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一、 前言 

演化計算 (Evolutionary computation) 為目前人工智慧領域中，一個相當重要

的研究方向，藉由模擬自然界物種演化的機制，或是動植物賴以生存的法則，設計

出各種最佳化演算法，適用於解決各式各樣不同種類的問題 [1, 2]。也由於其具有

黑箱最佳化 (Black-box optimization) 演算架構的特性，演化計算領域中大部分的

方法，皆可應用於各式各樣的最佳化問題上。因此，本計畫「研究與發展專為無線

網路系統客製化之最佳化演算架構」原訂以兩年的期間，利用演化計算領域中最佳

化方法極富彈性之特點，研發出可客製化之最佳化演算架構，並將之為無線網路技

術中所存在的各項最佳化問題量身訂製，提供適切之最佳化工具與軟體。然而本計

畫僅核定為一年期計畫，故計畫目標修訂為完成混合式變數之最佳化工具，並於計

畫執行期間，進行演化計算最化佳方法論之各項相關研究。 

二、 研究目的 

本計畫原訂之最終目標，在於研究與發展出「提供無線網路系統相關應用之最

佳化服務基礎架構」，旨在以可客製化的最佳化架構，分別對無線網路應用系統中

存在之數個參數型別與種類不同之最佳化議題加以適當處理與解決。 

由於僅核定為一年期計畫，故修訂為著重演化計算最佳化方法論上的理論探討

與特性分析。預期以延伸式精簡基因演算法為基礎架構，提出新式的泛用型最佳化

演算架構，能直接適用於含有不同型態決策變數的待處理問題，包含布林變數、整

數和實數。我們利用演化計算領域中之最佳化方法視目標函數 (Objective function) 
為黑箱 (Black box) 的特性，開發出可適用於各種型別不同的參數最佳化問題之可

客製化架構，以在將來配合各存在於無線網路應用系統中不同種類之最佳化問題，

並將最佳化架構進行專為符合無線網路應用系統所需之客製化。 

三、 文獻探討 

許多現實世界中的問題大多不像純數學問題般單純，可以直接套用公式或經過

固定的計算程序來得到正確解答。這些現實問題最終仍需仰賴最佳化技術與工具的

幫助，方能解決各決策變數 (Decision variable) 或稱參數 (Parameter) 的決定問

題。舉凡工業設計、排程規劃、電路設計、資料壓縮、經濟學、建築學等等眾多領

域，都存在著各式各樣不同的最佳化問題。譬如積體電路配置問題，對於相同的電

路設計該如何配置能夠使用最小的面積，或是建築工程中，相同的建築材料該如何

設計才能獲得最大的支撐力問題。這些問題常常都不難要找到一組可行解 
(Feasible solution)，甚至是多組可行解，但是如果要找到問題的最佳解，通常就不

是那麼地容易。不同的解在問題中有不同的結果反應，如果我們能客觀地分辨結果

的優劣，就能以最佳化技術提升價值與成本的比值，以期能在各式問題中降低成本

或是改善成果。。 

其中，最常見的最佳化形式要屬問題的參數調整。對於想要進行最佳化處理的

問題，通常需要定義一個目標函數 (Objective function)，來協助我們使用各種最佳
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化技術。其中一種是使用經驗法則 (heuristic)，在可行解範圍逐步尋求最佳化。此

類演算法包括基因演算法 (Genetic algorithm) [1, 2]、模擬退火演算法 (Simulated 
annealing) [3, 4]、螞蟻族群演算法 (Ant colony algorithm) [5]、粒子群最佳化 
(Particle Swarm Optimization) [6, 7]… 等等。這類方法藉由模擬自然界的運作來達

到最佳化目的。這類方法不再受限於目標函數的數學特性，可以應用於非線性、不

可微分、或是不連續函數。無法用數學函數描述的問題，都可以設計模型，根據模

擬得到的回饋進行最佳化演算。只要兩組解的優勝劣敗能夠被某種方式比較，甚至

連不存在目標函數的問題也能適用，例如：個人化之樂音片段產生 [8]。此類演算

法的可行性與實用性非常高，具有一定的求解能力，在有限時間內通常可以獲得在

品質方面可被接受解，因此漸漸地被廣泛應用於現實世界問題。 

四、 研究方法 

1. 變數型態之研究與分析 

以目前現有的許多最佳化問題而論，我們依據常見的參數型態給予分

類並討論分析。舉以一個小偷的背包問題為例子，分別對三種型態問題作

一情境模擬。此問題設定是，小偷的背包有固定的重量限制，而現在有金、

銀、銅三種不同材質的製品，其重量跟單價都不一樣，小偷該如何選擇才

能在條件限制下獲得最大利益。 

 布林值 (Boolean values) 

布林變數常見的被使用在決策性變數上，已經確知有數個選項，

每個選項可以用單一布林變數來表示選取或不選取。布林變數的問題

通常也就是一般的排列組合問題。當小偷問題中的三種製品都只有一

個時，即可用三個布林變數分別表示要帶走或不帶走情況，此即為典

型的布林參數問題。 

 整數 (Integers) 

整數是處理離散資料的型態，一些對應到實體個數的參數問題常

常就必須用整數來表示。若小偷的背包問題中，三種製品分別都有一

個以上之數量，則可以用三個整數參數來記錄，構成整數參數最佳化

的問題。 

 實數 (Real numbers) 

現實世界的工程問題大多是運作在實數域上，因此實數參數也就

是最常被使用的型態，通常我們可以用實數向量來表示一組問題解。

因為實數的連續性，除了在特定的問題類型之下 (例如：線性規劃問

題或是可以實數近似之最佳化問題)，實數最佳解的搜尋經常比布林

與整數型態的解還來得困難許多。假想在小偷的背包問題中，如果小

偷有工具可以對三種製品做切割動作，那此問題就必須使用實數參數

來表示帶走某種製品的數量，此問題則轉為實數最佳化問題。 
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上述三種問題情境，如同大部份最佳化問題一樣，都只有針對單一型

態參數來對應問題中的決策變數，但仍不可否認地，有部份最佳化問題需

要同時解決不同型態的參數。例如，當小偷問題中的金製品只有一個，銀

製品有數個，而銅製品又可以被切割時，我們面對的最佳化問題即為一個

混合型態決策變數的最佳化問題。作為研究計畫第一步，我們首先要針對

混合型態參數的最佳化問題分析與瞭解問題特性，作為往後發展基礎，方

有可能針對各類領域的最佳化問題提供量身訂製的最佳化架構服務。 

2. 最佳化演算法架構 

泛用型最佳化演算法的設計，包含了兩個最主要的部份，分別是將延

伸式精簡基因演算法擴充至整數參數與實數參數。2.1 描述如何修改邊際

乘積機率模型和最小描述長度原則機制，使整數參數也能適用。2.2 則是

在整數架構中，再加上由本實驗團隊所開發之連續域離散化技巧「隨選分

割」 (Split-on-domain) 來處理實數問題。 

2.1 整數延伸式精簡基因演算法 (iECGA) 

在整數延伸式精簡基因演算法的架構中，我們首先定義整數的範

圍可以從 l 到 u，然後使用整數向量取代原本的二進位位元字串作

為個體基因的表示方式。為了方便和原本的延伸式精簡基因演算法做

比較，我們通常將整數範圍定為 2 的冪次方數。也就是 d = u-l = 2n，

則此範圍內的整數，都可以用長度為 n 的二進位字串來表示。在延

伸式精簡基因演算法中，邊際乘積機率模型針對某特定群組進行元樣

式的統計。舉例來說 s = [1, 3, 4] 是某一基因群組，而 |s| = 3則是群

組大小，邊際乘積機率模型的計算即如表格 1 所示，總共有 2|s| 個
可能樣式。 

表格 1: 邊際乘積機率模型之二進位範例 

目前族群 樣式 次數 
00110 
01010 
01110 
01100 
00010 
10001 

0*00* 
0*01* 
0*10* 
0*11* 
1*00* 
1*01* 
1*10* 
1*11* 

0 
2 
1 
2 
1 
0 
0 
0
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表格 2: 邊際乘積機率模型之整數範例 

目前族群 樣式 次數 

3472 
1624 
0314 
6715 
4360 
7164 

0*0* 
0*1* 
0*2* 

... 

... 
7*6* 
7*7* 

0 
1 
0 
. 
. 
1 
0

而整數延伸式精簡基因演算法修改邊際乘積機率模型統計對象

為整數參數，對於同樣一組群組 s = [1, 3, 4]，若整數範圍 d = u-l，
則總共要對 d|s| 種不同樣式作出現次數統計，如表格 2所示。除了修

改邊際乘積機率模型以符合整數特性之外，模型複雜度估計的運算公

式也必須加以修改。整數延伸式精簡基因演算法將二進位布林參數樣

式的兩種情形擴展到整數範圍的 d 種情形，因此 Model Complexity
公式修正為公式 (1)。而 Compressed Population Complexity和其他部

分的機制都和原延伸式精簡基因演算法相同。 





m

i

sidN
1

2log  Complexity Model
     

(1) 

2.2 實數延伸式精簡基因演算法 

在討論實數延伸式精簡基因演算法之前，必須先介紹本實驗團隊

過去所成功發展的連續值域適應性之離散化演算法「隨選分割」 
(Split-on-demand, SoD)。此演算法將一連續值域分割成數個區間，使

得每個區間內的搜尋個體數目小於 N*λ，其中N為族群大小、λ為分

割比率，可以用來平衡全域搜尋 (Global search) 跟區域搜尋 (Local 
search) 的強度與比重，也就是試圖在探索  (Exploration) 和利用 
(Exploitation) 間找到適當的平衡。圖表 1 顯示一組隨選分割的範

例。經過隨選分割處理，可以技巧性地將實數離散化為整數。 

 

2 3 1

-100 

 

圖表 1: 隨選分割範例 

延伸式精簡基因演算法原本是設計處理二進位資料的方法，為了

能夠處理實數參數，我們將隨選分割機制整合在整數延伸式精簡基因

演算法的流程中。因此實數延伸式精簡基因演算法架構中的個體分別

有實數向量和整數向量兩種基因態，在目標函數的評估運算和存活個
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體的選擇階段，個體以實數向量表示。接下來利用隨選分割將實數在

該值域中，離散化為後編碼為整數向量進行整數延伸式精簡基因演算

法之重組程序，重組完的子代個體為整數，之後經過隨機取樣，重新

轉換回實數個體。圖表 2 為實數延伸式精簡基因演算法之流程圖。 

Random	

Sampling	

Real‐number	

Individuals	

MPM	

model	

Function	

Evaluation	

Tournament

Selection	

Individuals

with	fitness

Crossover	

Mutation

New	Integer

Individuals
Greedy	 	

MPM	Search

Split‐on‐	

Demand	

Good	Integer	

Individuals	

Good	Real	

Individuals 

 

圖表2: 實數延伸式精簡基因演算法架構流程 

 

2.3 泛用型最佳化技術 

本計畫所提出之創新泛用型最佳化技術，即奠基於原本的二進位

延伸式精簡基因演算法，及本實驗室過去所開發的整數延伸式精簡基

因演算法和實數延伸式精簡基因演算法。我們將以延伸式精簡基因演

算法為最底層之最佳化引擎，而將同一個問題中各種不同的決策變

數，加以適當地型別轉換，經由最佳化引擎處理後，再回復其原始型

態。由過去發展最佳化技術之相關成功經驗得知，我們應可順利同時

進行不同型態之決策變數的最佳化工作，並開發出優異創新之泛用型

最佳化架構。 

五、 結果與討論 

本計畫原擬以兩年期間，進行「專為無線網路系統客製化之最佳化演算架構」

之研究、探討、與發展工作。最終之預期成果，為開發出一套可客製化之泛用型最

佳化架構，以提供各工程暨科學領域問題之最佳化服務。並且，將此最佳化架構針

對無線網路系統，客製化成為量身訂製之最佳化基礎服務與工具，以處理無線網路

應用系統內，各種不同之最佳化問題。然而如前所述，本計畫被核定為一年期，故

完成之項目為原訂之第一年主題「可客製化之泛用型最佳化架構的設計與發展」。

在此主題中，以演化計算方法論為基礎，配合數項創新技術，設計並發展出新的可

客製化之泛用型最佳化演算架構，能直接適用於含有不同型數策變數之最佳化問

題。已完成之具體工作項目如下： 
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 參與人員獲得以下之訓練： 

 培養研究生分工合作之能力； 

 訓練參與人員研究、統合與論文寫作能力； 

 統整研究成果並發表學術論文； 

 學習實作系統之實務經驗； 

 強化參與人員之資料分析、演化計算、機械學習、數值分析與最佳化技術

等相關技能。 

 設計最佳化演算架構: 提出可適用於含有各種不同型態決策變數之問題的新

型最佳化技術，以因應真實世界狀況中高度複雜之工程問題與困難。 

 實作最佳化計算架構: 將所提出之技術，實作為獨立的最佳化工具與服務，以

供本計畫之相關人員，甚至是其他研究領域之人員分享與使用。已完成之原始

程式碼，可由此網址下載： 

http://nclab.tw/SM/2010/01/ 

 撰寫報告並投稿論文。基於國科會之補助，本實驗室發表了以下的相關論文： 

 期刊論文： 

 Chuang, C.-Y., & Chen, Y.-p. (2010). Sensibility of linkage information 
and effectiveness of estimated distributions. Evolutionary Computation, 
18(4). doi: 10.1162/EVCO_a_00010. (SCI). 

 Chen, Y.-p., & Jiang, P. (2010). Analysis on the facet of particle 
interaction in particle swarm optimization. Theoretical Computer Science, 
411(21), 2101–2115. doi: 10.1016/j.tcs.2010.03.003. (SCI, EI). 

 會議論文： 

 Huang Y.-w. & Chen, Y.-p. (2010). Detecting General Problem 
Structures with Inductive Linkage Identification. In Proceedings of the 
2010 Conference on Technologies and Applications of Artificial 
Intelligence (TAAI 2010). (Accepted). 

 Lin J.-H. & Chen, Y.-p. (2010). XCS with Bit Masks. In Proceedings of 
the 2010 Conference on Technologies and Applications of Artificial 
Intelligence (TAAI 2010). (Accepted). 

 Chen, Y.-p. (2010). Estimation of distribution algorithms: Basic ideas 
and future directions. In Proceedings of World Automation Congress 
2010 (WAC 2010) (pp. IFMIP–152). (Invited). 

 Chen, C.-M., Chen, Y.-p., Shen, T.-C., & Zao, J. (2010). On the 
optimization of degree distributions in LT codes with covariance matrix 
adaptation evolution strategy. In Proceedings of 2010 IEEE Congress on 
Evolutionary Computation (CEC 2010) (pp. 3531–3538). doi: 
10.1109/CEC.2010.5586202. (EI). 
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 Chen, C.-M., Chen, Y.-p., Shen, T.-C., & Zao, J. (2010). Optimizing 
degree distributions in LT codes by using the multiobjective evolutionary 
algorithm based on decomposition. In Proceedings of 2010 IEEE 
Congress on Evolutionary Computation (CEC 2010) (pp. 3635–3642). 
doi: 10.1109/CEC.2010.5586340. (EI). 
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Abstract
The probabilistic model building performed by estimation of distribution algorithms
(EDAs) enables these methods to use advanced techniques of statistics and machine
learning for automatic discovery of problem structures. However, in some situations, it
may not be possible to completely and accurately identify the whole problem structure
by probabilistic modeling due to certain inherent properties of the given problem. In
this work, we illustrate one possible cause of such situations with problems consisting
of structures with unequal fitness contributions. Based on the illustrative example, we
introduce a notion that the estimated probabilistic models should be inspected to reveal
the effective search directions, and further propose a general approach which utilizes
a reserved set of solutions to examine the built model for likely inaccurate fragments.
Furthermore, the proposed approach is implemented on the extended compact genetic
algorithm (ECGA) and experiments are performed on several sets of additively sep-
arable problems with different scaling setups. The results indicate that the proposed
method can significantly assist ECGA to handle problems comprising structures of
disparate fitness contributions and therefore may potentially help EDAs in general to
overcome those situations in which the entire problem structure cannot be recognized
properly due to the temporal delay of emergence of some promising partial solutions.

Keywords
Sensible linkage, effective distribution, linkage sensibility, probabilistic model, model
pruning, estimation of distribution algorithm, extended compact genetic algorithm,
evolutionary computation.

1 Introduction

Estimation of distribution algorithms (EDAs; Mühlenbein and Paaß, 1996; Larrañaga
and Lozano, 2001; Pelikan, Goldberg, et al., 2002) are a class of evolutionary algorithms
that replace the traditional variation operators, such as mutation and crossover, by
building a probabilistic model on promising solutions and sampling the built model to
generate new candidate solutions. Using probabilistic models for exploration enables
these methods to automatically capture the likely structure of promising solutions and
exploit the identified problem regularities to facilitate further search. It is presumed that
EDAs can detect the structure of the problem by recognizing the regularities within the
promising solutions. However, for certain problems, EDAs are unable to identify the

∗To whom correspondence should be addressed.
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entire structure of the problem at a given time because the set of selected solutions on
which the probabilistic model is built contains insufficient information regarding some
parts of the problem and renders EDAs incapable of processing these parts accurately.

This paper starts by observing the evolutionary process of an EDA when dealing
with an exponentially scaled problem, and recognizing that the population on which
the probabilistic model is built does not necessarily contain sufficient information for all
problem structures to be detected completely and accurately. Based on this observation,
this study proposes a general concept that estimated probabilistic models should be
inspected to reveal the effective search directions, and we provide a practical approach
that utilizes a reserved set of solutions to examine the built model for the fragments
that may be inconsistent with the actual problem structure. Furthermore, the proposed
approach is implemented on the extended compact genetic algorithm (ECGA; Harik,
1999) and experimented on several sets of additively separable problems with different
scaling difficulties (Goldberg, 2002) to demonstrate the applicability.

The following section briefly reviews the research topics concerning this study. Sec-
tion 3 then demonstrates the interaction between the scaling difficulty and probabilistic
model building performed by EDAs. More specifically, we will investigate how the scal-
ing difficulty shadows the ability of EDAs to recognize problem structures and causes
inaccurate processing on the part of some solutions. Accordingly, a general approach
will be proposed in Section 4 to resolve this issue and enforce accurate processing dur-
ing the optimization process. In Section 5, an implementation of the proposed approach
on the extended compact genetic algorithm will be detailed. Section 6 presents the
empirical results, followed by discussion and analysis in Section 7. Finally, Section 8
concludes the paper.

2 Background

Genetic algorithms (GAs; Holland, 1992; Goldberg, 1989) are search techniques loosely
based on the paradigm of natural evolution, in which species of creatures tend to adapt
to their living environments through mutation and inheritance of useful traits. Ge-
netic algorithms mimic this mechanism by introducing artificial selections and genetic
operators to discover and recombine partial solutions. By properly growing and mix-
ing promising partial solutions, which are often referred to as building blocks (BBs;
Goldberg, 2002), GAs are capable of efficiently solving a host of problems. The ability
to implicitly process a large number of partial solutions has been recognized as an im-
portant source of the computational power of GAs. According to the Schema theorem
(Holland, 1992), short, low-order, and highly fit subsolutions increase their share in the
final combined solution. Further, as stated in the building block hypothesis (Goldberg,
1989), GAs implicitly decompose a problem into subproblems by processing building
blocks. This decompositional bias is a good strategy for tackling many real-world prob-
lems, because real-world problems can oftentimes be reliably solved by combining the
pieces of promising solutions in the form of problem decomposition.

However, proper growth and mixing of building blocks are not always achieved.
GAs in the simplest form employ fixed representations and problem-independent re-
combination operators, which often breaks promising partial solutions while perform-
ing crossovers. This can cause crucial building blocks to vanish, thus leading to a
convergence to local optima. In order to overcome this building block disruption prob-
lem, various techniques have been proposed. In this study, we focus on one line of effort
often called the estimation of distribution algorithm (EDA; Mühlenbein and Paaß, 1996;

2 Evolutionary Computation Volume xx, Number x
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Larrañaga and Lozano, 2001; Pelikan, Goldberg, et al., 2002). These methods construct
probabilistic models of promising solutions and utilize the built models to generate
new solutions. Ideally, by detecting dependencies among variables through probabilis-
tic modeling, these approaches can capture the structure of the problem and thus avoid
the disruption of identified partial solutions. Early EDAs, such as population-based
incremental learning (PBIL; Baluja, 1994) and the compact genetic algorithm (cGA;
Harik et al., 1999), assume no interaction between decision variables, that is, decision
variables are assumed to be independent of each other. Subsequent studies progressed
from capturing pairwise interactions, such as mutual-information-maximizing input
clustering (MIMIC; De Bonet et al., 1997), Baluja’s dependency tree approach (Baluja
and Davies, 1997), and the bivariate marginal distribution algorithm (BMDA; Pelikan
and Mühlenbein, 1999), to modeling multivariate interactions, such as the extended
compact genetic algorithm (ECGA; Harik, 1999), the Bayesian optimization algorithm
(BOA; Pelikan et al., 1999), the estimation of Bayesian network algorithm (EBNA;
Etxeberria and Larrañaga, 1999), the factorized distribution algorithm (FDA; Mühlenbein
and Mahnig, 1999), and the learning version of FDA (LFDA; Mühlenbein and Höns,
2005). Along this line of research, questions arose naturally regarding the ability of
EDAs to solve problems and the probabilistic models employed to learn the problem
structures. Early studies recognized that solving problems composed of higher order
building blocks is not expected to be accomplished by using just any probability density
structure. Bosman and Thierens (1999) demonstrated that even when the set of vari-
ables forming a building block is linked and expressed by the best possible MIMIC-like
chain structure, directly sampling that chain to generate new solutions is not a good
strategy for reliable optimization. More recently, Echegoyen et al. (2007) compared the
behavior of EBNA with approximate and exact Bayesian network learning. In another
vein, Hauschild et al. (2007) analyzed the structure and complexity of learned proba-
bilistic models and attempted to facilitate the model building process by incorporating
the knowledge acquired from previous models (Hauschild et al., 2008).

Another topic relevant to this study is the impact of disparate scale among different
building blocks on the behavior and performance of the evolutionary algorithms. It is
commonly observed that building blocks with higher marginal fitness contributions—
salient building blocks—converge before those with lower marginal fitness contri-
butions. This sequential convergence behavior is referred to as domino convergence
(Thierens et al., 1998). In real-world applications, it is often the case that some parts of
the problem are more prominent and contribute more to the fitness than other parts.1

Such a situation can pose two types of difficulties. Firstly, because the processing on
the population is statistical in nature, building block scaling can cause inaccurate pro-
cessing of less fit building blocks (Goldberg et al., 1992; Goldberg and Rudnick, 1991).
The second difficulty arises because the lower fitness of a building block generally
causes it to be processed at a later time compared to those of higher fitness. This delay
on timeline can cause the building block to converge under random pressure, instead
of proper selective pressure. Previous studies on this topic include the explicit role of
scale in a systematic experimental setting (Goldberg et al., 1990), a theoretical model

1The reader may note that this statement cannot be formally proved nor disproved because we do
not know nor even have a way to estimate the distribution of all real-world problems. However, this
intuition can be better articulated by the explanation provided in Goldberg (2002): differences in scale
are likely to be common across the space of likely problems, that is, the chance that we encounter
differences in scale may be much larger than encountering equivalence in scale.

Evolutionary Computation Volume xx, Number x 3
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on the convergence behavior of exponentially scaled problems (Thierens et al., 1998),
an extension of that model to building blocks more than one variable long (Lobo et al.,
2000), and a convergence model of linkage learning genetic algorithms (LLGAs; Harik,
1997) on problems with different scaling setups (Chen and Goldberg, 2005).

Although the aforementioned scaling difficulty exists in a number of problems
and degrades the performance of many evolutionary algorithms (EAs), there are scant
investigations concerning the behavior of EDAs in the presence of scaling difficulties.
Therefore, this study attempts to explore how the scaling difficulty affects EDAs, and
proposes a practical countermeasure to assist EDAs on problems with different scalings.
Specifically, we propose the notion that the estimated probabilistic models should be
examined to enforce accurate processing of building blocks and prevent random drift
from taking place. In the remainder of this paper, our approach will be demonstrated
and evaluated on the test problems constructed by concatenating several trap functions.
A k-bit trap function is a function of unitation2 which can be expressed as

ftrapk
(s1s2 · · · sk) =

{
k, if u = k

k − 1 − u, otherwise
,

where u is the number of ones in the binary string s1s2 · · · sk . The trap functions were used
pervasively in the studies concerning EDAs and other evolutionary algorithms because
they provide well-defined structures among variables, and the ability to recognize
intervariable relationships is essential to solve the problems consisting of traps (Deb
and Goldberg, 1993, 1994).

3 Linkage Sensibility

The ability of EDAs to handle the building block disruption problem comes primarily
from the explicit modeling of selected promising solutions using probabilistic models.
The model construction algorithms, though they differ in their representative power,
capture the likely structures of good solutions by processing the population-wise statis-
tics collected from the selected solutions. By reasoning the dependencies among differ-
ent parts of the problem and the possible formations of good solutions, reliable mixing
and growing of building blocks can be achieved. As noted by Harik (1999), learning
a good probability distribution is equivalent to learning linkage, where linkage refers
to the dependencies among variables. Bosman and Thierens (1999) further recognized
that in order to achieve reliable optimization, linkage information should be utilized
in a way such that each corresponding building block can be identified and used as a
whole.

In most studies on EDAs, it is presumed that EDAs can detect linkage and recognize
building blocks according to the information contained in the set of selected solutions.
However, in this study, we argue that in some situations, accurate and complete linkage
information cannot be acquired by distribution estimation because the selected set of
solutions on which the model is built contains insufficient information on the lower
fitness parts of the problem. For example, consider a 16-bit maximization problem

2A function in which the function value depends only on the number of ones in the binary input
string.

4 Evolutionary Computation Volume xx, Number x
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Table 1: Marginal product models built by ECGA when solving an exponentially scaled
problem. Each group of variables represents a marginal model in which a marginal
distribution resides. The converged variables are crossed out.

Generation Marginal product model

1 [s1 s2 s3 s4] [s5 s10 s16] [s6 s7] [s8 s9 s12] [s11 s14 s15] [s13]
2 [s1] [s2] [s3] [s4] [s5 s6 s7 s8] [s9 s13 s16] [s10 s14 s15] [s11s12]
3 [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9 s10 s11 s12] [s13 s16] [s14 s15]
4 [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9] [s10] [s11] [s12] [s13 s14 s15 s16]

formed by concatenating four 4-bit trap functions as subproblems,

f (s1s2 · · · s16) =
3∑

i=0

(53-iftrap4
(s4i+1s4i+2s4i+3s4i+4)) ,

where s1s2 · · · s16 is a solution string. Note that in contrast to other studies of EDAs, in
which the test problems are scaled uniformly, that is, the subproblems are of equal fit-
ness, in this problem, each elementary trap function is scaled exponentially. This scaling
is an abstraction for problems of distinguishable prominence or solving priority among
the constitutive subproblems. Suppose that we choose ECGA (Harik, 1999), which uses
a class of multivariate probabilistic models called marginal product models (MPMs), to
tackle this problem.3 By observing subsequent generations of the optimization process,
a series of models built by ECGA can be obtained like those listed in Table 1. In this
table, the variables enclosed by the same pair of brackets are considered dependent and
are modeled jointly. Each group of variables represents a marginal model in which a
marginal distribution resides, and the converged variables are crossed out.4

It can be observed that the models shown in Table 1 are only partially correct in
each generation. More specifically, in each generation, only the most fit building block
on which the population has not converged is correctly modeled. This is due to the
fact that some part of the problem contributes much more than all others combined. If
one part of the problem is worth more than the others, then this part of the solution
solely determines the chance regarding whether or not the solution will be selected.
As a consequence, only the most fit building block can provide sufficient information
to be modeled correctly, since the model searching is performed based on the selected
solutions. The remaining parts of the model are primarily the result of low fitness partial
solutions “hitchhiking” on the more fit building blocks.

From the above example, we can see that not all building blocks can be detected
from a given set of selected solutions by probabilistic model building. Model building
algorithms cannot “see” the entire structure of the problem from the selected set of
solutions because the disparate scale among different building blocks prevents complete
linkage information from being included in the selected population. In this work, we
will refer to this concept as linkage sensibility and those problem structures that can be
identified properly using the given set of solutions are called sensible linkage. Based on
this notion, we reexamine EDAs on the building block disruption problem. It is clear

3See Section 5.1 for a more detailed description of ECGA and marginal product models.
4The convergence of a variable is defined as all solutions in the population possessing the same

value for that variable, that is, no further changes for that variable will occur.
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that the disruption problem still exists in the insensible portion of the problem because
that part of the problem cannot be modeled properly. Although the above example is
an extreme case of scaling, in that each subproblem is exponentially scaled, in real-
world problems, it is often the case that the constitutive subproblems are weighted
significantly differently, which implies that the linkage might be only partially sensible.
In addition to the building block disruption problem, the random drift of the less
salient parts of the problem mentioned in Section 2 further worsens the situation. These
situations and issues are usually handled by increasing population size when EDAs are
adopted. However, we may gain a new way to deal with these situations if it is possible
to distinguish a sensible linkage from an insensible linkage.

4 Effective Distributions

The idea of sensible linkage can be closely mapped into another notion called effective
distributions. By effective distributions, we mean that by sampling these distributions,
the solution quality can be reliably advanced. Hence, the crucial criteria for effective dis-
tributions are the consistency with building blocks and the provision of good directions
for further search. If it is possible to extract effective marginal distributions from the
built probabilistic model, we can perform partial sampling using only these marginal
distributions, and leave the remaining parts of the solutions unchanged. Thus, the diver-
sity is maintained and we are free from the building block disruption and random drift
problems. For instance, returning to the earlier 16-bit optimization problem, if it is pos-
sible to identify those partial models that are built on the sensible linkage like [s1 s2 s3 s4]
in the first generation and [s5 s6 s7 s8] in the second generation, we can sample only the
corresponding marginal distributions which are, in this case, effective. That is, in the first
generation, for each solution string, we resample only s1s2s3s4 according to the marginal
distribution and keep s5s6 · · · s16 unchanged. In the second generation, we resample only
s1 to s8 according to the marginal distributions and keep s9s10 · · · s16 with the same values
(note that s1s2s3s4 are converged). In this way, we do not have to resort to increasing the
population size to deal with the problems caused by the disparate building block scaling.

The above thoughts leave us one complication: the identification of effective distri-
butions. However, the direct identification of effective distributions may be a difficult
if not impossible task. It may be wise to adopt a complementary approach—to iden-
tify those marginal distributions that are not likely to be effective. If there is a way to
identify the ineffective distributions, we can bypass them and use only the rest of the
probabilistic model, and thus approximate the result of knowing effective distributions.
Our idea is that we can split the entire population into two subpopulations, use only
one of the subpopulations for building the probabilistic model, and utilize the other
subpopulation to collect some statistics for possible indications of ineffectiveness of cer-
tain marginal distributions in the probabilistic model built on the first subpopulation.
That is, with some appropriate heuristics or criteria, we can prune the likely ineffective
portions of the model.

In the next section, our implementation in ECGA of the proposed concept will
be detailed. More specifically, a judging criterion will be proposed to detect the likely
ineffective marginal distributions of a given marginal product model.

5 ECGA with Model Pruning

This section starts with a brief review of the (ECGA; Harik, 1999). Based on the idea
of detecting the inconsistency of statistics gathered from two subpopulations of the

6 Evolutionary Computation Volume xx, Number x
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Table 2: An example of a marginal product model that defines a probability distribution
over four variables. The variables enclosed in the same brackets are modeled jointly,
and each variable subset is considered independent of the other variable subsets.

[s1] [s2 s4] [s3]

P (s1 = 0) = 0.4 P (s2 = 0, s4 = 0) = 0.2 P (s3 = 0) = 0.5
P (s1 = 1) = 0.6 P (s2 = 0, s4 = 1) = 0.1 P (s3 = 1) = 0.5

P (s2 = 1, s4 = 0) = 0.1
P (s2 = 1, s4 = 1) = 0.6

same source, a mechanism is devised to identify the possibly ineffective parts of the
built probabilistic model. Finally, an optimization algorithm incorporating the proposed
technique is described in detail.

5.1 Extended Compact Genetic Algorithm

ECGA uses a product of marginal distributions on a partition of the variables. This kind
of probability distribution belongs to a class of probabilistic models known as marginal
product models (MPMs). In this kind of model, subsets of variables can be modeled
jointly, and each subset is considered independent of other subsets. In this work, the
conventional notation is adopted that variable subsets are enclosed in brackets. Table 2
presents an example of MPM defined over four variables: s1, s2, s3, and s4. In this
example, s2 and s4 are modeled jointly and each of the three variable subsets ([s1], [s2 s4],
and [s3]) is considered independent of the other subsets. For instance, the probability
that this MPM generates a sample s1s2s3s4 = 0101 is calculated as follows,

P (s1s2s3s4 = 0101) = P (s1 = 0) × P (s2 = 1, s4 = 1) × P (s3 = 0)

= 0.4 × 0.6 × 0.5 .

In fact, as its name suggests, a marginal product model represents a distribution that is
a “product” of the marginal distributions defined over variable subsets.

In ECGA, both the structure and the parameters of the model are searched and
optimized in a greedy fashion to fit the statistics of the selected set of promising solu-
tions. The measure of a good MPM is quantified based on the minimum description
length (MDL) principle (Rissanen, 1978), which states that any regularity in a given
set of data can be used to compress that data, and the success of a model in capturing
those regularities can be measured by the cost of expressing the model and the length
of the data compressed according to the model. The MDL principle thus penalizes both
inaccurate and complex models, thereby leading to a descriptive yet not overly com-
plicated distribution. Specifically, the search measure is the MPM complexity which is
quantified as the sum of model complexity, Cm, and compressed population complexity,
Cp. The greedy MPM search first considers all variables as independent and each of
them forms a separate variable subset. In each iteration, the greedy search merges two
variable subsets that yield the greatest reduction in Cm + Cp. This process continues
until there is no further merge that can decrease the combined complexity.

The model complexity, Cm, quantifies the model representation in terms of the
number of bits required to store all the marginal distributions. Suppose that the given
problem is of length � with binary encoding, and the variables are partitioned into m

Evolutionary Computation Volume xx, Number x 7
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subsets each of size ki , i = 1 . . . m, such that � = ∑m
i=1 ki . Then the marginal distribution

corresponding to the ith variable subset requires 2ki − 1 frequency counts to be com-
pletely specified. Taking into account that each frequency count is of length log2(n + 1)
bits, where n is the population size, the model complexity, Cm, can be defined as

Cm = log2(n + 1)
m∑

i=1

(
2ki − 1

)
.

The compressed population complexity, Cp, quantifies the suitability of the model
in terms of the number of bits required to store the entire selected population (the
set of promising solutions picked by the selection operator) under an ideal compres-
sion scheme. The compression scheme is based on the partition of the variables. Each
subset of the variables specifies an independent “compression block” on which the
corresponding partial solutions are optimally compressed. Theoretically, the optimal
compression method encodes a message of probability pi using − log2 pi bits. Thus,
taking into account all possible messages, the expected length of a compressed mes-
sage is

∑
i −pi log2 pi bits, which is optimal. In information theory (Cover and Thomas,

1991), the quantity − log2 pi is called the information of that message and
∑

i −pi log2 pi

is called the entropy of the corresponding distribution. Based on information theory, the
compressed population complexity, Cp, can be derived as

Cp = n

m∑
i=1

2ki∑
j=1

−pij log2 pij ,

where pij is the frequency of the j th possible partial solution to the ith variable subset
observed in the selected population.

Note that in the calculation of Cp, it is assumed that the j th possible partial solution
to the ith variable subset is encoded using − log2 pij bits. This assumption is funda-
mental to our technique of identifying the likely ineffective marginal distributions.
More precisely, the information of the partial solutions, − log2 pij , is a good indicator of
inconsistency of statistics gathered from two separate subpopulations.

5.2 Model Pruning

Our technique of identifying the possibly ineffective fragments of a marginal product
model is based on the notion that ECGA uses compression performance to quantify the
suitability of a probabilistic model for a given set of solutions. The degree of compression
is a quite representative metric to the fitness of modeling, because all good compression
methods are based on capturing and utilizing the relationships among data (Grünwald,
2007). Thus, if the compression scheme of the MPM built on one set of solutions is
incapable of compressing another set of solutions produced under the same condition,5

then we can speculate that some of the constitutive marginal models observed in the
first set of solutions are likely inconsistent with the distribution of the corresponding
partial solutions observed in the second set of solutions. Such inconsistency can be seen

5For example, if all individuals are produced by sampling the same probabilistic model and selected
using the same selection technique under the same pressure.

