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We present our experimental results of implementing the CM method. The
implementation refers to IEEE P1363 and the MIRACL (Multiprecision Integer
and Rational Arithmetic C/C++ Library) library is used. The computing
environment is Intel Xeon E5520 processor with 2.27GHz, 4G RAM on
FreeBSD 7.2 with the MIRACL library version 5.4.

1. #+EEFos®

First of all, we analyze the computation time of each step in CM method.

Considering the steps of the algorithm:

(1) Determine the desired parameters of the elliptic curve
= #E(F,),p.t
(2) Compute the discriminant

= —D=t—4dp

(3) Compute the class polynomial

= H'.,r) or n',r)

(4) Factor the class polynomial and get all roots in [,
> use Cantor-Zassenhaus algorithm
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Figure 5.1: Proportion of computing time of each step

(5) Compute the desired elliptic curve equation

'y

] . 3__? 2‘} \ ) 3 )
2 _ .3 _ 9 3 2.
= y =T +J.728_?I+1?28_J0ry =T +~;‘2—§L1‘r ; —Jll T4
ﬁ-—ﬁﬁ 2 - jifﬁ, for quadratic nonresidue v

Since the steps (1), (2), and (5) are computed by the simple equa-

tions, we ignore the time for computing these steps. By examining
some examples, we observe that the computation of the class polyno-
mial dominates the whole computing. Hence we focus on the results of
computing the class polynomials in the following discussions. Figure
5.1 shows the proportion of computing time for each step.

d PRV AT Tk f R G %)’I&%’\;L_% class polynomial -

2. 3+ ¥ Class Polynomial

The discriminants we used in CM method are ranged from 2 to 6 digits.
Table 5.1 is the number of actual computed discriminants. Although
there has no known attacks for the small discriminants yet, it is suggeted
that the discirminants used should have class number greater than 200

for the security consideration. Since lots of the discrminants with 6
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Figure 5.2: Computing time of Hilbert and Weber polynomial

digits satisfy the requirement, we also provide the observations focused
on these discriminants.
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Hilbert polynomial | Weber polynomial
1 digit 1 1
2 digits 6 9
3 digits 37 70
4 digits 266 527
5 digits 457 3358
6 digits - 19058
Total 767 23023

Table 5.1: Number of class polynomials computed

Note: for simplifying the figures, we randomly select the data to
restrict the number of points displayed under 1000.

The class polynomials most used in CM method are Hilbert polyno-
mial and Weber polynomial. Figure 5.2a compares the computing time
of each polynomials. The higher class number means more invariants
to be computed and would take more time. therefore, we use the class
number as x-axis. By scaling the y-axis to 0 to 1 second, this trend can
be observed in Figure 5.2b.

Considering the fact that the coefficients of Hilbert polynomial would
much lager than those of Weber polynomial, we use Weber polynomial

instead of Hilbert polynomial in the following experiments.

2.1. Class Number & #

We observe the relation between the class numbers and the discrimi-
nants first. From some related researches, it is claimed that the class
number will grow as O/ D|. Therefore, we plot Figure 5.3 to confirm

the trend of the class number.
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Figure 5.3: Trend of the class number

22. FERER

The bound of bit precision required to compute the Hilbert and Weber
polynomials. The bit precision required to compute the Hilbert polynomial is

Inl10 (A D
- ~ +5 =
H-Prec (D) In2 (4 ) In2 an

where the sum runs over the same values of 7 as the computation of
the class polynomial, i.e. runs over each reduced binary quadratic form
(a, b, c). And the bit precision required to compute the Weber polyno-
mial is -

D 1 (5.1)

coIn2 ~a,

W-Prec (D) =~ ¢1h +
where

. _ |3 ifD=3(mods)
! 1 if D = 3 (mod 8)

12
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Figure 5.4: Estimated and actual precision required

(24 if D =3,7 (mod 8)and D # 0 (mod 3)
8 ifD=23,7T(mod8&8)and D =0 (mod 3)
if D/4 =15 (mod 8) and D = 0 (mod 3)
2 ifD/4=5(mod8)and D = 0 (mod 3)
12 if D/4=1,2,6 (mod 8) and DD £ 0 (mod 3)
4 ifD/4=1,2,6(mod8)and D = 0 (mod 3)

