n b
Robust soliton distribution is not only viable but alsdormally stated as:

practlcg[. The analy§|§ of .robust solltqn .dIS.,'[I"IbUtlon daon minimize  F(z) = (f1(2), ..., f())

probability and statistics is sound if is infinite. However, e 4)

i i ivi i infini ; subject to ’

in practice, source data cannot be divided into infinite @ec I C(z) = (er(2), er(x)) > 0

and as a consequence, the behavior of LT code will not exactly

match the mathematical analysis, especially whea small. where(2 is called thedecision spacer variable space and
Furthermore, robust soliton distribution is a general psg R™ is the objective spaceC(z) represents the problem con-
design. It provides a convenient way to construct a digtidbu  straints and defines the feasible regions in the decisiooespa
works well but not optimally. In this work, we try to custoreiz according to problem properties [1J].: Q — R™ consists of
the degree distribution by using multi-objective optintiaa m objective functions. If2 is a closed and connected region
tools proposed in the field of evolutionary computation tmm R™ and all the objective functions are continuous, we call
simultaneously satisfy multiple performance requirersent the problem a continuous MOP.
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TABLE |

In order to consider the trade-off between objectives, the
PARAMETER SETTINGS OFMOEA/D

concept ofdominationbetween solutions is defined. Let=

(u1,...,um), v = (v1,...,0,) € R™ be two vectorsuw is [ Parameter | Value ]
said todominatev if u; < wv; foralli =1,...,m, andu # v. N 50
A point z* €  is Pareto optimalif there is nox € Q such = T - 110
tha}tF(;z:) dominatesF'(x*). The set of all the Pareto optimal hjﬁf;?(;'ne rr;fee T/
points is calledPareto set(PS) and the set of all the objective Max Gen. 150

vectors corresponding to the PS is calledreto front (PF),
where PF' = {F(z) € R™|z € PS} [11].

Instead of searching for a single or just a few (Pareto)
optimal solutions as in solving single-objective probleitire
goal of handling multi-objective problems is to find the Rare ¢ Outputs:
front as well as the Pareto set of the problem. Given thedithit — Approximation to thePS z',... z%.
computational resource, including time and storage, how to  — Approximation to thePF: F(z1),..., F(a).
provide good solutions in terms of both quality and spread is
the key and challenging task for multi-objective optimiaat

— stopping criteria.

IV. EXPERIMENTS

The experiment implementation is described in this section
MOEA/D is a well-developed tool and has the characteristic

One of the key ideas of MOEA/D is the use of a deof plack-box optimization like other evolutionary algdmits.
composition method to transform a MOP into a numbexs described in section I1I-B, only input and output shouéd b
of single-objective optimization problems. MOEA/D attet$\p handled properly. Section IV-A shows how to encode a degree
to optimize these single-objective problems collectivalyd gistribution into decision variables, and the objectivediions

simultaneously instead of trying to directly approximalte t are given in section IV-B. Table | lists the other algoritiemi
Pareto front as many other evolutionary algorithms do b&eatharameter settings of MOEA/D.

each optimal solution to these SOPs is a Pareto optimal o _
solution to the given MOP. The collection of these optima. Decision variables

solutions is an approximation of the Pareto front. Weighted The first step to use an evolutionary algorithm is to encode
sum, Tchebycheff approach, boundary intersection, anerotihe decision variables of the optimization problem. It i¢ no
decomposition approaches can serve this purpose. In Hifficult in this study because a degree distribution caratly
present work, the Tchebycheff approach [11] is adopted. #rm a real-valued vector. In the evaluation phase, a real-
single-objective optimization problem obtained by decosp valued vector of arbitrary values can be interpreted as a

B. MOEA based on decomposition

ing the given MOP can be represented as probability distribution, i.e., a degree distribution, tivinor-
minimize  g(z|\, 2*) = maxi<i<m {Ni|fi(x) — 2} ) malization. Such an operation (joes not change thg feagibili
subject to z € Q although the problem complexity may be slightly increased.

] ) ] The definition of degree distributions tells us that< k.

whereA = (Ar,..., Am) i a vector of weights, i.e; > 0 For a specific source symbol siZe obviously the problem

foralli = 1,...,m and Ei:l)‘i.: L z* = (2{,...,2)  dimensions is at mosk. However, according to the LT

is the reference point, i.ez; = min{fi(z)[x € Q} for each gncoding/decoding operations, we usually do not need a non-

i=1,. e m. N i zero probability on every single degree. Observing themoli
Let A,..., A" be a set of N weight vectors. If we use gisgribution and considering the belief propagation atan,

a large N and select the weight vectors properly, all thgyere js no necessary degree except 1, which ensures the star
optimal solutions of the SOPs transformed from decompgs pejief propagation. As a result, we optimize a selected
sition will well approximate the Pareto front. Moreover, W& pset of degrees in the present work. We choose some par-
can define a neighborhood relationship for each SOP gy degrees{1,2,3,4,5,7,9,13,17,23to form the decision
computing Euclidean distances between weight vectorssSSQRyiaples according to the experience. Different subséts o
which are considered neighbors are assumed to have S'”‘H@brees may change the numerical results of experiments

fitness landscapes and their optimal solutions should tEC'?esults, but the soundness of this paper will be not be afiect
in the decision space. MOEA/D exploits the information

sharing among SOPs which are neighbors to accomplish #e Objectives

optimization_task effectively and efficiently. The spedaition In this paper, degree distributions are optimized for two
of MOEA/D s stated as follows: different objectives. The first indicator to evaluate ey
« Inputs: of LT code is overhead. The redundancy is traded for the
— decision variables. benefit of fountain code and those extra encoding symbols
— objective functions. increase the cost when they are transmitted to the receiver.
— N: the number of subproblems. In most application, overhead is required to be as low as