8 Evolutionary Computation Volume xx, Number x
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as a disagreement on the direction of further search. However, under the premise that
these two sets of solutions are produced under the same condition, they are supposed
to reveal similar directions of further search. Thus, we can reasonably speculate that
proper selection pressures were not applied on these partial solutions (causing them to
drift toward two different directions), and the true linkage structures on these parts of
the problem is not sensible under this condition. Recalling our definition in Section 4, an
effective distribution should be capable of providing good direction for further search
and consistent with the linkage structure. Thus, if the abovementioned inconsistency
is found, we can expect that with a high probability,6 the inconsistent marginal models
are ineffective. Based on the reasoning, we can perform a systematic checking on the
given MPM for the likely ineffective portions.

Suppose that the population of solutions, P , is split into two subpopulations S and
T . The model searching is performed on S ′, the set of promising solutions selected from
S. Then we can use the statistics collected from T ′, the set of solutions selected from
T , to examine the built probabilistic model, M . Since each marginal model functions
independently, they can be inspected separately. Recall the former description that a
variable subset, which specifies a marginal model, is viewed as a “compression block”
that encodes each possible partial solution according to the marginal distribution. The
j th possible partial solution to the ith variable subset is encoded using − log2 pij bits,
where pij is the frequency of the j th possible partial solution to the ith variable subset
observed in S ′. Assuming that the given problem is of length � with binary encoding,
and there are m variable subsets with each of size ki , i = 1 . . . m, in the built model M ,
for the ith marginal model, i = 1 . . . m, we can check whether or not

2ki∑
j=1

qij (− log2 pij ) > ki,

where qij is the frequency of the j th possible partial solution to the ith variable subset
collected from T ′. If the inequality holds, then the compression scheme employed in
the ith marginal model is not a good one for compressing the corresponding partial
solutions in T ′ because it encodes a ki-bit partial solution to a bit string with an expected
length of more than ki bits. Based on the earlier reasoning, such a condition indicates
that the marginal model is likely ineffective because T ′ does not agree on this part of the
model. Otherwise, the scheme should be able to compress the partial solutions in T ′.

Further explained from a machine learning perspective (Mitchell, 1997), a good
model should generalize well to unseen instances. Otherwise, it captures coincidental
regularities among the training data or what it has observed. If model building is
performed on the portion where linkage is not sensible from the given set of solutions,
it will “overfit” these partial solutions (i.e., take on hitchhikers) that were not subject
to proper selection pressures. Consequently, the regularities captured by this part of
modeling tend to be inconsistent with the true problem structure. Furthermore, the
partial solutions that were not subject to proper selection pressure appear to be random,
and such a situation brings about the phenomenon of random drift mentioned in
Section 2. By its nature, drift is random, and two different subpopulations tend to drift
in two different directions. Thus, we can use the statistical inconsistency between S ′ and

6Because the solutions are generated probabilistically, we cannot be absolutely sure.
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Algorithm 1 ECGA with Model Pruning
Initialize a population P with n solutions of length �.
while the stopping criteria are not met do

Evaluate the solutions in P .
Divide P into two subpopulations S and T at random.
S ′ ← apply t-wise tournament selection on S.
T ′ ← apply t-wise tournament selection on T .
M ← build the MPM on S ′ with greedy search.
M ′ ← prune M based on the inconsistency with T ′.
for each remaining marginal distribution D in M ′ do

for each solution s = s1s2 · · · s� in P do
Change the values in s partially by sampling D.

end for
end for

end while

T ′ to locate the possible drift portions of the solutions and identify the likely ineffective
parts within the whole model. By removing these likely ineffective parts, we can forge
a partial but more effective model.

An issue in practice concerning the calculation of the inequality is that sometimes
one or more possible partial solutions are absent in the set of selected solutions, leaving
− log2 pij undefined because pij = 0. In the present work, we handle this practical
problem by assigning a very small value, smaller than 1/n, to the pij ’s that are zero and
normalizing them such that pij ’s sum to 1 (i.e.,

∑
j pij = 1).

5.3 Integration

In this section, the optimization process incorporating ECGA and the proposed tech-
nique is described. This combination helps ECGA to achieve better performance when
a disparate scale exists among different parts of the problem.

The procedure is presented in Algorithm 1. This process starts with initializing a
population of solutions. After initialization, the solutions are evaluated, and then the
entire population is randomly split into two subpopulations. Selection operations are
performed on the two subpopulations separately with the same operator and selec-
tion pressure. Model building is performed on one of the subpopulations. The other
subpopulation is used to prune the built model using the technique described pre-
viously. Finally, all solutions in the population are altered by sampling the remaining
marginal distributions, which are considered effective, in the pruned model. These steps
are repeated until the stopping criteria are satisfied.

A prominent difference between the above process and the regular EDAs is that
the sampling might not include all variables. As introduced in Section 4, the existing
solutions are altered by sampling only the marginal distributions surviving the model
pruning process. Thus, a solution string might not be entirely modified in an iteration.
This technique hence avoids random drift and inaccurate processing of low-fitness
building blocks by postponing the processing until sufficient linkage information is
available. Similar to the concept proposed by Bosman and Thierens (1999) that link-
age information estimated from the selected solutions has to be utilized to recognize

10 Evolutionary Computation Volume xx, Number x
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Table 3: Marginal product models before and after pruning when solving a 16-bit
exponentially scaled problem with the proposed approach.

Generation Marginal product model (before and after pruning)
1 Before [s1 s2 s3 s4] [s5 s13 s16] [s6 s7 s12] [s8 s11] [s9 s10] [s14 s15]

After [s1 s2 s3 s4]
2 Before [s1] [s2] [s3] [s4] [s5 s6 s7 s8] [s9 s14] [s10 s15] [s11 s13 s16] [s12]

After [s1] [s2] [s3] [s4] [s5 s6 s7 s8]
3 Before [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9 s10 s11 s12] [s13 s14] [s15 s16]

After [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9 s10 s11 s12]
4 Before [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9] [s10] [s11] [s12] [s13 s14 s15 s16]

After [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9] [s10] [s11] [s12] [s13 s14 s15 s16]

building blocks, we further address that the validity of the linkage information should
be confirmed beforehand. In this way, better performance in terms of function evalua-
tions can be achieved if a disparate scale exists among different parts of the problem.

In order to confirm that the proposed method meets its design purpose, Table 3 lists
the models before and after pruning when the earlier exponentially scaled problem is
solved by Algorithm 1. It can be seen that the proposed approach appropriately removes
the ineffective parts during each stage of the optimization process. In order to further
illustrate the behavior and effect of the proposed approach, the algorithm is applied to
another problem with a different scaling called overloaded scaling7

f (s1s2 · · · s16) =
1∑

i=0

ftrap4
(s4i+1s4i+2s4i+3s4i+4)

+
3∑

i=2

1
5
ftrap4

(s4i+1s4i+2s4i+3s4i+4) ,

where s1s2 · · · s16 is a solution string. The overloaded cases are those with two scales,
where some subproblems are at the high level and the rest are at the low one. The
models before and after pruning when such a problem is solved are shown in Table 4.
It can be observed that the proposed method works as expected in splitting the solving
process according to the scaling structure. The two subproblems of higher fitness are
handled first, and the two subproblems of lower fitness are solved later.

6 Experiments

The experiments are designed to reveal the behavior of the proposed approach in han-
dling sets of problems with different scaling difficulties. Because ECGA is limited in
handling overlapped building blocks, we use only test problems that are additively
separable. In this study, three bounding models of scalings (Goldberg, 2002) are consid-
ered: exponential, power law, and uniform. While the uniform and exponential cases

7As mentioned by Goldberg (2002), the word “overloaded” is a reference to the application of this
idea in the early messy GA work (Goldberg et al., 1990), where such distributions were used to try
to overload or overwhelm the ability of the messy GA to keep all building blocks present through all
phases of the process.
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Table 4: Marginal product models before and after pruning when solving a 16-bit
problem of the overloaded scaling with the proposed approach.

Generation Marginal product model (before and after pruning)
1 Before [s1 s2 s3 s4] [s5 s6 s7 s8] [s9 s16] [s10 s14 s15] [s11 s13] [s12]

After [s1 s2 s3 s4] [s5 s6 s7 s8]
2 Before [s1 s2 s3 s4] [s5 s6 s7 s8] [s9 s13 s14] [s10 s12] [s11 s15] [s16]

After [s1 s2 s3 s4] [s5 s6 s7 s8]
3 Before [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9 s10 s11 s12] [s13 s14 s15 s16]

After [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9 s10 s11 s12] [s13 s14 s15 s16]
4 Before [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9 s10 s11 s12] [s13 s14 s15 s16]

After [s1] [s2] [s3] [s4] [s5] [s6] [s7] [s8] [s9 s10 s11 s12] [s13 s14 s15 s16]

bound the scaling performance of an algorithm at two extremes, the power law cases
enable us to see the behavior in between. Based on the different scalings, three sets of
test functions are constructed using ftrapk

as the elemental function:

Exponential:
m−1∑
i=0

(k + 1)iftrapk
(sk×i+1sk×i+2 · · · sk×i+k)

Power law:
m−1∑
i=0

(i + 1)3ftrapk
(sk×i+1sk×i+2 · · · sk×i+k)

Uniform:
m−1∑
i=0

ftrapk
(sk×i+1sk×i+2 · · · sk×i+k)

By adopting different scaling setups, we can compare the original ECGA with our
approach under different degrees of linkage sensibilities. By varying k and m, we can
observe the behavior of the proposed method with respect to different problem and
subproblem sizes in a controlled manner. Furthermore, various selection pressures are
also taken into consideration to make a more thorough observation.

The purpose of the following experiments is to understand the impact of the pro-
posed method on the computational resource (population size and function evaluations)
required to solve a problem. Thus, we do not use solution quality as a measure of
comparison but treat it as a minimum requirement. More precisely, we use a bisection
method (Sastry, 2001) to bound the minimum population size capable of achieving
reliable convergence to the optimum. Of course, solution quality can be an important
indicator for evaluating a newly invented approach. However, the primary goal of this
study is to design a more economic approach for solving problems, and the experiments
are designed to evaluate the ability of the proposed approach in this aspect.

6.1 Effect of Selection Pressure

This section describes the experiments designed for observing the effect of selection
pressure on both the original ECGA and the ECGA combined with the proposed ap-
proach. The purpose of these experiments is twofold.

• First, we want to determine the range of selection pressure with which the pro-
posed approach works as we designed. Appropriate selection pressure is quite

12 Evolutionary Computation Volume xx, Number x
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Figure 1: Empirical results of the proposed method and original ECGA on 40- and 80-
bit (k = 4, m = 10 and 20) exponential scaled problems. Five tournament sizes ranging
from 8 to 24 were used to observe the behavior of the algorithms under different
selection pressures.

important to the proper functioning of our approach because the pruning mech-
anism is designed according to the statistical inconsistencies between the two
subpopulations.

• Second, because the proposed approach will be compared with the original ECGA
in the subsequent experiments, in order to make a fair and meaningful compar-
ison, the selection pressure must be set to an appropriate value for the original
ECGA to work under good conditions.

6.1.1 Experimental Settings
Because tournament selection is adopted, the selection pressure is altered by changing
the tournament size. We consider tournament sizes ranging from 8 to 24, and the
problem instances used to make the observations are of length 40 bits and 80 bits with
4-bit trap functions as subproblems (k = 4, m = 10 and 20, respectively).

For simplicity, the splitting of population is performed in the way that the two
resulting subpopulations are disjoint and of equal size. The stopping criterion is set
such that a run is terminated when all solutions in the population converge to the
same fitness value. For each tournament size, the minimum required population size is
determined by a bisection method (Sastry, 2001) such that on average, m − 1 building
blocks converge to the correct values in 50 runs for each of the two problem instances.

6.1.2 Results and Observations
The results for exponential, power law, and uniformly scaled problems are presented in
Figures 1, 2, and 3, respectively. It can be observed from Figures 1(b), 2(b), and 3(b) that
for all three scalings, the original ECGA works best (in terms of the number of function
evaluations) under tournament size 12 or 16. Based on that, we will use these two
tournament sizes in the following sets of experiments to ensure that the improvement
of our approach over the original ECGA is not a result of improper selection pressure. In
fact, we also performed experiments using a tournament size of 4, of which the results

Evolutionary Computation Volume xx, Number x 13
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Figure 2: Empirical results of the proposed method and original ECGA on 40- and 80-bit
(k = 4, m = 10 and 20) power law scaled problems. Five tournament sizes ranging from
8 to 24 were used to observe the behavior of the algorithms under different selection
pressures.
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Figure 3: Empirical results of the proposed method and original ECGA on 40- and 80-bit
(k = 4, m = 10 and 20) uniformly scaled problems. Five tournament sizes ranging from
8 to 24 were used to observe the behavior of the algorithms under different selection
pressures.

are listed in Table 5. This demonstrates that adopting a lower selection pressure does
not yield better performance for ECGA or for our approach.

The results of these experiments give some insights into the pruning mechanism. It
can be observed that the appropriateness of a particular selection pressure is related to
the linkage sensibility of the problem at hand. This property could cause inconvenience
in choosing selection pressure for the algorithm because when dealing with black box
optimization, we usually do not have any information about the problem at hand.
Fortunately, Figures 1(b), 2(b), and 3(b) also suggest that under tournament sizes ranging
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Table 5: Empirical results of the proposed method and original ECGA using a tour-
nament size of 4. Experiments were conducted on 40- and 80-bit problems formed by
concatenating 4-bit trap functions with three different scalings. The symbols �, n, and
fev denote problem size, population size, and function evaluations, respectively.

� n fev std. of fev

Exponential ECGA 40 1,719 44,487.72 2,682.02
80 3,748 187,549.92 5,912.06

ECGA+MP 40 1,405 37,373.00 2,027.11
80 4,221 210,881.16 8,568.54

Power law ECGA 40 1,604 32,946.16 2,105.37
80 5,507 163,557.90 6,017.21

ECGA+MP 40 1,248 27,755.52 1,929.44
80 4,361 141,034.74 5,884.63

Uniform ECGA 40 1,346 17,228.80 1,489.44
80 3,479 58,308.04 3,411.61

ECGA+MP 40 2,181 30,446.76 2,411.81
80 5,598 100,540.08 5,535.96

from 8 to 16, our approach works better than the original ECGA in the exponential and
power law scaled cases. Under this range of tournament sizes (8 to 16), the behavior of
the proposed approach in uniformly scaled cases is relatively stable compared to that
under higher selection pressure. This observation demonstrates that for a broad range
of selection pressure, the improvement obtained by using the pruning mechanism can
be expected in cases of limited linkage sensibility, while in cases for which linkage
information is completely sensible, the overhead is relatively stable.

6.2 Impact on Population Requirement with Increasing m

This section describes experiments designed to reveal the behavior of the proposed
approach when the number of subproblems within a problem is growing (i.e., increasing
m with fixed k). In order to illustrate the effectiveness and benefit of adopting the pruning
mechanism and to estimate the overhead when it is not needed, the proposed approach
will be compared with the original ECGA on three sets of problems with different
scaling setups.

6.2.1 Experimental Settings
The problem instances used in this set of experiments are composed of 4-bit trap func-
tions and ranging from 40 to 80 bits (k = 4, m = 10 . . . 20). Two selection pressures are
adopted by setting tournament size t to 12 and 16. The reason for using these two tour-
nament sizes is because our approach is compared with the original ECGA, which seems
to perform better with t = 12 or t = 16 according to the previous set of experiments.
Otherwise, a question might arise as to whether or not the inferior performance of the
original ECGA under some scaling difficulties comes from the inappropriate setting of
selection pressure.

As in the previous experiment, the splitting of population is also performed in the
way that the two resulting subpopulations are disjoint and of equal size. The stop-
ping criterion is set such that a run is terminated when all solutions in the population
converge to the same fitness value. For each problem instance, the minimum required
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Figure 4: Empirical results of the proposed method compared to the original ECGA on
exponential scaled problems with tournament sizes t = 12 and t = 16. Problem sizes
ranging from 40 to 80 bits (k = 4, m = 10 . . . 20) were used to observe the performance
of the algorithms.

population size is determined by a bisection method such that on average, m − 1 build-
ing blocks converge to the correct values in 50 runs.

6.2.2 Results and Observations
The empirical results for exponentially scaled problems are shown in Figure 4. The
minimum population sizes required by the proposed method are much smaller than
the sizes needed by the original ECGA, and grow at a relatively slow rate. The same sit-
uation is also observed in the function evaluations for which our approach performed
remarkably well. This improvement can be explained by the previous discussion on
random drift and linkage sensibility presented in earlier sections. If simultaneous de-
tection and processing of all building blocks cannot be achieved, additional costs have
to be paid for the inaccurate processing and random drift of subsolutions. By adopting
the pruning mechanism, we can save these costs by detecting possibly ineffective partial
models and postponing the changes on them until accurate processing can be made.

Figure 5 shows the results for power law scaled problems. The results of the mini-
mum population sizes are similar to those obtained in the previous set of experiments.
The proposed method still uses fewer function evaluations, but the differences are re-
duced. This is because the linkage sensibility of the power law scaled problems is less
limited compared to that of the exponential scaled problems.

The empirical results for uniformly scaled problems are presented in Figure 6. As
expected, the proposed method requires larger population sizes than which was needed
by the original ECGA. Due to the fact that for uniformly scaled problems, the model
building process can correctly identify all building blocks, the verification on the built
model may just be useless and wasteful. The results also suggest that the function
evaluations used by the proposed method are about twice as the number of what was
needed by the original ECGA.

In order to support the significance of the observations, we have also performed
Welch’s t-test on the results. For each problem size, a t-test of the null hypothesis that the
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Figure 5: Empirical results of the proposed method compared to the original ECGA
on power law scaled problems with tournament sizes t = 12 and t = 16. Problem sizes
ranging from 40 to 80 bits (k = 4, m = 10 . . . 20) were used to observe the performance
of the algorithms.
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Figure 6: Empirical results of the proposed method compared to the original ECGA
on uniformly scaled problems with tournament sizes t = 12 and t = 16. Problem sizes
ranging from 40 to 80 bits (k = 4, m = 10 . . . 20) were used to observe the performance
of the algorithms.

number of function evaluations spent by ECGA and the number of function evaluations
spent by the proposed approach are with equal means against the alternative that
the means are not equal was performed. The significance level was set to 5%, and
the respective statistics are listed in Table 6. The resulting statistics suggest that the
outcomes of the proposed approach are significantly different from those of the original
ECGA for all three scaling setups.

6.3 Impact on Population Requirement with Varying k

This section describes the experiments that accompany the previous ones to further
demonstrate the performance of the proposed approach. The experiments were designed
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Table 6: Welch’s t-test on empirical results presented in Figures 4, 5, and 6. The null
hypothesis is that the number of function evaluations spent by ECGA and the number
of function evaluations spent by ECGA-MP with equal means against the alternative
that the means are not equal. The first three rows indicate whether the null hypothesis
is rejected, the p-value, and the t-statistics from the tests, respectively. The last row lists
whether the number of average function evaluations needed by ECGA-MP is smaller
(<) or larger (>) than the number needed by the original ECGA.

Problem size 40 48 56 64 72 80

(a) Exponential scaled cases with tournament size 12
Reject null True True True True True True
p-value 4.409 × 10−48 2.137 × 10−60 2.031 × 10−69 1.102 × 10−56 2.053 × 10−70 5.563 × 10−63

t-statistics 41.9194 64.0567 82.6409 66.3387 97.2660 82.4819
Comparison < < < < < <

(b) Exponential scaled cases with tournament size 16
Reject null True True True True True True
p-value 1.458 × 10−48 6.409 × 10−53 2.149 × 10−54 1.847 × 10−58 4.341 × 10−60 8.518 × 10−58

t-statistics 40.7834 60.9651 71.7845 81.9204 89.1136 87.8952
Comparison < < < < < <

(c) Power law scaled cases with tournament size 12
Reject null True True True True True True
p-value 1.094 × 10−25 1.208 × 10−33 5.515 × 10−48 4.294 × 10−61 6.05 × 10−53 1.608 × 10−72

t-statistics 14.5298 18.4542 29.4004 48.5933 44.0576 63.2243
Comparison < < < < < <

(d) Power law scaled cases with tournament size 16
Reject null True True True True True True
p-value 1.582 × 10−22 6.032 × 10−50 1.047 × 10−47 1.717 × 10−59 3.383 × 10−56 7.91 × 10−69

t-statistics 12.7581 30.2641 28.5023 37.5145 38.8386 49.2693
Comparison < < < < < <

(e) Uniformly scaled cases with tournament size 12
Reject null True True True True True True
p-value 3.356 × 10−35 1.23 × 10−39 4.264 × 10−33 3.399 × 10−33 4.006 × 10−45 4.903 × 10−53

t-statistic –25.4683 –26.7928 –23.7365 –22.9905 –29.0505 –33.4524
Comparison > > > > > >

(f) Uniformly scaled cases with tournament size 16
Reject null True True True True True True
p-value 1.126 × 10−34 1.776 × 10−33 8.802 × 10−40 6.649 × 10−32 3.684 × 10−38 4.062 × 10−44

t-statistic –25.7066 –25.9356 –31.5460 –25.0263 –28.6037 –34.0405
Comparison > > > > > >

to observe the behavior of the proposed approach when the size of the constitutive sub-
problem changes (i.e., varying k while fixing m). As in the previous set of experiments,
the original ECGA will also be tested for comparison.

6.3.1 Experimental Settings
In contrast to the previous set of experiments, we use trap functions of different sizes to
form our test problems. While the size of constituting subproblem varies, the number of
the subproblems remains fixed. The problem instances are constructed by concatenating
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(b) Function Evaluations

Figure 7: Empirical results of the proposed method compared to the original ECGA for
exponential scaled problems composed of subproblems of sizes 3, 4, and 5 (k = 3, 4, and
5). In this experiment, tournament size t = 16 was used and the number of subfunctions
forming the test problems was fixed at 10 (i.e., m = 10).

10 trap functions of size 3, 4, or 5 (k = 3, 4, or 5, m = 10). Tournament size t = 16 is used
in this set of experiments.

As in the previous experiments, the splitting of the population is also performed so
that the two resulting subpopulations are disjoint and of equal size. The stopping crite-
rion is set such that a run is terminated when all solutions in the population converge
to the same fitness value. For each problem instance, the minimum required population
size is determined by a bisection method such that on average, m − 1 building blocks
converge to the correct values in 50 runs.

6.3.2 Results and Observations
The results for exponential and power law scaled problems are presented in Figures 7
and 8, respectively. It can be observed that for these three different subproblem sizes,
the proposed approach uses smaller population sizes and fewer function evaluations
to solve the test problems. Furthermore, the degree of improvement over the original
ECGA seems to increase with the size of the constituting subproblems. As can be seen in
the problems composed of 5-bit trap functions, the pruning mechanism achieves great
savings in function evaluations compared to the original ECGA.

On the other hand, for the uniformly scaled problems, our approach still requires
larger population sizes than what was needed by the original ECGA. This result is
no surprise, as it can be conjectured that in solving uniformly scaled problems, the
verification on the built model may be useless and wasteful. A further observation is
that these results seem to be consistent with what we observed in the previous set of
experiments in which the function evaluations used by the proposed method are about
twice the number needed by the original ECGA.

6.4 Building versus Verifying

This section describes the sets of experiments on the proposed method to reveal the
change in performance when different splitting ratios of the two subpopulations are
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Figure 8: Empirical results of the proposed method compared to the original ECGA for
power law scaled problems composed of subproblems of sizes 3, 4, and 5 (k = 3, 4, and
5). In this experiment, tournament size t = 16 was used and the number of subfunctions
forming the test problems was fixed at 10 (i.e., m = 10).

3 4 5
0

500

1000

1500

2000

2500

3000

3500

Trap Sizes (Bits)

Po
pu

la
tio

n 
Si

ze
s

ECGA

ECGA+MP

(a) Population Sizes

3 4 5
0

1

2

3

4

5

x 104

Trap Sizes (Bits)

Fu
nc

tio
n 

E
va

lu
at

io
ns

ECGA

ECGA+MP

(b) Function Evaluations

Figure 9: Empirical results of the proposed method compared to the original ECGA for
uniformly scaled problems composed of subproblems of sizes 3, 4, and 5 (k = 3, 4, and
5). In this experiment, tournament size t = 16 was used and the number of subfunctions
forming the test problems was fixed at 10 (i.e., m = 10).

adopted. It presents the experimental results to illustrate the behavior under different
scalings. The purpose for performing these experiments is twofold:

• First, we would like to observe how the splitting ratio is related to the scaling or
linkage sensibility of a problem.

• Second, we wish to empirically study the change in performance obtained from
decreasing or increasing the proportion of population for checking the model.

It is important in practice to spend function evaluations wisely. Since using too large a
proportion of the population for pruning may result in a waste of resources, it should
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Figure 10: Empirical results of the proposed method for a 60-bit exponential scaled
problem with different splitting ratios between the two subpopulations. The splitting
ratio (|T |/|S + T |) ranging from 0.0 (ECGA without pruning) to 0.8 was used to observe
the change in performance of the proposed approach.

be estimated to what degree the expense on checking the built model yields savings,
and how the scaling of the problem is related to this matter.

6.4.1 Experimental Settings
The problem instances used in this set of experiments were of 60 bits formed by con-
catenating 4-bit trap functions (k = 4, m = 15). The splitting ratio (|T |/|S + T |) ranged
from 0.0 to 0.8. The ratio 0.0 represents the result of running the original ECGA (without
pruning), which serves as a baseline. Two selection pressures were adopted by setting
tournament size t to 12 and 16.

As in the previous experiments, the stopping criterion is set such that a run is
terminated when all solutions converge to the same fitness value. For each splitting
ratio, the minimum required population size was determined by a bisection method
such that on average, m − 1 building blocks converge to the correct values in 50 runs.

6.4.2 Results and Observations
The empirical results for exponential scaled problems are presented in Figure 10. For
both tournament sizes, the required population size decreases as the splitting ratio
increases. However, the number of generations increases with the splitting ratio. The
combined effect is that the minimum required function evaluation is obtained when
the splitting ratio is 0.6, and the required function evaluation grows when the splitting
ratio either increases or decreases.

Figure 11 shows the results for power law scaled problems. In contrast to the
previous case, the required population size does not strictly decrease with the increment
of the splitting ratio. The population size first decreases as the splitting ratio grows and
then hits a turning point at 0.5 (t = 16) or 0.6 (t = 12). Similar to the exponential scaled
case, the number of generations increases with the splitting ratio. The combined effect
is that the number of function evaluations first decreases and then increases. For both
tournament sizes, the minimum is obtained when the splitting ratio = 0.3.
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Figure 11: Empirical results of the proposed method for a 60-bit power law scaled
problem with different splitting ratios between the two subpopulations. The splitting
ratio (|T |/|S + T |) ranging from 0.0 (ECGA without pruning) to 0.8 was used to observe
the change in performance of the proposed approach.
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Figure 12: Empirical results of the proposed method for a 60-bit uniformly scaled
problem with different splitting ratios between the two subpopulations. The splitting
ratio (|T |/|S + T |) ranging from 0.0 (ECGA without pruning) to 0.8 was used to observe
the change in performance of the proposed approach.

Figure 12 shows the results for uniformly scaled problems. As expected, Figures 12(a)
and 12(b) both share a common pattern in which the population size and the number of
function evaluations increase with the splitting ratio. This is because in the uniformly
scaled case, the linkage is always completely sensible, and there is no need to verify or
prune the built probabilistic model.

These experimental results demonstrate that under different scaling setups, the
behavior of the proposed approach corresponding to the splitting ratio varies differently.
The empirical results suggest that if the given problem is evidently with distinguishable
prominence among the constituting subproblems, using higher splitting ratios will yield
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better performance. Lower ratios are more suitable if the problem at hand is composed
of subproblems with roughly equal salience.

Another insight provided by this set of experiments is that reducing the size of the
proportion of population spent on the pruning mechanism can considerably improve
the performance. As shown in Figures 10(b) and 11(b), compared to the original ECGA
(splitting ratio = 0.0 in the figures), significant performance gain can be obtained by
using a mere 10% of the population to validate the built model. On the other hand,
Figure 12(b) also demonstrates that using this small percentage of population on the
pruning mechanism will not bring serious overhead for the overall performance.

6.5 Splitting Ratio versus Subproblem Size

This section describes the experiments extending the previous set of experiments for
observing the interaction between the splitting ratio and the performance. The focus of
this set of experiments is to study the effect of different splitting ratios when the size of
the constitutive subproblem changes (i.e., varying k while fixing m). Our main purpose
is to see whether the result of adopting a particular splitting ratio changes significantly
when the complexity of the problem varies. Furthermore, we want to empirically ex-
amine whether or not the improvement of using just 10% of the population to validate
the built model is still prominent for different sizes of the constitutive subproblems.

6.5.1 Experimental Settings
In this set of experiments, we use trap functions of different sizes to construct our
test problems. While the size of constitutive subproblems varies, the number of the
subproblems forming the test problems remains the same. The problem instances are
built by concatenating 10 trap functions of sizes 3, 4, or 5 (k = 3, 4, or 5, m = 10).
Tournament size t = 16 is adopted in this set of experiments.

As in the previous set of experiments, the splitting ratio (|T |/|S + T |) ranges from
0.0 to 0.8. The ratio 0.0 represents the result of running the original ECGA (without
pruning), which serves as a baseline. The stopping criterion is set such that a run is
terminated when all solutions in the population converge to the same fitness value.
For each splitting ratio, the minimum required population size was determined by a
bisection method such that on average, m − 1 building blocks converge to the correct
values in 50 independent runs.

6.5.2 Results and Observations
The results for exponential, power law, and uniformly scaled problems are presented
in Figures 13, 14, and 15, respectively. We can see that the result of adopting a particular
splitting ratios does not change significantly relative to other splitting ratios for all
three subproblem sizes. It can also be observed that several kinds of behavior similar
to what we have seen in the previous experiments are presented in these results. For
the uniformly scaled problems, the results presented in Figure 15(b) shows a similar
pattern to what is observed in the previous set of experiments in which the number of
function evaluations increased with the splitting ratio. In addition, similar to the results
from the previous set of experiments, we can see that using a small percentage (10%) of
population on the pruning mechanism does not bring serious overhead to the overall
performance for all three subproblem sizes.

On the other hand, for exponential and power law scaled problems, the greatest
improvements are obtained when using 10% of the population to validate the built
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Figure 13: Empirical results of the proposed method using different splitting ratios
(|T |/|S + T |) for exponential scaled problems composed of subproblems of sizes 3, 4, or
5 (k = 3, 4, or 5). In this experiment, tournament size t = 16 was used and the number
of subfunctions forming the test problems was fixed at 10 (i.e., m = 10)
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Figure 14: Empirical results of the proposed method using different splitting ratios
(|T |/|S + T |) for power law scaled problems composed of subproblems of sizes 3, 4, or
5 (k = 3, 4, or 5). In this experiment, tournament size t = 16 was used and the number
of subfunctions forming the test problems was fixed at 10 (i.e., m = 10)

model. Furthermore, similar to what we have observed in the experiments described
in Section 6.3, the degree of improvement over the original ECGA (splitting ratio = 0.0)
increases with the size of the constitutive subproblem.

7 Discussion

We utilized the existence of disparate scales in problems to create a controlled experi-
mental environment in order to study the situation in which complete, accurate linkage
information may or may not be available for the estimation of distribution algorithms.
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Figure 15: Empirical results of the proposed method using different splitting ratios
(|T |/|S + T |) for uniformly scaled problems composed of subproblems of sizes 3, 4, or
5 (k = 3, 4, and 5). In this experiment, tournament size t = 16 was used and the number
of subfunctions forming the test problems was fixed at 10 (i.e., m = 10)

According to the obtained results shown in Figures 4(b) and 5(b), the proposed ap-
proach does improve the original ECGA for the test problems where disparate scales
exist among building blocks. In this section, we discuss some interesting aspects of the
proposed approach and possible extensions of this work.

7.1 Overhead in Uniformly Scaled Problems

The empirical results presented in Figure 6(b) show that for the uniformly scaled cases,
the proposed approach uses nearly twice as many function evaluations as the original
ECGA does. We speculate that this double expenditure is a general property of the
proposed approach when dealing with uniformly scaled problems.

This speculation can be explained through a reverse thinking on a hypothetical
situation described as follows. Suppose that given a uniformly scaled problem, the
original ECGA with appropriate selection pressure needs a population of size n to
handle that problem properly. Now, consider adopting the proposed approach to handle
the same problem. If we use a population of size 2n, then in our algorithm, the entire
population will be divided into two subpopulations of size n, assuming that the splitting
of population is disjoint and of equal size. If the original ECGA is capable of detecting
the accurate problem structure with a population of size n, then in our algorithm, a
subpopulation of size n will also do the job. In the ideal case, there will be no statistical
inconsistency between the built model and the set of promising solutions selected from
the second subpopulation. As a result, we waste half of the population for the use of
pruning which causes the extra cost compared to the original ECGA.

In order to support the inference, we performed an experiment based on the scenario
just described. Table 7 lists some of the empirical results obtained from the experiments
described in Section 6.2. This table shows that for 40-bit and 80-bit uniformly scaled
problems formed by concatenating 4-bit trap functions, the original ECGA needs pop-
ulations of sizes 646 and 2,042, respectively, to solve the given problem. Based on these
results, we used population sizes that are twice that to run our approach. The results are
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Table 7: Empirical results of the original ECGA using tournament size 12. Experiments
were conducted on 40-bit and 80-bit uniformly scaled problems formed by concatenat-
ing 4-bit trap functions. The symbols �, n, g, and fev denote problem size, population
size, generation, and function evaluations, respectively.

� n g SD g fev SD fev

ECGA 40 646 8.36 0.92 5,400.56 594.65
80 2042 10.72 1.01 21,890.24 2,064.38

Table 8: Empirical results of the proposed approach using a tournament size of 12.
Experiments were conducted on 40-bit and 80-bit uniformly scaled problems formed
by concatenating 4-bit trap functions. The symbols �, 2n, g, and fev denote problem size,
twice of the population size required by the original ECGA, generation, and function
evaluations, respectively.

� 2n g SD g fev SD fev

ECGA+MP 40 1,292 9.24 0.89 11,938.08 1,154.42
80 4,084 10.58 0.70 43,208.72 2,868.90

listed in Table 8. It can be observed that the function evaluations spent by the proposed
approach for 40-bit and 80-bit problems are about twice the amount of the original
ECGA needed in each case.

Although the inference together with the empirical validation can serve as an
intuitive explanation, it cannot fully explain the results presented in Section 6.2. As il-
lustrated in Figure 6(a), the minimum population sizes needed by the proposed method
is not exactly twice that required by the original ECGA. In fact, the numbers are much
lower than twice what is needed by the original ECGA. On the other hand, our approach
uses more generations compared to the original ECGA because the subpopulation for
model building was not sufficiently large for all problem structures to be detected
properly in the beginning of the process. In this situation, the processing was slowed
down because the pruning mechanism removed certain parts of the model exhibiting
statistical inconsistencies. As a consequence, the originally expected simultaneous pro-
cessing of building blocks was not fully achieved and delay of convergence occurred.
Nevertheless, spending more generations seems to yield an equivalent use of function
evaluations as the hypothetical case described above. We think that the pruning mech-
anism introduces an additional interaction between population size and generations.
Further empirical or theoretical studies are needed to investigate such an interaction.

7.2 A Deeper Look at the Pruning Criterion

This section provides a more detailed elaboration on the adequacy of the proposed
pruning metric. To start this discussion, let

λi =
2ki∑
j=1

qij (− log2 pij )

which is the quantity to be examined by the pruning criterion (i.e., whether λi ≥ ki).
Based on λi , we can reformulate the issue of adequacy more concisely as “is it possible
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that pi is not effective but λi ≤ ki or pi is effective but λi ≥ ki?” To elaborate on this, we
have to separate the discussion into two cases:

1. pi is not effective and λi ≤ ki , and

2. pi is effective and λi ≥ ki .

For the first case, if pi is not effective and its ineffectiveness is caused by drift, it
is possible that λi ≤ ki if the set of solutions on which qi is estimated also drifts in
the same direction. However, by its nature, drift is random, and two different sets of
solutions tend to drift in two different directions. Thus, we can expect the chances of
this situation to be small and our empirical results also support this conjecture.

For the second case, if pi is effective, that is, it provides a good direction for further
search, then the (sub)solutions on which pi is estimated must be subjected to proper
selection pressure. Based on the premise that these two sets of solutions are produced
under the same conditions, we can expect that the (sub)solutions on which qi is esti-
mated should also be subjected to the same pressure. In this case, if these two sets of
solutions are produced under the same conditions and the selection pressure is properly
applied (i.e., no drifting), it would be unreasonable to see inconsistencies between pi

and qi (i.e., λi ≥ ki .) However, the above discussion is based on the assumption that
the population size is sufficiently large. If the population size if not sufficiently large,
inconsistencies tend to be observed because there are too few samples to reveal the true
statistical property.