Cg = 4

And for the case D = 7 (mod 8), there exists a more accurate bound

h , -, 7D 1
In10 [ 7 +5+ 090 2r as

In 2 47 1

We use the general bound in Equation 5.1 to estimate the bit preci-
sion required in our computation. In order to compare the accuracy of
the bound, the implementation also reports the actual bits required of
the maximal coefficient of the Weber polynomial. We plot the results in

Figure 5.4.
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23. P EER

In this section, we provide the results of the computation time which
reflect the efficiency directly. First of all, the Figure 5.5 shows the com-
putation time of all discriminants from 1 digit to 6 digits. Since the bits
we use to compute are 1024, 2048, and 4096 bits, the results in Figure
5.5 are separated into three parts. To show that the relation between
class number and the computing time is approximately linear, we also
provide the result of each part in Figure 5.6a, Figure 5.6b, and Figure
5.6c.

« Computation time

computation time (second)

0 300 600 900 1200 1500

class number

Figure 5.5: Computation time of Weber polynomial
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Figure 5.6: Computation time of Weber polynomials - partitioned by
precision

« Computation time
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* Computation time
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(c) 4096 bits used

Figure 5.6: Computation time of Weber polynomials - partitioned by
precision

We state the mathematical backgrounds and describe each step of the
complex complication method in this thesis. For computing the class
polynomial is one of the major part of CM method, we focus on the
computation of the class polynomial, present the experimental results, and find
some interesting differences between the prime and composite discriminants. It
seems like that the computations of the Weber polynomials of composite
discriminants have the chance to be more efficient. To confirm this effect, it
should take more experiments and observe closely.

In our experiments, we compute the class polynomial of discriminants
with at most 6 digits. Though the computation of class polynomial with more
digits would take more time, there must exist more interesting properties to be
discovered and may become the measurement of evaluating the discriminants.
Lots of researches related to computing the class polynomial are proposed
nowadays. Andrew V. Sutherland achieve the record of computing the class
polynomial with discriminant D=4058817012071 and has class number

16



hp=5000000 in April, 2009. For solving the large space requirement of the
polynomial, Andrew V. Sutherland proposed the computation using Chinese

Remainder Theorem.

In the future, we will implement the algorithm with CRT to overcome the
difficult of computing class polynomial with large digits. Besides, the
researches of CM method on hyperelliptic curves with genus 2 are also

ongoing.
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Chapter 3

Complex Multiplication for
Elliptic Curve

In this chapter, we outline the complex multiplication neth(CM
method) first, and then describe each step in detail to showtheorks.

3.1 Outline of the Complex Multiplication Method

First of all, by the property of thg-invariant of an elliptic curve over
finite field F,, whereChar (¢) > 3, if we know thej-invariant, we can
construct an elliptic curve with thigsinvariant.
Let j be thej-invariant and the equation of elliptic cun/e be de-
fined as , )
3] 2J
1728 TR
Then elliptic curveE will be an elliptic curve withj (E) = j.
Now we review the elliptic curves defined ovEér
From Section 2.2.3, an elliptic curvg: defined ovelC is isomor-
phic toC/L, whereL = Zw, + Zws, w1, ws € C, andwy, w, are linearly
independent ifR. We can rewrite the latticé asL = Z + Zr such that
the imaginary part of is positive, and we get(E¢) = j (7).
Furthermore, the endomorphism ringg will be

vt =23+ (3.1)

End(Ec) ~ {8 eC|AL < L}
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i.e. corresponds to an idedl of an orderQ© in an imaginary quadratic
field K. It can be shown that the minimal polynomial pfE¢) is
the Hilbert class polynomial

hp
Hp (x) =] [ (== j (A))

=1
wherehp, is the order of the ideal class group®f;, A; are representa-
tives of elements of the class group®f;, and; (A;) is thej-invariant
of the elliptic curve corresponding té.

By Deuring’s Lifting Theorem, we can obtain an elliptic curve

with complex multiplication over a finite field by reducing afliptic
curve with complex multiplication in characteristic zero.