T the number of neighbors for each subproblem. possible because the transmission is usually expensive. In
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EVOLUTIONARY PROCESS DURING THE OPTIMIZATION FOR: = 100 EVOLUTIONARY PROCESS DURING THE OPTIMIZATION OFc = 500
*‘Gen.lo
12001 A Gen.50 || ; i
O Gen. 100 as complete as possible. In other words, solutions shoulld we
1000 3 O Gen. 150 spread to provide sufficient choices to decision markers. In
= 3 our experiments, overhead and operational cost of LT code
§ soof are both minimized together and the minimal value of each
g objective is expected. Clearly, a degree distribution wta
7 %0 minimal operational cost has only non-zero probability on
g degree one because in such a case, no encoding operation is
(o]
400+ . . . .
needed. The case is the pure transmission without any channe
so0L | coding, and it is a special case in the LT code framework.
= As for the other objective, overhead has a lower bound at
oL - - : - © h?lmé ) ratio 1. Each encoding symbol can generate a new ripple to
Overhead recover a source symbol ideally such that at lgaencoding
Fig. 3 symbols are required to reconstruct the original data.eleffit
EVOLUTIONARY PROCESS DURING THE OPTIMIZATION OFk = 300 from the operational cost, such a degree distribution is not

yet discovered and even its existence is not proved. Fig. 2
shows the optimization process and the final result. Aftér 15
generations, a significant PF is represented by fifty indiaid
our simulation of LT code, encoding symbols are generatpdints. The solution with the minimal operational cost in
until source data are fully recovered. The average requiregpectation has been found, but the best overhead is 1.2068.
codewords are calculated as the fitness. The other objastiv&everal individuals are listed in Table I, where the bestiea
the computational cost of the encoding and decoding procestoverhead and operational cost are presented in columns 2
Such an objective value can be estimated with the mean degaed 3, respectively. Columns 4 and 5 give the average ovgrhea
of degree distributions. 1fM,; denotes the mean value ofand execution counts cKOR in the numerical simulation.
a degree distribution, the number of how many timé3R Figs. 3 and 4 display similar results as that shown in Fig. 2
is executed can denote 48/, — 1) « ¢. There is a trade- for k = 300 andk = 500. Fig. 7 presents the distribution and
off betweene and M, because when{; is greater, fewer simulation results for each individual listed in Table II.
encoding symbols may be required, and thereferés less. 1o our limited knowledge, there is no guideline to design a
On the other hand}, is the operational cost, which is therobyst soliton distribution for some particular coding &eh
average number oKOR operations that have to be executediors, In order to fairly compare our optimized results witiat

of robust soliton distribution, MOEA/D is also applied to-op
timize the parameters of robust soliton distribution, whére

In most multi-objective problems, there is usually a trade-and¢. The PF of the optimized robust soliton distributions
off between objectives. For anobjective problem, a solution is presented in Fig. 5. In the dimension of operational cost,
can be represented as a point in thelimensional space. the optimized robust soliton distributions deliver veryngar
All points which denote the non-dominated solutions formesults because robust soliton distributions can alsorbeco
a partial optimal set called the Pareto front. The mission tiie degree distribution with only non-zero probability on
multi-objective algorithms is to approximate the Paretnfr degree one if some appropriate parameters are given. Howeve

V. EXPERIMENTAL RESULTS
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OPTIMIZED ARBITRARY DEGREE DISTRIBUTIONS

TABLE Il

applications of different types and natures, LT code will be
more efficient if choosing a specifically appropriate degree
distribution is possible. Not only more choices of degree di

[_Individual | Best Overhead| Best Cost]| AVG. Overhead[ XOR | triputions are available, but also much better performahaa
1 4.8442 0.00042 5.1958 0.038 | that delivered by robust soliton distribution can be ackiev
25 2.5608 1.29873 2.6655 407.026| b liton distributi dominateitid
35 50294 185193 51485 558667 ecause mpst robust so iton distri u'tlons are omlnat y
45 1.4564 25135 157211 603.742| solutions discovered with MOEA/D in the experiments.
50 1.2068 2.93541 12718 843.669 An alternation solution which designs degree distribution
better than robust soliton is given in the work. While LT
TABLE IlI code is employed in real-world apparitions, the degree dis-
OPTIMIZED ROBUST SOLITON DISTRIBUTIONS tribution can be customized to satisfy different requiratee
by using evolutionary algorithms. Fitter degree distridog
[ Individual [ Best Overhead Best Cost]] AVG. Overhead] XOR | \k/)\”" enhagce the g_erforr?aﬂceborhqse a:cppllcat(;ons._lll\/lhcmEO\%
T 75080 500552 =133 5377 _etter understandings of the be avior o LT code will help t
25 31244 174314 4.1662 125455| improvement of LT code. The final results show that some
35 2.0708 2.76115 2.6217 324.580 | better distributions are beyond the model of robust soliton
45 1.5194 3.41297 1.9278 471.753 | (distribution. The theoretical analysis will also be apgli®
50 1.2530 6.71008 1.3097 1141.46 ) ) . T :
them just like the development of soliton distributions r o
future work. An advanced model in which the performance is
700 w — close to that of the Pareto front is in expectation.
* * Robust Soliton
500 O Optimized || ACKNOWLEDGMENTS
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