Using the above discussion, we can further analyze what would happen if we use
more than one set of solutions to prune the built model. This kind of techniques is
used frequently in machine learning research to assess the performance of a learning
algorithm, in which multiple reserved subsets of testing instances are examined. Ex-
tending from the above discussion, let P be the probability of the above case 1 (pi is not
effective and λi ≤ ki) and use r sets of solutions for validating the built model. Then the
probability that we cannot detect the ineffectiveness of a marginal model will be P r ,
for it is tested independently on r different sets, which is smaller than the probability
of using only one set of solutions (i.e., P ). However, in this paper, we focused on the
baseline behavior of the proposed approach, since we know that employing a larger r

should yield better performance and should also incur higher costs.

7.3 Pruning Network-Based Probabilistic Models

In this work, we have introduced a technique to prune a given marginal product model
based on the statistics collected from a reserved set of solutions. It is possible to extend
the fundamental idea and concept to design pruning mechanisms for other EDAs.
For example, consider the EDAs that use network-based probabilistic models with the
Bayesian information criterion (BIC; Schwarz, 1978) as the model scoring metrics, such
as EBNA (Etxeberria and Larrañaga, 1999) and a variant of BOA (Pelikan et al., 2001).
In the binary case, BIC assigns a given network structure B of � variables a score

S(B) =
�∑

i=1

(
−n × H (Xi |�i) − 2|�i | log2 n

2

)

= −
�∑

i=1

n × H (Xi |�i) −
�∑

i=1

2|�i | log2 n

2
,
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where Xi , i = 1 . . . �, are variables, H (Xi |�i) is the conditional entropy of Xi given its
parent �i in the network, and n is the population size. The conditional entropy H (Xi |�i)
is given by

H (Xi |�i) = −
∑
xi ,πi

p(xi, πi) log2 p(xi |πi),

where p(xi, πi) is the probability of instances with Xi = xi , �i = πi , and p(xi |πi) is the
conditional probability of instances with Xi = xi given that �i = πi .

The term
∑�

i=1 n × H (Xi |�i) provides the same functionality as the compressed
population complexity (Cp) in ECGA because H (Xi |�i) denotes the average number of
bits required to store a value of Xi with compression given the information of �i . Thus,
we can check whether or not variable Xi should be pruned away by using the following
inequality

−
∑
xi ,πi

q(xi, πi) log2 p(xi |πi) > 1,

where q(xi, πi) is the frequency of Xi = xi , and �i = πi is observed in the set of solutions
selected from the reserved subpopulation. Using the idea described in Section 5.2, if this
inequality holds, Xi should be removed because it encodes a one-bit partial solution to
a bit string with an expected length of more than one bit.

However, despite the similarities in ideas, some technical complications remain
to be overcome before we can finish the design of a pruning mechanism for network-
based probabilistic models. For instance, what if a variable which we intend to prune is a
parent node of some other variables? In summary, pruning network-based probabilistic
models is potentially feasible, but requires further investigation.

8 Summary and Conclusions

This paper reviewed previous studies on EDAs and scaling difficulties. It then illus-
trated how the scaling difficulty shadows the EDA ability in recognizing building
blocks. Following that, a notion called linkage sensibility was introduced to describe the
observation, and we used the term sensible linkage to refer to the problem structures
that can be extracted by inspecting only the set of selected solutions. Based on this
concept, we briefly defined the effectiveness of distributions estimated by probabilistic
model building and proposed a general approach to achieve more effective modeling.
Finally, an implementation of the proposed approach on ECGA was introduced and
experiments were done using several test functions of different scaling difficulties. In
this section, we briefly summarize the major results derived from this work and outline
the possible future extensions of this research.

8.1 Contributions

In this work, we have shown that the underlying facilities for EDAs to solve problems
efficiently and reliably do not work as expected when the problem at hand is composed
of subparts of unequal fitness contributions. More specifically, under this situation, the
model built from the selected solutions cannot fully reflect the true problem structures.
Although there are previous studies and discussion on the parameter selection (Pelikan
et al., 2002; Lima and Lobo, 2004; Pelikan and Lin, 2004; Yu et al., 2007), selection

28 Evolutionary Computation Volume xx, Number x



P1: QPU

Evolutionary Computation EVCO/EVCO_a_00010-Chen July 19, 2010 15:58

U
nc

or
re

ct
ed

Pr
oo

f

Sensible Linkage and Effective Distributions

mechanisms (Lima et al., 2007, 2008), and model building algorithms (Echegoyen et al.,
2007) related to the model accuracy, we consider the conditions discussed in this paper
to be more fundamental and closer to the problem nature than those other factors.
This is because in our discussion, the condition that suppresses modeling accuracy
is embedded in the problem inherently. For some situations, we can reasonably fine-
tune algorithmic parameters or select between alternative model building approaches,
however, in general we do not have a way to remove a property (e.g., scaling) that exists
inherently within the problem to improve modeling accuracy.

Alongside the modeling inaccuracy is the phenomenon of random drift. In a fi-
nite population, the selection process can cause convergence to some subsolutions for
reasons other than the fitness contribution of these subsolutions. The converged sub-
solutions might be hitchhikers that appear with other high quality building blocks in
selected solutions, or just a result of stochastic errors of sampling due to small pop-
ulation accumulated over generations. As demonstrated in the earlier sections with
problems having disparate scalings among subparts, a problem property (e.g., scaling)
can cause drift in population as well as making some parts of the problem structure
undetectable to the model building process. This situation is usually resolved by in-
creasing the population size to maintain diversity in response to the possible drift. In
contrast, our approach handles this situation by relating these two co-occurring events
and by using a pruning mechanism to avoid building models on, and sampling from,
the possible drift portions. In this way, we effectively save the cost that we originally
have to pay for the maintenance of diversity by using larger populations.

Empirical results show that our approach improves the original ECGA in cases
where disparate scales exist among constitutive subproblems and in the uniformly
scaled problems (i.e., all the constitutive subproblems have the same fitness contribu-
tion), the overhead of using the proposed pruning mechanism is about the amount
of function evaluations spent by the original ECGA. The experimental results further
suggest that this constant overhead in uniformly scaled cases is not affected by the size
of the subfunction (i.e., k) forming the problem, and the improvement in nonuniformly
scaled cases seems to increase with the size of the problem. Moreover, we also demon-
strated through experiments that in the nonuniformly scaled cases, a small proportion
(10%) of population spent on the pruning mechanism can greatly reduce the amount of
required function evaluations compared to that spent by the ECGA without pruning.

The experiments with different scaling setups also led to another consideration
that whether uniformly or near-uniformly scaled problems adopted by many previous
studies are suitable to fully test the performance of an algorithm designed for solving
black box optimization problems. In our humble opinion, presuming a black box opti-
mization problem to be handled that is uniformly scaled is too strong an assumption,
because there will be no information to confirm this assumption prior to the application
of the algorithm. Thus, we believe that in order to generalize beyond the assumption
that all subproblems are uniformly scaled, the constant-time overhead for solving the
uniformly scaled cases is a reasonable tradeoff.

In addition, several efficiency enhancement techniques for EDAs (Sastry and Gold-
berg, 2004; Sastry et al., 2004, 2005, 2006; Lima et al., 2005, 2006) rely on the structure
information delivered from the probabilistic models. Their good functioning crucially
depends on the structural accuracy of the built models. Thus, it is conceivable that if
the built model does not properly capture the true structure of the underlying problem,
the model-based enhancement mechanism will not fully work as expected. Further-
more, as we demonstrated in this paper, the condition that hinders the model building
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algorithm from constructing models that truly reflect the problem structure may be an
inherent property of the underlying problem (e.g., different scales among constitutive
subproblems). Thus, we think that adapting pruning mechanisms will provide a more
appropriate circumstance for the model-based enhancement techniques to work.

8.2 Future Work

In this paper, we demonstrated a pruning mechanism design and its integration into
ECGA. It may also serve as a basis for developing other techniques for more efficient
and robust optimization. Some possible extensions of this work are outlined as follows.

First of all, the immediate direction is to design pruning mechanisms for other
EDAs. As illustrated in Section 7.3, we can extend the pruning metric described in
this paper to handle network-based models with a Bayesian information criterion.
However, a pruning mechanism for network-based models requires more than that. We
also need to consider the possible disruption of variable dependencies after pruning a
particular variable. The simplest solution is to consider only those variables that are not
depended upon by other variables as possible candidates for pruning. However, the
validity of such an approach requires further investigation. A more promising yet more
sophisticated approach is to first identify the tightly related components (e.g. cliques
or strongly connected subgraphs) in the model, and then process each component as a
unit which is similar to how we process the marginal product models in this work.

Another direction for future research is to assist efficiency enhancement techniques
that use the information contained in the built model. As described previously in
Section 8.1, some model-based efficiency enhancement techniques for EDAs crucially
rely on the structural accuracy of the probabilistic models. However, most of those
studies implicitly assume the information contained in the given population is suffi-
cient for learning accurate model structures. As demonstrated in the previous sections
by nonuniformly scaled problems, this assumption does not always hold. From this
perspective, incorporating pruning mechanisms to preprocess the built model for these
enhancement techniques is a promising direction for designing more robust approaches.

From an abstract point of view, this work also demonstrates an instance of a new
class of techniques operating on built models to control, adapt, or regulate the opti-
mization process. Another example based on this viewpoint is the termination criterion
proposed by Ocenasek (2006) which uses an entropy-based measurement to evaluate
the built model for detecting an appropriate stopping point. According to the informa-
tion collected in the model, we can gain better control over the process compared to
the conventional evolutionary algorithms. Such an idea may be carried over to other
designs of EDAs so that more robust and efficient optimization can be realized.
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learning in estimation of distribution algorithms. In Proceedings of the 2007 IEEE Congress on
Evolutionary Computation (CEC 2007), pp. 1051–1058.
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Pelikan, M., Goldberg, D. E., and Cantú-Paz, E. (1999). BOA: The Bayesian optimization algorithm.
In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith
(Eds.), Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99, pp. 525–
532.

Pelikan, M., Goldberg, D. E., and Lobo, F. G. (2002). A survey of optimization by building and
using probabilistic models. Computational Optimization and Applications, 21(1):5–20.

32 Evolutionary Computation Volume xx, Number x



P1: QPU

Evolutionary Computation EVCO/EVCO_a_00010-Chen July 19, 2010 15:58

U
nc

or
re

ct
ed

Pr
oo

f

Sensible Linkage and Effective Distributions

Pelikan, M., Goldberg, D. E., and Sastry, K. (2001). Bayesian optimization algorithm, decision
graphs, and Occam’s razor. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M.
Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke (Eds.), Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 519–526.

Pelikan, M., and Lin, T.-K. (2004). Parameter-less hierarchical BOA. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2004), pp. 24–35.

Pelikan, M., and Mühlenbein, H. (1999). The bivariate marginal distribution algorithm. In R. Roy,
T. Furuhashi, and P. K. Chawdhry (Eds.), Advances in soft somputing—Engineering design and
manufacturing (pp. 521–535). Berlin: Springer.

Pelikan, M., Sastry, K., and Goldberg, D. E. (2002). Scalability of the Bayesian optimization
algorithm. International Journal of Approximate Reasoning, 31(3):221–258.

Rissanen, J. (1978). Modelling by shortest data description. Automatica, 14:465–471.

Sastry, K. (2001). Evaluation-relaxation schemes for genetic and evolutionary algorithms. Master’s
thesis, University of Illinois at Urbana-Champaign. Also IlliGAL Report No. 2002004.

Sastry, K., Abbass, H. A., Goldberg, D. E., and Johnson, D. D. (2005). Sub-structural niching in
estimation of distribution algorithms. In Proceedings of ACM SIGEVO Genetic and Evolutionary
Computation Conference (GECCO-2005), pp. 671–678.

Sastry, K., and Goldberg, D. E. (2004). Designing competent mutation operators via probabilistic
model building of neighborhoods. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2004), pp. 114–125.

Sastry, K., Lima, C. F., and Goldberg, D. E. (2006). Evaluation relaxation using substructural
information and linear estimation. In Proceedings of ACM SIGEVO Genetic and Evolutionary
Computation Conference (GECCO-2006), pp. 419–426.

Sastry, K., Pelikan, M., and Goldberg, D. E. (2004). Efficiency enhancement of genetic algo-
rithms via building-block-wise fitness estimation. In Proceedings of the 2004 IEEE Congress
on Evolutionary Computation (CEC 2004), pp. 720–727.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464.
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a b s t r a c t

In this paper, we analyze the behavior of particle swarm optimization (PSO) on the facet
of particle interaction. We firstly propose a statistical interpretation of particle swarm
optimization in order to capture the stochastic behavior of the entire swarm. Based on
the statistical interpretation, we investigate the effect of particle interaction by focusing
on the social-only model and derive the upper and lower bounds of the expected particle
norm. Accordingly, the lower and upper bounds of the expected progress rate on the sphere
function are also obtained. Furthermore, the sufficient and necessary condition for the
swarm to converge is derived to demonstrate the PSO convergence caused by the effect
of particle interaction.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Particle swarm optimization (PSO), introduced by Kennedy and Eberhart [1] in 1995, was proposed based on an
inspiration from the social behavior of insects or animals that the exchanging and sharing of information among a group of
individuals benefit the group survival by improving the group capability of foraging. In the framework of PSO, the insects
or animals are considered as particles flying through the multi-dimensional search space and searching for the optimal
position. The movement of particles is affected by three factors: the inertia, personal experience (the cognitive part), and
particle interaction (the social part).
Since its introduction, PSO has been empirically shown to be a very useful and effective optimization framework [2]

for the easiness to implement and flexibility to use. Although PSO is widely applied in many research fields nowadays,
the theoretical analysis on PSO is still quite limited. To the best of our knowledge, the first analysis was proposed by
Kennedy [3]. Particle trajectories for design choices were shown. Ozcan and Mohan [4,5] assumed fixed attractors and
constant coefficients to demonstrate the particle trajectory as a sinusoidal wave. With similar assumptions, Maurice and
Kennedy [6] simplified PSO to a deterministic dynamical system and analyzed its stability. Such simplified, deterministic
versions of PSO or similar systems, employing a single particle, fixed attractors, or constant coefficients, were analyzed by
many researchers for stability, convergence, and parameter selection [7–11]. Kadirkamanathan et al. [12] and Jian et al. [13]
started to consider the randomness in acceleration coefficients, but attractors were still fixed. Away from the common PSO
configuration, Emara and Fattah [14] as well as Gazi and Passino [15] analyzed PSO in a continuous time setting.
Most of the existing studies do not provide analysis on the facet of particle interaction, which is definitely an essential

mechanism of PSO. In this paper, under more practical assumptions, including multiple particles, unfixed attractors, and
stochastic acceleration coefficients, we make the first attempt to analyze the effect of particle interaction. In particular, we
consider the PSO system from a macrostate viewpoint, analyze the swarm behavior, and obtain theoretical results on the
progress rate as well as the convergence criterion.
The paper is organized as follows. In Section 2, we will describe the particle swarm optimization algorithm and propose

the statistical interpretation. In Section 3, wewill analyze themean positions of particles by considering the effect of particle
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interaction and derive the expected progress rate of the swarm on the sphere function. Next, we will look into the variance
of the particle positions and show that the swarm will converge under certain condition in Section 4. Finally, Section 5
summarizes and concludes this paper.

2. PSO and particle interaction

In this section, we will firstly describe the standard PSO algorithm and then discuss the operations of PSO step by step,
followed by the proposal of our statistical interpretation.

2.1. The standard PSO algorithm

First of all, for easily making an abstraction of PSO based on statistics and probabilistic distributions, we restate the
standard PSO system as the following algorithm:

Algorithm 1 (Standard PSO).
procedure Standard PSO(Objective function F : Rn → R)
Initialize a swarm ofm particles
while the stopping criterion is not satisfied do
Evaluate each particle
for particle i, i = 1, 2, . . . ,m do F Update the best positions

if F (Xi) < F (Pbi) then
Pbi ← Xi
if F (Pbi) < F (Nb) then

Nb← Pbi
end if

end if
end for
for particle i, i = 1, 2, . . . ,m do F Generate the next generation

Vi(t+ 1)← wVi(t)+ Cp ⊗ (Pbi − Xi)+ Cn ⊗ (Nb− Xi)
Xi(t+ 1)← Xi(t)+ Vi(t+ 1)

end for
end while

end procedure

Throughout this paper, boldface is used to distinguish vectors from scalars, and ‖·‖ denotes the L2 norm of a vector. The
notation ⊗ indicates component-by-component multiplication. According to Algorithm 1, we can see that a standard PSO
system comprises the following two main operations regarding the information sharing and utilizing:

(1) Updating attractors: Update the personal best position, Pbi, found by each particle, and the neighborhood best position,
Nb, found by any member within the neighborhood. Since Pbi and Nb exert gravity on other particles, they are referred
to as attractors in this study.

(2) Updating particles: Update the velocities at time t by using a linear combination of the inertia, Vi(t), and the gravitation
from the cognitive part, Pbi, and the social part,Nb, respectively.w is the weight for the inertia and is usually a constant.
Cp and Cn are random vectors with each component sampled from uniform distributions U(0, cp) and U(0, cn) with
cp > 0 and cn > 0 as acceleration coefficients. The position is then assigned according to the current position with
application of the updated velocity.

As we can observe, the inherent characteristics of PSO – the interactions among particles – are implemented with the
shared knowledge on the best position found by neighbors. When a particle within the neighborhood locates a position of
an objective value which is better than F (Nb), the other particles will make corresponding adjustments and tend to go
toward that position. Therefore, the neighborhood attractor can be viewed as a channel through which each particle can
emulate the others, and the update of the neighborhood attractor can be considered as a signal urging the swarm to adjust
their movements in order to respond to the new discovery in the search space.

2.2. A macroscopic view of PSO

In spite of its importance, the effect of particle interaction in PSO is hardly investigated in the literature. Although there
are a number of remarkable theoretical studies that bring insights into the properties and behavior of PSO conducted in
the past, most of those studies are based on the assumption that the attractor is fixed, e.g., the trajectory analysis [4,5]
mentioned in Section 1. Such a setting seems an inevitable path to simplify the PSO system to the extent that rigorous
analysis can be done because the highly decentralized property of a particle swarm leads the system away from a unified
depiction of the entire swarm. Each particle keeps its own position andmemory, in the form of the inertia and the cognitive
part, Pbi. In addition to the personal experience, the swarm also shares collective knowledge, Nb, and any slight change in



Author's personal copy

Y.-p. Chen, P. Jiang / Theoretical Computer Science 411 (2010) 2101–2115 2103

these quantities substantially defines a new state of the whole system. The analysis on the overall behavior of a swarm is
thus beyond tractable due to the complication of state transition, and the simplification of invariant attractors becomes an
unpleasant but necessary means that makes a particle able to be observed independently without the interference from the
other factors of the entire swarm.
As a consequence, in order to take particle interaction into consideration in a theoretical analysis, an alternative

interpretation of PSO that regards the swarm as a unity becomes necessary.With this point of view, the state of a PSO system
should be considered as a measurement that reflects the overall behavior and characteristics of a swarm rather than as a
detailed configuration directly related to each individual particle. For this purpose, the development of statistical mechanics
may be a good example to learn from, especially the employment of statistical methods to bridge the macroscopic and
microscopic descriptions. Accordingly, the state of the entire swarm can be considered as the ‘‘macrostate’’ — an abstraction
of the detailed description of particles, i.e., the ‘‘microstate.’’ Hence in the macrostate space, the precise configuration of
particles are converted into a statistical abstraction and characterization of the entire swarm.
More specifically, the exact locations of particles are no longer traced but instead modeled and expressed by using a

distribution θ(t) over Rn. The velocities on each dimension are viewed as a random vector V(t) ∈ Rn. To concentrate on
the social behavior, i.e., particle interaction, we use the social-only model of PSO categorized by Kennedy [16], in which PSO
works without the cognitive component, to make the system more concise. The swarm sizem is considered as the number
of realizations or samples of the distribution. As to the neighborhood attractor, since the geographic knowledge about the
search space is embodied in the positional distribution, it can be viewed as the best observed value of the current time
step. When the neighborhood attractor is determined, the social gravitation is also accordingly determined. Formally, each
particle Pi is a random vector sampled from θ(t), and its velocity vector Vi is distributed as V(t). Since the neighborhood
attractor is the best observed value, it can be defined as

P∗ := argmin{F (P1),F (P2), . . . ,F (Pm)} ,

and each particle Pi updates its position to Pi + wVi + C⊗ (P∗ − Pi). The distributions of the next time step θ(t + 1) and
V(t + 1) are thus the statistical characterization, denoted as functions TP and TV , of the observed values:

θ(t + 1)← TP (P1, P2, . . . , Pm) ;

V(t + 1)← TV(P1, P2, . . . , Pm;V1,V2, . . . ,Vm) .

By considering PSO in this way, the search/optimization process is conducted through the repeated observations on
the search space by realizing particles and modifying the distribution to accommodate the newly discovered results.
Furthermore, going deeper into the notion of distribution, since the inertia weight w is usually a constant, V(t) can be
considered redundant and may be removed because given two random vectors X ∼ θ(t) and V ∼ V(t), where the notation
‘‘ ∼ ’’ indicates ‘‘is distributed according to,’’ we can simply let θ̃ (t) be the distribution of X′ := X + wV that includes the
effects of both the position and the velocity. Therefore, in the following, wewill alter the notation θ to denote this compound
distribution and parameterize it based on varied contexts.
The remaining questions would be what distribution is suitable for the description of a swarm without sacrificing too

much essence of PSO and how to update the distribution as the search process proceeds.We can consider the random vector
X ∼ θ(t), denote E [X] = µ, and decompose the region

R := {y ∈ Rn | Prob {X = y} > 0}

into s disjoint regions R1, R2, . . . , Rs such that Prob {X ∈ Ri} = 1/s for all i ∈ {1, 2, . . . , s}. Each region is associated with
a random variable of velocity Vi ∼ V(t). If one point xi is respectively selected from each region Ri, when s is sufficiently
large, the average behavior of a swarm can therefore be characterized by

s∑
i=1

1
s
(xi + Vi) =

s∑
i=1

1
s
xi +

s∑
i=1

1
s
Vi

≈ µ+

s∑
i=1

1
s
Vi ,

and each component of the term
∑s
i=1(1/s)Vi can be approximated with a normal distribution according to the central

limit theorem. Thus, as an attempt to characterize the overall behavior of a swarm, the normal distribution should be a
reasonable starting point. It is assumed that, at time t , each particle is sampled from c(t)+ Z, where c(t) ∈ Rn is the center
of distribution and Z ∈ Rn is a random vector of which each coordinate is distributed according to N(0, σ 2), where N(0, σ 2)
denotes the normal distribution with zero mean and variance σ 2. In this paper, φ(·) and Φ(·) are used as the probability
density function (pdf) and the cumulative distribution function (cdf) of the standard normal distribution, respectively. We
can then reparameterize θ(t), the distribution of c(t)+ Z, as θ(c(t), σ 2).
The update of distributions can now be simplified into the modification of the mean and the variance. The mean is the

arithmetic average of updated positions of particles, and the variance is estimated by a maximum likelihood estimation
(MLE) which will be addressed later. Under such an interpretation, the PSO system can be described with the following
algorithm:
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Table 1
Average p-values of normality tests.
Swarm size Normality tests

Shapiro–Wilk [17] Anderson–Darling [18] D’Agostino–Pearson [19]

10 0.3879 0.3621 0.3985
20 0.3257 0.2842 0.3393
30 0.2903 0.2518 0.2876

Algorithm 2 (Statistical interpretation of PSO).
procedure PSO(Objective function F : Rn → R)
Initialize θ
while the stopping criterion is not satisfied do

for i = 1, 2, . . . ,m do
Pi ∼ θ

end for
P∗ = argmin{F (P1),F (P2), . . . ,F (Pm)}
for i = 1, 2, . . . ,m do

P′i ← Pi + Ci ⊗ (P∗ − Pi)
end for
µt+1 ← (

∑m
i=1 P

′

i)/m
σ 2t+1 ← MLE(P′1, P

′

2, . . . , P
′
m)

θ ← θ(µt+1, σ
2
t+1)

t ← t + 1
end while

end procedure

In order to validate the utilization of normal distributions for describing swarms, we conducted three well-known
normality tests: the Shapiro–Wilk test [17], the Anderson–Darling test [18], and the D’Agostino–Pearson test [19] on the
social-only PSO on the sphere function. Table 1 displays the test results, which were obtained for 100 independent runs and
10 iterations in each run. The weight for the inertia is 0.73 and the acceleration coefficient is 1.49. Since all p-values of the
three normality tests significantly surpass the conventional significance level 0.05, none of these tests are able to reject the
null hypothesis. As a result, in this study, adopting the normal distribution as the description of swarms is an acceptable
assumption.
In summary, the macrostate model transforms the detailed configuration of PSO into a corresponding stochastic

representation embodied by normal distributions. As a consequence, the update of particles is simplified as themodification
of the parameters of normal distributions. In each iteration, Algorithm 2 generates a swarm of particles by means of
sampling from the current distribution, and thereafter, the distribution is updated according to particle interaction. In
others words, a state of Algorithm 2 is a distribution, and the sampled swarm serves as a medium for state transition.
In this manner, the analysis of the behavior of the entire swarm is thus reduced to the analysis of parameterized
distributions. The inclusion of particle interaction into analysis supplies numerous facets of PSO typically absent in related
theoretical studies, e.g., the progress rate and the influence of objective functions, because the restriction of fixed attractors
makes objective functions irrelevant. Since the No-Free-Lunch theorem states that all optimization algorithms perform
identically on average [20], the effectiveness of PSO can hardly be theoretically identified unless the scope of functions is
specified.
In the remainder of this paper, Algorithm 2 will be the study subject and be formally investigated on the sphere

function,which is commonly adopted in the theoretical analysis of evolutionary algorithms (e.g., [21]) and can be formulated
as

F (x) =
n∑
i=1

x2i ,

where x = (x1, x2, . . . , xn) ∈ Rn.

3. Progress rate analysis

The major benefit to develop and adopt the abstraction based on probabilistic distributions of PSO is that the
mathematical model can be analyzed without the assumption of fixed attractors, because particles are in essence random
vectors in the search space and consequently their behavior can be described and predicted in a statistical sense. In this
section, we will demonstrate how the statistical interpretation of PSO proposed in the present work facilitates the analysis
of inter-particle effects and how these effects are accounted for the progress rate of a swarm. We will begin with the n-ball
hitting probability.
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3.1. n-ball hitting probability

Given a distribution θ over Rn, the term n-ball hitting probability refers to the probability that a random vector sampled
from θ that ‘‘falls’’ into a specific n-dimensional ball. This probability is fundamental to the sphere model, because in the
sphere model the objective function is simply the squared L2 norm, and a subset of Rn constructed by collecting all the
vectors with their norms bounded by a specific non-negative quantity forms an n-ball located at the origin with a radius
defined by that non-negative quantity. Therefore, n-ball hitting probability is equal to the probability that the norm of a
random vector is less than or equal to the radius. In other words, it is essentially the cumulative distribution function (cdf)
of the norm of a random vector.
Given the center of distribution at time t , c(t) = (c1, c2, . . . , cn) ∈ Rn, wewould like to calculate the probability, denoted

as Bk(o), that c(t)+ Z ∼ θ is in an n-ball located at the origin with radius k, where Z = (Z1, Z2, . . . , Zn) ∈ Rn is a random
vector and each coordinate of Z is normally distributed. Since Z1, Z2, . . . , Zn are independent and identically distributed
(i.i.d.) random variables, Z is an isotropic random vector, i.e., all directions of Z are equally likely to occur [22]. We elaborate
this property as follows. Given Z1, Z2, . . . , Zn ∼ N(0, σ 2), for all x = (x1, x2, . . . , xn) ∈ Rn,

Prob {c(t)+ Z = x} =
n∏
i=1

1
√
2πσ

exp
(
−(xi − ci)2

2σ 2

)

=

(
1

√
2πσ

)n
exp


−

n∑
i=1

(xi − ci)2

2σ 2


=

(
1

√
2πσ

)n
exp

(
−d(x, c(t))2

2σ 2

)
,

where d(·, ·) denotes the Euclidean distance. It is obvious that the density at point x is determined by d(x, c(t)), regardless
of the direction in which x is relatively to c(t). Therefore, without loss of generality, we may assume that c(t) is on the
first axis by conducting a coordinate transformation. Let r := d(c(t), o) ≥ 0. As a result, c(t) can be expressed, after the
coordinate transformation, as (r, 0, 0, . . . , 0), and the distribution is denoted as θ(r, σ 2). Now, the n-ball hitting probability
can be formally defined as follows.

Definition 1. Given an n-ball Bk(o) ∈ Rn and a random vector c(t)+ Z ∼ θ(r, σ 2) ∈ Rn, where c(t) = (r, 0, 0, . . . , 0) and
all coordinates of Z are distributed according to N(0, σ 2), the n-ball hitting probability

HB(k, θ(r, σ 2)) := Prob {c(t)+ Z ∈ Bk(o)} .

The analysis approach adopted in the present work is similar to that used by Beyer in 2001 [21]. The vector Z is decomposed
into two orthogonal vectors: Z1e1 = (Z1, 0, 0, . . . , 0) and Z′ = (0, Z2, Z3, . . . , Zn). We can take a closer look at the n-ball
hitting probability HB(k, θ(r, σ 2)):

HB(k, θ(r, σ 2)) = Prob {c(t)+ Z ∈ Bk(o)}
= Prob

{
‖(r + Z1)e1 + Z′‖ ≤ k

}
= Prob

{
(r + Z1)2 + ‖Z′‖2 ≤ k2

}
= Prob

{
−k− r ≤ Z1 ≤ k− r, 0 ≤ ‖Z′‖2 ≤ k2 − (r + Z1)2

}
.

The equation shows that the n-ball hitting probability is the joint distribution of Z1 andW := ‖Z′‖2. Since Z1 ∼ N(0, σ 2),
the probability density function can be expressed as

p(Z1, x) := Prob {Z1 = x} =
1

√
2πσ

exp
(
−x2

2σ 2

)
,

andW is a chi-square random variable with n′ := n− 1 degrees of freedom:

p(W , y) := Prob {W = y} =
1
σ 2

(
y
σ 2

) n′
2 −1
exp

(
−y
2σ 2

)
2
n′
2 Γ

(
n′
2

) .
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As a result, we can get

HB(k, θ(r, σ 2)) = Prob
{
−k− r ≤ Z1 ≤ k− r, 0 ≤ ‖Z′‖2 ≤ k2 − (r + Z1)2

}
=

∫ k−r

x=−k−r

∫ k2−(x+r)2

y=0
p(Z1, x)p(W , y) dy dx

=

∫ k−r

x=−k−r
p(Z1, x)

∫ k2−(x+r)2

y=0

1
σ 2

(
y
σ 2

) n′
2 −1
exp

(
−y
2σ 2

)
2
n′
2 Γ

(
n′
2

) dy dx

(let u := y/σ 2) =
∫ k−r

x=−k−r
p(Z1, x)

∫ k2−(x+r)2

σ2

u=0

u
n′
2 −1 exp

(
−u
2

)
2
n′
2 Γ

(
n′
2

) du dx

=

∫ k−r

x=−k−r
p(Z1, x)P

(
n′

2
,
k2 − (x+ r)2

2σ 2

)
dx ,

where P (·) is the regularized Gamma function.

Remark 2. If an asymptotic approximation is desired for the n-ball hitting probability, HB(k, θ(r, σ 2)), we can utilize the
normal approximation to the regularized Gamma function [23, chapter 7] as

P

(
n′

2
,
k2 − (x+ r)2

2σ 2

)
≈ Φ

(
1
√
2n′

[
k2 − (x+ r)2

σ 2
− n′

])
.

For the asymptotic approximation, when n is sufficiently large, the term (1/
√
2n′)[k2 − (x + r)2]/σ 2 vanishes. Thanks to

the continuity ofΦ(·), we can obtain

P

(
n′

2
,
k2 − (x+ r)2

2σ 2

)
≈ Φ

(
−

√
n′

2

)
.

Hence,

HB(k, θ(r, σ 2)) ≈ Φ

(
−

√
n′

2

)∫ k−r

x=−k−r
p(Z1, x) dx

= Φ

(
−

√
n′

2

)[
Φ

(
k− r
σ

)
− Φ

(
−k− r
σ

)]

= Φ

(
−

√
n′

2

)[
Φ

(
r + k
σ

)
− Φ

(
r − k
σ

)]
.

In addition to the asymptotic properties ofHB(k, θ(r, σ 2)), it would be helpful to derive a lower bound forHB(k, θ(r, σ 2))
to facilitate our analysis in the present work.

Lemma 3 (Lower Bound for HB(k, θ(r, σ 2))).

HB(k, θ(r, σ 2)) ≥

[
Φ

(
r + k

√
n

σ

)
− Φ

(
r − k

√
n

σ

)][
1− 2Φ

(
−k
√
nσ

)]n−1
.

Proof. Let Y := c(t) + Z, where c(t) = (r, 0, 0, . . . , 0), and Z = (Z1, Z2, . . . , Zn). LetD := [−k/
√
n, k/
√
n]n ⊆ Rn. For all

x ∈ D , because ‖x‖ ≤
√
n‖x‖∞ ≤

√
n(k/
√
n) = k, we can know that x ∈ Bk(o). Hence,D ⊆ Bk(o), and

Prob {Y ∈ Bk(o)} ≥ Prob {Y ∈ D} = Prob
{
−
k
√
n
− r ≤ Z1 ≤

k
√
n
− r

} n∏
i=2

Prob
{
−
k
√
n
≤ Zi ≤

k
√
n

}

=

[
Φ

( k
√
n − r

σ

)
− Φ

(
−

k
√
n − r

σ

)][
Φ

( k
√
n

σ

)
− Φ

(
−

k
√
n

σ

)]n−1

=

[
Φ

(
r + k

√
n

σ

)
− Φ

(
r − k

√
n

σ

)][
1− 2Φ

(
−k
√
nσ

)]n−1
. �
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For the notational purpose, we let

ψ ′(k) :=

[
Φ

(
r + k

√
n

σ

)
− Φ

(
r − k

√
n

σ

)][
1− 2Φ

(
−k
√
nσ

)]n−1
,

and the antiderivative is defined as ψ(k) :=
∫ k
t=0 ψ

′(t) dt .

Remark 4. Similarly, we can also define the n-sphere hitting density HS(k, θ(r, σ 2)) for random vector c(t)+ Z as

HS(k, θ(r, σ 2)) := Prob {‖c(t)+ Z‖ = k}
= Prob

{
−k− r ≤ Z1 ≤ k− r,W = k2 − x2

}
=

∫ k−r

x=−k−r
p(Z1, x)p(W , k2 − x2) dx.

Therefore, the n-ball hitting probability, HB(k, θ(r, σ 2)), as the cumulative function of HS(k, θ(r, σ 2)), can be alternatively
defined as∫ k

y=0

∫ y−r

x=−y−r
p(Z1, x)p(W , y2 − x2) dx dy.

However, the density function HS(k, θ(r, σ 2)) serves no purpose other than a definition in the following analysis. We left it
as a side note for completeness without further discussion.

3.2. Expected particle norm

The entire PSO system can be decomposed into two fundamental components: (1) the update of attractors to share and
exchange information amongparticles, and (2) the update of particle positions through the interaction betweenparticles and
attractors. Hence, as we gain understandings of the characteristics of attractors and particles, wemay capture the stochastic
behavior of the PSO system. More specifically, because the distance from the origin is the most important characteristic of
the sphere model for its unimodality, in this section, we highlight the expected distance between particles and the global
optimum. Given a probabilistic model according to which particles are distributed, we would like to know how close to the
global optimum in expectation the sampled particles are. Since the global optimum is simply the origin in the spheremodel,
we concentrate on the L2-norm of sampled particles. The expected norms of the attractor and of particles are examined,
respectively. As the analysis proceeds, it can be shown that these two expectations influence the progress rate of PSO.
Given the center of a particle distribution c(t) = (r, 0, . . . , 0) and Z = (Z1, Z2, . . . , Zn) with Z1, Z2, . . . , Zn ∼ N(0, σ 2),

suppose that there arem particles, P1, P2, . . ., Pm, sampled as c(t)+ Z, the expected norm of particles can be defined as
P := E [‖c(t)+ Z‖] ,

which can be considered as the mean solution quality of the current swarm on the sphere function. The following lemma
gives an upper bound for P .

Lemma 5 (Upper Bound for the Expected Particle Norm). If c(t) = (r, 0, 0, . . . , 0) and Z = (Z1, Z2, . . . , Zn) with
Z1, Z2, . . . , Zn ∼ N(0, σ 2), P ≤

√
r2 + nσ 2.