Theorem 3.1(Deuring’s Lifting Theorem) Let E be an elliptic curve
defined over a finite field and let be an endomorphism of. Then
there exists an elliptic curvé& defined over a finite extensioR of
Q and an endomorphisi of £ such that® is the reduction of2 mod
some prime ideal of the ring of algebraic integerdgoand the reduction
of ais a.

The j-invariant of the elliptic curveZ over a finite fieldF, reduced
from the elliptic curveE¢ will be the root of the Hilbert polynomial
Hp (z) (modp).

The idea of generating elliptic curve with presribed ordgrGm
method is

1. Determine the prime ordéY of the elliptic curve and the finite
field IF, over thatE' defined.
By the orderNV, it determined the structure of the endomorphism
ring End (E) and the Hilbert class field.

2. Compute the Hilbert polynomial/,, (X) and find a rootj, of
Hp (z), (modp).

3. Compute the elliptic curv&//F, and its twist£’/IF,. Then check
which one of and £’ has the order equal &, and it would be
the elliptic curve we want.
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According to the idea of the CM method, the algorithm of gener-
ating elliptic curves by CM method can be designed as belowceSi
the Hilbert polynomials can be computed in advance, therilgo
takes the Hilbert polynomials as input.

Algorithm : Construct elliptic curve using CM method

INPUT: A squarefree integet # 1, 3, parameters andd, Hilbert class polynomiat ,, (X),
desired size op and..

OUTPUT: A primep of the desired size, an elliptic curve/IF, with [ | #E (F,), wherel is

a large prime.

1. do

2. do

3. choose prime of desired size

4, until ep = 2% + dy? for somez,y € Z

S. Letn1=p+1—%””, n2=p+1+%x

6. untiln; orny has a large prime factér

7. find arootj, of Hp () (modp)

8.  compute the elliptic curvé&;/F, by 3.1 and its twist”’ /I,
9. do

10. find a pointP € E; (F,) and comput&) = n, P
11. if ) = co andny P # oo, returnp and E;

12. else ifQ) # oo, returnp and £

3.2 Endomorphism Ring

In Section 2.1.3, we formulate some definitions related todmor-
phism. For studying the details of the CM-method, we starhfiotro-
ducing the endomorphism ring of an elliptic curve.

Definition 3.2 (Endomorphism) Let .4; and.A, are abelian varieties
over K and Hom (A;, As) denote the set of homomorphisms from
A; to A;. Then the homomorphismBndy (A;) := Homy (Ay, A;)
are the endomorphisms gf;.
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1A

\

8"

L=Z(a)+Z(ia)

Figure 3.1: Square lattice = Zw + Ziw

The setEndg (A;) is a ring with composition as multiplicative
structure.

Given an elliptic curveE' defined overk’, we say that the elliptic
curve . hascomplex multiplication if the endomorphism ring ofv,
Endk (E), is strickly larger thar¥. We now utilize the elliptic curves
defined ovelC as examples to illustrate the endomorphism rings, then
show that all the elliptic curves defined over finite fieldsdnaemplex
multiplication.

We use the elliptic curver : y? = 423 — 42 defined overC as
example.

As we had proved, we can find a lattiée= Zw; + Zw, such that
E(C) ~ C/L. In this case, it can be computed that the latticean
be written asl. = Zw + Ziw for a certainw € R. Figure 3.1 shows an
example of this square lattice.

The square lattice was symmetic, i.eL. = L. Considering the
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endomorphisna (z) = ix acts on the Weierstragsfunction
1 1
p(iz)z —5 T ( 2__)
(iz) weLZ\{O} (iz —w)*  w?

(@'if p3 ((iz —1 w)? (z'if)

iweL\{0}

=—p(z),
¢ (iz) = ig' (2).
Hence, we have the corresponding endomorphism on theieliptve
E given by
i(r,y) = (=, iy)
i.e. we get the the corresponding map of the endomorphisweesir
andC/L

C/L: z iz
E©€): (z,y) = (p(2),¢'(2) — (p(iz), ¢ (i2)) = (-z,iy)

It shows that givenv = a + bi € Z[i] and(z,y) € E(C), where
Z i) = {a + bila,b € Z}, thena would be an endomorphism @f de-
fined by
(@,y) = (a+bi) (z,y) = a(zx) + b(-=,iy)
since point multiplication by integer andb can be expressed by ratio-
nal functions.
Therefore, in this cases,

Z[i] < Endc (E).

