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Abstract—A lanthanum (La)-doped HfN is investigated as an
n-type metal gate electrode on SiO2 with tunable work function.
The variation of La concentration in (HfxLa1−x)Ny modulates
the gate work function from 4.6 to 3.9 eV and remains stable after
high-temperature annealing (900 ◦C to 1000 ◦C), which makes it
suitable for n-channel MOSFET application. An ultrathin high-k
dielectric layer was formed at the metal/SiO2 interface due to
the (HfxLa1−x)Ny and SiO2 interaction during annealing. This
causes a slight reduction in the effective oxide thickness and im-
proves the tunneling current of the gate dielectric by two to three
orders. We also report the tunability of TaN with Al doping, which
is suitable for a p-type metal gate work function. Based on our
results, several dual-gate integration processes by incorporating
lanthanum or aluminum into a refractory metal nitride for CMOS
technology are proposed.

Index Terms—High-k gate dielectric, metal gate, MOSFET,
work function tuning, (HfxLa1−x)Ny , (TaxAl1−x)Ny .
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I. INTRODUCTION

A S THE devices are aggressively scaled down for
sub-45-nm CMOSFET technology nodes, the poly-

silicon (poly-Si) gate depletion and boron penetration problems
associated with conventional doped poly-Si gates need to be
addressed. The metal gate is an attractive replacement for the
poly-Si gate because it eliminates both gate depletion and
boron penetration problems, and provides a lower gate sheet
resistance [1]. It has been reported that metal gates with work
functions close to the Si conduction and valence band edges are
desired for the optimal design of bulk Si n- and p-MOSFETs,
respectively [2]. Refractory metal nitrides (MNx) such as TaN,
TiN, HfN, and WN have been widely studied for gate electrode
application [3], [4]. They are suitable to replace the poly-
Si gate because of their thermal stability, excellent scalabil-
ity, and compatibility with high-k dielectrics. Unfortunately,
the work functions of most MNx materials are close to the
mid-gap position of Si after high-temperature annealing [5].
Possible reasons for this include Fermi level pinning [6], [7],
the reaction between metal and dielectric, or the presence of
oxygen vacancies at the metal gate/dielectric interface [8], [9].
In this paper, we report the work function tunability of MNx

(TaN and HfN) by incorporating lanthanum (La) and aluminum
(Al). The compatibility of this work function tuning method
with conventional high-temperature source/drain annealing is
also investigated. Based on our results, we further propose
several dual metal gate integration processes by incorporating
lanthanide and aluminum into the gate stack with a refractory
metal nitride gate electrode.

II. EXPERIMENTAL DETAILS

(100) n- and p-doped (6 × 1015 cm−3) Si substrates were
used in the MOS fabrication process. After active area de-
finition and standard RCA clean, a thermal SiO2 with four
thicknesses (35 Å, 55 Å, 75 Å, and 95 Å) or a sputtered HfO2

(50 Å) was deposited, wherein the thicknesses were evalu-
ated by an ellipsometer. Subsequently, either (HfxLa1−x)Ny or
(TaxAl1−x)Ny gate, followed by an in situ TaN capping layer,
was deposited to complete the gate stack. The concentration
of La in (HfxLa1−x)Ny was controlled by varying the sputter
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TABLE I
PROCESS FLOW FOR MOS DEVICE FABRICATION

power ratio between the HfLa target and the Hf target. It is
noteworthy that a HfLa target (Hf : La = 1 : 1, atomic con-
centration) instead of a La target was used for (HfxLa1−x)Ny

deposition to reduce the moisture absorption of pure La [10].
For the (TaxAl1−x)Ny gate, the concentration of Al was con-
trolled by varying the power ratio between the Ta target and
the Al target. Post metallization annealing (PMA) splits were
conducted by rapid thermal annealing at 900 ◦C to 1000 ◦C in
N2 ambient to study the thermal stability of the metal gates.
The detailed process flow for this work is shown in Table I.
The atomic concentrations of the ternary nitride gates were
determined by X-ray photoelectron spectroscopy. Quantum-
mechanical effects were taken into account when simulating
the measured capacitance–voltage (C–V ) curves for flatband
voltage (VFB) and effective oxide thickness (EOT) extraction.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Lathanide (LA) Doped MNx, (MxLa1−x)Ny , for n-MOS

Fig. 1 shows the Auger electron spectroscopy (AES)
analysis of (Hf0.70La0.30)Ny composition in a MOS structure.
There is an obvious difference in the N concentration at the
TaN layer and the (Hf0.70La0.30)Ny layer, which implies that N
bonding with the HfLa alloy could be easier than that with the
Ta metal. It is seen that an additional 900 ◦C anneal to the initial
forming gas anneal (FGA) does not cause a significant change
to the depth profile of the gate stack, highlighting the thermal
stability of the gate stack at high annealing temperatures.