Proof. For all positive random variable X , since the square root is a concave function, we have E
[√
X
]
≤
√
E [X] according

to Jensen’s inequality. By utilizing this property, we can have the following derivation:

P = E [‖c(t)+ Z‖]

= E

√√√√(Z1 − r)2 + n∑
i=2

Z2i


≤

√√√√E[(Z1 − r)2 + n∑
i=2

Z2i

]

=

√√√√E [r2]− 2rE [Z1]+ n∑
i=1

E
[
Z2i
]

=

√
r2 + nσ 2.

Because Zi ∼ N(0, σ 2), we have E
[
Z2i
]
= σ 2 and E [Zi] = 0. An upper bound for the expected particle norm, P , is therefore

obtained. �
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The expected particle norm describes how close on average a swarm is to the global optimum, i.e., the origin, of the
sphere function. In order to capture the characteristic of the essential mechanism of PSO – particle interaction – we also
need to investigate the attractor. As stated in the previous section, the attractor is the best observed value, i.e., in our case,
the particle with theminimum objective value within the neighborhood in the current swarm. Under the adopted statistical
interpretation of PSO, the expectedminimumobjective value of a swarmbecomes traceable through order statistics, because
particles are viewed as random vectors over Rn.
Let P(i,m) denote the ith order statistic of ‖P1‖, ‖P2‖, . . ., ‖Pm‖, e.g., P(1,m) = min{‖P1‖, ‖P2‖, . . ., ‖Pm‖}. Denoting the

event ‖Pi‖ = x as {‖Pi‖ = x}, the density of P(1,m) at a non-negative real number x can be given as

Prob
{
P(1,m) = x

}
= Prob

{
m⋃
i=1

[
{‖Pi‖ = x}

⋂( ⋂
j∈{1,2,...,m}\{i}

{
‖Pj‖ > x

})]}

=

∫ k−r

x=−k−r

(
m
1

)
HS(x, θ(r, σ 2))

[
1− HB(x, θ(r, σ 2))

]m
dx .

Denoting E
[
P(1,m)

]
as P(1,m), a naive upper bound for P(1,m) is derived in the following lemma.

Lemma 6. P(1,m) ≤ P
Proof. The general upper bound for the expected ith order statistic states

P(i,m) ≤ P + (Var [‖c(t)+ Z‖])
1
2

√
i− 1

m− i+ 1
.

As a result,

P(1,m) ≤ P + (Var [‖c(t)+ Z‖])
1
2

√
1− 1

m− 1+ 1
= P. �

Lemma 6 causes no surprise. The expected minimum particle norm is obviously less than or equal to the expected norm.
However, inspired by Lemma 6, we can seek another upper bound for P(1,m) by definition.

Lemma 7 (Upper Bound for P(1,m)). (1)

P(1,m) =
∫
∞

x=0

[
1− HB(x, θ(r, σ 2))

]m
dx,

and (2)

P(1,m) ≤
(
lim
h→∞

[h− ψ(h)]
)m
2

.

Proof. (1) For any random variable X , E [|X |]r = r
∫
∞

0 t
r−1Prob {|X | > t} dt with r > 0 [24]. Since P(1,m) is a non-negative

random variable, by letting r = 1 we have

P(1,m) =
∫
∞

x=0
Prob

{
P(1,m) > x

}
dx

=

∫
∞

x=0
Prob

{
m⋂
i=1

{‖Pi‖ > x}

}
dx

=

∫
∞

x=0

[
1− HB(x, θ(r, σ 2))

]m
dx.

(2) Based on the result of (1), we obtain

P(1,m) =
∫
∞

x=0

[
1− HB(x, θ(r, σ 2))

]m
dx ≤

∫
∞

x=0

[
1− ψ ′(x)

]m dx.
By resorting to Hölder’s inequality, we can movem outside of the integration to obtain a more comprehensible bound as∫

∞

x=0

[
1− ψ ′(x)

]m dx ≤ (∫ ∞
x=0

[
1− ψ ′(x)

]2 dx)m2
≤

(∫
∞

x=0

[
1− ψ ′(x)

]
dx
)m
2

=

(
lim
h→∞

[h− ψ(h)]
)m
2

.

The last equation follows from [h− ψ(h)]|h=0 = 0. �
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Because this upper bound is presented in a limit form, a subsequent question would be whether or not it converges. The
following theorem guarantees the convergence of the quantity.
Lemma 8. (limh→∞[h− ψ(h)])

m
2 is convergent.

Proof. Denote
∫ h
x=0

[
1− ψ ′(h)

]
dx asG(h). Sincem is a constant, (limh→∞[h−ψ(h)])

m
2 converges if limh→∞ G(h) converges.

G(h) is incremental because 1−ψ ′(x) is always non-negative. Thus, it is sufficient to show that G(h) is bounded from above.
When h > r

√
n,

G(h) =
∫ h

x=0

[
1− ψ ′(h)

]
dx

=

∫ h

x=0

(
1−

[
Φ

(
r + x

√
n

σ

)
− Φ

(
r − x

√
n

σ

)][
1− 2Φ

(
−x
√
nσ

)]n−1)
dx

≤

∫ r
√
n

x=0
dx+

∫ h

x=r
√
n

(
1−

[
Φ

(
r + x

√
n

σ

)
− Φ

(
r − x

√
n

σ

)][
1− 2Φ

(
−x
√
nσ

)]n−1)
dx

≤ r
√
n+

∫ h

x=r
√
n

1− [Φ ( x
√
n − r

σ

)
− Φ

(
r − x

√
n

σ

)][
1− 2Φ

(
r − x

√
n

σ

)]n−1 dx
= r
√
n+

∫ h

x=r
√
n

(
1−

[
1− 2Φ

(
r − x

√
n

σ

)]n)
dx .

When x ≥ r
√
n,

Φ

(
r − x

√
n

σ

)
≤
1
2
.

By applying Bernoulli’s inequality, we can get

G(h) ≤ r
√
n+

∫ h

x=r
√
n

(
1−

[
1− 2nΦ

(
r − x

√
n

σ

)])
dx

= r
√
n+ 2n

∫ h

x=r
√
n
Φ

(
r − x

√
n

σ

)
dx

= r
√
n+ 2n

[(
−r
√
n+ x

)
Φ

(
r − x

√
n

σ

)
− σ
√
n · φ

(
r − x

√
n

σ

)]∣∣∣∣∣
x=h

x=r
√
n

.

The integration of the normal distribution is given in [25]. When h→∞, the term

σ
√
n · φ

(
r − h

√
n

σ

)
vanishes. Thus, now we only need to show

lim
h→∞

[(
−r
√
n+ h

)
Φ

(
r − h

√
n

σ

)]
<∞.

Here we apply Mill’s ratio to replaceΦ(·)with φ(·) and get(
−r
√
n+ h

)
Φ

(
r − h

√
n

σ

)
=
(
h− r
√
n
) [
1− Φ

( h
√
n − r

σ

)]

≤
(
h− r
√
n
)
· φ

( h
√
n − r

σ

)
·

( h
√
n − r

σ

)−1

=
(
σ
√
n
)
· φ

( h
√
n − r

σ

)
= 0 as h→∞ .

Therefore, G(h) is bounded from above. The proof is completed. �
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3.3. Lower and upper bounds for the expected progress rate

After the work was done in the previous sections, the progress rate of the social-only model PSO can now be formally
investigated under the proposed statistical interpretation. The term ‘‘progress rate’’ was introduced by Rechenberg in
1973 [26]. As the name suggests, progress rate should be a quantity indicating how a particle swarm progresses, and hence
in the present work, it is defined as the difference of the norms of the two distribution centers in successive time steps,
because the distance to the optimum is the L2 norm for the sphere function. Given the current center of distribution c(t) =
(r, 0, 0, . . . , 0) and a random vector Z = (Z1, Z2, . . . , Zn) with Z1, Z2, . . . , Zn ∼ N(0, σ 2), the m particles P1, P2, . . . , Pm
are sampled as c(t) + Z. Let P(i,m) denote the ith order statistic of ‖P1‖, ‖P2‖, . . ., ‖Pm‖. Let P∗ := argmin{F (P1),F (P2),
. . . ,F (Pm)}. By definition, ‖P∗‖ = P(1,m). According to the update rules described in Section 2.2, the updated position P′i
is computed as P′i = Pi + Ci ⊗ (P∗ − Pi), where each coordinate of Ci is distributed according to U(0, c) with c being the
coefficient representing the compound effect of both the inertia weight and the acceleration coefficient of the social part.
For simplicity, we still call c the acceleration coefficient in this paper because the inertia weight is usually constant. The
center of distribution in the next step c(t+ 1) is the mean of P′1, P

′

2, . . . , P
′
m, i.e., c(t+ 1) = (

∑m
i=1 P

′

i)/m.

Definition 9. Given c(t) = (r, 0, 0, . . . , 0), the progress rate∆t := ‖c(t)‖ − ‖c(t+ 1)‖ = r − ‖c(t+ 1)‖.

The following theorem shows that, when c ≤ 1/2, the expected norm of the center of distribution in the next time step
is bounded from above by a linear combination of the expected particle norm P and the expected minimum of the particle
norm P(1,m).

Lemma 10. Suppose C = (C1, C2, . . . , Cn) is a random vector of Rn with i.i.d. components and X is a random vector of Rn. If C
and X are independent, then E [‖C⊗ X‖] ≤

√
µ′2 E [‖X‖], where µ

′

2 is the second moment of Ci.

Proof. For any fixed vector x = (x1, x2, . . . , xn) ∈ Rn,

E [‖C⊗ x‖] = E

[√∑
i=1:n

C2i x
2
i

]

≤

√√√√E[∑
i=1:n

C2i x
2
i

]

=

√∑
i=1:n

E
[
C2i
]
x2i

=

√
µ′2 ‖x‖ .

Since C and X are independent, by the law of total expectation conditional on X, this lemma is proved. �

Theorem 11 (Upper Bound for the Expected Norm of the Next Center). (1) E [‖c(t+ 1)‖] ≤ E [|1− C |]] P + E [|C |] P(1,m); and
(2) If c ≤ 1/2, E [‖c(t+ 1)‖] ≤ (1− c)P + cP(1,m); otherwise, E [‖c(t+ 1)‖] ≤ [(2c2 − 2c + 1)/2c]P + cP(1,m).

Proof. This result is derived from the triangle inequality for L2-norm and the previous lemma:

E [‖c(t+ 1)‖] = E


∥∥∥∥∥∥∥∥∥
m∑
i=1

[
Pi + Ci ⊗

(
P∗ − Pi

)]
m

∥∥∥∥∥∥∥∥∥


=

(
1
m

)
E

[∥∥∥∥∥ m∑
i=1

(1− Ci)⊗ Pi +mCi ⊗ P∗
∥∥∥∥∥
]

≤

(
1
m

)( m∑
i=1

E [‖(1− Ci)⊗ Pi‖]+mE
[
‖Ci ⊗ P∗‖

])
≤
(
c2/3− c + 1

)1/2
P +

(
c2/3

)1/2
P(1,m). �

Corollary 12 (Lower Bound for the Progress Rate). E [∆t ] ≥ r −
(
c2/3− c + 1

)1/2 P − (c2/3)1/2 P(1,m).
After the lower bound for E [∆t ] is established in Corollary 12, the next theorem sets a lower bound for E [‖c(t+ 1)‖]. An
upper bound for E [∆t ] will be accordingly obtained as a corollary.
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Theorem 13 (Lower Bound for the Expected Norm of the Next Center). If c ≤ 1, E [‖c(t+ 1)‖] ≥ r(1 − exp(−2n′[Φ(−r/
σ)]m)).
Proof. Since ‖c(t+ 1)‖ is a non-negative random variable, from Markov’s inequality, we have, for any positive number a,

Prob {‖c(t+ 1)‖ > a} ≤ a−1E [‖c(t+ 1)‖] .
Substituting awith r ,

r Prob {‖c(t+ 1)‖ > r} ≤ E [‖c(t+ 1)‖] .
Let the jth coordinate of Pi, Ci, and c(t+ 1) be Pij, Cij, and c(t + 1)j, respectively. If there exists a coordinate j such that
min{P1j, P2j, . . . , Pmj} ≥ r , then

‖c(t+ 1)‖ ≥ |c(t + 1)j|

=

∣∣∣∣∣∣∣∣∣
m∑
i=1

[
Pij + Cij

(
P∗j − Pij

)]
m

∣∣∣∣∣∣∣∣∣
=

m∑
i=1

[(
1− Cij

)
Pij + CijP∗j

]
m

≥

[(
1− Cij

)
mr + Cijmr

]
m

= r.

Similarly, max{P1j, P2j, . . . , Pmj} ≤ −r implies ‖c(t+ 1)‖ > r . Let E+j be the event that min{P1j, P2j, . . . , Pmj} ≥ r and E
−

j

be the event that max{P1j, P2j, . . . , Pmj} ≤ −r . Let Ej := E+j
⋃
E−j and E :=

⋃m
j=1 Ej, we have

Prob {E} = Prob
{
E
⋂
E+1
}
+ Prob

{
E
⋂(

E+1
)c}

≥ Prob
{
E+1
}
+ Prob

{(
n⋃
i=2

Ei

)⋂(
E+1
)c}

= Prob
{
E+1
}
+
(
1− Prob

{
E+1
})
Prob

{
n⋃
i=2

Ei

}
.

Because P1, P2, . . . , Pm are i.i.d. and for each particle all of its coordinates other than the first one are identically distributed,
for all i > 1 the symmetry and disjointness of E+i and E

−

i imply that Prob {Ei} = 2Prob
{
E+i
}
= 2[1 − Φ(r/σ)]m =

2[Φ(−r/σ)]m. Let q := 2[Φ(−r/σ)]m for convenience of notation. By using the inclusion–exclusion principle, we have

Prob

{
n⋃
i=2

Ei

}
=

n′∑
i=1

(
n′

i

)
qi(−1)i+1

= 1−
n′∑
i=0

(
n′

i

)
(−q)i

= 1− (1− q)n
′

≥ 1− exp
(
−n′q

)
.

As a result,

E [‖c(t+ 1)‖] ≥ r
(
Prob

{
E+1
}
+
(
1− Prob

{
E+1
}) (
1− exp

(
−n′q

)))
≥ r

(
Prob

{
E+1
}
+ 1− Prob

{
E+1
}
− exp

(
−n′q

))
= r

(
1− exp

(
−2n′ [Φ(−r/σ)]m

))
. �

Corollary 14 (Upper Bound for the Progress Rate). If c < 1, then E [∆t ] ≤ r exp
(
−2n′[Φ(−r/σ)]m

)
.

With Theorems 11 and 13, we established the upper and lower bounds of the expected particle norm. Accordingly, with
Corollaries 12 and 14, we derived the lower and upper bounds of the expected progress rate of a swarm in the social-only
model. As aforementioned, by statistically interpreting the social-only model PSO, we can describe the ‘‘macrostate’’ of the
particle swarm and therefore are able to analyze the stochastic behavior of PSO based on the facet of particle interaction.
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4. Convergence analysis

As stated in Section 2.2, the transition from the current time step to the next time step consists of updating positions
of particles, calculating the distribution center by means of the updated positions, and using the maximum likelihood
estimation to calculate the distribution variance. The issues related to the centers of distributions have been addressed
in Section 3. Thus, the part of variance is considered in this section. While the center of a distribution can be viewed as the
indication of the average quality of the swarm at a specific time step, the variance is a direct measurement of convergence,
because from the viewpoint of statistical interpretation, a swarm converges as the variance of the distribution reduces to
zero. The word ‘‘converge’’ is not a unified term in the research domain of PSO [27, p. 132]. It has been used to describe
the behavior of a swarm approaching the local optimum in some papers, while it simply indicates the phenomenon that
a swarm of particles crowds into a specific point, sometimes called the equilibrium, not necessarily the local optimum, in
the search space in other papers. Here in the present work, we adopt the latter definition. We concentrate on the condition
underwhich a swarm of particlesmay go into a stable state.Wewill demonstrate that if certain condition of the relationship
between the swarm size and the acceleration coefficient is satisfied, a swarm in the social-only model does converge under
the mechanism of particle interaction.
Given m observed vectors y1, y2, . . . , ym that stand for the updated positions and the distribution center is denoted

as c(t+ 1) = y := (Σmi=1yi)/m. Let Y1, Y2, . . . , Ym be random vectors sampled from θ(‖y‖, σ 2t+1). These vectors are
n-dimensional random vectors centered at y, and the coordinate on each dimension is a random variable sampled from
N(0, σ 2t+1), where σ

2
t+1 is the variance that we wish to estimate. In order to estimate the variance, the likelihood function of

σ 2t+1, L(σ
2
t+1), can be defined as the joint probability:

L(σ 2t+1) :=
m∏
i=1

(
1

√
2πσt+1

)n
exp

(
−d (yi, y)2

2σ 2t+1

)

=

(
1

√
2πσt+1

)mn
exp


−

m∑
i=1

d (yi, y)2

2σ 2t+1


= Kσ−mnt+1 exp

(
−R
2σ 2t+1

)
,

where

K :=
(
1
√
2π

)mn
, R :=

m∑
i=1

d(yi, y)2 .

In order to get the σ 2t+1 that maximizes L(σ
2
t+1), we differentiate L(σ

2
t+1)with respect to σ

2
t+1:

L′(σ 2t+1) = −
mn
2
K · σ−mn−2t+1 · exp

(
−R
2σ 2t+1

)
+
R
2
K · σ−mn−4t+1 · exp

(
−R
2σ 2t+1

)
.

L′(σ 2t+1) = 0 implies σ
2
t+1 = R/(mn), and it is routine to check the maximality. Since both m and n are fixed, the only

quantity needs to be examined is R, the sum of square of the distance between each updated particle and the center.
Given c(t) = (r, 0, 0, . . . , 0) and Z = (Z1, Z2, . . . , Zn) with Z1, Z2, . . . , Zn ∼ N(0, σ 2t ), the m particles P1, P2, . . . , Pm
are sampled from c(t) + Z, and the updated position is calculated as Pi + Ci ⊗ (P∗ − Pi), where P∗ is the attractor. Since
c(t+ 1) =

∑m
i=1 [Pi + Ci ⊗ (P∗ − Pi)] /m, R, as a random variable, can be defined by P1, P2, . . . , Pm and P∗:

R =
m∑
i=1

∥∥∥∥∥∥∥∥∥∥
Pi + Ci ⊗ (P∗ − Pi)−

m∑
j=1

(
Pj + Ci ⊗ (P∗ − Pj)

)
m

∥∥∥∥∥∥∥∥∥∥

2

.

Denoting Pi’s and P∗’s kth coordinate as Pik and P∗k , respectively, the expectation of R, E [R], can be derived in the following
lemma:

Lemma 15. Given the swarm size, m, and the variance of distribution at time t, σ 2t = σ
2,

E
[
σ 2t+1

]
≤
(m− 1)σ 2

12m

{(
5+
√
3(m− 1)
n

)
c2 − 6c + 12

}
.
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Proof. Defining Rj as

Rj :=
m∑
i=1

Pij + Cij
(
P∗j − Pij

)
−

m∑
k=1

(
Pkj + Ckj(P∗j − Pkj)

)
m


2

yields R =
∑
j=1:n Rj and that we can obtain for j > 1,

E
[
Rj
]
=

(
m− 1
12m

){
σ 2
(
4c2 − 6c + 12

)
+ c2E

[(
P∗j
)2]}

≤

(
m− 1
12m

){
σ 2
(
5c2 − 6c + 12

)}
.

The last inequality follows from the fact that the independence of coordinates implies E
[(
P∗j
)2]
≤ σ 2. Moreover,

E[R1] =
(
m− 1
12m

){
σ 2
(
4c2 − 6c + 12

)
+ c2E

[(
P∗1 − r

)2]}
.

Since E
[(
P∗1 − r

)2] is less than or equal to the expected value of the extreme order statistics of T 21 , T 22 , . . . , T 2m, where
Ti ∼ N(0, σ 2), by using the upper bound for the extreme order statistics [28],

E
[(
P∗1 − r

)2]
≤ σ 2

(
1+

√
3(m− 1)

)
.

As a consequence,

E
[
σ 2t+1

]
= E [R] /(mn) ≤

(m− 1)σ 2

12m

{(
5+
√
3(m− 1)
n

)
c2 − 6c + 12

}
. �

While Lemma 15 is under the assumption that σ 2t is given ormore formally, the conditional expectation E
[
σ 2t+1|σ

2
t = σ

2
]
is

derived, the following theorem indicates the relationship between E
[
σ 2t
]
and E

[
σ 2t+1

]
and gives a sufficient and necessary

condition that the sequence
{
E
[
σ 2t
]}
converges to zero. Without loss of generality for the normal operation of PSO, we

assume that E
[
σ 20
]
<∞.

Theorem 16 (Convergence of the Expectation of Variance). Let κ :=
√
3(m− 1)/n. If c satisfies the condition that

3−
√
9+ 60+5κ

m−1

5+ κ
< c <

3+
√
9+ 60+5κ

m−1

5+ κ
,

limt→∞
{
E
[
σ 2t
]}
= 0.

Proof. The law of total expectation and Lemma 15 imply that

E
[
σ 2t+1

]
≤
(m− 1)
12m

{(
5+
√
3(m− 1)
n

)
c2 − 6c + 12

}
E
[
σ 2t
]
.

Therefore,
{
E
[
σ 2t
]}
is upper-bounded by the geometric sequence with the first term E

[
σ 20
]
and the ratio

(m− 1)
12m

{(
5+
√
3(m− 1)
n

)
c2 − 6c + 12

}
.

By solving

(m− 1)
12m

{(
5+
√
3(m− 1)
n

)
c2 − 6c + 12

}
< 1,

the theorem is proved. �

Since σ 2t takes the value on non-negative real numbers, the convergence of sequence
{
E
[
σ 2t
]}
implies sequence

{
σ 2t
}

converges to zero in probability, as shown in the following corollary.

Corollary 17 (Convergence of Variance). If limt→∞
{
E
[
σ 2t
]}
= 0, then limt→∞ σ 2t

p
→ 0, i.e., for every ε >

0 limt→∞ Prob
{
σ 2t ≥ ε

}
= 0.
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Proof. Suppose for contradiction that there exists some ε > 0 and δ > 0 such that, for allN0 ∈ N, there exists anN(N0) > N0
with Prob

{
σ 2N(N0) ≥ ε

}
≥ δ. However, since Prob

{
σ 2N(N0) ≥ ε

}
≥ δ implies E

[
σ 2N(N0)

]
≥ εδ, for all N0 ∈ N, there exists an

N(N0) > N0 such that E
[
σ 2N(N0)

]
≥ εδ, limt→∞

{
E
[
σ 2t
]}
= 0 is contradicted. �

Theorem 16 and Corollary 17 indicate that as long as the specified condition is satisfied, a swarm will converge in
probability. However, it must be noted that the acceleration coefficient, c , used in this study is the coefficient for the
compound effect of both the inertia weight and the common acceleration coefficient for the neighborhood or global best
position as described in Section 3.3. Therefore, further investigations are needed to gain understandings on the compound
effect and clarify the relationship of these parameters such that the derived results in the present work can be applied in
practice.

5. Summary and conclusions

In this study, we made the first attempt to analyze the behavior of particle swarm optimization on the facet of particle
interaction. We firstly proposed a statistical interpretation of particle swarm optimization and modeled the essential PSO
mechanisms with the operations on probabilistic distributions. In order to investigate the PSO behavior based on particle
interaction, we focused on the social-only model of PSO, in which the personal experience of particles is ignored. From the
viewpoint of macrostates, we obtained the lower and upper bounds of the expected progress rate for a swarm on the sphere
function. By examining in detail the variance of the particle distribution, we further showed that under certain condition, a
swarm will converge in probability due to the mechanism of particle interaction, i.e., exchanging and sharing information,
which is commonly believed to be an essential mechanism of PSO but seldom theoretically analyzed in the literature.
With regard to the practical implications of this study, we demonstrated that the optimization process of PSO can be

interpreted as the interplay between the attractor and the overall swarm, as shown in Theorem 11 that the expected norm
of the next center is upper-bounded by a linear combination of P and P(1,m) as well as that the acceleration coefficient is the
weight balancing the effects of these two quantities. The major resistance in the optimization process of PSO on the sphere
function is the number of dimensions, as it can be observed in Corollary 14 that the progress rate deteriorates drasticallywith
respect to the number of dimensions. On the other hand, the swarm size is the primary factor counteracting the increasing
dimensions, for the exploratory capability of the swarm is augmented in accordance with the number of particles. It is
noteworthy that in a variety of theoretical studies on PSO, the effect of the objective function has been rarely taken into
consideration due to the assumption of fixed attractors. By means of characterizing a swarm as a unity, the analysis of the
influence of the objective function becomes possible.
With this study,wepropose an alternativeway to analyze particle swarmoptimization from the viewpoint ofmacrostates

instead of tracing the trajectory of each particle. The immediate follow-upwork of this study includes the clarification of the
compound effect of the inertia weight and the neighborhood acceleration coefficient for carrying over the theoretical results
to practice and for suggesting applicable parameter settings. Moreover, tighter bounds may be derived to more accurately
describe the behavior of PSO, and a complete PSOmodel may be considered instead of the social-only model adopted in the
present work. Finally, in the long run, a unified behavioral model of PSO might be established by integrating the theoretical
results from the two ends – macrostates and microstates – such that better, more robust optimization frameworks can be
accordingly designed and developed.
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Detecting General Problem Structures with Inductive Linkage

Identification

Yuan-wei Huang and Ying-ping Chen

Abstract— Genetic algorithms and the descendant methods
have been deemed robust, effective, and practical for the past
decades. In order to enhance the features and capabilities of
genetic algorithms, tremendous effort has been invested within
the research community. One of the major development trends
to improve genetic algorithms is trying to extract and exploit
the relationship among decision variables, such as estimation
of distribution algorithms and perturbation-based methods. In
this study, we make an attempt to enable a perturbation-based
method, inductive linkage identification (ILI), to detect general
problem structures, in which one decision variable can link
to an arbitrary number of other variables. Experiments on
circular problem structures composed of order-4 and order-5 trap
functions are conducted. The results indicate that the proposed
technique requires a population size growing logarithmically with
the problem size as the original ILI does on non-overlapping
building blocks as well as that the population requirement is
insensitive to the problem structure consisting of similar sub-
structures as long as the overall problem size is identical.

I. INTRODUCTION

As practical optimization frameworks, genetic algorithms

(GAs) have shown properties of flexibility, robustness, and

easy-of-use since they were proposed [1], [2]. These methods

usually get good performance when the adopted genetic oper-

ators are aware of the relationship among decision variables.

Crossover operators in early genetic algorithms are likely to

break promising solutions of sub-problems, which are referred

to as build blocks (BBs) [3]. As a consequence, the overall

performance is greatly reduced, or the problem cannot be

solved [4]. In order to alleviate this issue, in recent studies,

crossover operators or equivalent mechanisms that maintain

the structure and diversity of building blocks have been

proposed, developed, and examined. These techniques sig-

nificantly increase the performance of genetic algorithms. To

provide the capability of appropriately and effectively handling

sub-solutions/building blocks, two key mechanisms, building-

block identification and building-block exchange, have to be

utilized and integrated. In this study, we focus on the mech-

anism of building-block identification, generalize the concept

regarding the detection of building blocks, and propose the

use of inductive linkage identification [5] to detect general

problem structures.

Most of building-block/linkage identifying methods pro-

posed and utilized in previous studies can be broadly classified

into the following three categories [6]:

1) Estimation of distribution algorithms;

Yuan-wei Huang and Ying-ping Chen are with the Department of Computer
Science, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu,
TAIWAN (email: {ywhuang, ypchen}@nclab.tw).

2) Linkage learning techniques;

3) Perturbation-based methods.

In the first category, estimation of distribution algorithms

construct probabilistic models from the selected individuals of

the population and describe the relationship among decision

variables in a statistical way [7]. Early studies assume no

interaction among variables, such as the population-based

incremental learning [8] and the compact genetic algorithm

[9]. Subsequent researchers use conditional probabilities to

capture pairwise and/or multi-variate interactions, e.g., the

mutual information maximizing input clustering [10], Baluja’s

dependency tree approach [11], the bivariate marginal distribu-

tion algorithm [12], the factorized distribution algorithm [13],

and the Bayesian optimization algorithm [14]. Methods in

this category are usually quite efficient from the traditional

viewpoint of computational cost in evolutionary computation

because they do not need additional fitness evaluations. Never-

theless, less salient building blocks, which contribute little to

the total fitness, are less statistically significant and therefore

might be ignored and undetected [15].

For the methods of the second category, building-block

identification is oftentimes viewed as the (gene/variable) order-

ing problem. By rearranging variables during the evolutionary

process, interdependent variables are put closer according to

the adopted coding scheme such that these variables are less

likely to be split apart by subsequent operations. In these

studies, the messy genetic algorithm [4] and its more efficient

descent, the fast messy genetic algorithm [16], exploit building

blocks to identify linkages. Since the rearranging mechanism

often acts too slow to cooperate with the selection operator,

such a condition usually leads to premature convergence. The

linkage learning genetic algorithm [17] performs two-point

crossover on a specifically designed circular chromosome

representation such that tight linkages among related variables

can be formed on the chromosome and preserved during the

evolutionary process.

Methods in the last category analyze the fitness differ-

ence caused by perturbing variables to identify linkages. For

example, the gene expression messy genetic algorithm [18]

incorporates a special genotype for pairwise relations and a

function involving perturbation to find linkage sets. Linkage

identification by nonlinear check [6] uses the linear summation

of different and non-overlapping building blocks to detect

linkages. Borrowing the idea from estimation of distribution

algorithms, the dependency detection for distribution derived

from the fitness difference [15] clusters variables according to

the fitness difference values caused by perturbation. Because a



perturbed variable only effects the building blocks containing

itself, information can be obtained on less salient building

blocks from fitness difference values. However, since extra

fitness evaluations are required every time a variable is per-

turbed, methods in this category cost more function evaluations

to identify linkages, although the actual overall computational

cost might be less.

From the viewpoint of extracting the problem structure

and exploiting the obtained information in order to conduct

optimization, estimation of distribution algorithms can be

considered as approaches at the “global” end or organizing

the obtained information in a ”top-down” manner. Estimation

of distribution algorithms assume a probabilistic model and

adjust the model parameters to fit the promising solutions. On

the other hand, linkage learning techniques and perturbation

methods are at the ”local” end and processing the information

in a ”bottom-up” manner. These methods implicitly or ex-

plicitly extract information out of the selected individuals and

recognize the problem structure parts by parts. In this study,

we aim at enhancing the global problem structure detection

capability of perturbation-based methods and at blurring the

line between estimation of distribution algorithms and methods

in the other two categories.

In particular, we firstly extend the notion of building blocks

commonly adopted in perturbation-based methods from over-

lapping building blocks to general problem structures. Then, a

linkage identification technique, called inductive linkage iden-

tification [5], utilizing the ID3 decision tree [19] is modified

and adopted to detect global problem structures. Experiments

on the scalability and flexibility are conducted to examine

the capability of the modified inductive linkage identification.

The results demonstrate that the proposed technique requires

a population size growing logarithmically with the problem

size. The population requirement is insensitive to the problem

structure consisting of similar sub-structures as long as the

overall problem size is identical.

For the remainder of this paper, the background of linkage

identification is briefly introduced in section II. Why and

how inductive linkage identification works are reviewed with

illustrative examples in section III. Experiments and results

are provided and discussed in section IV, followed by the

summary and conclusions given in section V.

II. LINKAGES, BUILDING BLOCKS, AND PROBLEM

STRUCTURES

De Jong et al. [20] defined the term dependency, which

is also referred to as linkage, as “two variables in a problem

are interdependent if the fitness contribution or optimal setting

for one variable depends on the setting of the other variable.”

Moreover, the order of a problem is also stated as “the order

is the largest number of variables that are interdependent.” To

obtain the complete information of linkages, the contribution

of each possible pair of variables needs to be examined.

Although it is usually an expensive work to process all possible

pairs of variables, dependencies should be examined as much

as possible in a reasonable time such that the employed genetic

algorithm can perform well.

The Schema theorem [1] states that short, low-order, and

highly fit sub-solutions increase their market shares to be

combined. Furthermore, the building block hypothesis [3]

implies that combining small partial solutions is essential for

genetic algorithms and also consistent with human innovation.

According to these observations, a problem model called the

additive decomposable function (ADF) and written as a sum

of low-order sub-functions is proposed.

Let a string of length ℓ, s = s1s2s3 . . . sℓ, present a

solution, where s is a permutation of the decision variables

x = x1x2x3 . . . xℓ determined by the adopted coding scheme.

The fitness function for s is then defined as

f(s) =

m
∑

i=1

fi(svi
) ,

where m is the number of sub-functions, fi(·) is the i-th
sub-function, and svi

is the solution string for fi(·). For

example, if vi = (4, 2, 3, 6), svi
= s4s2s3s6. If fi(·) is also a

sum of other sub-functions, it can be replaced by these sub-

functions. Therefore, without loss of generality, each fi(·) can

be assumed a non-linear function, and the number of variables

of fi(·) is referred to as its order, i.e., complexity. In the

ADF model, variables in the same set vi are interdependent.

These sets referred to as linkage sets, and the related term

building block (BB) is used for the candidate solutions to the

corresponding sub-functions.

For complex problems, sub-functions are oftentimes over-

lapping. Similar to interdependent variables, shared variables

affect the respective contributions of the overlapping building

blocks to the total fitness of the problem and make these

building blocks interdependent. Under such a circumstance,

considering the interdependent sub-functions as either a sin-

gle, longer building block or separate, shorter ones become

inappropriate. Reviewing previous studies on pairwise inter-

actions, building blocks, and order-k linkage sets, researchers

attempt to capture structures of certain orders. However, if the

overall structure can somehow be recognized as that obtained

by the model building process in estimation of distribution

algorithms, perturbation-based methods should also be able

to provide sufficient understandings of the problem for those

linkage-aware operations.

Therefore, in this paper, we firstly generalize the concept

of overlapping building blocks to the notion of the problem

structure such that interactions among variables can be de-

scribed as general as possible. The term sub-problem is used

to describe how the overall problem structure is constructed

instead of decomposed. The terms interaction and linkage are

still used for the dependency between any two variables.

III. INDUCTIVE LINKAGE IDENTIFICATION

In this section, the perturbation-based method called induc-

tive linkage identification (ILI) is reviewed. Firstly, a brief

introduction of the ID3 decision tree is given, followed by

how ILI adopts ID3 into the fitness perturbation and linkage
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identification procedure. Then, we describe the modified ver-

sion of ILI for detecting general problem structures. A simple

example is also given for illustration.

A. ID3 for Recognizing Linkage

The ID3 decision tree construction algorithm is a supervised

categorization method working on discrete data sets, in which

the datum entries consist of several decision variables and

each decision variable is limited to certain predefined values.

ID3 aims to build a decision tree according to entropy and

information gain. By eliminating the most useless variable, the

training data set can be split into two subsets. One contains the

datum entries using that variable, and the other does the rest.

Then, the described procedure is applied to these two subsets

recursively.

For the perturbation procedure, the fitness difference values,

denoted as df , are obtained by subtracting the fitness value af-

ter perturbation from the original fitness value. This operation

implicitly isolates the affected portions of the whole problem

structure and reveals them as fitness difference values. The

k-trap function [21], [22] is employed in this study as an

illustrative example as well as the elementary sub-problem for

composing larger problem instances:

trapk(s1s2s3 . . . sk) =

{

k, if u = k;
k − u− 1, otherwise.

,

where u is the number of 1’s in the solution string. Figure 1

shows the characteristic of a k-trap function.

With k-trap functions as elementary sub-problems, more

complicated problem instances can be created following the

ADF model. For example, an 8-bit function composed of a

3-trap and a 5-trap function can be defined as

f(s1s2s3 . . . s8) = trap3(s1s2s3) + trap5(s4s5s6s7s8) .

s1s2s3 . . . s8 f df

111 01001 5 3
111 10100 5 3
111 01111 3 3

000 11111 7 1
000 00100 5 1
000 00001 5 1
000 10110 3 1
000 11100 3 1

001 01000 4 1
001 00011 3 1
001 00011 3 1
001 10100 3 1

010 01000 4 1
010 00100 4 1
010 01100 3 1
010 10100 3 1
010 00111 2 1
010 11011 1 1

100 00000 5 -1
100 00100 4 -1

110 11111 5 -1
110 01101 1 -1
110 01111 0 -1
110 11011 0 -1

101 10000 3 -1
101 01101 1 -1
101 11110 0 -1

011 00001 3 -3
011 00110 2 -3
011 01111 0 -3

TABLE I

RESULTS OBTAINED BY PERTURBING VARIABLE s1 .

By conducting perturbation on a binary variable s1, the

fitness difference df is obtained as

df = f(s1s2s3 . . . s8)− f(s1s2s3 . . . s8)

= (trap3(s1s2s3) + trap5(s4s5s6s7s8))

− (trap3(s1s2s3) + trap5(s4s5s6s7s8))

= trap3(s1s2s3)− trap3(s1s2s3) .