Figure 3.2 shows two examples Bf.d¢ (£), one is multiplication
by integer and the other by

Now we deal with the endomorphism rings of the arbitrarypéli
curve overC. We prove the following theorem.
Theorem 3.3. Let £ be an elliptic curve defined ovér and L be the
lattice such thaty (C) ~ C/L. Then

Ende (E) ~ {8 eC|BL < L}.
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Pfry) ——s P

E(C) =(R(x), yS(x)
S k o 1@ o
/L
z S )

Figure 3.3: The illustration of the morphisms proved of Tieso 3.3 -
1)

Proof. Let F be an elliptic curve defined ovél and L = Zw, + Zw»
be the corresponding lattice. To prove the theorem, we reeslaidw the
followings:

1. All endomorphisms of© (C) can be expressed by such that
BL< L
2. All suchp’s define endomorphisms @ (C)
Here we start the proof.

1. Given an endomorphism of E (C), by definition of the en-
domorphism, it maps a poin? = (z,y) € E(C) to aP =
a(x,y) € E (C) and can be expressed by rational functions

a(z,y) = (R(x),yS ().
Since there exists an isomorphignbetweenC/L andE (C)
©: C/L—E(C),2(2) = (p(2),¢ (2)),
the map
G =2 (a(®(2)))

would be an endomorphism @/L. Figure 3.3 illustrates the
relations of these morphisms.

To show thatx (z) = [z for someg € C, we focus on the action
of the endomorphism applying on a sufficiently small aveaear
z = 0. Then we obtain the map froii to C such that

a(z1+2)=a(z1) +a(zg) modL, Vz,z0eU
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and we may assume that(0) = 0. By continuity,a (z) — 0
whenz — 0. If U is sufficiently small, we may assume that

a(z1+ 20) =a(z1) +a(z), Vzi,20€U.

Therefore, forz € U,

@0 = iy T
&}

= lim
h—0

.oa(h -,
= fm = =a(0).

Let 5 = &' (0), sinced’ (z) = (3,Vz € U, we havea(z) =
Bz,VzeU.

Now let z € C be arbitrary. Since there exists an integesuch
thatz/n e U,

a(z) =na(z/n) =n(Bz/n) =Pz modL.

Hence, the endomorphisenis given by multiplication bys.

For the definition of homomorphsim, (L) < L, it follows that

BL < L.

. Givenf € C satisfiess L. < L, then multiplication by3 is a ho-
momorphism frontC/L to C/L. Therefore, the functions (3z)
and g’ (8z) are doubly periodic with respect tb. By Theorem
?7?, there exists rational functior’® and S such that

p(8z) = R(p (), ¢ (82) =¢"(2)S(p(2)).
Hence, multiplication bys on C/L corresponds to the map di1
(z,y) = (R(x),yS (x)).

Again, we use Figure 3.4 to show the illustration of the retat
between the morphisms proved in this part.
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By proving the above, we link the endomorphism ribgdc (F)
and the lattice. corresponding td” (C) together. O

Theorem 3.3 shows that the endomorphism ring of an elliptiee
overC is related closely to the lattice it corresponds to. The tiexb-
rem gives us a precise structure of the endomorphism fAng (E).

Theorem 3.4. Let £ be an elliptic curve defined ové&l. ThenEndc (F)
is isomorphic either t& or to an order in an imaginary quadratic field.

Proof. Let L = Zw; + Zw- be the lattice corresponding t6. By
Thoerem 3.3, let
R = Endc (F)={peC|fL<c L}.

Then we haveZ ¢ R andR is a ring sinceR is closed under the com-
position laws+ and x. Given/s € R, for {w;, w»} is a basis of latticd.,
then

fwi = jwy + kwy, Pws = mwi + nwy, J,k,m,nez
5 —j —k w1
= = 0.
-m [B—n Wy
So the determinant of the matrix(s
B —(j+n)B+ (jn—km) =0.