The modulation of VFB with varying La concentration in
(HfxLa1−x)Ny/SiO2/p–Si capacitors is shown in Fig. 2. The
VFB shifts toward the negative direction with the increase in
La composition for (HfxLa1−x)Ny gate electrodes. In addition,
the excellent fit of the simulated C–V curve to the measured
C–V curves confirms that the SiO2/Si substrate interface qual-
ity was not degraded with La incorporation.

Fig. 3 shows the relationship between VFB and EOT,
which was obtained from the C–V curves of (HfxLa1−x)Ny/
SiO2/p–Si capacitors by varying the SiO2 thicknesses. Based
on the following equation:

ΦM = ΦSi + VFB − QOX

COX
(1)

where ΦM and ΦSi are the work functions of the metal gate
and the Si substrate, respectively, QOX is the equivalent oxide
charge per unit area, and COX is the oxide capacitance, the
ΦM ’s of (HfxLa1−x)Ny with different La compositions were
extracted and shown in Fig. 3. It can be seen that with the
increase in La composition for the (HfxLa1−x)Ny gate, the
ΦM decreases continuously down to a value of 3.91 eV for
the (Hf0.61La0.39)Ny gate.

From the VFB versus EOT plot in Fig. 3, we found that
the magnitude of QOX does not significantly change for
(HfxLa1−x)Ny metal gates with different La compositions.
However, the polarity of QOX changes from positive to negative
with increasing La composition. The extracted EOTs for all
the gate stacks were also found to be thinner than the original
SiO2 thicknesses. Fig. 4 shows the cross-sectional transmission
electron microscopy (TEM) for a (Hf0.70La0.30)Ny/SiO2/Si
gate stack after 900 ◦C 30-s PMA. It is seen that the formation
of an interfacial layer occurred between the metal gate and
the underlying SiO2 after high-temperature anneal. In addition,
the SiO2 physical thickness (∼23.5 Å) after annealing was
found to be thinner than the deposited SiO2 thickness. The
depth profile by energy-dispersive X-ray spectroscopy (EDX)
for the same gate stack [Fig. 5(a)] shows the intermixing of La
and Hf with the original SiO2 layer. In contrast, Fig. 5(b) shows
the HfN/SiO2 gate stack, whereby no obvious Hf diffusion
into the SiO2 layer was detected. Therefore, the interfacial
layer formed was probably a metal silicate with a higher k
value. This explains the reduction of EOT as extracted by C–V
curves. In addition, the intermixing of La (or Hf) with SiO2

may also be the root reason for the change of QOX polarity (as
shown in Fig. 3) due to the introduction of negative charges
in the dielectric layer. These phenomena were also observed
when other lanthanide elements were incorporated into another
refractory metal nitride, i.e., TaN [12]. Fig. 6 shows that La
incorporation in (HfxLa1−x)Ny improves the leakage current
by approximately two to three orders when compared with a
conventional poly-Si/SiON stack. This was attributed to the
increase in dielectric physical thickness due to the high-k layer
formation (metal silicate) between the gate electrode and the
SiO2 layer.

Fig. 7 summarizes the work function values of
(HfxLa1−x)Ny metal gates with varying La composition
under different annealing conditions. It can clearly be seen
that the work function of the HfN metal gate is continuously
modulated from 4.6 to 3.9 eV by changing the La composition
in the (HfxLa1−x)Ny metal gate. This is stable after 900 ◦C
to 1000 ◦C anneal, and the excellent thermal stability could
be related to the enhanced N content in the (HfxLa1−x)Ny

films. Fig. 8 compares the work function data from this paper
and our previous work [13] for LA-doped refractory metal
nitrides on a SiO2 gate dielectric after a 1000 ◦C anneal.
It can be seen that a wide work function tunability can be
obtained by the incorporation of La into refractory metal
nitride gates.

In addition to the investigation of work function tunabil-
ity for (MxLA1−x)Ny/SiO2 gate stacks, the work function
modulation for a (MxLA1−x)Ny/Hf-based high-k dielectric
by lanthanide incorporation into TaN is also shown in Fig. 9.
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Fig. 1. AES depth profiles of the TaN/(Hf0.70La0.30)Ny/SiO2 gate stack. (a) FGA only. (b) 900 ◦C PMA for 30 s and FGA.

Fig. 2. Typical 100-kHz C–V curves of MOS capacitors with
(HfxLa1−x)Ny grown on SiO2 after 900 ◦C PMA annealing. With the
increase of La% in (HfxLa1−x)Ny , VFB shifts to a more negative direction.

Fig. 3. VFB versus EOT extracted from C–V curves for different La com-
positions in (HfxLa1−x)Ny metal gates after 900 ◦C annealing. The metal
work function ΦM was extracted by extrapolating the line to eliminate the
contribution of fixed oxide charges.