(1)

Equation (1) gives a mathematical explanation that df is

only affected by the perturbed variable s1 and those variables

belonging to the same sub-problem as s1. Table I is the

example of Equation (1) and shows that permutations of s1,

s2, and s3 yield the identical df value.

ILI considers the distinct df values as the classification

categories and each variable as the decision variable for the

ID3 algorithm. By performing ID3 on the perturbed variable

as the tree root, a decision tree is accordingly constructed.

The internal nodes on the decision tree are then collected

as a linkage set Vi. Figure 2 shows the built decision tree

corresponding to Table I, and the internal nodes s1, s2, and

s3 forms a linkage set.

B. Original ILI

The original ILI [5] can handle only those problem struc-

tures composed of non-overlapping sub-problems. After per-

turbing a variable and constructing a decision tree as shown in

Figure 2, a linkage set is identified, and the used variables are

removed from the variable set. The procedure of perturbation



Fig. 2

THE DECISION TREE CONSTRUCTED FOR TABLE I.

and decision tree construction is repeated on one of the uncat-

egorized variables until all variables are categorized. Taking

Table I for example, after V1 = {s1, s2, s3} is identified,

ILI then perturbs variable s4 and constructs a decision tree

with {s4, s5, s6, s7, s8} and the next uncategorized variable.

In this example, the final linkage sets are V1 = {s1, s2, s3}
and V2 = {s4, s5, s6, s7, s8}.

When there is no overlapping building blocks, experiments

[23] demonstrate that the required population size grows sub-

linearly with the problem size while the complexity of sub-

problems is fixed. On the other hand, the population size

requirement grows exponentially with the complexity of sub-

problem while the problem size is fixed. Such a result indicates

that ILI is not sensitive to the overall problem size as well as

the number of sub-problems but sensitive to the complexity of

sub-problems.

C. Proposed Modifications on ILI

As mentioned in section II, overlapping sub-problems may

form large, complicated problem structures and may be dif-

ficult or inappropriate to be identified as separate building

blocks. Taking overlapping sub-problems trap4(s1s2s3s4) and

trap4(s3s4s5s6) as an example, {s1, s2} indirectly interacts

with {s5, s6} via {s3, s4} since they belong to both of the

sub-problems. These direct and indirect interactions do form

a dependency structure of the two sub-problems. Instead of

viewing them as either one building block or two, the actual

(a) Two non-overlapping trap4

functions.
(b) Two overlapping trap4 func-
tions.

(c) Circular structure. (d) Complete graph.

Fig. 3

PROBLEM STRUCTURE EXAMPLES: VARIABLES OF SUB-PROBLEMS ARE

CIRCLED BY DASHED ECLIPSES.

structure should be found and reported to the subsequent

linkage-aware operations.

In order to visualize these problem structures, a graph

notation is adopted. Each variable is represented as a graph

node, and direct interactions between any two variables are

represented as edges between the corresponding graph nodes.

E.g, Figure 3(a) shows the graph representation for two non-

overlapping trap4 functions because variables in the same

sub-problems are interdependent, interactions among the four

related variables are represented as a complete graph of four

nodes. Since these two sub-problems are not overlapping,

there exists no edge connecting the two separate sub-graphs.

Figure 3(b) is the example for two overlapping sub-functions,

trap4(s1s2s3s4) and trap4(s3s4s5s6), and shows that the

shared variables interact with all other variables, while the

unshared variables only interacts with the variables of the

same sub-problems. Using the graph representation, complex

dependency structures can be illustrated. E.g., Figure 3(c)

shows a circular structure consisting of six overlapping trap4

sub-problems with two shared variables between adjacent sub-

problems. Figure 3(d) is the case in which each variable

depends on all others to create a very complex overlapping

problem structure.

To extend ILI to general problem structures composed of

arbitrary overlapping sub-problems, a key modification on ILI

is proposed. As described in section III-B, a variable is re-

moved from the variable set V when it is categorized. Such an

operation makes the removed variable invisible at later stages

of ID3 and thus renders the linkages to other sub-problems

undetectable. For example, thinking of Figure 3(b), when



Algorithm 1 Modified ILI for general problem structures.

1: procedure ILI(f , ℓ, n)

2: Initialize a population P with n strings of length ℓ
3: Evaluate the fitness of strings in P using f
4: V ← Shuffle(1, 2, 3, . . . , ℓ)

5: Mℓ×ℓ ← 0ℓ×ℓ

6: for each v in V do

7: for each si = si
1s

i
2s

i
3 . . . si

l in P do

8: Perturb si
v

9: df i ← calculate the fitness difference

10: end for

11: Build an ID3 tree using (P, df) with v as root

12: for each internal node vj in the tree do

13: mv,j ← 1
14: mj,v ← 1
15: end for

16: end for

17: Return the structure matrix M
18: end procedure

the perturbation and ID3 tree construction are performed on

variable s1, the resultant linkage set is {s1, s2, s3, s4} and the

rest elements are {s5, s6} where the relations between {s3, s4}
and {s5, s6} are lost. One of the proposed modifications is to

perturb and perform ID3 on each variable si without removing

any variable such that all variables can be examined repeatedly

by ID3.

Another modification is to make ILI not directly return

linkage sets corresponding to sub-problems, which are also

referred to as building blocks. As aforementioned, the concept

of building blocks is not very clear when sub-problems are

overlapping. In order to determine the overall problem struc-

ture, a ℓ-by-ℓ matrix Mℓ×ℓ is employed, where ℓ is the number

of variables. The element mi,j = 1 if there is a connection

between variables si and sj ; otherwise, mi,j = 0. In this

study, we make linkages undirected. After si is perturbed and

a linkage set containing sj is constructed, not only mi,j but

mj,i are also marked.

Algorithm 1 shows the modified inductive linkage identifi-

cation procedure. For further illustration, the modified ILI is

demonstrated by an example composed of two 4-trap functions

with two shared variables defined as

f(s1s2s3s4s5s6) = trap4(s1s2s3s4) + trap4(s3s4s5s6) (2)

and shown in Figure 4. Initially, the structure matrix M6×6

is a zero-matrix indicating that there is no known interaction

among any variables as showed in Figure 4(a). After initializa-

tion, ILI begins to perturb variables in a randomly determined

order: s1, s3, s2, s5, s4, and s6. By perturbing and performing

ID3 on variable s1, a linkage set {s1, s2, s3, s4} is recognized

and indicates that s1 interacts with s2, s3, and s4. Figure 4(b)

shows the detected partial structure. Notice that although s2,

s3, and s4 belong to the same sub-problem as defined in

Equation (2), there is no interaction among them detected at

the current iteration. Next, when s3 is perturbed, ID3 identifies

(a) Initial state. (b) After perturbing s1.

(c) After perturbing s3. (d) After perturbing s2.

(e) After perturbing s5. (f) Final state.

Fig. 4

PROBLEM STRUCTURES DETECTED DURING THE ILI PROCESS. DASHED

AND SOLID LINES REPRESENT KNOWN AND NEWLY DISCOVERED

INTERACTIONS RESPECTIVELY.

that s3 interacts with all other five variables since it belongs to

both sub-problems as shown in Figure 4(c). The procedure is

repeated on s2, s5, s4, and s6 sequentially. After all variables

are proceeded, the final structure is constructed as shown in

Figure 4(f).

Because there is no controlling parameter for the problem

order/complexity, the obtained linkage information of the

overall problem structure is unconstrained by any assumptions

on the complexity of sub-problems. The only key factor in

this condition regarding the correctness is whether or not the

employed population is large enough for ILI to avoid getting

confused by the fitness difference noise. Our preliminary

experiments involving different problem structures have shown

that the proposed ILI modification is able to construct correct

problem structures as long as sufficiently large populations are

utilized. For the purpose of gaining more understanding of the

population size requirement by the modified ILI, in the next

section, we design and conduct more experiments to observe

the scalability and flexibility of the proposed modification.

IV. EXPERIMENTS AND RESULTS

Experiments and results on circular structures are examined

in this section. Circular structures hold certain good properties

for experimental control. The number of linkages increases

linearly with the number of sub-problems and so does the

number of nodes. These easily controlled properties enable us

to concentrate on the population requirement.



The required population size is determined by a bisection

method. For a given problem structure and a range of popula-

tion sizes [boundL, boundU ], if the modified ILI can correctly

detect the given problem structure for at least 29 times out

of 30 independent runs with the population size Psize =
(boundL+boundU )/2, we consider that Psize is large enough

for the modified ILI to detect this problem structure and set

Psize as the new boundU for the next iteration. Otherwise,

Psize is too small to provide sufficient statistics, and thus, the

next iteration will be conducted on interval [Psize, boundU ].
This bisection procedure repeats until the interval is smaller

than 2, and the final mean value, Psize, is regarded as the

required population size. For all the experiments in this study,

the bisection process is performed for 50 interdependent trails,

and the mean value and the standard deviation are calculated

accordingly. Please note that in the experiments for simplicity,

building blocks are arranged with consecutive variables on

the chromosome, but they can actually be arbitrarily arranged

because the same result will be obtained on all possible

permutations of the variables.

A. Scalability on Circular Structures

In this series of experiments, the scalability of the modified

ILI is examined by using the trap4 and trap5 functions with

circular overlapping problem structures. In the experiments

with trap4, each sub-problem shares two variables with one

of its neighbor sub-problem and the other two variables with

the other neighbor. The circular overlapping structure can be

described as

C4n(s1s2s3 . . . s2n) =
n−1
∑

i=1

trap4(s2i−1s2is2i+1s2i+2) + trap4(s2n−1s2ns1s2) ,

where n is the number of sub-problems and greater than 2 to

form a circle. For example, C43(s1s2s3 . . . s6) = trap4(s1s2

s3s4) + trap4(s3s4s5s6) + trap4(s5s6s1s2) is the smallest

circular problem structure for trap4 under this definition as

shown in Figure 5(a), and inserting one more sub-problem

will form a structure shown in Figure 5(c).

The overlapping scheme for the trap5 function is similar,

except that each sub-problem has one unshared variable. For

example, the minimal circular structure of 3 trap5 functions,

shown in Figure 5(b), can be put as

C53(s1s2s3 . . . s9) = trap5(s1s2s3s4s5)
+trap5(s4s5s6s7s8)
+trap5(s7s8s9s1s2) ,

where s3, s6, and s9 are unshared.

The experimental results of C4n and C5n are shown in

Figure 6. The results demonstrate that the modified ILI is

capable of correctly detect linkages among variables even

when the problem size gets large. The first observation is

that the results can be well fitted by using logarithmic curves.

Such a phenomenon implies that the required population size

grows logarithmically with respect to the number of sub-

problems and indicates the modified ILI is quite efficient and

(a) 3 trap4 (b) 3 trap5

(c) 4 trap4 (d) 4 trap5

Fig. 5

THE MINIMAL CIRCULAR PROBLEM STRUCTURES.

scalable on these problem structures in the experiments. The

population size growth rate is similar to that required by the

original ILI on non-overlapping building blocks as given in

the literature [23]. Secondly, since the growth of required

population sizes can be well fitted with logarithmic curves for

both trap4 and trap5 functions, for the problems composed

of traps, the modified ILI should require a population size

growing logarithmically with the problem size.

B. Insensitivity on Sub-structures

The series of experiments in this section aims to examine

the capability of detecting problem structures composed of

sub-structures. Separate circular problem structures form a

large problem structure, and the population requirement of

the modified ILI is compared to that for larger structures of

the same problem size. In these experiments, circular problem

structures composed of m smaller sub-structures are defined

as

C4m
n =

m−1
∑

i=0

C4n(s1+nis2+nis3+ni . . . s2n+ni) .

Figure 7 shows examples of circular structures composed of

two and three sub-structures of five trap4 sub-problems.

Figure 8 shows the experimental results of C4n, C42
n, and

C43
n. As shown in the figure, when the overall problem sizes

are identical, the required population sizes of C42
n and C43

n

are very close to that of C4n. All the experimental results

are also well fitted by the same logarithmic curve that fits the

results of C4n. It indicates that the modified ILI is able to
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THE POPULATION REQUIREMENT FOR THE MODIFIED ILI TO CORRECTLY

DETECT CIRCULAR PROBLEM STRUCTURES COMPOSED OF trap4 AND

trap5 FUNCTIONS.

correctly identify the isolated as well as the interdependent

parts of a large problem structure without additional cost.

V. SUMMARY AND CONCLUSIONS

In this paper, we extended the inductive linkage identi-

fication to detect general problem structures composed of

overlapping sub-problems and conducted experiments by using

circular overlapping structures for gaining more insights and

understandings. According to the experimental observations,

the proposed technique was found able to correctly detect

circular problem structures and require a population size

growing logarithmically with the problem size. The population

requirement was observed insensitive to the problem structure

consisting of similar sub-structures for the identical overall

problem size.

One of the major differences between ILI and most of the

other existing linkage learning methods is the absence of algo-
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n

(b) C4
3
n

Fig. 7

CIRCULAR PROBLEM STRUCTURES COMPOSED OF SEPARATE

SUB-STRUCTURES, WHERE n = 5.
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CIRCULAR PROBLEM STRUCTURES COMPOSED OF ONE, TWO, AND THREE

SUB-STRUCTURES WITH trap4 AS THE ELEMENTARY SUB-PROBLEMS.

rithmic parameters for the complexity of sub-problems. The

proposed modification of ILI keeps this feature unchanged.

Since ILI performs the task of linkage identification without

assumptions on the problem structure, such as the chosen

probabilistic model or the maximum degree of interactions, the

relationship among variables should be extracted as authentic

as possible.

Since the modified ILI is capable of detecting general

problem structures, it may be applied in two ways. Firstly,

by serving as a preprocessing step of genetic algorithms, the

proposed techniques describes the variable dependencies with

a graph such that delicately-designed genetic operators or

processing mechanisms can utilize the linkage information to

preserve the building blocks. Secondly, the proposed technique

can be used as a tool to inspect and extract the relationship

among decision variables for understanding the inner structure

of the problem at hand in order to assist any further applicable

operations.
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XCS with Bit Masks

Jia-Huei Lin and Ying-ping Chen

Abstract—In this paper, a modified XCS is proposed to reduce
the numbers of learned rules. XCS is a type of learning classifier
systems and has been proven able to find accurate, maximal gen-
eralizations. However, XCS usually produces too many rules such
that the readability of the classification model is greatly reduced.
As a result, XCS users may not be able to obtain the desired
knowledge or useful information from the learned rule set. In
our attempt to handle this problem, a new mechanism, called bit

masks, is devised in order to reduce the number of classification
rules and therefore to improve the readability of the generated
model. A series of n-bit multiplexer experiments, including 6-bit,
11-bit, and 20-bit multiplexers, to examine the performance of
the proposed framework. For the problem composed of integer-
typed variables, two synthetic oblique datasets, Random-Data2
and Random-Data9, are adopted to compare the performance
of XCS and that of the proposed method. According to the
experimental results, XCS with bit masks can perform similarly
as XCS on n-bit multiplexers and generates significantly fewer
rules on integer-typed problems.

I. INTRODUCTION

Learning classifier systems (LCS) [1] are machine learning

systems designed to combine reinforcement learning, evolu-

tionary computation, and other heuristics to produce efficient

adaptive systems. These rule-based machine learning algo-

rithms originated and have evolved in the cradle of evolution-

ary computation and artificial intelligence. There have been

a number of studies on the architecture and performance of

LCS. In recent years, a simplified version of LCS, XCS [2], [3]

has become one of the most important XCS variations since

XCS was shown to be able to solve real-world classification

problems with high accuracy. XCS is designed to evolve a

representation of the best solution as well as to evolve a

complete and accurate payoff map of all possible solutions

for all possible problem instances. That is, XCS evolves rules

that improve the ability to obtain the environmental reward

and mine the environment for prediction patterns, which are

expressed in the form of classifiers. The repeatedly refined

prediction patterns allow the XCS system to make better

decisions for consecutive actions.

However, some shortcomings still exist in XCS. For real-

world applications, frequent pattern mining [4] often incurs

numerous frequent item sets and rules, which much decrease

the effectiveness of data mining since users have to go through

a large number of mined rules in order to find useful ones. The

great number of classification rules lowers the readability of

the classification model in real-world applications. Since the

XCS also produces numerous rules, in this study, XCS with bit

masks is proposed to handle such a problem. The developed

Jia-Huei Lin and Ying-ping Chen are with the Department of Computer
Science, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu,
TAIWAN (email: {jhlin, ypchen}@nclab.tw).

mechanism of bit masks is used to detect stable building

blocks in classifiers and to prevent crossover and/or mutation

operators from unnecessarily altering them. Consequently, the

resultant classification model needs fewer rules than that

evolved by the original XCS to achieve the same level of

accuracy. A series of n-bit multiplexer experiments, including

6-bit, 11-bit, and 20-bit multiplexers, are exploited to examine

the performance of the proposed method. For the integer-typed

problems, two synthetic oblique datasets [5], Random-Data2

and Random-Data9, are used to compare the performance of

XCS and that of the proposed method. According to the exper-

imental results, XCS with bit masks can perform similarly as

XCS on n-bit multiplexers and generates significantly fewer

rules on integer-typed problems.

For the remainder of this paper, section II briefly reviews

XCS. Section III introduces the representation and the algorith-

mic structure of XCS with bit masks. Section IV describes the

experiments and provides the experimental results, followed by

section V which concludes this paper.

II. A BRIEF REVIEW OF XCS

In this paper, we firstly describe the framework of XCS,

followed by an introduction of XCSI, which is an adaptation

of XCS for integer-typed problems. Finally, we discuss the

related work of this research.

A. XCS

XCS, introduced by Wilson in 1995 [2], is an important

branch of LCS [1]. XCS has become known as one of the most

reliable learning classier systems for handling data mining

and machine learning problems. In this section, we give

an overview of the key components of XCS, including the

representation, the performance component, the reinforcement

component, the discovery component, the macroclassifiers,

and the covering and subsumption deletion.

1) Representation: XCS evolves a set of condition-action

rules which are called the population of classifiers. The

condition-action rules is the representation of the knowledge

gained from the environment. Each classifier consists of five

main components and several additional estimates.

• Condition: The condition part C checks if the classifier

matches the environment event.

• Action: The action part A specifies the decided action

when the condition matches the environment event.

• Payoff prediction: The payoff prediction p estimates the

average payoff after executing the action in response to

the environment event.

• Prediction error: The prediction error e estimates the

average error of the payoff prediction.



Fig. 1. The framework of XCS.

• Fitness: The fitness F reflects the scaled average relative

accuracy of the classifier.

In the binary case, C ∈ {0, 1,#}ℓ given a problem of ℓ
attributes. The symbol # represents the “don’t care” condition.

A defines a possible action or classification when the condition

matches the environment event. p updates the results in a

moving average measure of encountered payoff iteratively.

Similarly, e estimates the moving average of the absolute

error of the payoff prediction. F estimates the average of the

accuracy of the payoff prediction of a classifier relative to

other classifiers that are applicable at the same time.

2) Performance: The performance component presents the

overall XCS framework, shown in Figure 1. The population of

XCS starts with randomly generated classifiers or no classifier.

When an event occurs, out of the whole population [P ], XCS

forms a match set [M ] of classifiers which match the event.

Then, the system prediction is measured for each action. The

system prediction for each action is placed in the prediction

array for action selection. If no classifier matches, a covering

mechanism is applied to create classifiers that match each of

the possible actions and place them in [M ]. The system selects

an action from the prediction array and forms an action set [A].
Finally, the chosen action is executed, and an environmental

payoff may be returned.

3) Reinforcement: In this component, the parameters of

classifiers in [A] are adapted in order to achieve higher

accuracy and to complete mappings of the problem space. The

procedure of updating parameters is

1) The errors are updated: ǫj ← ǫj + β(|P − pj | − ǫj).
2) The predictions are updated: pj ← pj + β(|P − pj |).
3) The accuracy of a classifier kj is measured: kj ← 0.1×

exp[ln α(ǫj − ǫ0)/ǫj ].
4) A relative accuracy k

′

j of each classifier is determined:

k
′

j ← kj/
∑

k(A).
5) The fitness Fj are updated: Fj ← Fj + β(kj − Fj).

The definitions of symbols are

• α : The fall of rate in the fitness evaluation;

• β : Learning rate for updating fitness, prediction, predic-

tion error, and action set size estimated in XCS classifiers;

• P : Environment return payoff;

• ǫj : Prediction error of classifier j;

• pj : Prediction of classifier j;

• kj : Accuracy of classifier j;

• Fj : Fitness of classifier j.

Butz et al. [6] indicated that the operation is faster for simple

tasks if the prediction update comes before the error update,

but this may create problems for complex tasks. Butz and

Wilson [7] proposed that putting the error update before the

prediction update seems to work better in complex cases.

4) Discovery: The discovery component is used to generate

new classifiers. XCS executes a genetic algorithm (GA) on

the current action set [A] when the average time exceeds

a threshold θga. GA usually uses one-point crossover and

bitwise mutation to generate new rules. Two classifiers are

selected with a probability proportional to their fitness values

first. After reproducing, crossing, and mutating the parent

classifiers, two offspring classifiers are generated. The result-

ing offspring are inserted into the population [P ]. If the size

of population [P ] reaches the bound, a proposed method by

Kovacs [8] can be adopted to determine the probability of

deleting classifiers and to remove the low-fitness classifier.

5) Macroclassifiers: Macroclassifiers are a type of classi-

fiers with the numerosity parameter num in XCS. A macro-

classifier is used to speed up processing and provide a more

perspicuous view of the population. Whenever XCS generates

a new classifier, at the initialization step or at later stages,

the population [P ] is scanned to examine whether the new

classifier has the same condition and action as any existing

macroclassifier does. If so, the new classifier is not actually

inserted into the population, and the numerosity of the existing

macroclassifier is incremented by one. Otherwise, the new

classifier is added to [P ] with its own numerosity field set to

one. Similarly, when a macroclassifier suffers a deletion, its

numerosity is decremented by one, instead of being actually

deleted. If the numerosity of a macroclassifier becomes zero,

the system removes the macroclassifier from [P ].
6) Covering and Subsumption: Covering and subsumption

are two important components of XCS. Covering is another

method to introduce new classifiers into the population. When

an environment event occurs and the match set does not

contain all possible actions defined for the environment, the

covering operation will generate classifiers to match this event

for improving the accuracy. The condition of the new classifier

created through covering is made to match the current event.

Each attribute in the condition is mutated to “don’t care” (#)

with a probability. Finally, the system puts the newly generated

classifier into the population.

In addition to introducing new classifiers into the popula-

tion, we also have to deal with rules of the same meaning in

XCS. The subsumption operation is designed to make a rule

that absorbs other rules if it is more general and to improve



the generalization capability of XCS. There are two forms

of subsumption, GA-subsumption and Action-subsumption. In

GA-subsumption, when new classifiers are generated, they are

examined to see whether their conditions are subsumed by

their parent classifiers or not. If the parent classifiers are more

general than the new classifiers, the new classifiers are sub-

sumed by the parents. The new classifiers will not be added to

[P ], but the numerosity of the parent classifiers is incremented.

Otherwise, the system puts the new classifiers into [P ]. Action-

subsumption is different from GA subsumption. Each action

set is searched for the most general classifier R. All other

classifiers in the set are compared to R to see whether R
subsumes them. The subsumed classifiers are deleted from [P ].

7) Flow of XCS: Firstly, XCS initializes the rule set with

zero reward randomly. There are four steps for the rule

evaluation cycle. The steps are

1) The state of the environment is detected by detectors.

2) The system examines the condition part of each rule to

determine the match set.

3) The match set will be grouped into different sets based

on their own actions, and the prediction payoff for each

action is calculated to determinate the chosen action.

4) Effectors implement the action in the environment, get

the reward, and distribute it to the rules in the action set.

After a specified period of time, GA is executed to generate

new rules and delete unfit rules in the rule discovery cycle.

Wilson [3] indicated that they can find the classification rules

with high accuracy with this framework.

B. XCSI

Since many problems involve integer attributes, a variation

of XCS, called XCSI [5], for integer-typed problems is pro-

posed. The modification in XCSI includes the presentation,

mutation, covering, and subsumption. In XCSI, the presenta-

tion of the classifier condition part is changed from a string

of {0, 1,#} to a concatenation of the interval predicates,

inti = (li, ui), where li and ui are integers and denote the

lower bound and the upper bound. A classifier matches an

event x with attributes xi if and only if ∀xi li ≤ xi ≤ ui.

For the mutation operator in XCSI, Wilson indicated that the

best method to mutate an allele is adding a value ±rand(m0),
where m0 is a fixed integer, rand picks an integer randomly

from (0,m0], and the sign is selected equiprobably. The cover-

ing operator occurs if there is no classifier matches x. In XCSI,

the new condition has components {l0, u0, . . . , ln, un}, where

each li = xi− randi(r0) and each ui = xi + randi(r0). r0 is

also a fixed integer and randi picks an integer randomly from

[0, r0]. An interval predicate i subsumes another predicate j
if li ≤ lj and ui ≥ lj . The subsumption of a classifier defined

if every interval predicate in the first classifier’s condition

subsumes the predicate in the second classifier’s condition.

III. XCS WITH BIT MASKS

As aforementioned, XCS is a promising methodology be-

cause of its versatility and capability. However, XCS is known

to generate too many rules, which lower the readability of the

resultant classification model. That is, the XCS user may be

unable to get the needed knowledge or useful information out

of the generated model.

XCS with bit masks is proposed in this study to handle such

a problem. The proposed mechanism is used to detect stable

building blocks in classifiers and to prevent crossover and

mutation operators from unnecessarily altering these building

blocks. Consequently, the resultant classification model needs

fewer rules than that evolved by the original XCS to achieve

the same level of accuracy.

In this section, we will firstly introduce the concept and

mechanism of bit masks into XCS. Then, we discuss how bit

masks are implemented in the XCS framework, followed by

describing how XCS with bit masks is applied in different

environments.

A. Representation

In order to introduce bit masks to XCS classifiers, the repre-

sentation of XCS rules is modified to make capable of finding

a set of stable building blocks composed of the attributes that

should not be altered. For this purpose, a parameter, bit masks

(BM), is added into the classifier representation as

< Classifier >::= < Condition >:< Action >:< BM >:
< Payoff prediction >:< Payoff error >:
< Fitness >

BM indicates the condition attributes that should not be altered

in mutation and/or crossover operators. Rules with BM will

be stabler than the standard XCS rules, and fewer classifiers

will be created when the mutation and crossover operation is

triggered. For example, if the rules of the condition and the

action are set as Table I, attributes B and D are determined

as stable building blocks in BM. Different from the standard

XCS, when the mutation and crossover operation occur, the

condition attributes in BM will not be altered to avoid gener-

ating redundant rules.

TABLE I
EXAMPLE OF A BIT MASK DATA SET (BM = {B, D}).

A B C D E Class

Event 1 0 1 0 1 2

Rule1 1 0 1 0 1 2

Rule2 # 0 1 0 1 2

Rule3 1 0 # 0 1 2

Rule4 1 0 1 0 # 2

The purpose of BM is to prevent unnecessary alteration.

The rules generated by mutation and crossover operations in

the standard XCS may not match the original event and some

redundant rules might be created. Through the mechanism

of bit masks, rules with BM can prevent stable building

blocks from being altered. The collection of rules will strongly

support the input event and may cover more subset of cases.



1: procedure FIND STABLE BUILDING BLOCKS (clset)
2: clset: the current action set

3: for i ← each condition attribute do

4: isStable ← true

5: for j ← each classifier in clset do

6: if i of classifier j != i of input then

7: isStable ← false

8: end if

9: end for

10: if isStable then

11: attribute i is in a stable building block

12: else

13: attribute i is not in a stable building block

14: end if

15: end for

16: end procedure

Fig. 2. Find Stable Building Blocks.

B. Algorithmic Components of XCS with Bit Masks

In XCS, each rule contains one condition and one action,

and the condition contains n attributes. Because of the relation

between conditions and actions, attributes also have influence

on actions. That is, when one attribute is changed, it may

produce a different action. The connection between attributes

and actions inspires the main idea of adopting bit masks. Given

an environmental state, a match set will be formed in the usual

way [9], and the action is chosen by the system. Once an action

is chosen, the system forms an action set which consists of the

classifiers in the match set advocating the chosen action. If the

chosen action is the same as the environmental action, each

attribute of the classifiers in the action set will be scanned.

For all k, if the k-th attribute of classifiers in the action set is

identical to the k-th attribute of the environmental input, the

k-th attribute will be considered belonging a stable building

block. The definition of variables and the pseudo code for

Find Stable Building Blocks are shown in Figure 2.

The set of attributes, considered as a stable building block,

called bit masks (BM). The current BM can be set to a

classifier if the BM of that classifier has not been set. If the BM

of a classifier has been set, it is modified by being compared

with the current BM. If the current k-th attribute is also in

the stable building block of the classifier, the k-th attribute

will be kept. Otherwise, the k-th attribute will be removed,

and the new, combined BM will be set to the classifier. The

definition of variables and the pseudo code for Set Stable

Building Blocks are shown in Figure 3.

The crossover and mutation operators in the GA component

are modified for handling BMs. For mutation, the attributes in

BM will not be mutated. For crossover, if the two condition

attributes are in both BMs, the attributes will be fixed, and the

other attributes will be exchanged to create offspring. The new

classifier will be inserted into the population. If the number

of classifiers is greater than that of the system events, the

compensating deletion occurs as in the standard XCS.

1: procedure PROCEDURE SET BIT MASK(cl, BM)

2: cl: classifier

3: BM: BM found in the current action set

4: cl.BM: BM of classifier cl
5: if classifier cl has no BM then

6: cl.BM ← BM

7: else

8: cl.BM ← BM ∩ cl.BM

9: end if

10: end procedure

Fig. 3. Set Bit Mask

Fig. 4. Framework of XCS with bit masks.

C. Framework of XCS with Bit Masks

The overall framework of XCS with bit masks is shown in

Figure 4. XCS with bit masks can be applied to problems in

many domains and categories. In this paper, we focus on the bit

mask mechanism and problems of classification. With the bit-

mask capable representation and the corresponding operations,

the flow of XCS with bit masks can be described as what

follows. Firstly, we consider the data set of a classification

problem as an environment. To simulate the occurrence of

events, data items of the data set to classify are selected

randomly or sequentially as the system input/event. The cov-

ering action on the match set is executed as the original XCS

does. Thus, action sets can be formed. The BM mechanism

is applied on the action set to detect stable building blocks

and to record stable building blocks in classifiers. When the

genetic algorithm component is triggered, the BM mechanism

will prevent the attributes contained in the BM from being

altered in mutation and crossover. Compared to the operations

conducted in the standard XCS, the BM mechanism may result

in generating fewer redundant rules.



IV. EXPERIMENTAL RESULTS

We employ XCS and XCS with bit masks to handle three

series of experiments and compare their performance, system

errors, and population sizes. Performance refers to the fraction

of the last 50 exploit trials that were correct. System error

refers to the average of the absolute difference between the

system prediction for the chosen action and the actual external

payoff, divided by the total payoff range, which is 1000 in this

study, over the last 50 exploit trials. Population size refers

to the number of macroclassifiers. We use the XCS system

implementation publicly available on the Internet [10]. The

XCS system is modified to integrate with the BM mechanism.

Each experiment is conducted for 200 independent runs, and

the averaged statistics are reported.

A. Experimental Datasets

1) Boolean Multiplexers: Firstly, we use XCS and XCS

with bit masks to tackle Boolean multiplexers of three different

sizes: 6 bits, 11 bits, and 20 bits. Boolean multiplexers are

defined for binary strings of length ℓ = k + 2k. The function

value is determined by treating the first k bits as an address

that indexes into the remaining 2k bits, and the value of the

indexed bit, either 0 or 1, is the function value.
2) Integer Test Functions: Secondly, we use XCS and XCS

with bit masks to deal with integer datasets. The integer

datasets are synthetic oblique data sets [5]. The first dataset,

Random-Data2 is constructed by random vectors (x1, x2),
with each xi a random integer from [1, 10]. The outcome

o(x1, x2) for each vector is defined as

o(x1, x2) =
{

1 x1 + x2 ≥ 11
0 Otherwise

. (1)

An instance of Random-Data2 is composed by a vector and

its outcome. The second integer dataset, Random-Data9, is

constructed similar to Random-Data2 as follows. Random-

Data9 has 9 dimensions, and the expression determining the

outcome is defined as

o(~x) =
{

1
∑

xi ≥ 50
0 Otherwise

. (2)

3) Wisconsin Breast Cancer (WBC): Finally, we use XCS

and XCS with bit masks to handle a real-world problem, which

is the Wisconsin Breast Cancer (WBC) database, donated to

the UCI repository [11] by Prof. Olvi Mangasarian. WBC

contains 699 instances collected over time by Dr. William H.

Wolberg. Each instance in WBC has 9 attributes which are

Clump Thickness, Uniformity of Cell Size, Uniformity of Cell

Shape, Marginal Adhesion, Single Epithelial Cell Size, Bare

Nuclei, Bland Chromatin, Normal Nucleoli, and Mitoses. Each

attribute has a value between 1 and 10 inclusive. Data rows

look like

1000025, 5, 1, 1, 1, 2, 1, 3, 1, 1, 2
1017122, 8, 10, 10, 8, 7, 10, 9, 7, 1, 4
1016277, 6, 8, 8, 1, 3, 4, 3, 7, 1, 2

The first number is a label, the following 9 numbers are the

attributes, and the last number is the class level, where 2 stands

for Benign and 4 for Malignant.

TABLE II
EXPERIMENTAL PARAMETERS FOR BOOLEAN MULTIPLEXERS

N α β γ θga ε χ µ P#

6-bit 400 0.1 0.2 0.95 25 10 0.8 0.04 0.5

11-bit 800 0.1 0.2 0.95 25 10 0.8 0.04 0.5

20-bit 1600 0.1 0.2 0.95 25 10 0.8 0.04 0.5

B. Results for Boolean Multiplexers

Boolean multiplexers of three different sizes, 6-bits, 11-bits,

and 20-bits, are experimented on in this series of experiments,

and the parameters are listed in Table II.

1) 6-bit Multiplexer: Figure 5(a) shows the experimental

results for the 6-bit Boolean multiplexer. As we can observe,

XCS gets approximately 100% performance in around 8000

exploit trails, and XCS with bit masks also gets approximately

100% performance in around 8000 exploit trails. For the

system error, XCS gets approximately 0.5% system error in

around 8000 exploit trails, and XCS with bit masks gets

approximately 0.3% system error in around 8000 exploit trails.

Finally, XCS evolves a population with 29.47 classifiers on

average, and XCS with bit masks evolves a population with

25.01 classifiers on average.

We can find that XCS and XCS with bit masks can achieve

similar performance and system error rate the number of

exploit trails is appropriate. Hence, that XCS and XCS with

bit masks have the same speed of convergence is shown, and

the effect of integrating bit masks into XCS appears. XCS

with bit masks can save on average 15.13% of the population

size for the 6-bit multiplexer over 200 runs.

2) 11-bit Multiplexer: Figure 5(b) shows the results for the

11-bit Boolean multiplexer. From the figure, the performance

of XCS reaches approximately 99% in around 9000 exploit

trails, and the performance of XCS with bit masks also reaches

approximately 99% in around 90000 exploit trails. The system

error of XCS gets approximately 1% in around 13000 exploit

trails, and the system error of XCS with bit masks gets

approximately 0.8% in around 13000 exploit trails. For the

population size, XCS creates 81.51 classifiers on average, and

XCS with bit masks creates 74.85 classifiers on average.

From the experimental results, we can know that the out-

come for the 11-bit Boolean multiplexer is similar to that for

the 6-bit one. In this experiment, XCS with bit masks saves

on average 8.17% of the population size over 200 runs.

3) 20-bit Multiplexer: Figure 5(c) demonstrates the exper-

imental results for the 20-bit Boolean multiplexer. From the

result, XCS gets approximately 99% performance in around

39000 exploit trails, and XCS with bit masks also gets approx-

imately 99% performance in around 39000 exploit trails. XCS

gets approximately 1% system error in around 60500 exploit

trails, and XCS with bit masks also gets approximately 1%

system error in around 60500 exploit trails. For the population

size, XCS evolves a population with 261.52 classifiers on

average, and XCS with bit masks evolves a population with

247.67 classifiers on average. XCS with bit masks saves on

average 5.30% of the population size.
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(a) 6-bit multiplexer. Population sizes are divided by 150.
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(b) 11-bit multiplexer. Population sizes are divided by 500.
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(c) 20-bit multiplexer. Population sizes are divided by 1600.

Fig. 5. Results for Boolean multiplexers averaged over 200 runs. Explore
problems are in exploit trails divided by 50.