Hence,( lies in some quadratic fiel& and /3 is an algebraic integer
(." 7, k,m,n € Z). We deal with fieldK in two cases.
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1. Assume3 € R.

Then the equation abov&uv; = jw; + kwy (OF fwy = mw; +
nws) gives a dependence relation betwegnandw, with real
coefficients:

Bwi = jwi +kwy = (B—J)w = kwy

or fBws=mw;+nwy = mw;=(0—n)wy

Sincew; andw, are linearly independent ov&, we haves = j
or 3 =n, meansthak n R = Z.

2. AssumegdeCandf¢R. = ¢ 7Z

Theng is an algebraic integer in a quadratic field andfof R,
K must be an imaginary quadratic field, denéteoy Q (v/—d).
Let 5/ ¢ Z be another element a. By the same reasom, €
K' = Q (v/~d') for somed’.
SinceR is aring,[ + (' must also be ik, implies thatk’ = K’
andR < K. For all the elements ok are algebraic integers, we
have

R < Ok.

Therefore, the endomorphism ririgndc (E) = R is isomorphic
either toZ or an order in an imaginary quadratic field. [

After studying the structure of the endomorphism ring of e¢fig-
tic curves defined ovet, next we discuss the endomorphism rings of
elliptic curves defined over finite field,.

Considering the Frobenius endomorphiggmon an elliptic curve
defined oveit,,

E(Fq) - E(E)
¢q: (l’,y) — (quyq)

—> o0

By Corollary 2.46, the ma¢§ —t¢, + q is a zero map on elliptic curve
E over[F,, theng, would be a root of the polynomial

X? —tX +q=0.
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By the Hasse theorem (Theorem 2.43), the unique integatisfies
t| < 2,/g. It can be shown that if = +2,/q, then the endomorphism
ring would be an order in a quaternion algebra. For our apgptio and
in pratical, we restrict the discussion on the case [tfat 2,/g. Since
t| < 2,/q, the polynomialX* — tX + ¢ = 0 would have only complex
roots, therefore

Z# 7o, < End(E).

From Theorem 3.4, then the endomorphism ring of an elliptio/e
defined over finite field would be an order in an imaginary qatdr
field. Observing the polynomial

X?—tX +q=0,

the roots would lie in the imaginary quadratic fie(@ («/t2 — 4q>.
Hence, for choosing the parameteé@ndq, we can then determine the
imaginary quadratic field’ = Q (1/—d) such that

This is an important result that allows us to choose the ddsrder
first and then find the elliptic curve with the exactly order.

In this section, we link the relation of the order of an eltpturve
and the structure of its endomorphism ring. Following wevshow to
use the structure to find the desired elliptic curve.

3.3 lIdeal Class Group

We have showed that the endormorphism ring of an elliptieeis iso-
morphic toZ or to an order in an imaginary quadratic field in previous
section. It can be proved that for an ordinary elliptic cu~velefined
overF,, the endomorphism ring'nd (E) is an order in an imaginary
quadratic field. To connect the endomorphism ring and;thevariant

of an elliptic curve together, we introduce the ideal classug in this
section.

Definition 3.5. Let R be a ring,/ is an ideal ofR if it is a nonempty
subset ofR such that
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e [ is a subgroup of? with respect to the law-.

e forallze Randally e I, xy € I andyx € I.

We summarize some related definitions about ideal below.

e Prime ideal:
Anideall < Risprimeifforallz,y € Rwith zy € I, thenz € [
oryel.

e Maximal ideal:
Anideal/ < R is maximal if for any ideal/ of R the inclusion
I < JimpliesJ =1orJ = R.

e Finitely generated:
An ideal I of aring R is finitely generated if there are elements
ay,- - ,a, such that every € I, we can writer = xa; + --- +
Tpan With zy,--- 2, € R.

e Principal ideal:
An ideal I is principal if I = aR. And R is a principal ideal
domain (PID) if it is an integral domain and if every ideal®is
principal.

Definition 3.6 (Fractional ideal) Let K be a number field and let an
orderO be a Dedekind ring. A fractional ideal &f is a submodule of
K overQ.