About 0.31 V VFB shift can be seen with the 10% Tb incor-
poration into TaN when using HfAlO as the gate dielectric,
which is possibly due to the low bulk work function of Tb
(∼3.1 eV). A similar work function tunability was also reported
for (MxLA1−x)Ny/HfSiON gate stacks [12], which indicates
the good compatibility of La-incorporated metal nitrides with
high-k dielectrics.

Fig. 4. Cross-sectional TEM for (Hf0.70La0.30)Ny/SiO2/Si gate stack after
900 ◦C 30-s PMA.

B. Aluminum Doped MNx, (MxAl1−x)Ny , for p-MOS

As previously reported, the doping of aluminum into
MNx could tune the work function to a p-type band edge on
SiO2 dielectric [14], [15], and the key experimental results are
summarized in Fig. 10. It is observed that with the increase of
Al% in (MxAl1−x)Ny , the work function is modulated toward
the Si valence band edge and with good thermal stability up to
1000 ◦C.

The compatibility of (MxAl1−x)Ny work function tunability
on a HfO2 high-k dielectric is further investigated. Fig. 11
shows the typical C–V curves of (TaxAl1−x)Ny/HfO2 ca-
pacitors fitted with the simulated C–V curve. A positive VFB

shift of ∼250 mV was seen after 24% Al incorporation, which
reflects the approximate effective work function change of the
metal gate.

C. Possible Dual Metal Gate Integration Processes for CMOS

The integration of metal gates with two different Si band
edge work functions on high-k dielectrics has been a challeng-
ing task. Samavedam et al. reported the long channel device
integration of TiN and TaSiN on HfO2 [16]. The integration
of TaSiN (nMOS) and Ru (pMOS) on HfO2 by selectively
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Fig. 5. EDX depth profile for (a) (Hf0.70La0.30)Ny/SiO2/Si gate stack and (b) HfN/SiO2/Si gate stack. Intermixing of La and Hf with SiO2 was found
in (a), while no Hf diffusion into SiO2 was detected in (b).

Fig. 6. Gate leakage current comparison of (HfxLa1−x)Ny/SiO2 gate stacks
with poly-Si/SiON gate stack. A two- to three-order lower Jg at the same EOT
was obtained for (HfxLa1−x)Ny /SiO2 gate stacks due to the formation of a
high-k layer.

Fig. 7. Summary of the ΦM values for (HfxLa1−x)Ny/SiO2 capacitors
with varying La composition under different annealing conditions. The ΦM

of HfN can be continuously modulated from 4.6 to 3.9 eV by changing the La
composition in (HfxLa1−x)Ny film.

wet etching TaSiN using a TEOS hard mask was also demon-
strated [17]. However, in both schemes, the exposure of the
high-k films to a series of wet chemical processes might de-
grade the integrity of the dielectric. Therefore, recent schemes
demonstrate dual high-k and dual metal gate CMOSFETs to
avoid the damage of a high-k layer during processes [18]. Here,

Fig. 8. Summary of ΦM for LA-doped MNx on SiO2 after 1000 ◦C PMA.
The effect of lanthanide on ΦM tunability is clearly seen.

Fig. 9. C–V curves of (TaxTb1−x)Ny/HfAlO/Si MOS capacitors with
different Tb composition after 1000 ◦C PMA. The VFB shift indicates the ΦM

difference of the metal gates.

we propose several alternative integration processes for dual
metal gate CMOS technology by incorporating lanthanide and
aluminum into the gate stack with MNx gate electrode. First,
since the feasibility of implanting Al and other lanthanide ions
has been recently demonstrated for Ni-based FUSI gate elec-
trodes, respectively [19], [20], this would also bring the pos-
sibility to implement lanthanide and aluminum incorporation
by ion implantation into a single MNx gate electrode directly
or thin MNx layer involved in the metal-inserted poly-Si stack.
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Fig. 10. ΦM summary for aluminum-doped MNx on SiO2 after 1000 ◦C
PMA from previous works. The effect of aluminum on ΦM tunability is
clearly seen.

Fig. 11. C–V curves of (TaxAl1−x)Ny /HfO2/Si MOS capacitors with dif-
ferent Al compositions after 1000 ◦C PMA. VFB shifts to a more positive
direction with the incorporation of Al into TaN due to the ΦM difference among
these metal gates.

In addition, the ion implantation process could be simplified by
depositing the (MxLa1−x)Ny [or (MxAl1−x)Ny] electrode on a
whole wafer, followed by selectively implanting Al (or La) ions
into the p- (or n-) MOS region. Also, the incorporation process
can be implemented by previously reported technologies, such
as single dielectric and dual metal gate [17] or dual dielectric
and dual metal gate [18].

IV. CONCLUSION

In this paper, we have reported the work function tunability
by incorporating lanthanum and aluminum into MNx on both
SiO2- and HfO2-based dielectrics with good thermal stability.
Based on our results and previous data, we propose several
integration processes for dual metal gate CMOS technology.
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