TABLE III
EXPERIMENTAL PARAMETERS FOR INTEGER TEST FUNCTIONS

N α β γ θga ε χ µ P#

RD2 400 0.1 0.2 0.95 25 10 0.8 0.04 0.5

RD9 800 0.1 0.2 0.95 25 10 0.8 0.04 0.5

C. Results for Integer Test Functions

Two integer datasets, Random-Data2 and Random-

Data9 [5], are experimented on in this series of experiments,

and the parameters are listed in Table III.

1) Random-Data2: Figure 6(a) shows the experimental

results for the 2-dimensional integer dataset, Random-Data2.

XCS gets approximately 94% performance in around 26000

exploit trails, and XCS with bit masks also gets approximately

94% performance in around 26000 exploit trails. For the

system error, XCS gets approximately 10% system error in

around 18000 exploit trails, and XCS with bit masks also

gets approximately 10% system error in around 18000 exploit

trails. For the population size, XCS evolves a population with

51.3 classifiers on average, and XCS with bit masks evolves

a population with 32.73 classifiers on average.

Based on the experimental results for Random-Data2, we

can find that XCS and XCS with bit masks provide similar

performance and system error rate on handling the synthetic

oblique data. However, for the population size, the effect

of adopting bit masks becomes clear and significant in this

experiment. As we can see, XCS with bit masks saves on

average 36.20% of the population size over 200 runs.

2) Random-Data9: Figure 6(b) demonstrates the experi-

mental results for the 9-dimensional integer dataset, Random-

Data9. Firstly, For the performance, XCS gets approximately

88.5% performance in around 37000 exploit trails, and XCS

with bit mask gets approximately 87% performance in around

37000 exploit trails. Secondly, XCS gets approximately 23%

system error in around 26000 exploit trails, and XCS with bit

masks gets approximately 25% system error in 26000 exploit

trails. XCS evolves a population with 542.38 classifiers on

average, and XCS with bit masks evolves a population with

356.23 classifiers on average. We can observe that XCS with

bit masks sacrifices little performance and saves on average

34.32% of the population size over 200 runs.

D. Results for the WBC database

Figure 7 shows the experimental results for the WBC

database. XCS gets approximately 95% performance in around

7000 exploit trails, and XCS with bit masks also gets ap-

proximately 95% performance in around 7000 exploit trails.

For the system error, XCS gets approximately 10% system

error in around 7000 exploit trails, and XCS with bit masks

also gets approximately 10% system error in around 7000

exploit trails. For the population size, XCS finally evolves a

population with 271.23 classifiers on average, and XCS with

bit masks finally evolves a population with 94.58 classifiers on

average. Parameters of the experiment are N = 400, α = 0.1,
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(a) 2 dimensions. Population sizes are divided by 150.
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(b) 9 dimensions. Population sizes are divided by 800.

Fig. 6. Results for integer test functions averaged over 200 runs. Explore
problems are in exploit trails divided by 100.

β = 0.2,γ = 0.95, θga = 25, ε0 = 10, χ = 0.8, µ = 0.04,

and P# = 0.5.

Based on the experimental results for the WBC database,

we can find that XCS and XCS with bit masks obtain similar

performance and system error rate, while for the population

size, the effect of adopting bit masks becomes remarkably

significant that XCS with bit masks saves on average 65.13%

of the population size over 200 runs.

In order to further justify the results on the WBC database,

a tenfold cross-validation test is conducted on the WBC

database. Table IV shows the results. We can observe that

on average, XCS gets an accuracy of 93.20%, and XCS

with bit masks gets 92.50%. The cross-validation reveals

that compared to XCS, XCS with bit masks trades in an

insignificant amount of performance for a significant save on

the population size.
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Fig. 7. Experimental results for the WBC database averaged over 200 runs.
Population sizes are divided by 350. Explore problems are in exploit trails
divided by 100.

TABLE IV
RESULTS OF A TENFOLD CROSS-VALIDATION ON THE WBC DATABASE.

XCS XCS with bit masks

#1 0.94 0.90

#2 0.94 0.91

#3 0.97 0.94

#4 0.91 0.93

#5 0.90 0.96

#6 0.96 0.91

#7 0.96 0.90

#8 0.90 0.91

#9 0.93 0.96

#10 0.91 0.93

Avg. 0.9320 0.9250

E. Discussion

Based on the experiment results presented in the previous

sections, we can find two interesting points. The bit mask

mechanism can help XCS to save the population size more in

integer domains than it can in Boolean domains. As for the

6-bit, 11-bit, and 20-bit Boolean multiplexers, XCS with bit

masks only saves less than 20% of the population size, while

in integer domains, it saves more than 30%, or even more than

60% for the WBC database, of the population size.

Thus, we can know that the difference between Boolean

attributes and integer attributes is quite significant in classi-

fication problems. When XCS is applied to handle Boolean

multiplexers, the representation of rules is {0, 1,#}, and it is

relatively easy to for the classification system to gain knowl-

edge from the environment by matching events and modifying

rules. However, in integer domains, the rule representation is

inti = (li, ui), where li and ui are integers, denoting the

lower bound and the upper bound. A rule matches an event

x if and only if li ≤ xi ≤ ui for all attribute xi. It is

easy to see that flexibility embedded in the representation not

only help to handle the high cardinality of integers but also



introduces difficulties for the classification system to learn.

When integrating the bit mask mechanism into XCS, stable

building blocks within rules are preserved. As a consequence,

redundant rules are not necessary in this case to counter

the destructive effect of crossover/mutation operators, and the

number of rules can be greatly reduced.

Furthermore, it is worth noting that the bit mask mechanism

save 65% rules for the WBC database but saves only 30-40%

rules in the two synthetic oblique integer datasets. According

to the idea of adopting bit masks in XCS, such a situation

is quite reasonable. The class level of the synthetic datasets,

Random-Data2 and Random-Data9, is solely determined by

the sum of the integer attributes. If the sum of attributes

is greater than the given threshold, the class level is set

to 1 and otherwise 0. The attributes under such a class-

attribute relationship actually have no particular relationship

among subsets of attributes. However, in the case of the WBC

database, it is believed that the class may be determined by

certain combinations of attributes. Since XCS with bit masks

has mechanisms to capture and model relationships among

subsets of attributes, fewer rules are needed to describe the

total class-attribute mapping of this problem. It is the reason

why XCS with bit masks works better on the WBC database

than it does on Random-Data2 and Random-Data9.

V. CONCLUSIONS

In this paper, we firstly reviewed XCS, followed by the

introduction of the concept of bit masks. After integrating bit

masks into XCS, we described the purpose of the mechanism

of bit masks and show the framework of XCS with bit masks in

detail. Finally, we implemented XCS with bit masks by mod-

ifying an existing XCS implementation provided by Martin

V. Butz and conducted experiments on Boolean multiplexers,

integer datasets, and a real-world problem by using both XCS

and XCS with bit masks. After obtaining and observing the

experimental results, two major points were discussed. In our

study, XCS with bit masks performed better in integer domains

than it did in Boolean domains. Since the mechanism of

bit masks is to capture and model the relationship among

attributes and to help XCS construct the mapping between

attributes and classes, XCS with bit masks handled the real-

world data better than it did the synthetic oblique datasets.

The experimental results confirmed that the mechanism of bit

masks can detect stable building blocks to avoid unnecessary

alteration and thus deliver classification models of a slightly

lower accuracy with much fewer rules.

Much work along this line of research is needed, in a

variety of environments, to gain better understanding of the

technique of using bit masks. In particular, bit masks do not

deliver better performance in simple datasets such as Boolean

multiplexers. There may be other ways to assist bit masks

to improve the XCS framework. In addition to Boolean and

integer datasets, real-world datasets should also be carefully

examined. As for the bit mask itself, some research topics and

directions, including theoretical understanding and algorithmic

improvement, are waiting to be explored. Studies relating to
these topics should be continuously pursued and conducted

in order to develop classification systems that are not only

feasible in theory but also viable in practice to further advance

all the related domains and disciplines.
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ABSTRACT— 
Estimation of distribution algorithms (EDAs) are a class of evolutionary algorithms which can be 
regarded as abstraction of genetic algorithms (GAs) because in the design of EDAs, the population, 
one of the GA distinctive features, is replaced by probabilistic models/distributions. Building and 
sampling from the models substitute for the common genetic operators, such as crossover and 
mutation. Due to their excellent optimization performance, EDAs have been intensively studied and 
extensively applied in recent years. In order to interest more people to join the research of EDAs, 
this paper plays as an entry level introduction to EDAs. It starts with introducing the origination and 
basic ideas of EDAs, followed by presenting the current EDA frameworks, which are broadly 
applied in many scientific and engineering disciplines. Finally, this paper also describes some 
ongoing topics and potential directions in the hope that readers may get further insights into EDAs. 
 
Key Words: Estimation of distribution algorithm, probabilistic model building genetic algorithm, 
global optimization, evolutionary algorithm, evolutionary computation, computational intelligence. 

1. INTRODUCTION 

Genetic algorithms (GAs) were proposed by Holland [1] with the inspiration of Darwinian view on the 
evolutionary mechanisms in nature. They were initially designed for generating classifiers in learning 
classifier systems as well as handling combinatorial optimization problems. Brought to the attention of 
many researchers by Goldberg’s book [2], genetic algorithms have been widely and successfully applied to 
solving all kinds of search and optimization problems existing in numerous disciplines for the past decades. 
The proposal of genetic algorithms is remarkably intriguing because it strongly connects several seemingly 
not-so-related fields, such as biology, mathematical programming (optimization), artificial intelligence, etc., 
places itself in a unique position among these fields to stir innovations, and makes a major contribution to 
the creation of evolutionary computation. Similar to the progress of most scientific and engineering 
development, soon after its birth, the GA taskforce splits and focuses on topics of different origins and 
requirements. Some researchers explore potential applications of GAs, while others try to improve GA 
performance by incorporating natural, biological mechanisms or by advancing algorithmic designs with 
mathematical techniques. Among these attempts to devise better genetic algorithms or, more broadly, 
evolutionary algorithms, is the development of estimation of distribution algorithms. 

By focusing on the performance and discarding the biological plausibility, estimation of distribution 
algorithms (EDAs) successfully achieve the design goal and can be viewed as abstraction of GAs because 
in EDAs, the population, one of the GA distinctive features, is replaced by some mathematical construction, 
and genetic operators are correspondingly changed to work with the adopted mathematical construction. 
According to the traditional GA performance indicator, function evaluations vs. solution quality, EDAs 
outperform GAs in most cases because the design of EDAs makes the search explicitly centralized by 
processing global statistics. Even if the significant computational cost of the mathematical construction is 
taken into consideration, the performance of EDAs is still usually superior to that of GAs. Thanks to their 
desirable features and properties, EDAs have been studied, improved, and broadly utilized for more than 
fifteen years. Given their importance in evolutionary computation and usefulness in application domains, 
an entry level introduction to EDAs is needed for those interested in getting familiar with and utilizing 
EDAs in a short time. Consequently, this paper is written to fulfill such a purpose. In particular, basic ideas, 
existing frameworks, and potential research directions of EDAs are briefly described. Note that this paper is 
not intended to be a complete survey or to provide details of EDAs. Interested readers may refer to [3, 4]. 
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Figure. 1 Diagrams for a simple genetic algorithm and a basic estimation of distribution algorithm 

This paper is organized as follows. Section 2 introduces the origination and basic ideas of EDAs, and 
section 3 presents existing EDA frameworks according the adopted mathematical construction. Section 4 
describes some of the recent research issues of EDAs as the future directions, followed by section 5 which 
summarizes and concludes this paper. 

2. BASIC IDEAS AND ORIGINATION 

In this section, we will start with revisiting genetic algorithms and presenting the basic ideas of 
estimation of distribution algorithms, followed by a brief history of estimation of distribution algorithms. 

2.1 Genetic Algorithms 
Genetic algorithms are a class of evolutionary algorithms developed for conducting search and 

optimization by mimicking the evolutionary process in biology. GAs, use a population of solutions, called 
individuals, to gather the information regarding the search space and to implicitly process the statistics [3] 
in order to find the optimal solutions. Figure 1(a) shows a genetic algorithm in its simplest form. In the 
beginning, a solution population is initialized by random generation. Each of the individuals is evaluated by 
the fitness function to indicate how well it “fit” the environment, i.e., the optimization problem at hand. 
The individuals with better fitness have better chances to reproduce their offspring, and the parental 
selection process implements the idea of natural selection on the procreation side. The process to create 
new individuals is designed by emulating the recombination (crossover) and alteration (mutation) of 
genetic materials. After the next generation of individuals is created, each individual is also evaluated by 
the fitness function, and the GA procedure repeats until certain stop criterion is satisfied. The operation can 
be considered as explicitly sampling the search space and implicitly exploiting the obtained information. 

2.2 Probabilistic Models vs. Populations 
As we can see in Figure 1(a), the components of which the functionality is implicitly processing and 

exploiting the information, i.e., the individuals, in a distributed manner are identified by a dashed box. 
Discarding the biological plausibility, one possible algorithmic way to improve GA performance is to make 
the implicit mechanism explicit. In order to achieve the explicit processing of the obtained information, 
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probabilistic models are the chosen mathematical construction to “describe” populations. Since the process 
to find a probabilistic model for a given population is to estimate the probabilistic distributions on decision 
variables, such algorithms are called estimation of distribution algorithms, or sometimes, probabilistic 
model building genetic algorithms (PMBGAs). After gathering and mining the information existing in the 
form of individuals, the offspring individuals are then created by sampling the built probabilistic model to 
implement the process of information exploitation. Figure 1(b) shows an EDA in its simplest form. We can 
see between Figure 1(a) and Figure 1(b) that the key differences between GAs and EDAs are using 
probabilistic distributions to model populations and replacing genetic operators with the functionally 
equivalent mechanisms—probabilistic model building and sampling. 

2.3 Estimation of Distribution Algorithms 
There have been numerous variants of estimation of distribution algorithms proposed in the literature. 

Some of them adopt probabilistic models of different types or complexities, while others employ different 
techniques to build model. All these studies and developments on estimation of distribution algorithms 
started after the proposal of population-based incremental learning (PBIL) by Baluja [4] in 1994, while the 
name of “estimation of distribution algorithms” was firstly proposed by H. Mühlenbein and G. Paaß [5] in 
1996. PBIL uses a probability vector to replace the population. Slightly different from most existing EDAs 
in which the probabilistic model is built from scratch at every generation as shown in Figure 1(b), PBIL 
retains some memory or experience of which the weight can be adjusted by the user. If the weight is set to 
zero, PBIL becomes a commonly structured EDA which is exactly the univariate marginal distribution 
algorithm (UMDA) proposed by Mühlenbein in [6] 1997. Early studies on EDAs began with simple 
probabilistic models of which the decision variables of optimization problems were assumed independent 
of each other. More and more complicated probabilistic models were used in the follow-up work along this 
line, which will be discussed in the following section. 

3. EXISTING EDA FRAMEWORKS 

This section will introduce some popular EDA frameworks proposed in the literature and widely used 
in both research and practice. Since probabilistic models are the key component in EDAs, we will introduce 
the EDAs employing simple models first and then those adopting complex models. Although the EDAs that 
adopt complex models usually provide excellent performance, one must keep in mind that complex models 
themselves may induce spurious variable relationships. If such spurious relationships become an obstacle 
which prevents the EDA from solving problems, EDAs with simpler models, i.e., more suitable for the 
problem structure, should be used to obtain better performance. Because the frameworks described in this 
section will be only a fraction of all existing EDAs, interested readers should consult other materials [7, 8]. 

3.1 All Variables Are Considered Independent 
The simplest, reasonable probabilistic model to work with EDAs is assuming that no interaction exists 

between variables. EDAs employing such a model estimate the probabilistic distributions of values in 
different ways, including PBIL [4], UMDA [6], and the compact genetic algorithm (cGA) [9]. These EDAs 
work very well on problems composed of building blocks of order one and may encounter difficulties when 
facing problems consisting of longer, misleading building blocks. 

3.2 Interactions between Two Variables Are Considered 
In order to take into account the interactions between variables, probabilistic models considering 

pairwise interactions are intuitive choices. The mutual information maximization for input clustering 
(MIMIC) [10] algorithm assumes that the pairs of interacting variables are chained by their relationships, 
while the combining optimizers with mutual information trees (COMIT) [11] algorithm models the all the 
pairwise relationships with a dependency tree. The bivariate marginal distribution algorithm (BMDA) [12] 
further considers that all the pairwise relationships can be modeled with several independent dependency 
trees, i.e., a forest. 

3.3 Interactions among More Than Two Variables Are Considered 
Finally, the probabilistic models considering multivariate dependencies are adopted in EDAs. As a rule 

of thumb, EDAs with more general, complicated probabilistic models are able to handle more difficult 



problems as long as the adopted models do not induce harmful spurious dependencies. The extended 
compact genetic algorithm (ECGA)  clusters variables into separate linkage groups and considers the joint 
distribution for each group. With the help of human experts, the factorized distribution algorithm (FDA)  
utilizes a fixed model as the problem structure and provides excellent, theoretically proven performance. 
Adopting Bayesian networks as the probabilistic model, the Bayesian optimization algorithm (BOA) [13] 
and the estimation of Bayesian networks algorithm (EBNA) [14] uses different criteria to judge the quality 
of candidate Bayesian networks. 

4. ISSUES AND FUTURE DIRECTIONS 

In this section, we will describe several important research issues and potential future directions of 
EDAs. Because the design of EDAs is based on the properties and characteristics of probabilistic models, 
knowing the intrinsically embedded limitations and reducing the computational cost are no doubt essential. 
Moreover, obtaining information by examining the built models and hybridizing EDAs with techniques of 
other origins are promising research directions. Please note that the materials included in this section are far 
from complete. Many other topics worth pursuing are available in the recent literature. 

4.1 Can Models Be Misleading Or Always Partially Meaningful? 
Since probabilistic models are used in EDAs as tools for optimization, an obvious question rises: Is it 

possible that we build an appropriate probabilistic model according to a given population, while the built 
model leads us away from the optimal solution? This question is about the intrinsic properties of the 
problems that we want to solve by using EDAs. If some problems upon which the probabilistic model built 
correctly is actually misleading, EDAs, no matter what kinds of probabilistic models are adopted, will not 
be able to handle these problems. Coffin and Smith [15, 16] investigated whether the parity functions are 
such deal breakers. Furthermore, Chen and Yu [17] theorized the difficulty of probabilistic model building 
with mathematical formalization and obtained certain theoretical results. Another question regarding 
problem intrinsic properties is: Is it possible that, for certain problems, the built model is always partially 
meaningful? Chuang and Chen [18, 19] demonstrated that the problems composed of disparate importance 
weights might render EDAs building partially correct models at any time. In addition to proposing the 
concepts of linkage sensibility and effective distributions, they provided a technique to work with ECGA. 

4.2 Can Models Be Built More Easily? 
The main computational cost of EDAs is apparently caused by building probabilistic models. Research 

along this line is always active and important. To know EDAs better, Chen et al. [20] analyzed the average 
time complexity of EDAs. Techniques that can build models more efficiently were proposed by Ding et al. 
[21], Echegoyen et al. [22], and Iclănzan et al [23]. For BMDA, probability model migration [24] and 
aggregation [25] were proposed to be used in a parallel configuration. For BOA, in order to reduce the 
model building cost, previously built Bayesian networks, were utilized to predict next network structures 
[26, 27] or were viewed as a prototype for incremental changes [28]. 

4.3 Can Models Provide Useful Information? 
After building and using the probabilistic models, it seems wasteful to put the models aside. As a 

consequence, looking into the built probabilistic models to collect useful information is worth trying. In 
addition to getting information for help building the subsequent models as aforementioned [26, 27], 
Santana et al. [29] tried to conduct data mining on the built probabilistic models, and Echegoyen et al. [30] 
investigated the interaction as well as relationship between the optimization problem and the probabilistic 
model via analyzing the probability to the optimal solutions. 

4.4 Can EDAs Be Hybridized with Other Techniques? 
A common feature of evolutionary algorithms is their flexibility to work or to interface with all kinds 

of methods from other realms. EDAs are no exception. In order to enhance EDAs for different purposes, a 
host of mechanisms, methodologies, and frameworks have been integrated, including multi-objective 
optimization [31, 32], niching [33], adaptive variance scaling [34], Spearman’s rank correlation index [35], 
particle swarm optimization [36], etc. 



5. CONCLUSIONS 

In this paper, estimation of distribution algorithms (EDAs) as a popular class of evolutionary 
algorithms have been reviewed. EDAs can be regarded as abstraction of genetic algorithms (GAs) because 
in EDAs, the population, one of the GA distinctive features, is replaced by probabilistic models, and the 
common genetic operators, e.g., crossover, mutation, etc., are replaced by building and sampling from the 
adopted probabilistic model. By pursuing optimization performance instead of insisting on biological 
plausibility, EDAs successfully accomplish their design goal and become more and more popular in recent 
years. This paper was written with the intention to provide an entry level introduction to EDAs for 
researchers and practitioners who are in need and interested in knowing and using EDAs in a short time. 
Basic ideas, existing frameworks, and potential research directions of EDAs were briefly described in the 
hope that more and more taskforces will join the research as well as applications of EDAs. 
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On the Optimization of Degree Distributions in LT Code with
Covariance Matrix Adaptation Evolution Strategy
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Abstract— Luby Transform code (LT code) has been a popular
and practical technique in the field of channel coding since its
proposal. One of the key components of LT code is a degree
distribution which is used to determine the relationship between
source data and codewords. Luby in his proposal suggested two
general methods to construct feasible degree distributions. Such
general designs work appropriately in typical situations but not
optimally in most cases. To explore the full potential of LT code,
in this work, we make the first attempt to introduce evolutionary
algorithms to optimize the degree distribution in LT code. Degree
distributions are encoded as real-valued vectors and evaluated by
numerical simulation of LT code. For applications of different
natures, two objectives are implemented to search good degree
distributions with different decoding behavior. Compared with
the original design, the experimental results are quite promising
and demonstrate that the degree distribution can be customized
for different purposes. In addition to manually adjusting the
degree distribution as the common practice, the work presented
in this paper provides an efficient alternative approach to use
and adapt LT code for both practitioners and researchers.

I. I NTRODUCTION

Digital fountain code [1] is a popular class of erasure
code in the field of communication. The concept of fountain
code was first introduced by Byers et al. [2] in 1998. Firstly,
source data are divided into several pieces with an identical
length. The length of each piece can be any bits or even
several bytes. Sender generates encoding packets, or called
encoding symbols when the packet length is one bit, by
some particular encoding operation. The encoding and sending
procedure may repeat independently and unlimitedly. Infinite
encoding packets are sent out continuously like a fountain,
which is an important property of fountain code calledrateless.
If a receiver is interested in receiving the data, it can receive
the packet flow at any time and collect the packets in any
combination. Once sufficient packets, of which the amount
is usually slightly more than that of the source data, are
obtained, the source data can be fully recovered. During the
process, no further communication is required between sender
and receiver. Encoding information can be embedded in each
packet. As a result, digital fountain code is especially useful
in broadcast or other situations in which back channels are un-
available. Moreover, because source data can be reconstructed
no matter which packets are received, fountain code is also
considered reliable to handle the problem of packet loss.

Chih-Ming Chen, Ying-ping Chen, Tzu-Ching Shen, and John K. Zao
are with the Department of Computer Science, National Chiao Tung Uni-
versity, 1001 Ta Hsueh Road, Hsinchu, TAIWAN (email: ccming@nclab.tw,
ypchen@nclab.tw, Stecko.cs97g@nctu.edu.tw, jkzao@cs.nctu.edu.tw).

Luby Transform code (LT code) [3] proposed by Luby
in 2002 is the first practical framework of fountain code.
A novel coding mechanism based on a specifically designed
degree distribution is proposed in the introduction of LT code.
The performance of LT code totally depends on the adopted
degree distribution. In his proposal, Luby deigned general
methods to construct an appropriate degree distribution to
be used in LT code, and the degree distribution was named
soliton distribution. Via theoretical analysis, the feasibility of
soliton distribution was proven in the literature [4]. Recently,
researchers started to optimize the degree distribution in order
to improve the performance of LT code [5], [6], but the ob-
tained improvement is quite limited. In these studies, only the
parameters of soliton distribution were tuned and considered
as decision variables, while in the present work, we directly
consider the degree distribution itself as our decision variables.

Based on LT code, an improved framework callRaptor
codes[7], [8] was proposed by Shokrollahi. Shokrollahi in-
tegrated LT code with a pre-coding layer. Compared with
pure LT code, the design of Raptor codes requires a degree
distribution, calledweakened LT, with some very different
behavior and properties. Several instances were given in [9]
for certain particular sizes of source symbols, but there are no
existing guidelines regarding how to construct suitable degree
distributions for other sizes. In this regard, we demonstrate
the use of optimization techniques proposed in evolutionary
computation for generating degree distributions of different,
desired properties.

In this paper, according to our limited knowledge, we
make the first attempt to utilize evolutionary computation
techniques to optimize the degree distribution for LT code and
demonstrate the feasibility of customizing degree distributions
for different purposes. Particularly, we adopt the covariance
matrix adaptation evolution strategy (CMA-ES) [10] to di-
rectly optimize degree distributions for two goals: reducing
the overhead and lowering the failure rate. The experimental
results are remarkably promising and show that significantly
reduced overheads and lower failure rates can be achieved for
LT code with the obtained degree distribution for a wide range
of source symbol sizes.

The remainder of this paper is organized as follows. Sec-
tion II describes the detailed operations of LT code, including
the coding process and soliton distribution proposed by Luby.
Section III introduces the evolutionary algorithm used in this
paper. Experiments and results are given in section IV. Finally,
section V concludes this paper.
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II. LT CODE

Luby introduced a new fountain code framework and gave
the detail of coding operation in 2002 [3]. Similar to other
fountain codes, source symbols are randomly chosen to be
encoded into codewords (encoding symbols). The encoding
operation is achieved by a simple boolean operator,XOR.
The relation between source data and encoding symbols can
be modeled as a sparse bipartite graph. A critical change
in LT code is to decide the degree of each vertex in the
bipartite graph with a probability distribution. The connectivity
can be recorded as a encoding matrix and each column
represents an encoding symbol. Originally,k source symbols
can be fully decoding by Gaussian elimination if there existk
linearly independent columns. However, Gaussian elimination
is prohibitively expensive for its computational complexity of
O(k3). Therefore, the belief propagation (BP) algorithm [11]
is introduced to replace the expensive Gaussian elimination in
the LT decoding phase. Overhead of coding is used to trade
computing time because belief propagation is more efficient
but more encoding symbols are needed for successful decod-
ing. Moreover, the performance of LT code is very sensitive to
the degree distribution. A good degree distribution is necessary
to co-operate with belief propagation. Luby suggested soliton
distributions for LT framework in his proposal of LT code.
According to the mathematical verification, the propertiesof
soliton distribution have been confirmed. In this section, details
of coding operations and soliton distributions are described.

A. Encoding and decoding

Given the source data, we suppose that the source data
can be cut intok source symbols with the same length of
ℓ bits. Before every codeword is generated, a degreed is
chosen at random according to the adopted degree distribution
ρ(d), where1 ≤ d ≤ k and

∑k
d=1 ρ(d) = 1. The degreed

decides the how many distinct source symbols will be chosen
to compose an encoding symbol.d source symbols, called
neighbors, are chosen uniformly randomly and accumulated
by XOR. In the design of LT code, random numbers play
an essential role during the encoding process. The approach
employed by LT code for a sender to inform receivers of all
encoding information is achieved by synchronizing a random
number generator with a specified random number seed.

At the receiver side, whenK encoding symbols were arrived
which is usually slightly larger thank, belief propagation is
used to reconstruct the source data step by step. All encoding
symbols are initially covered in the beginning. For the first
step, all encoding symbols with only one neighbor can be
directly released to recover their unique neighbor. When a
source symbol has been recovered but not processed, it is
called a ripple and will be stored in a queue. At each
subsequent step, ripples are popped as a processing target one
by one. A ripple is removed from all encoding symbols which
have it as neighbor. If an encoding symbols has only one
remaining neighbor after the removing, the releasing action
repeats and may produce new ripples to maintain a stable
size of the queue. Maintaining the size of the ripple queue is
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(a) Ideal soliton distribution
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(b) Robust soliton distribution

Fig. 1

EXAMPLE OF SOLITON DISTRIBUTIONS(K = 30)

important because the decoding process fails when the ripple
queue is empty and some source symbols remain uncovered.
In other words, more encoding symbols are required in the
decoding process. Ideally, the process succeeds if all source
symbols are recovered at the end of the decoding process.

B. Soliton distribution

The behavior of LT code is completely determined by the
degree distribution,ρ(d), and the number of encoding symbols
received,K, by receiver. The overheadε = K/k denotes the
performance of LT code, andε depends on a given degree
distribution. Based on his theoretical analysis, Luby proposed
the ideal soliton distribution of which the overhead is 1, the
best performance, in the ideal case.
Ideal soliton distributionρ(d):

ρ(d) =
{ 1

k for d = 1
1

d(d−1) for d = 2, 3, . . . , k
. (1)

Ideal soliton distribution guarantees that all the releaseprob-
abilities are identical to1/k at each subsequent step. Hence,
there is exactly one expected ripple generated at each pro-
cessing step when the encoding symbol size isk. After k
processing step, the source data can be ideally recovered.
Fig. 1(a) shows an example of ideal soliton distribution for
k = 30.
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However, ideal soliton distribution works poorly in practice.
Belief propagation may be suspended by a small variance
of the stochastic encoding/decoding situation in which no
ripple exists, because the expected ripple size is only one at
any moment. According to the theory of random walk, the
probability with which a random walk of lengthk deviates
from its mean by more thanln(k/δ)

√
k is at mostδ. It is a

baseline of ripple sizes which must be maintained to complete
the decoding process. Hence, in the same paper by Luby, a
modified version calledrobust soliton distribution, µ(d), was
also proposed.
Robust soliton distributionµ(d):

R = c · ln(k/δ)
√

k

τ(d) =

 R/ik for d = 1, . . . , k/R− 1
R ln(R/δ)/k for d = k/R
0 for d = k/R + 1, . . . , k

. (2)

β =
k∑

d=1

(ρ(d) + τ(d))

µ(d) =
ρ(d) + τ(d)

β
for d = 1, . . . , k (3)

c andδ are two parameters for tuning robust soliton distribu-
tion. c controls the mean of the degree distribution. Smaller
values ofc increase the probability of low degrees and larger
ones decrease it.δ estimates that there areln(k/δ)

√
k expected

ripple size as described. Fig. 1(b) is an example of robust
soliton distribution withc = 0.1 and δ = 0.1. Robust soliton
distribution can ensure that onlyK = k + O(ln2(k/δ)

√
k)

encoding symbols are required to recover the source data with
a successful probability at least 1-δ.

Robust soliton distribution is not only viable but also
practical. The analysis of robust soliton distribution based on
probability and statistics is sound ifk is infinite. However,
in practice, source data cannot be divided into infinite pieces,
and as a consequence, the behavior of LT code will not exactly
match the mathematical analysis, especially whenk is small.
Furthermore, robust soliton distribution is a general purpose
design. It provides a convenient way to construct a distribution
works well but not optimally. In this work, we try to customize
the degree distribution by using optimization tools proposed
in the field of evolutionary computation.

III. O PTIMIZATION METHOD

Evolution strategies (ES) are a major branch of evolutionary
computation and have been developed since early 1960s. The
key idea of ES is to evolve strategic parameters as well as deci-
sion variables. ES is well-known to be quite capable of dealing
with continuous optimization problems. One of the simplest
ES is (1+1)-ES where only one child is produced by Gaussian
mutation to compete with its parent in each generation, and
the other is (1, 1)-ES which is equivalent to random walk.
Current general versions of ES are denoted as (µ+

, λ)-ES.

The covariance matrix adaptation evolution strategy (CMA-
ES) [10] was firstly introduced by Hansen in 1996 and is one
of the most popular real-parameter optimization methods in
evolutionary computation. There are some variants of CMA-
ES proposed in the literature [12], [13], [14]. The search ability
of CMA-ES has been theoretically analyzed and empirically
verified on certain classic optimization problems, such as Ack-
ley’s function, Griewank’s function, and Rastrigin’s function.
In CMA-ES, only a few algorithmic parameters need to be
decided because CMA-ES inherits the mechanism to adapt
strategic parameters during the evolutionary process. In this
work, CMA-ES is utilized to optimize the degree distribution
in LT framework for a wide range ofk, the size of source
symbols. In the remainder of this section, the way to adopt
CMA-ES to handle the optimization of degree distributions
are presented in detail.

A. Decision Variables

The first step to use an evolutionary algorithm is to encode
the decision variables of the optimization problem. It is
not difficult in this study because a degree distribution can
directly form a real-number vector. In the evaluation phase,
a real-number vector of arbitrary values can be interpreted
as a probability distribution, i.e., a degree distribution, with
normalization. Such an operation does not change the fea-
sibility, although the problem complexity may be slightly
increased. The definition of degree distributions tells us that
d ≤ k. For a specific source symbol sizek, obviously the
problem dimensions is at mostk. However, according to the
LT encoding/decoding operations, we usually do not need a
non-zero probability on every single degree. Observing the
soliton distributions and considering the belief propagation
algorithm, there is no necessary degree except 1, which ensures
the start of belief propagation. As a result, we optimize a
selected subset of degrees in the present work. We choose
some degrees calledtags to form the vectorv(i) of decision
variables according to the Fibonacci numbers smaller than half
of k. A degree distribution used in this paper hence can be
represented as the following formula.
Optimized degree distributionω(d):

ω(d) =
{

v(i) d = the i-th Fibonacci number,d < k/2
0 otherwise

.

(4)

B. Objectives

We try to use two indicators to evaluate degree distributions
for LT code in this paper. The first one is the efficiency of
the LT code with the optimized degree distribution which has
been discussed in section II-B.ε denotes the expected rate of
overhead to transmit data. For example,ε = 1.2 means that in
addition to the size of source data, 20% extra data are needed
to recover the complete source data. This objective is to obtain
some degree distribution for a specifick with the smallest
ε. LT code is rateless, and the coding process depends on
randomness and probability. Source data recovered by a fixed
amount of encoding symbols cannot be guaranteed. Therefore,

3533



0 20 40 60 80 100 120 140 160 180 200
1

1.5

2

2.5

Function Evaluations

O
ve

rh
ea

d

 

 

k = 100
k = 400
k = 700
k = 1000

Fig. 2

EVOLUTIONARY PROCESS DURING THE OPTIMIZATION OF OVERHEAD

TABLE I

THE BEST INDIVIDUALS FOR THE OPTIMIZATION OF OVERHEAD

Degree k=100 k = 400 k = 400 k = 1000

1 0.091397 0.116375 0.16058 0.129707
2 0.310884 0.255701 0.148543 0.266133
3 0.367223 0.34174 0.412275 0.321489
5 0.042648 0.112072 0.119163 0.077045
8 0.053247 0.071726 0.052843 0.124503
13 0.048949 0.028076 0.024701 0.000258
21 0.011876 0.013169 0.035112 0.019594
34 0.073776 0.030397 0.017738 0.033607
55 0 0.000264 0.002094 0.01543
89 0 0.01109 0.009837 0.00095
144 0 0.01939 0.002946 0.000143
233 0 0 0.014167 0.00075
377 0 0 0 0.010391

in order to evaluateε, we provide infinite encoding symbols,
in the form of a stream of encoding symbols, to simulate
the decoding process until all source data are recovered. The
average of required encoding symbols per simulation is the
fitness value of degree distributions.

The second indicator is the amount of source symbols
that cannot be recovered when a constant ratio of encoding
symbols are received. In raptor codes, Low-density-parity-
check (LDPC) [15] is introduced as a second layer pre-coding
into LT code. LDPC is a kind of forward error correction
codes. More information on LDPC can be found in [16], [17].
LDPC can fix errors of data without extra information as long
as the error rate is lower than certain restriction. In such a
condition, the mission of LT code is no longer to achieve full
decoding. Instead, most of source symbols can be recovered
with a small overhead is sufficient. For this purpose, we try to
minimize the number of un-recovered source symbols given a
constant overheadε.
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AVERAGE PERFORMANCE INDICATORS ARE COMPARED BETWEEN ROBUST

SOLITON DISTRIBUTION AND OPTIMIZED DEGREE DISTRIBUTIONS FOR

DIFFERENT NUMBERS OF SOURCE SYMBOLS(k)

IV. EXPERIMENTS AND RESULTS

Two series of experiments are implemented for the two
different objectives as described in the previous section.In
each experiment,tags are determined by Fibonacci numbers
and the specified source symbols sizek. Tags are encoded
as an individual,v(i), and represent that only these degrees
have non-zero probabilities. Initial values of tags are set
as 1/|v| uniformly, and then CMA-ES is applied without
any customization or modification. After a new individual is
created, it is normalized to be a valid probability distribution
and evaluated for the fitness value by simulating the LT coding
process. One hundred independent runs of simulation are
conducted for each function evaluation. In the first series of
experiments, we minimize the expected number of encoding
symbols for full decoding. In the second, the average number
of source symbols that cannot be recovered for a constant
ε = 1.1 is considered. We call the second indicator asfailure
rate. The default parameter settings given in the source code
of CMA-ES are adopted in this study except forλ = 10.