The Dedekind ring is defined as:

Definition 3.7 ( Dedekind ring) A Dedekind ringR is an integral do-
main satisfying the following properties.

(1) Every ideal ofR is finitely generated.
(2) Every nonzero prime ideal @t is maximal.

(3) Risintegrally closed in its quotient field
F={a/f:a,feR,f+0}.
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From the definition, for a fractional idedf of R, we havex M < R
andaM is an integral ideal of? for some nonzera € R. Hence for
any fractional ideal ofz, it can be expressed in the fomt! 7, wherel
is an integral ideal ofz.

Now we state the following lemma:

Lemma 3.8(Group of fractional ideals)If R is a Dedekind ring, then
the set of all fractional ideals forms a multiplicative abaelgroup, de-
noted by§ (R). The setP (R) consisting of all principal fractional
ideals ofR is a subgroup of (R).

Then we can define the class group of an integral fing

Definition 3.9 (Class group) Let R be a Dedekind ring. Then the quo-
tient groupg (R) /P (R) is called the class group @i, denoted by .
WhenR = O, we write €.

We say that two fractional ideals are equivalent if they bglto the
same coset P (R) in § (R). In other words, fractional ideals J are
equivalent, denoted by ~ J, provided that) (I) = 1 (J) under the

natural map) : §(R) — § (R) /P (R).

The cardinality of the class groug@ix | is called the class number of
Ok, denoted by . It can be proved thdiy is finite.

In our case, for an elliptic curvg, the endomorphism ringnd (E)
will be an orderR in an imaginary quadratic fiel@ (v/—d). Let A;
be the representative of each equivalent clas€gfthenj (A4;) are
conjugates under the action of the Galois group of the riagscfield
overQ (v/—d). And we will get the polynomial

hp

Hp(z) = | [ (z =5 (4))

=1

is the Hilbert class polynomial. This will also be mentionedhe fol-
lowing sections.
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3.4 j-invariant

We review the mathematical background relateg-tovariant and link
it to the CM-method in this section.
Recall that the definition of-invariant is defined as a function of
a complex number on the upper half plane of complex numbers. In
Definition 77,
3

9o gg
) = 17282 = 1728 —~—
J (1) 7 8A 7 893_27932)

Given a matrix\M € SLs (Z), the action on the upper half plane is

MT=<a b)T:aT—l—b VreH

c d cr +d’

We now proved Proposition?.
LetT € H and let matrix) € SL, (Z), then

j(Mﬂ:j(‘”“’) i),

ct +d
Proof. From the difinition ofj (7)

9
) (7) = 1728—/—————,
i (7) 93 — 2793
where
g2 = g2 (T) = 02 (LT) = 60G4 (LT)
g3 = g3 (7) = g3 (L) = 140G¢ (L)

Observing the serieSy, (L,) = Gy (7):

(CLT + b) 1
. _
THd) e (m () +n)

cT+d
1
— (et + d)*
(mm)Z;é(O,O) (m (a +b) +n (cr + d))*
1
— (et + d)*

(mmz0,0) ((ma+nc) T+ (mb+ nd))*
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Sincedet(a b > =1
c d
-1
a b B d —b
c d = «a ’
b
(m’,n/)=(ma+nc,mb+nd)=(m,n)(a ),

c d
(m,n) = (m',n) ( —dc ;b ) .

Hence there is a one-to-one mapping betweenn) and (m/, n’), so
we can write

a (a7+b) — (er + ) Z 1

for

we have

ct+d (2 (0.0) ((ma + ne) T + (mb + nd))*
1
= (cr + d)F _
(m',n%(o,t)) (/7 4 )"
= (et +d)" Gy ().
Therefore
ar +b\ 4 ar +b\ 6

92 (CT " d) = (7 +d) g2(7), g3 (CT - d) = (c7+d) g5 (7)

Put these terms into the definition gfit follows that

ar+b)3
j ((IT +2) — 1798 +bg23(c7'+d) v
cr + g2 (£557)" — 2795 (255)

(et + d)l2 g2 (7‘)3
(et + d)12 (92 (7’)3 — 27g3 (7)2)
=j(7).