A. Overhead

In these experiments, we minimize the overheadε for differ-
ent k sizes, and the results are shown in Table I and Figs. 2–
5. Fig. 2 presents the improvement during the evolutionary
process. Individuals are initially uniform distributions. It is
expected that overheads are quite high in the beginning and the
curves descend quickly after around 100 function evaluations.
Finally, the fitness almost converges after 200 function evalua-
tions. Fig. 3 shows the comparison ofε between robust soliton
distribution and the optimized distributions. The expected
overhead of robust soliton distribution is given as

k +O(log2(k/δ)
√

k)
k

= 1 +O
(

log2(k/δ)√
k

)
.
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(d) k = 1000

Fig. 4

LEFT FIGURES SHOW THE OPTIMIZED DEGREE DISTRIBUTIONS. ONLY TAGS ARE PRESENTED. RIGHT FIGURES ARE THE HISTOGRAM AND

ACCUMULATED CURVE OF SUCCESSFUL RATE IN1000 INDEPENDENT SIMULATION RUNS
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(d) k = 1000

Fig. 5

FOR THE COMPARISON WITH SAMEk’ S, ROBUST SOLITON DISTRIBUTIONS AND THE CORRESPONDING PERFORMANCE INDICATORS ARE SHOWN SIMILAR

TO THAT IN FIG. 4. NOTE THAT ONLY PARTS OF ROBUST SOLITON DISTRIBUTIONS ARE PLOTTED FOR CLARITY
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EVOLUTIONARY PROCESS DURING THE OPTIMIZATION OF FAILURE RATE

TABLE II

THE BEST INDIVIDUALS FOR THE OPTIMIZATION OF FAILURE RATE

Degree k=100 k = 400 k = 400 k = 1000

1 0.083997 0.102892 0.116854 0.115278
2 0.573671 0.383164 0.29678 0.333564
3 0.161178 0.237312 0.31115 0.241065
5 0.08038 0.186475 0.171342 0.184027
8 0.096245 0.030706 0.033393 0.046818
13 0.001267 0.039075 0.025977 0.022223
21 0.002963 0.015193 0.023452 0.022914
34 0.000299 0.000167 0.016096 0.020526
55 0 0.001276 0.002602 0.00643
89 0 0.000303 0.000268 0.004594
144 0 0.003436 0.002072 0.001422
233 0 0 0.000015 0.000883
377 0 0 0 0.000257

The value becomes smaller whenk increases, and that
is why the trend of Fig. 3 shows a declination. The val-
ues of overhead are reduced at least 10% for allk’s with
the optimized degree distributions. Some distributions ofthe
best individuals are given in Table I. Fig. 4 illustrates each
distribution and shows the histogram of successful rate in
1000 simulation runs on the right side. Compared with similar
simulation results of robust soliton distribution in Fig. 5, the
improvement is quite significant.

B. Failure rate

Unlike the original LT code, we are concerned with how
many source symbols can be recovered in the second set
of experiments. The objective value is the average number
of source symbols that cannot be recovered with a constant
overheadε. Optimization results are shown in Fig. 6. More
function evaluations are needed to search for good degree
distributions. The failure rate of the final results are lessthan
10−1 for all k’s when ε = 1.1. In other words, more than
90 percent of source symbols can be recovered if extra 10
percent of encoding symbols are collected. Table II gives
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Fig. 7

THE FIGURE SHOWS THE SIGNIFICANT DIFFERENCE OF FAILURE RATE

AFTER OPTIMIZATION. SIMILAR TO THAT IN FIG. 4, ONLY TAGS ARE

SHOWN IN THE FIGURES

the best probability distributions found in the evolutionary
process fork = 100, k = 400, k = 700, and k = 1000.
The simulation results of a constant overhead are presented
in Fig. 7. The red line denotes the behavior of uniform
distribution, which is the initial value of optimization. Most
of the source symbols remain covered except for those of
which the degree is one, i.e., with probability1/k. The same
situation happens to robust soliton distributions becausethe
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amount of extra encoding symbols is not sufficient to complete
the BP decoding process. The behavior of LT process with
the optimized degree distributions is totally different and fully
satisfies the requirement of weakened LT.

V. CONCLUSIONS

In this work, the first attempt to algorithmically optimize
the degree distribution adopted in LT code was proposed.
Evolutionary computation techniques were introduced to ac-
complish the optimization task. Different from the previous
studies reported in the literature, each probability of degrees
were directly encoded as an individual to optimize. Promising
experimental results were obtained in both sets of experiments:
One was to minimize the overhead, and the other was to
reduce the decoding failure rate. Our experiments showed that
CMA-ES was indeed capable of finding good degree distribu-
tions for different purposes without any guideline or human
intervention. Compared with robust soliton distribution,the
optimized overhead was decreased as least 10% for everyk in
the experiments. The results of failure rate minimization were
also remarkably promising and able to support applicationsof
different types and requirements.

This study creates a new research topic in which the design
of degree distributions in LT code can now be algorithmic
and no longer has to be manually tuning parameters of robust
soliton distribution. We have empirically proved that directly
manipulating the probability value for each degree is viable
and worth pursuing. Given a specifick and some expected
overhead, a degree distribution can be customized with exist-
ing optimization techniques. In addition, we will extend the
experiments to largerk for more kinds of potential applications
in the near future. The results empirically obtained by using
evolutionary algorithms will be theoretically analyzed, and
general guidelines, like robust soliton distribution, that are
able to be customized for different goals and requirements
for designing degree distributions are expected.
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Optimizing Degree Distributions in LT Codes by Using The
Multiobjective Evolutionary Algorithm Based on Decomposition
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Abstract— Luby Transform code (LT code) is the first practical
digital fountain code and has been widely used as basic compo-
nents in many communication applications. The coding behavior
of LT code is mainly decided by a probability distribution of
codeword degrees. In order to customize a degree distribution
for different purposes, multi-objective evolutionary algorithm is
introduced to optimize degree distributions in this paper. Two
critical performance indicators of LT code are considered in our
experiments. Some applications hope to minimize the overhead of
extra packets and some require to limit the computational cost of
the coding system. To handle this problem, MOEA/D is applied
to optimize two objectives simultaneously. We expect to obtain
the Pareto front (PF) formed by partial optimal solutions and
provide those available degree distributions to different LT code
applications. Not only promising results are represented in this
paper but also the behavior of LT code is thoroughly explored by
optimizing the degree distribution according to multi-objectives.

I. I NTRODUCTION

Digital fountain code [1] is a popular class of erasure code
in the field of communication. The concept of fountain code
was introduced by Byers et al. [2] in 1998. Firstly, source data
are divided into several pieces with an identical length. The
length of each piece can be any number of bits or even several
bytes. Sender generates encoding packets, or calledencoding
symbols, when the packet length is one bit, by certain encoding
operation. The encoding procedure may repeat independently
and indefinitely so infinite encoding packets are sent out
continuously like a fountain, which is an important property
of fountain code calledrateless. If a receiver is interested in
receiving the data, it can receive the packet flow at any time
and collect the packets in any combination. Once sufficient
packets, of which the amount is usually slightly more than
that of the source data, are obtained, the source data can be
fully recovered. During the process, no further communication
is required between sender and receiver. Encoding information
can be embedded in each packet. As a result, digital fountain
code is especially useful in broadcast or other situations
in which back channels are unavailable. Moreover, because
source data can be reconstructed no matter which packets are
received, fountain code is also considered reliable to handle
the problem of packet loss.

Luby Transform code (LT code) [3] proposed by Luby
in 2002 is the first practical framework and implementation
of fountain code. A novel coding mechanism based on a

Chih-Ming Chen, Ying-ping Chen, Tzu-Ching Shen, and John K. Zao
are with the Department of Computer Science, National Chiao Tung Uni-
versity, 1001 Ta Hsueh Road, Hsinchu, TAIWAN (email: ccming@nclab.tw,
ypchen@nclab.tw, Stecko.cs97g@nctu.edu.tw, jkzao@cs.nctu.edu.tw).

specifically designed degree distribution is proposed in the
introduction of LT code. The performance of LT code totally
depends on the adopted degree distribution. In his proposal,
Luby designed general methods to construct appropriate de-
gree distributions to co-operate with LT code, and the degree
distributions were namedsoliton distribution. Via theoretical
analysis, the feasibility of soliton distribution was proven [4].
Recently, researchers started to optimize the degree distribu-
tion in order to improve the performance of LT code [5], [6],
but the obtained improvement is marginal and quite limited.
In these studies, only the parameters of soliton distribution
were tuned and considered as decision variables, while in our
present work, we directly consider the degree distribution itself
as our decision variables.

In the design of LT code, redundant data and encoding
computation are used to trade for the ability of forward error
correction. For most applications, while the error correction
ability is maintained, both costs are required to be as lower as
possible, and apparently there is a trade-off among these fac-
tors. Furthermore, applications of different types and purposes
have different requirements of each kind of cost. Some LT
code applications which transmit data through an expensive
communication channel have to reduce the data overhead.
Other applications with a huge package size expect fewer
executions of the encoding operator. In order to simultaneously
satisfy these applications, multi-objectives are considered for
optimizing the LT code degree distribution in the present work.
The most important motivation of this study is to fully explore
the LT coding behavior with arbitrary degree distributions
and to empirically provide a proof of concept that multiple
requirements on LT code can be satisfied via optimizing degree
distributions with existing optimization techniques.

The remainder of this paper is organized as follows. Sec-
tion II describes the detailed operations of LT code, including
the coding process and soliton distribution. Section III intro-
duces the background of multi-objective problems and the
evolutionary algorithm used in this paper. Experiments and
results are given in sections IV and V. Finally, section VI
concludes this paper.

II. LT CODE

Luby introduced a practical fountain code framework and
gave the details of coding operation in 2002 [3]. Similar to
other fountain codes, source symbols are uniformly randomly
chosen to be encoded into codewords (encoding symbols). The
encoding operation is achieved by a simple boolean operator,
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(a) Ideal soliton distribution
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(b) Robust soliton distribution

Fig. 1

EXAMPLE OF SOLITON DISTRIBUTIONS(k = 30)

XOR. The relation between source data and encoding symbols
can be modeled as a sparse bipartite graph. A key design
of LT code is to decide the degree of each vertex in the
bipartite graph with a probability distribution. The connectivity
can be recorded as an encoding matrix and each column
represents an encoding symbol. Originally,k source symbols
can be fully decoded by Gaussian elimination if there existk
linearly independent columns. However, Gaussian elimination
is prohibitively expensive for its computational complexity of
O(k3). Therefore, the belief propagation (BP) algorithm [7]
is introduced to replace the expensive Gaussian elimination in
the LT decoding phase. Overhead of coding is used to trade
computing time because belief propagation is more efficient
but more encoding symbols are needed for successful decod-
ing. Moreover, the performance of LT code is very sensitive to
the degree distribution. A good degree distribution is necessary
to co-operate with belief propagation. Luby suggested soliton
distributions for LT framework in his proposal of LT code.
According to the mathematical verification, the propertiesof
soliton distribution have been confirmed. In this section, details
of coding operations and soliton distributions are described.

A. Encoding and decoding

Given the source data, we suppose that the source data
can be cut intok source symbols with the same length of

ℓ bits. Before every codeword is generated, a degreed is
chosen at random according to the adopted degree distribution
ρ(d), where1 ≤ d ≤ k and

∑k
d=1 ρ(d) = 1. The degreed

decides the how many distinct source symbols will be chosen
to compose an encoding symbol.d source symbols, called
neighbors, are chosen uniformly randomly and accumulated
by XOR. In the design of LT code, random numbers play
an essential role during the encoding process. The approach
employed by LT code for a sender to inform receivers of all
encoding information is achieved by synchronizing a random
number generator with a specified random number seed.

At the receiver side, whenK encoding symbols were
arrived, whereK is usually slightly larger thank, belief
propagation is used to reconstruct the source data step by step.
All encoding symbols are initially covered in the beginning.
For the first step, all encoding symbols with only one neighbor
can be directly released to recover their unique neighbor. When
a source symbol has been recovered but not processed, it
is called a ripple and will be stored in a queue. At each
subsequent step, ripples are popped as a processing target one
by one. A ripple is removed from all encoding symbols which
have it as neighbor. If an encoding symbols has only one
remaining neighbor after the removing, the releasing action
repeats and may produce new ripples to maintain a stable
size of the queue. Maintaining the size of the ripple queue is
important because the decoding process fails when the ripple
queue is empty and some source symbols remain covered.
In other words, more encoding symbols are required in the
decoding process. Ideally, the process succeeds if all source
symbols are recovered at the end of the decoding process.

Both encoding and decoding, as the LT coding operations,
are achieved byXOR. As a result, the computational complex-
ity of LT code can be measured by how many times ofXORis
executed.XORoperator is applied to build the connectivity in
the conceptualized bipartite graph and to eliminate a ripple
from the neighbors of codewords. It is evident thatd − 1
XOR operators are necessary to generated a codeword with
degreed or recover an encoding symbol. In the encoding
phase, all encoding symbols are generated independently, and
the computational complexity to produce codewords solely
depends on the mean degree of the adopted degree distribution.
In other words, the cost of each encoding symbol is decided
by the mean of degree distributions. Hence, in practice, the
mean degree is an important LT performance indicator since
it represents the operational cost.

B. Soliton distribution

The behavior of LT code is completely determined by the
degree distribution,ρ(d), and the number of encoding symbols
received,K, by receiver. The overheadε = K/k denotes the
performance of LT code, andε depends on a given degree
distribution. Based on his theoretical analysis, Luby proposed
the ideal soliton distribution of which the overhead is 1, the
best performance, in the ideal case.
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Ideal soliton distributionρ(d):

ρ(d) =
{ 1

k for d = 1
1

d(d−1) for d = 2, 3, . . . , k
. (1)

Ideal soliton distribution guarantees that all the releaseprob-
abilities are identical to1/k at each subsequent step. Hence,
there isoneexpected ripple generated at each processing step
when the encoding symbol size isk. After k processing step,
the source data can be ideally recovered. Fig. 1(a) shows an
example of Ideal soliton distribution fork = 30.

However, ideal soliton distribution works poorly in practice.
Belief propagation may be suspended by a small variance
of the stochastic encoding/decoding situation in which no
ripple exists, because the expected ripple size is only one at
any moment. According to the theory of random walk, the
probability with which a random walk of lengthk deviates
from its mean by more thanln(k/δ)

√
k is at mostδ. It is a

baseline of the ripple queue size which must be maintained
to complete a decoding process. Hence, in the same paper
by Luby, a modified version calledrobust soliton distribution,
µ(d), was also proposed.
Robust soliton distributionµ(d):

R = c · ln(k/δ)
√

k

τ(d) =

 R/ik for d = 1, . . . , k/R− 1
R ln(R/δ)/k for d = k/R
0 for d = k/R + 1, . . . , k

. (2)

β =
k∑

d=1

(ρ(d) + τ(d))

µ(d) =
ρ(d) + τ(d)

β
for d = 1, . . . , k (3)

c andδ are two parameters for tuning robust soliton distribu-
tion. c controls the mean of the degree distribution. Smaller
values ofc increase the probability of low degrees, and larger
ones decrease it.δ estimates that there areln(k/δ)

√
k expected

ripples as described. Fig. 1(b) is an example of robust soliton
distribution with c = 0.1 and δ = 0.1. Robust soliton
distribution can ensure that onlyK = k + O(ln2(k/δ)

√
k)

encoding symbols are required to recover the source data with
a successful probability at least 1-δ.

Robust soliton distribution is not only viable but also
practical. The analysis of robust soliton distribution based on
probability and statistics is sound ifk is infinite. However,
in practice, source data cannot be divided into infinite pieces,
and as a consequence, the behavior of LT code will not exactly
match the mathematical analysis, especially whenk is small.
Furthermore, robust soliton distribution is a general purpose
design. It provides a convenient way to construct a distribution
works well but not optimally. In this work, we try to customize
the degree distribution by using multi-objective optimization
tools proposed in the field of evolutionary computation to
simultaneously satisfy multiple performance requirements.

III. M ULTI -OBJECTIVEPROBLEMS

Multi-objective optimization problems (MOPs) are very
important in real-world applications. There are two or more
objectives to be considered simultaneously, and these ob-
jectives usually conflict with each other. The most intuitive
approach to deal with MOPs is to transform them into single
objective problems (SOPs) by using weights on the objectives
and creating a weighted sum. The approach makes the problem
solvable by available tools based on mathematics or heuristics
for SOPs. However, such weights oftentimes cannot be pre-
determined, especially when the domain knowledge of the
problem is unavailable. Furthermore, the best solution to the
transformed single-objective problem is merely one solution
on the Pareto front (PF) of the MOP. Hence, better opti-
mization frameworks must be developed to fulfill the need
of handling MOPs.

Due to the limitation of traditional mathematical methods
for MOPs, more and more researchers try to solve MOPs
in a direct way and to approximate the Pareto front as
complete as possible. Their goal is to provide a set of solutions
which are partially optimal. Many advanced multi-objective
algorithms have been proposed in the literature. Some of them
try to approximate the PF by using mathematical models,
and others are developed based on evolutionary algorithms.
A hybrid framework makes use of decomposition methods in
mathematics and the optimization paradigm in evolutionary
computation was proposed and calledmultiobjective evolu-
tionary algorithm based on decomposition(MOEA/D) [8].
MOEA/D was proposed and shown to perform well on MOPs
with complicated Pareto set shapes [9].

In this paper, we propose the use of MOEA/D to opti-
mize the multiple objectives of LT code. Degree distribu-
tions significantly better thanrobust soliton distributionare
expected. Moreover, exploring a complete Pareto front can
help researchers to analyze the trade-off between overhead
and operational cost of LT code. In the following section, we
will give the formal description of MOPs and the MOEA/D
framework, respectively.

A. Formal description of MOPs

In real-world applications, many problems are actually
multi-objective optimization problems, and single-objective
problems are special cases. A multi-objective problem can be
formally stated as:

minimize F (x) = (f1(x), . . . , fm(x))

subject to

{
x ∈ Ω
C(x) = (c1(x), . . . , ct(x)) ≥ 0

, (4)

whereΩ is called thedecision spaceor variable space, and
Rm is theobjective space. C(x) represents the problem con-
straints and defines the feasible regions in the decision space
according to problem properties [10].F : Ω → Rm consists of
m objective functions. IfΩ is a closed and connected region
in Rn and all the objective functions are continuous, we call
the problem a continuous MOP.
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In order to consider the trade-off between objectives, the
concept ofdominationbetween solutions is defined. Letu =
(u1, . . . , um), v = (v1, . . . , vm) ∈ Rm be two vectors.u is
said todominatev if ui ≤ vi for all i = 1, . . . ,m, andu 6= v.
A point x∗ ∈ Ω is Pareto optimalif there is nox ∈ Ω such
that F (x) dominatesF (x∗). The set of all the Pareto optimal
points is calledPareto set(PS) and the set of all the objective
vectors corresponding to the PS is calledPareto front (PF),
wherePF = {F (x) ∈ Rm|x ∈ PS} [11].

Instead of searching for a single or just a few (Pareto)
optimal solutions as in solving single-objective problems, the
goal of handling multi-objective problems is to find the Pareto
front as well as the Pareto set of the problem. Given the limited
computational resource, including time and storage, how to
provide good solutions in terms of both quality and spread is
the key and challenging task for multi-objective optimization.

B. MOEA based on decomposition

One of the key ideas of MOEA/D is the use of a de-
composition method to transform a MOP into a number
of single-objective optimization problems. MOEA/D attempts
to optimize these single-objective problems collectivelyand
simultaneously instead of trying to directly approximate the
Pareto front as many other evolutionary algorithms do because
each optimal solution to these SOPs is a Pareto optimal
solution to the given MOP. The collection of these optimal
solutions is an approximation of the Pareto front. Weighted
sum, Tchebycheff approach, boundary intersection, and other
decomposition approaches can serve this purpose. In the
present work, the Tchebycheff approach [11] is adopted. A
single-objective optimization problem obtained by decompos-
ing the given MOP can be represented as

minimize g(x|λ, z∗) = max1≤i≤m{λi|fi(x)− z∗i |}
subject to x ∈ Ω (5)

whereλ = (λ1, . . . , λm) is a vector of weights, i.e.,λi ≥ 0
for all i = 1, . . . ,m and

∑m
i=1 λi = 1. z∗ = (z∗1 , . . . , z∗m)

is the reference point, i.e.,z∗i = min{fi(x)|x ∈ Ω} for each
i = 1, . . . ,m.

Let λ1, . . . , λN be a set ofN weight vectors. If we use
a large N and select the weight vectors properly, all the
optimal solutions of the SOPs transformed from decompo-
sition will well approximate the Pareto front. Moreover, we
can define a neighborhood relationship for each SOP by
computing Euclidean distances between weight vectors. SOPs
which are considered neighbors are assumed to have similar
fitness landscapes and their optimal solutions should be close
in the decision space. MOEA/D exploits the information
sharing among SOPs which are neighbors to accomplish the
optimization task effectively and efficiently. The specification
of MOEA/D is stated as follows:
• Inputs:

– decision variables.
– objective functions.
– N : the number of subproblems.
– T : the number of neighbors for each subproblem.

TABLE I

PARAMETER SETTINGS OFMOEA/D

Parameter Value

N 50
T 10

Crossover rate 1
Mutation rate 1/m

Max Gen. 150

– stopping criteria.

• Outputs:

– Approximation to thePS: x1, . . . , xN .
– Approximation to thePF: F (x1), . . . , F (xN ).

IV. EXPERIMENTS

The experiment implementation is described in this section.
MOEA/D is a well-developed tool and has the characteristic
of black-box optimization like other evolutionary algorithms.
As described in section III-B, only input and output should be
handled properly. Section IV-A shows how to encode a degree
distribution into decision variables, and the objective functions
are given in section IV-B. Table I lists the other algorithmic
parameter settings of MOEA/D.

A. Decision variables

The first step to use an evolutionary algorithm is to encode
the decision variables of the optimization problem. It is not
difficult in this study because a degree distribution can directly
form a real-valued vector. In the evaluation phase, a real-
valued vector of arbitrary values can be interpreted as a
probability distribution, i.e., a degree distribution, with nor-
malization. Such an operation does not change the feasibility,
although the problem complexity may be slightly increased.
The definition of degree distributions tells us thatd ≤ k.
For a specific source symbol sizek, obviously the problem
dimensions is at mostk. However, according to the LT
encoding/decoding operations, we usually do not need a non-
zero probability on every single degree. Observing the soliton
distribution and considering the belief propagation algorithm,
there is no necessary degree except 1, which ensures the start
of belief propagation. As a result, we optimize a selected
subset of degrees in the present work. We choose some par-
ticular degrees,{1,2,3,4,5,7,9,13,17,23} to form the decision
variables according to the experience. Different subsets of
degrees may change the numerical results of experiments
results, but the soundness of this paper will be not be affected.

B. Objectives

In this paper, degree distributions are optimized for two
different objectives. The first indicator to evaluate efficiency
of LT code is overheadε. The redundancy is traded for the
benefit of fountain code and those extra encoding symbols
increase the cost when they are transmitted to the receiver.
In most application, overhead is required to be as low as
possible because the transmission is usually expensive. In
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EVOLUTIONARY PROCESS DURING THE OPTIMIZATION FORk = 100
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EVOLUTIONARY PROCESS DURING THE OPTIMIZATION OFk = 300

our simulation of LT code, encoding symbols are generated
until source data are fully recovered. The average required
codewords are calculated as the fitness. The other objectiveis
the computational cost of the encoding and decoding process.
Such an objective value can be estimated with the mean degree
of degree distributions. IfMd denotes the mean value of
a degree distribution, the number of how many timesXOR
is executed can denote as(Md − 1) ∗ ε. There is a trade-
off betweenε and Md because whenMd is greater, fewer
encoding symbols may be required, and therefore,ε is less.
On the other hand,Md is the operational cost, which is the
average number ofXORoperations that have to be executed.

V. EXPERIMENTAL RESULTS

In most multi-objective problems, there is usually a trade-
off between objectives. For ann-objective problem, a solution
can be represented as a point in then-dimensional space.
All points which denote the non-dominated solutions form
a partial optimal set called the Pareto front. The mission of
multi-objective algorithms is to approximate the Pareto front
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EVOLUTIONARY PROCESS DURING THE OPTIMIZATION OFk = 500

as complete as possible. In other words, solutions should well
spread to provide sufficient choices to decision markers. In
our experiments, overhead and operational cost of LT code
are both minimized together and the minimal value of each
objective is expected. Clearly, a degree distribution withthe
minimal operational cost has only non-zero probability on
degree one because in such a case, no encoding operation is
needed. The case is the pure transmission without any channel
coding, and it is a special case in the LT code framework.
As for the other objective, overhead has a lower bound at
ratio 1. Each encoding symbol can generate a new ripple to
recover a source symbol ideally such that at leastk encoding
symbols are required to reconstruct the original data. Different
from the operational cost, such a degree distribution is not
yet discovered and even its existence is not proved. Fig. 2
shows the optimization process and the final result. After 150
generations, a significant PF is represented by fifty individual
points. The solution with the minimal operational cost in
expectation has been found, but the best overhead is 1.2068.
Several individuals are listed in Table II, where the best value
of overhead and operational cost are presented in columns 2
and 3, respectively. Columns 4 and 5 give the average overhead
and execution counts ofXOR in the numerical simulation.
Figs. 3 and 4 display similar results as that shown in Fig. 2
for k = 300 andk = 500. Fig. 7 presents the distribution and
simulation results for each individual listed in Table II.

To our limited knowledge, there is no guideline to design a
robust soliton distribution for some particular coding behav-
iors. In order to fairly compare our optimized results with that
of robust soliton distribution, MOEA/D is also applied to op-
timize the parameters of robust soliton distribution, which are
c and δ. The PF of the optimized robust soliton distributions
is presented in Fig. 5. In the dimension of operational cost,
the optimized robust soliton distributions deliver very similar
results because robust soliton distributions can also become
the degree distribution with only non-zero probability on
degree one if some appropriate parameters are given. However,
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TABLE II

OPTIMIZED ARBITRARY DEGREE DISTRIBUTIONS

Individual Best Overhead Best Cost AVG. Overhead XOR

1 4.8442 0.00042 5.1958 0.038
25 2.5608 1.29873 2.6655 407.026
35 2.0294 1.85193 2.1485 558.667
45 1.4564 2.5135 1.57211 603.742
50 1.2068 2.93541 1.2718 843.669

TABLE III

OPTIMIZED ROBUST SOLITON DISTRIBUTIONS

Individual Best Overhead Best Cost AVG. Overhead XOR

1 4.8080 0.00552 5.1323 0.377
25 3.1244 1.74314 4.1662 125.455
35 2.0708 2.76115 2.6217 324.580
45 1.5194 3.41297 1.9278 471.753
50 1.2530 6.71008 1.3097 1141.46
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COMPARISON BETWEEN THE OPTIMIZED ARBITRARY DEGREE

DISTRIBUTION AND ROBUST SOLITON DISTRIBUTION

there are significant differences along the other axis. The
performance is quite limited, and such a situation is caused
by the fixed formula of robust soliton distribution. The figure
demonstrates numerous better degree distributions that are
very different from robust soliton distribution. These degree
distributions can be discovered by optimization algorithms
proposed in the realm of evolutionary computation.

VI. CONCLUSIONS

This paper proposed the use of multi-objective evolutionary
algorithms to optimize the degree distribution in LT code.
Overhead and operational cost were considered as two objec-
tives and optimized simultaneously by using MOEA/D. The
experimental results were promising and indicated that the
Pareto front was well described. These results might also help
researchers to better understand the behavior of LT code. For

applications of different types and natures, LT code will be
more efficient if choosing a specifically appropriate degree
distribution is possible. Not only more choices of degree dis-
tributions are available, but also much better performancethan
that delivered by robust soliton distribution can be achieved,
because most robust soliton distributions are dominated bythe
solutions discovered with MOEA/D in the experiments.

An alternation solution which designs degree distribution
better than robust soliton is given in the work. While LT
code is employed in real-world apparitions, the degree dis-
tribution can be customized to satisfy different requirements
by using evolutionary algorithms. Fitter degree distributions
will enhance the performance of those applications. Moreover,
better understandings of the behavior of LT code will help the
improvement of LT code. The final results show that some
better distributions are beyond the model of robust soliton
distribution. The theoretical analysis will also be applied to
them just like the development of soliton distributions in our
future work. An advanced model in which the performance is
close to that of the Pareto front is in expectation.
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On the Optimization of Degree Distributions in LT Code with
Covariance Matrix Adaptation Evolution Strategy

Chih-Ming Chen,Student Member, IEEE, Ying-ping Chen,Member, IEEE,
Tzu-Ching Shen, and John K. Zao,Senior Member, IEEE

Abstract— Luby Transform code (LT code) has been a popular
and practical technique in the field of channel coding since its
proposal. One of the key components of LT code is a degree
distribution which is used to determine the relationship between
source data and codewords. Luby in his proposal suggested two
general methods to construct feasible degree distributions. Such
general designs work appropriately in typical situations but not
optimally in most cases. To explore the full potential of LT code,
in this work, we make the first attempt to introduce evolutionary
algorithms to optimize the degree distribution in LT code. Degree
distributions are encoded as real-valued vectors and evaluated by
numerical simulation of LT code. For applications of different
natures, two objectives are implemented to search good degree
distributions with different decoding behavior. Compared with
the original design, the experimental results are quite promising
and demonstrate that the degree distribution can be customized
for different purposes. In addition to manually adjusting the
degree distribution as the common practice, the work presented
in this paper provides an efficient alternative approach to use
and adapt LT code for both practitioners and researchers.

I. I NTRODUCTION

Digital fountain code [1] is a popular class of erasure
code in the field of communication. The concept of fountain
code was first introduced by Byers et al. [2] in 1998. Firstly,
source data are divided into several pieces with an identical
length. The length of each piece can be any bits or even
several bytes. Sender generates encoding packets, or called
encoding symbols when the packet length is one bit, by
some particular encoding operation. The encoding and sending
procedure may repeat independently and unlimitedly. Infinite
encoding packets are sent out continuously like a fountain,
which is an important property of fountain code calledrateless.
If a receiver is interested in receiving the data, it can receive
the packet flow at any time and collect the packets in any
combination. Once sufficient packets, of which the amount
is usually slightly more than that of the source data, are
obtained, the source data can be fully recovered. During the
process, no further communication is required between sender
and receiver. Encoding information can be embedded in each
packet. As a result, digital fountain code is especially useful
in broadcast or other situations in which back channels are un-
available. Moreover, because source data can be reconstructed
no matter which packets are received, fountain code is also
considered reliable to handle the problem of packet loss.

Chih-Ming Chen, Ying-ping Chen, Tzu-Ching Shen, and John K. Zao
are with the Department of Computer Science, National Chiao Tung Uni-
versity, 1001 Ta Hsueh Road, Hsinchu, TAIWAN (email: ccming@nclab.tw,
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Luby Transform code (LT code) [3] proposed by Luby
in 2002 is the first practical framework of fountain code.
A novel coding mechanism based on a specifically designed
degree distribution is proposed in the introduction of LT code.
The performance of LT code totally depends on the adopted
degree distribution. In his proposal, Luby deigned general
methods to construct an appropriate degree distribution to
be used in LT code, and the degree distribution was named
soliton distribution. Via theoretical analysis, the feasibility of
soliton distribution was proven in the literature [4]. Recently,
researchers started to optimize the degree distribution in order
to improve the performance of LT code [5], [6], but the ob-
tained improvement is quite limited. In these studies, only the
parameters of soliton distribution were tuned and considered
as decision variables, while in the present work, we directly
consider the degree distribution itself as our decision variables.

Based on LT code, an improved framework callRaptor
codes[7], [8] was proposed by Shokrollahi. Shokrollahi in-
tegrated LT code with a pre-coding layer. Compared with
pure LT code, the design of Raptor codes requires a degree
distribution, calledweakened LT, with some very different
behavior and properties. Several instances were given in [9]
for certain particular sizes of source symbols, but there are no
existing guidelines regarding how to construct suitable degree
distributions for other sizes. In this regard, we demonstrate
the use of optimization techniques proposed in evolutionary
computation for generating degree distributions of different,
desired properties.

In this paper, according to our limited knowledge, we
make the first attempt to utilize evolutionary computation
techniques to optimize the degree distribution for LT code and
demonstrate the feasibility of customizing degree distributions
for different purposes. Particularly, we adopt the covariance
matrix adaptation evolution strategy (CMA-ES) [10] to di-
rectly optimize degree distributions for two goals: reducing
the overhead and lowering the failure rate. The experimental
results are remarkably promising and show that significantly
reduced overheads and lower failure rates can be achieved for
LT code with the obtained degree distribution for a wide range
of source symbol sizes.

The remainder of this paper is organized as follows. Sec-
tion II describes the detailed operations of LT code, including
the coding process and soliton distribution proposed by Luby.
Section III introduces the evolutionary algorithm used in this
paper. Experiments and results are given in section IV. Finally,
section V concludes this paper.
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July, 18-23, 2010 - CCIB, Barcelona, Spain CEC IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 3531



II. LT CODE

Luby introduced a new fountain code framework and gave
the detail of coding operation in 2002 [3]. Similar to other
fountain codes, source symbols are randomly chosen to be
encoded into codewords (encoding symbols). The encoding
operation is achieved by a simple boolean operator,XOR.
The relation between source data and encoding symbols can
be modeled as a sparse bipartite graph. A critical change
in LT code is to decide the degree of each vertex in the
bipartite graph with a probability distribution. The connectivity
can be recorded as a encoding matrix and each column
represents an encoding symbol. Originally,k source symbols
can be fully decoding by Gaussian elimination if there existk
linearly independent columns. However, Gaussian elimination
is prohibitively expensive for its computational complexity of
O(k3). Therefore, the belief propagation (BP) algorithm [11]
is introduced to replace the expensive Gaussian elimination in
the LT decoding phase. Overhead of coding is used to trade
computing time because belief propagation is more efficient
but more encoding symbols are needed for successful decod-
ing. Moreover, the performance of LT code is very sensitive to
the degree distribution. A good degree distribution is necessary
to co-operate with belief propagation. Luby suggested soliton
distributions for LT framework in his proposal of LT code.
According to the mathematical verification, the propertiesof
soliton distribution have been confirmed. In this section, details
of coding operations and soliton distributions are described.

A. Encoding and decoding

Given the source data, we suppose that the source data
can be cut intok source symbols with the same length of
ℓ bits. Before every codeword is generated, a degreed is
chosen at random according to the adopted degree distribution
ρ(d), where1 ≤ d ≤ k and

∑k
d=1 ρ(d) = 1. The degreed

decides the how many distinct source symbols will be chosen
to compose an encoding symbol.d source symbols, called
neighbors, are chosen uniformly randomly and accumulated
by XOR. In the design of LT code, random numbers play
an essential role during the encoding process. The approach
employed by LT code for a sender to inform receivers of all
encoding information is achieved by synchronizing a random
number generator with a specified random number seed.

At the receiver side, whenK encoding symbols were arrived
which is usually slightly larger thank, belief propagation is
used to reconstruct the source data step by step. All encoding
symbols are initially covered in the beginning. For the first
step, all encoding symbols with only one neighbor can be
directly released to recover their unique neighbor. When a
source symbol has been recovered but not processed, it is
called a ripple and will be stored in a queue. At each
subsequent step, ripples are popped as a processing target one
by one. A ripple is removed from all encoding symbols which
have it as neighbor. If an encoding symbols has only one
remaining neighbor after the removing, the releasing action
repeats and may produce new ripples to maintain a stable
size of the queue. Maintaining the size of the ripple queue is
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(a) Ideal soliton distribution
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(b) Robust soliton distribution

Fig. 1

EXAMPLE OF SOLITON DISTRIBUTIONS(K = 30)

important because the decoding process fails when the ripple
queue is empty and some source symbols remain uncovered.
In other words, more encoding symbols are required in the
decoding process. Ideally, the process succeeds if all source
symbols are recovered at the end of the decoding process.

B. Soliton distribution

The behavior of LT code is completely determined by the
degree distribution,ρ(d), and the number of encoding symbols
received,K, by receiver. The overheadε = K/k denotes the
performance of LT code, andε depends on a given degree
distribution. Based on his theoretical analysis, Luby proposed
the ideal soliton distribution of which the overhead is 1, the
best performance, in the ideal case.
Ideal soliton distributionρ(d):

ρ(d) =
{ 1

k for d = 1
1

d(d−1) for d = 2, 3, . . . , k
. (1)

Ideal soliton distribution guarantees that all the releaseprob-
abilities are identical to1/k at each subsequent step. Hence,
there is exactly one expected ripple generated at each pro-
cessing step when the encoding symbol size isk. After k
processing step, the source data can be ideally recovered.
Fig. 1(a) shows an example of ideal soliton distribution for
k = 30.
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However, ideal soliton distribution works poorly in practice.
Belief propagation may be suspended by a small variance
of the stochastic encoding/decoding situation in which no
ripple exists, because the expected ripple size is only one at
any moment. According to the theory of random walk, the
probability with which a random walk of lengthk deviates
from its mean by more thanln(k/δ)

√
k is at mostδ. It is a

baseline of ripple sizes which must be maintained to complete
the decoding process. Hence, in the same paper by Luby, a
modified version calledrobust soliton distribution, µ(d), was
also proposed.
Robust soliton distributionµ(d):

R = c · ln(k/δ)
√

k

τ(d) =

 R/ik for d = 1, . . . , k/R− 1
R ln(R/δ)/k for d = k/R
0 for d = k/R + 1, . . . , k

. (2)

β =
k∑

d=1

(ρ(d) + τ(d))

µ(d) =
ρ(d) + τ(d)

β
for d = 1, . . . , k (3)

c andδ are two parameters for tuning robust soliton distribu-
tion. c controls the mean of the degree distribution. Smaller
values ofc increase the probability of low degrees and larger
ones decrease it.δ estimates that there areln(k/δ)

√
k expected

ripple size as described. Fig. 1(b) is an example of robust
soliton distribution withc = 0.1 and δ = 0.1. Robust soliton
distribution can ensure that onlyK = k + O(ln2(k/δ)

√
k)

encoding symbols are required to recover the source data with
a successful probability at least 1-δ.

Robust soliton distribution is not only viable but also
practical. The analysis of robust soliton distribution based on
probability and statistics is sound ifk is infinite. However,
in practice, source data cannot be divided into infinite pieces,
and as a consequence, the behavior of LT code will not exactly
match the mathematical analysis, especially whenk is small.
Furthermore, robust soliton distribution is a general purpose
design. It provides a convenient way to construct a distribution
works well but not optimally. In this work, we try to customize
the degree distribution by using optimization tools proposed
in the field of evolutionary computation.

III. O PTIMIZATION METHOD

Evolution strategies (ES) are a major branch of evolutionary
computation and have been developed since early 1960s. The
key idea of ES is to evolve strategic parameters as well as deci-
sion variables. ES is well-known to be quite capable of dealing
with continuous optimization problems. One of the simplest
ES is (1+1)-ES where only one child is produced by Gaussian
mutation to compete with its parent in each generation, and
the other is (1, 1)-ES which is equivalent to random walk.
Current general versions of ES are denoted as (µ+

, λ)-ES.

The covariance matrix adaptation evolution strategy (CMA-
ES) [10] was firstly introduced by Hansen in 1996 and is one
of the most popular real-parameter optimization methods in
evolutionary computation. There are some variants of CMA-
ES proposed in the literature [12], [13], [14]. The search ability
of CMA-ES has been theoretically analyzed and empirically
verified on certain classic optimization problems, such as Ack-
ley’s function, Griewank’s function, and Rastrigin’s function.
In CMA-ES, only a few algorithmic parameters need to be
decided because CMA-ES inherits the mechanism to adapt
strategic parameters during the evolutionary process. In this
work, CMA-ES is utilized to optimize the degree distribution
in LT framework for a wide range ofk, the size of source
symbols. In the remainder of this section, the way to adopt
CMA-ES to handle the optimization of degree distributions
are presented in detail.

A. Decision Variables

The first step to use an evolutionary algorithm is to encode
the decision variables of the optimization problem. It is
not difficult in this study because a degree distribution can
directly form a real-number vector. In the evaluation phase,
a real-number vector of arbitrary values can be interpreted
as a probability distribution, i.e., a degree distribution, with
normalization. Such an operation does not change the fea-
sibility, although the problem complexity may be slightly
increased. The definition of degree distributions tells us that
d ≤ k. For a specific source symbol sizek, obviously the
problem dimensions is at mostk. However, according to the
LT encoding/decoding operations, we usually do not need a
non-zero probability on every single degree. Observing the
soliton distributions and considering the belief propagation
algorithm, there is no necessary degree except 1, which ensures
the start of belief propagation. As a result, we optimize a
selected subset of degrees in the present work. We choose
some degrees calledtags to form the vectorv(i) of decision
variables according to the Fibonacci numbers smaller than half
of k. A degree distribution used in this paper hence can be
represented as the following formula.
Optimized degree distributionω(d):

ω(d) =
{

v(i) d = the i-th Fibonacci number,d < k/2
0 otherwise

.

(4)

B. Objectives

We try to use two indicators to evaluate degree distributions
for LT code in this paper. The first one is the efficiency of
the LT code with the optimized degree distribution which has
been discussed in section II-B.ε denotes the expected rate of
overhead to transmit data. For example,ε = 1.2 means that in
addition to the size of source data, 20% extra data are needed
to recover the complete source data. This objective is to obtain
some degree distribution for a specifick with the smallest
ε. LT code is rateless, and the coding process depends on
randomness and probability. Source data recovered by a fixed
amount of encoding symbols cannot be guaranteed. Therefore,
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EVOLUTIONARY PROCESS DURING THE OPTIMIZATION OF OVERHEAD

TABLE I

THE BEST INDIVIDUALS FOR THE OPTIMIZATION OF OVERHEAD

Degree k=100 k = 400 k = 400 k = 1000

1 0.091397 0.116375 0.16058 0.129707
2 0.310884 0.255701 0.148543 0.266133
3 0.367223 0.34174 0.412275 0.321489
5 0.042648 0.112072 0.119163 0.077045
8 0.053247 0.071726 0.052843 0.124503
13 0.048949 0.028076 0.024701 0.000258
21 0.011876 0.013169 0.035112 0.019594
34 0.073776 0.030397 0.017738 0.033607
55 0 0.000264 0.002094 0.01543
89 0 0.01109 0.009837 0.00095
144 0 0.01939 0.002946 0.000143
233 0 0 0.014167 0.00075
377 0 0 0 0.010391

in order to evaluateε, we provide infinite encoding symbols,
in the form of a stream of encoding symbols, to simulate
the decoding process until all source data are recovered. The
average of required encoding symbols per simulation is the
fitness value of degree distributions.

The second indicator is the amount of source symbols
that cannot be recovered when a constant ratio of encoding
symbols are received. In raptor codes, Low-density-parity-
check (LDPC) [15] is introduced as a second layer pre-coding
into LT code. LDPC is a kind of forward error correction
codes. More information on LDPC can be found in [16], [17].
LDPC can fix errors of data without extra information as long
as the error rate is lower than certain restriction. In such a
condition, the mission of LT code is no longer to achieve full
decoding. Instead, most of source symbols can be recovered
with a small overhead is sufficient. For this purpose, we try to
minimize the number of un-recovered source symbols given a
constant overheadε.
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AVERAGE PERFORMANCE INDICATORS ARE COMPARED BETWEEN ROBUST

SOLITON DISTRIBUTION AND OPTIMIZED DEGREE DISTRIBUTIONS FOR

DIFFERENT NUMBERS OF SOURCE SYMBOLS(k)

IV. EXPERIMENTS AND RESULTS

Two series of experiments are implemented for the two
different objectives as described in the previous section.In
each experiment,tags are determined by Fibonacci numbers
and the specified source symbols sizek. Tags are encoded
as an individual,v(i), and represent that only these degrees
have non-zero probabilities. Initial values of tags are set
as 1/|v| uniformly, and then CMA-ES is applied without
any customization or modification. After a new individual is
created, it is normalized to be a valid probability distribution
and evaluated for the fitness value by simulating the LT coding
process. One hundred independent runs of simulation are
conducted for each function evaluation. In the first series of
experiments, we minimize the expected number of encoding
symbols for full decoding. In the second, the average number
of source symbols that cannot be recovered for a constant
ε = 1.1 is considered. We call the second indicator asfailure
rate. The default parameter settings given in the source code
of CMA-ES are adopted in this study except forλ = 10.

A. Overhead

In these experiments, we minimize the overheadε for differ-
ent k sizes, and the results are shown in Table I and Figs. 2–
5. Fig. 2 presents the improvement during the evolutionary
process. Individuals are initially uniform distributions. It is
expected that overheads are quite high in the beginning and the
curves descend quickly after around 100 function evaluations.
Finally, the fitness almost converges after 200 function evalua-
tions. Fig. 3 shows the comparison ofε between robust soliton
distribution and the optimized distributions. The expected
overhead of robust soliton distribution is given as

k +O(log2(k/δ)
√

k)
k

= 1 +O
(

log2(k/δ)√
k

)
.
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(b) k = 400
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(c) k = 700
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(d) k = 1000

Fig. 4

LEFT FIGURES SHOW THE OPTIMIZED DEGREE DISTRIBUTIONS. ONLY TAGS ARE PRESENTED. RIGHT FIGURES ARE THE HISTOGRAM AND

ACCUMULATED CURVE OF SUCCESSFUL RATE IN1000 INDEPENDENT SIMULATION RUNS
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(b) k = 400
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Fig. 5

FOR THE COMPARISON WITH SAMEk’ S, ROBUST SOLITON DISTRIBUTIONS AND THE CORRESPONDING PERFORMANCE INDICATORS ARE SHOWN SIMILAR

TO THAT IN FIG. 4. NOTE THAT ONLY PARTS OF ROBUST SOLITON DISTRIBUTIONS ARE PLOTTED FOR CLARITY
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EVOLUTIONARY PROCESS DURING THE OPTIMIZATION OF FAILURE RATE

TABLE II

THE BEST INDIVIDUALS FOR THE OPTIMIZATION OF FAILURE RATE

Degree k=100 k = 400 k = 400 k = 1000

1 0.083997 0.102892 0.116854 0.115278
2 0.573671 0.383164 0.29678 0.333564
3 0.161178 0.237312 0.31115 0.241065
5 0.08038 0.186475 0.171342 0.184027
8 0.096245 0.030706 0.033393 0.046818
13 0.001267 0.039075 0.025977 0.022223
21 0.002963 0.015193 0.023452 0.022914
34 0.000299 0.000167 0.016096 0.020526
55 0 0.001276 0.002602 0.00643
89 0 0.000303 0.000268 0.004594
144 0 0.003436 0.002072 0.001422
233 0 0 0.000015 0.000883
377 0 0 0 0.000257

The value becomes smaller whenk increases, and that
is why the trend of Fig. 3 shows a declination. The val-
ues of overhead are reduced at least 10% for allk’s with
the optimized degree distributions. Some distributions ofthe
best individuals are given in Table I. Fig. 4 illustrates each
distribution and shows the histogram of successful rate in
1000 simulation runs on the right side. Compared with similar
simulation results of robust soliton distribution in Fig. 5, the
improvement is quite significant.

B. Failure rate

Unlike the original LT code, we are concerned with how
many source symbols can be recovered in the second set
of experiments. The objective value is the average number
of source symbols that cannot be recovered with a constant
overheadε. Optimization results are shown in Fig. 6. More
function evaluations are needed to search for good degree
distributions. The failure rate of the final results are lessthan
10−1 for all k’s when ε = 1.1. In other words, more than
90 percent of source symbols can be recovered if extra 10
percent of encoding symbols are collected. Table II gives
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(c) k = 700
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(d) k = 1000

Fig. 7

THE FIGURE SHOWS THE SIGNIFICANT DIFFERENCE OF FAILURE RATE

AFTER OPTIMIZATION. SIMILAR TO THAT IN FIG. 4, ONLY TAGS ARE

SHOWN IN THE FIGURES

the best probability distributions found in the evolutionary
process fork = 100, k = 400, k = 700, and k = 1000.
The simulation results of a constant overhead are presented
in Fig. 7. The red line denotes the behavior of uniform
distribution, which is the initial value of optimization. Most
of the source symbols remain covered except for those of
which the degree is one, i.e., with probability1/k. The same
situation happens to robust soliton distributions becausethe
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amount of extra encoding symbols is not sufficient to complete
the BP decoding process. The behavior of LT process with
the optimized degree distributions is totally different and fully
satisfies the requirement of weakened LT.

V. CONCLUSIONS

In this work, the first attempt to algorithmically optimize
the degree distribution adopted in LT code was proposed.
Evolutionary computation techniques were introduced to ac-
complish the optimization task. Different from the previous
studies reported in the literature, each probability of degrees
were directly encoded as an individual to optimize. Promising
experimental results were obtained in both sets of experiments:
One was to minimize the overhead, and the other was to
reduce the decoding failure rate. Our experiments showed that
CMA-ES was indeed capable of finding good degree distribu-
tions for different purposes without any guideline or human
intervention. Compared with robust soliton distribution,the
optimized overhead was decreased as least 10% for everyk in
the experiments. The results of failure rate minimization were
also remarkably promising and able to support applicationsof
different types and requirements.

This study creates a new research topic in which the design
of degree distributions in LT code can now be algorithmic
and no longer has to be manually tuning parameters of robust
soliton distribution. We have empirically proved that directly
manipulating the probability value for each degree is viable
and worth pursuing. Given a specifick and some expected
overhead, a degree distribution can be customized with exist-
ing optimization techniques. In addition, we will extend the
experiments to largerk for more kinds of potential applications
in the near future. The results empirically obtained by using
evolutionary algorithms will be theoretically analyzed, and
general guidelines, like robust soliton distribution, that are
able to be customized for different goals and requirements
for designing degree distributions are expected.
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Optimizing Degree Distributions in LT Codes by Using The
Multiobjective Evolutionary Algorithm Based on Decomposition
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Abstract— Luby Transform code (LT code) is the first practical
digital fountain code and has been widely used as basic compo-
nents in many communication applications. The coding behavior
of LT code is mainly decided by a probability distribution of
codeword degrees. In order to customize a degree distribution
for different purposes, multi-objective evolutionary algorithm is
introduced to optimize degree distributions in this paper. Two
critical performance indicators of LT code are considered in our
experiments. Some applications hope to minimize the overhead of
extra packets and some require to limit the computational cost of
the coding system. To handle this problem, MOEA/D is applied
to optimize two objectives simultaneously. We expect to obtain
the Pareto front (PF) formed by partial optimal solutions and
provide those available degree distributions to different LT code
applications. Not only promising results are represented in this
paper but also the behavior of LT code is thoroughly explored by
optimizing the degree distribution according to multi-objectives.

I. I NTRODUCTION

Digital fountain code [1] is a popular class of erasure code
in the field of communication. The concept of fountain code
was introduced by Byers et al. [2] in 1998. Firstly, source data
are divided into several pieces with an identical length. The
length of each piece can be any number of bits or even several
bytes. Sender generates encoding packets, or calledencoding
symbols, when the packet length is one bit, by certain encoding
operation. The encoding procedure may repeat independently
and indefinitely so infinite encoding packets are sent out
continuously like a fountain, which is an important property
of fountain code calledrateless. If a receiver is interested in
receiving the data, it can receive the packet flow at any time
and collect the packets in any combination. Once sufficient
packets, of which the amount is usually slightly more than
that of the source data, are obtained, the source data can be
fully recovered. During the process, no further communication
is required between sender and receiver. Encoding information
can be embedded in each packet. As a result, digital fountain
code is especially useful in broadcast or other situations
in which back channels are unavailable. Moreover, because
source data can be reconstructed no matter which packets are
received, fountain code is also considered reliable to handle
the problem of packet loss.

Luby Transform code (LT code) [3] proposed by Luby
in 2002 is the first practical framework and implementation
of fountain code. A novel coding mechanism based on a
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ypchen@nclab.tw, Stecko.cs97g@nctu.edu.tw, jkzao@cs.nctu.edu.tw).

specifically designed degree distribution is proposed in the
introduction of LT code. The performance of LT code totally
depends on the adopted degree distribution. In his proposal,
Luby designed general methods to construct appropriate de-
gree distributions to co-operate with LT code, and the degree
distributions were namedsoliton distribution. Via theoretical
analysis, the feasibility of soliton distribution was proven [4].
Recently, researchers started to optimize the degree distribu-
tion in order to improve the performance of LT code [5], [6],
but the obtained improvement is marginal and quite limited.
In these studies, only the parameters of soliton distribution
were tuned and considered as decision variables, while in our
present work, we directly consider the degree distribution itself
as our decision variables.

In the design of LT code, redundant data and encoding
computation are used to trade for the ability of forward error
correction. For most applications, while the error correction
ability is maintained, both costs are required to be as lower as
possible, and apparently there is a trade-off among these fac-
tors. Furthermore, applications of different types and purposes
have different requirements of each kind of cost. Some LT
code applications which transmit data through an expensive
communication channel have to reduce the data overhead.
Other applications with a huge package size expect fewer
executions of the encoding operator. In order to simultaneously
satisfy these applications, multi-objectives are considered for
optimizing the LT code degree distribution in the present work.
The most important motivation of this study is to fully explore
the LT coding behavior with arbitrary degree distributions
and to empirically provide a proof of concept that multiple
requirements on LT code can be satisfied via optimizing degree
distributions with existing optimization techniques.

The remainder of this paper is organized as follows. Sec-
tion II describes the detailed operations of LT code, including
the coding process and soliton distribution. Section III intro-
duces the background of multi-objective problems and the
evolutionary algorithm used in this paper. Experiments and
results are given in sections IV and V. Finally, section VI
concludes this paper.

II. LT CODE

Luby introduced a practical fountain code framework and
gave the details of coding operation in 2002 [3]. Similar to
other fountain codes, source symbols are uniformly randomly
chosen to be encoded into codewords (encoding symbols). The
encoding operation is achieved by a simple boolean operator,
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(b) Robust soliton distribution

Fig. 1

EXAMPLE OF SOLITON DISTRIBUTIONS(k = 30)

XOR. The relation between source data and encoding symbols
can be modeled as a sparse bipartite graph. A key design
of LT code is to decide the degree of each vertex in the
bipartite graph with a probability distribution. The connectivity
can be recorded as an encoding matrix and each column
represents an encoding symbol. Originally,k source symbols
can be fully decoded by Gaussian elimination if there existk
linearly independent columns. However, Gaussian elimination
is prohibitively expensive for its computational complexity of
O(k3). Therefore, the belief propagation (BP) algorithm [7]
is introduced to replace the expensive Gaussian elimination in
the LT decoding phase. Overhead of coding is used to trade
computing time because belief propagation is more efficient
but more encoding symbols are needed for successful decod-
ing. Moreover, the performance of LT code is very sensitive to
the degree distribution. A good degree distribution is necessary
to co-operate with belief propagation. Luby suggested soliton
distributions for LT framework in his proposal of LT code.
According to the mathematical verification, the propertiesof
soliton distribution have been confirmed. In this section, details
of coding operations and soliton distributions are described.

A. Encoding and decoding

Given the source data, we suppose that the source data
can be cut intok source symbols with the same length of

ℓ bits. Before every codeword is generated, a degreed is
chosen at random according to the adopted degree distribution
ρ(d), where1 ≤ d ≤ k and

∑k
d=1 ρ(d) = 1. The degreed

decides the how many distinct source symbols will be chosen
to compose an encoding symbol.d source symbols, called
neighbors, are chosen uniformly randomly and accumulated
by XOR. In the design of LT code, random numbers play
an essential role during the encoding process. The approach
employed by LT code for a sender to inform receivers of all
encoding information is achieved by synchronizing a random
number generator with a specified random number seed.

At the receiver side, whenK encoding symbols were
arrived, whereK is usually slightly larger thank, belief
propagation is used to reconstruct the source data step by step.
All encoding symbols are initially covered in the beginning.
For the first step, all encoding symbols with only one neighbor
can be directly released to recover their unique neighbor. When
a source symbol has been recovered but not processed, it
is called a ripple and will be stored in a queue. At each
subsequent step, ripples are popped as a processing target one
by one. A ripple is removed from all encoding symbols which
have it as neighbor. If an encoding symbols has only one
remaining neighbor after the removing, the releasing action
repeats and may produce new ripples to maintain a stable
size of the queue. Maintaining the size of the ripple queue is
important because the decoding process fails when the ripple
queue is empty and some source symbols remain covered.
In other words, more encoding symbols are required in the
decoding process. Ideally, the process succeeds if all source
symbols are recovered at the end of the decoding process.

Both encoding and decoding, as the LT coding operations,
are achieved byXOR. As a result, the computational complex-
ity of LT code can be measured by how many times ofXORis
executed.XORoperator is applied to build the connectivity in
the conceptualized bipartite graph and to eliminate a ripple
from the neighbors of codewords. It is evident thatd − 1
XOR operators are necessary to generated a codeword with
degreed or recover an encoding symbol. In the encoding
phase, all encoding symbols are generated independently, and
the computational complexity to produce codewords solely
depends on the mean degree of the adopted degree distribution.
In other words, the cost of each encoding symbol is decided
by the mean of degree distributions. Hence, in practice, the
mean degree is an important LT performance indicator since
it represents the operational cost.

B. Soliton distribution

The behavior of LT code is completely determined by the
degree distribution,ρ(d), and the number of encoding symbols
received,K, by receiver. The overheadε = K/k denotes the
performance of LT code, andε depends on a given degree
distribution. Based on his theoretical analysis, Luby proposed
the ideal soliton distribution of which the overhead is 1, the
best performance, in the ideal case.
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Ideal soliton distributionρ(d):

ρ(d) =
{ 1

k for d = 1
1

d(d−1) for d = 2, 3, . . . , k
. (1)

Ideal soliton distribution guarantees that all the releaseprob-
abilities are identical to1/k at each subsequent step. Hence,
there isoneexpected ripple generated at each processing step
when the encoding symbol size isk. After k processing step,
the source data can be ideally recovered. Fig. 1(a) shows an
example of Ideal soliton distribution fork = 30.

However, ideal soliton distribution works poorly in practice.
Belief propagation may be suspended by a small variance
of the stochastic encoding/decoding situation in which no
ripple exists, because the expected ripple size is only one at
any moment. According to the theory of random walk, the
probability with which a random walk of lengthk deviates
from its mean by more thanln(k/δ)

√
k is at mostδ. It is a

baseline of the ripple queue size which must be maintained
to complete a decoding process. Hence, in the same paper
by Luby, a modified version calledrobust soliton distribution,
µ(d), was also proposed.
Robust soliton distributionµ(d):

R = c · ln(k/δ)
√

k

τ(d) =

 R/ik for d = 1, . . . , k/R− 1
R ln(R/δ)/k for d = k/R
0 for d = k/R + 1, . . . , k

. (2)

β =
k∑

d=1

(ρ(d) + τ(d))

µ(d) =
ρ(d) + τ(d)

β
for d = 1, . . . , k (3)

c andδ are two parameters for tuning robust soliton distribu-
tion. c controls the mean of the degree distribution. Smaller
values ofc increase the probability of low degrees, and larger
ones decrease it.δ estimates that there areln(k/δ)

√
k expected

ripples as described. Fig. 1(b) is an example of robust soliton
distribution with c = 0.1 and δ = 0.1. Robust soliton
distribution can ensure that onlyK = k + O(ln2(k/δ)

√
k)

encoding symbols are required to recover the source data with
a successful probability at least 1-δ.

Robust soliton distribution is not only viable but also
practical. The analysis of robust soliton distribution based on
probability and statistics is sound ifk is infinite. However,
in practice, source data cannot be divided into infinite pieces,
and as a consequence, the behavior of LT code will not exactly
match the mathematical analysis, especially whenk is small.
Furthermore, robust soliton distribution is a general purpose
design. It provides a convenient way to construct a distribution
works well but not optimally. In this work, we try to customize
the degree distribution by using multi-objective optimization
tools proposed in the field of evolutionary computation to
simultaneously satisfy multiple performance requirements.

III. M ULTI -OBJECTIVEPROBLEMS

Multi-objective optimization problems (MOPs) are very
important in real-world applications. There are two or more
objectives to be considered simultaneously, and these ob-
jectives usually conflict with each other. The most intuitive
approach to deal with MOPs is to transform them into single
objective problems (SOPs) by using weights on the objectives
and creating a weighted sum. The approach makes the problem
solvable by available tools based on mathematics or heuristics
for SOPs. However, such weights oftentimes cannot be pre-
determined, especially when the domain knowledge of the
problem is unavailable. Furthermore, the best solution to the
transformed single-objective problem is merely one solution
on the Pareto front (PF) of the MOP. Hence, better opti-
mization frameworks must be developed to fulfill the need
of handling MOPs.

Due to the limitation of traditional mathematical methods
for MOPs, more and more researchers try to solve MOPs
in a direct way and to approximate the Pareto front as
complete as possible. Their goal is to provide a set of solutions
which are partially optimal. Many advanced multi-objective
algorithms have been proposed in the literature. Some of them
try to approximate the PF by using mathematical models,
and others are developed based on evolutionary algorithms.
A hybrid framework makes use of decomposition methods in
mathematics and the optimization paradigm in evolutionary
computation was proposed and calledmultiobjective evolu-
tionary algorithm based on decomposition(MOEA/D) [8].
MOEA/D was proposed and shown to perform well on MOPs
with complicated Pareto set shapes [9].

In this paper, we propose the use of MOEA/D to opti-
mize the multiple objectives of LT code. Degree distribu-
tions significantly better thanrobust soliton distributionare
expected. Moreover, exploring a complete Pareto front can
help researchers to analyze the trade-off between overhead
and operational cost of LT code. In the following section, we
will give the formal description of MOPs and the MOEA/D
framework, respectively.

A. Formal description of MOPs

In real-world applications, many problems are actually
multi-objective optimization problems, and single-objective
problems are special cases. A multi-objective problem can be
formally stated as:

minimize F (x) = (f1(x), . . . , fm(x))

subject to

{
x ∈ Ω
C(x) = (c1(x), . . . , ct(x)) ≥ 0

, (4)

whereΩ is called thedecision spaceor variable space, and
Rm is theobjective space. C(x) represents the problem con-
straints and defines the feasible regions in the decision space
according to problem properties [10].F : Ω → Rm consists of
m objective functions. IfΩ is a closed and connected region
in Rn and all the objective functions are continuous, we call
the problem a continuous MOP.
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In order to consider the trade-off between objectives, the
concept ofdominationbetween solutions is defined. Letu =
(u1, . . . , um), v = (v1, . . . , vm) ∈ Rm be two vectors.u is
said todominatev if ui ≤ vi for all i = 1, . . . ,m, andu 6= v.
A point x∗ ∈ Ω is Pareto optimalif there is nox ∈ Ω such
that F (x) dominatesF (x∗). The set of all the Pareto optimal
points is calledPareto set(PS) and the set of all the objective
vectors corresponding to the PS is calledPareto front (PF),
wherePF = {F (x) ∈ Rm|x ∈ PS} [11].

Instead of searching for a single or just a few (Pareto)
optimal solutions as in solving single-objective problems, the
goal of handling multi-objective problems is to find the Pareto
front as well as the Pareto set of the problem. Given the limited
computational resource, including time and storage, how to
provide good solutions in terms of both quality and spread is
the key and challenging task for multi-objective optimization.

B. MOEA based on decomposition

One of the key ideas of MOEA/D is the use of a de-
composition method to transform a MOP into a number
of single-objective optimization problems. MOEA/D attempts
to optimize these single-objective problems collectivelyand
simultaneously instead of trying to directly approximate the
Pareto front as many other evolutionary algorithms do because
each optimal solution to these SOPs is a Pareto optimal
solution to the given MOP. The collection of these optimal
solutions is an approximation of the Pareto front. Weighted
sum, Tchebycheff approach, boundary intersection, and other
decomposition approaches can serve this purpose. In the
present work, the Tchebycheff approach [11] is adopted. A
single-objective optimization problem obtained by decompos-
ing the given MOP can be represented as

minimize g(x|λ, z∗) = max1≤i≤m{λi|fi(x)− z∗i |}
subject to x ∈ Ω (5)

whereλ = (λ1, . . . , λm) is a vector of weights, i.e.,λi ≥ 0
for all i = 1, . . . ,m and

∑m
i=1 λi = 1. z∗ = (z∗1 , . . . , z∗m)

is the reference point, i.e.,z∗i = min{fi(x)|x ∈ Ω} for each
i = 1, . . . ,m.

Let λ1, . . . , λN be a set ofN weight vectors. If we use
a large N and select the weight vectors properly, all the
optimal solutions of the SOPs transformed from decompo-
sition will well approximate the Pareto front. Moreover, we
can define a neighborhood relationship for each SOP by
computing Euclidean distances between weight vectors. SOPs
which are considered neighbors are assumed to have similar
fitness landscapes and their optimal solutions should be close
in the decision space. MOEA/D exploits the information
sharing among SOPs which are neighbors to accomplish the
optimization task effectively and efficiently. The specification
of MOEA/D is stated as follows:
• Inputs:

– decision variables.
– objective functions.
– N : the number of subproblems.
– T : the number of neighbors for each subproblem.

TABLE I

PARAMETER SETTINGS OFMOEA/D

Parameter Value

N 50
T 10

Crossover rate 1
Mutation rate 1/m

Max Gen. 150

– stopping criteria.

• Outputs:

– Approximation to thePS: x1, . . . , xN .
– Approximation to thePF: F (x1), . . . , F (xN ).

IV. EXPERIMENTS

The experiment implementation is described in this section.
MOEA/D is a well-developed tool and has the characteristic
of black-box optimization like other evolutionary algorithms.
As described in section III-B, only input and output should be
handled properly. Section IV-A shows how to encode a degree
distribution into decision variables, and the objective functions
are given in section IV-B. Table I lists the other algorithmic
parameter settings of MOEA/D.

A. Decision variables

The first step to use an evolutionary algorithm is to encode
the decision variables of the optimization problem. It is not
difficult in this study because a degree distribution can directly
form a real-valued vector. In the evaluation phase, a real-
valued vector of arbitrary values can be interpreted as a
probability distribution, i.e., a degree distribution, with nor-
malization. Such an operation does not change the feasibility,
although the problem complexity may be slightly increased.
The definition of degree distributions tells us thatd ≤ k.
For a specific source symbol sizek, obviously the problem
dimensions is at mostk. However, according to the LT
encoding/decoding operations, we usually do not need a non-
zero probability on every single degree. Observing the soliton
distribution and considering the belief propagation algorithm,
there is no necessary degree except 1, which ensures the start
of belief propagation. As a result, we optimize a selected
subset of degrees in the present work. We choose some par-
ticular degrees,{1,2,3,4,5,7,9,13,17,23} to form the decision
variables according to the experience. Different subsets of
degrees may change the numerical results of experiments
results, but the soundness of this paper will be not be affected.

B. Objectives

In this paper, degree distributions are optimized for two
different objectives. The first indicator to evaluate efficiency
of LT code is overheadε. The redundancy is traded for the
benefit of fountain code and those extra encoding symbols
increase the cost when they are transmitted to the receiver.
In most application, overhead is required to be as low as
possible because the transmission is usually expensive. In
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EVOLUTIONARY PROCESS DURING THE OPTIMIZATION FORk = 100

1 2 3 4 5 6 7
0

200

400

600

800

1000

1200

Overhead

O
p

er
at

io
n

al
 C

o
st

 

 

Gen. 10
Gen. 50
Gen. 100
Gen. 150

Fig. 3

EVOLUTIONARY PROCESS DURING THE OPTIMIZATION OFk = 300

our simulation of LT code, encoding symbols are generated
until source data are fully recovered. The average required
codewords are calculated as the fitness. The other objectiveis
the computational cost of the encoding and decoding process.
Such an objective value can be estimated with the mean degree
of degree distributions. IfMd denotes the mean value of
a degree distribution, the number of how many timesXOR
is executed can denote as(Md − 1) ∗ ε. There is a trade-
off betweenε and Md because whenMd is greater, fewer
encoding symbols may be required, and therefore,ε is less.
On the other hand,Md is the operational cost, which is the
average number ofXORoperations that have to be executed.

V. EXPERIMENTAL RESULTS

In most multi-objective problems, there is usually a trade-
off between objectives. For ann-objective problem, a solution
can be represented as a point in then-dimensional space.
All points which denote the non-dominated solutions form
a partial optimal set called the Pareto front. The mission of
multi-objective algorithms is to approximate the Pareto front
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EVOLUTIONARY PROCESS DURING THE OPTIMIZATION OFk = 500

as complete as possible. In other words, solutions should well
spread to provide sufficient choices to decision markers. In
our experiments, overhead and operational cost of LT code
are both minimized together and the minimal value of each
objective is expected. Clearly, a degree distribution withthe
minimal operational cost has only non-zero probability on
degree one because in such a case, no encoding operation is
needed. The case is the pure transmission without any channel
coding, and it is a special case in the LT code framework.
As for the other objective, overhead has a lower bound at
ratio 1. Each encoding symbol can generate a new ripple to
recover a source symbol ideally such that at leastk encoding
symbols are required to reconstruct the original data. Different
from the operational cost, such a degree distribution is not
yet discovered and even its existence is not proved. Fig. 2
shows the optimization process and the final result. After 150
generations, a significant PF is represented by fifty individual
points. The solution with the minimal operational cost in
expectation has been found, but the best overhead is 1.2068.
Several individuals are listed in Table II, where the best value
of overhead and operational cost are presented in columns 2
and 3, respectively. Columns 4 and 5 give the average overhead
and execution counts ofXOR in the numerical simulation.
Figs. 3 and 4 display similar results as that shown in Fig. 2
for k = 300 andk = 500. Fig. 7 presents the distribution and
simulation results for each individual listed in Table II.

To our limited knowledge, there is no guideline to design a
robust soliton distribution for some particular coding behav-
iors. In order to fairly compare our optimized results with that
of robust soliton distribution, MOEA/D is also applied to op-
timize the parameters of robust soliton distribution, which are
c and δ. The PF of the optimized robust soliton distributions
is presented in Fig. 5. In the dimension of operational cost,
the optimized robust soliton distributions deliver very similar
results because robust soliton distributions can also become
the degree distribution with only non-zero probability on
degree one if some appropriate parameters are given. However,
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TABLE II

OPTIMIZED ARBITRARY DEGREE DISTRIBUTIONS

Individual Best Overhead Best Cost AVG. Overhead XOR

1 4.8442 0.00042 5.1958 0.038
25 2.5608 1.29873 2.6655 407.026
35 2.0294 1.85193 2.1485 558.667
45 1.4564 2.5135 1.57211 603.742
50 1.2068 2.93541 1.2718 843.669

TABLE III

OPTIMIZED ROBUST SOLITON DISTRIBUTIONS

Individual Best Overhead Best Cost AVG. Overhead XOR

1 4.8080 0.00552 5.1323 0.377
25 3.1244 1.74314 4.1662 125.455
35 2.0708 2.76115 2.6217 324.580
45 1.5194 3.41297 1.9278 471.753
50 1.2530 6.71008 1.3097 1141.46
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COMPARISON BETWEEN THE OPTIMIZED ARBITRARY DEGREE

DISTRIBUTION AND ROBUST SOLITON DISTRIBUTION

there are significant differences along the other axis. The
performance is quite limited, and such a situation is caused
by the fixed formula of robust soliton distribution. The figure
demonstrates numerous better degree distributions that are
very different from robust soliton distribution. These degree
distributions can be discovered by optimization algorithms
proposed in the realm of evolutionary computation.

VI. CONCLUSIONS

This paper proposed the use of multi-objective evolutionary
algorithms to optimize the degree distribution in LT code.
Overhead and operational cost were considered as two objec-
tives and optimized simultaneously by using MOEA/D. The
experimental results were promising and indicated that the
Pareto front was well described. These results might also help
researchers to better understand the behavior of LT code. For

applications of different types and natures, LT code will be
more efficient if choosing a specifically appropriate degree
distribution is possible. Not only more choices of degree dis-
tributions are available, but also much better performancethan
that delivered by robust soliton distribution can be achieved,
because most robust soliton distributions are dominated bythe
solutions discovered with MOEA/D in the experiments.

An alternation solution which designs degree distribution
better than robust soliton is given in the work. While LT
code is employed in real-world apparitions, the degree dis-
tribution can be customized to satisfy different requirements
by using evolutionary algorithms. Fitter degree distributions
will enhance the performance of those applications. Moreover,
better understandings of the behavior of LT code will help the
improvement of LT code. The final results show that some
better distributions are beyond the model of robust soliton
distribution. The theoretical analysis will also be applied to
them just like the development of soliton distributions in our
future work. An advanced model in which the performance is
close to that of the Pareto front is in expectation.
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(a) Individual 1,c = 9.72 andδ = 0.00107
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(b) Individual 25,c = 1.634 andδ = 0.185
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(c) Individual 35,c = 2.146 andδ = 0.978
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(d) Individual 45,c = 0.96 andδ = 0.601
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Fig. 6

SIMULATION RESULTS OF OPTIMIZED ROBUST SOLITON DISTRIBUTIONS
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