= 1728

[]

Hence, thej-function is a modular function. By the action on two
special matrices i L (Z)

11 —
M1: ) M2: ! ! )
01 1 0
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we have

i =i, i(-3) =i,

-
These two transformations generate a modular group andmjfayrtant
roles in proving Corollary??:

If z € C, then there is exactly onee F such thatj (1) = z.

It means that given a specific valugwe can findr’ such that

i) =z

and for Propositior??and Propositior??, by choosing appropriate €
SLy(Z), we can find a transformation belonging to the modular group
to find a uniquer in the fundamental domain such that

j(r)=jM7)y=45(r")Y=2 T€F.

Hence,j-function is a one-to-one mapping from the fundamental do-
main to the entire complex plane. Since each valug¢ obrresponds
to the field of elliptic functions with periods and, j-function is in a
one-to-one relationship with isomorphism classes of @tlipurves.

Now we conclude the material discussed as below:

Theorem 3.10. Assume tha¥ is defined ovefC and has complex mul-
tiplication. Letr be its period. Thei (7) is an imaginary quadratic
field, Endg) (E) = Endc (E) is an ordeOg in Q, and the absolute
invariant;j (7) is an algebraic integer that lies in the ring class figlgl,

overQ (7).

For our case, th€®y is the ring of integers of),. ThenHy,, is
the Hilbert class fieldd of Q.. And there exists a monic polynomial
with integer coefficients whose roots would be thevariants of the
isomorphism classes of the elliptic curves. The monic ietgmplyno-
mial, i.e. the minimal polynomial of thg-invariant, is the Hilbert class
polynomial
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whered is the squarefree integer such that Q (v/d), hp is the Hilbert
class numbery; are the representatives of the elements of the class
group of Ok, andj (7;) are thej-invariants of corresponding value.

By Theorem??, for an elliptic curveE overC, there is a latticd.,
such that? (C) ~ C/L, andj (E) = j (L,) = j (7). Therefore, thg-
invariants in above polynomial would be thienvariants of the elliptic
curve corresponding te,. Since we have showed thafunction is a
function that maps the fundamental dom#irio entire complex plane,
we can focus on the’s in F for computing the Hilbert polynomial.

3.5 Hilbert Polynomial

To connect the elliptic curves over number fields and edliptirves over
finite field, we discuss the properties of Hilbert polynomial

According to Theorem 3.10, restate the description of Hiilpely-
nomial first:

Corollary 3.11. Let K = Q (v/—d) be an imaginary quadratic field
with ring of integersOx. Let £ be an elliptic curve withEndc (E) =

Ok . Then the minimal polynomial ofz is the Hilbert class polynomial
hp

Hp(z)=[[(x i),

r=1
wherej (7;) is the j-invariant of the elliptic curve corresponding tg
hp is the Hilbert class number, angare representatives of the elements
of the class group a.

We know that for aj-invariantj (7), the minimal polynomial of
j (1) is the Hilbert polynomial. Since it can be proved thgtvariant
is an algebraic integer, the Hilbert polynomial has integeefficients.
Therefore, by taking all the integer coefficients moduloimpip, the Hilbert
polynomial can be reduced to a polynomié, (), overF,,.

hp

Hp(x),=]](@—j(m)) (modp)

r=1

44 a4 ag,



wherea; € F,. Futhermore, ifp does not divides!, the polynomial
Hp (z), would have simple roots iR,

Let j, be a root of the polynomial/p, (x),, then it is the reduction
modulop of one of thej-invariants; (;). If j, is contained irf ., for
thej (r;) are conjugate, all the roots éfp (x),, would be inF .

As mentioned in beginning, if we have theanvariantj, € F,, j, #
0, 1728, then we can find the elliptic curve ovEy, with invariantj, by

3 2j
2 3 P p
= + + .
4 * 1728—jpx 1728 — 7,

Computing the Hilbert Polynomial

In order to find a root of Hilbert polynomial modula we need
to compute Hilbert polynomial first. For computing the padymial, it
needs to find all the;’s. Recall that each; represents an element of
the ideal class group @, we use the equivalence between the ideal
classes of an algebraic number field with discriminadand the equiv-
alence classes of primitive, positive definite binary qa#idrforms of
discriminantd to find all 7;’s.

A binary quadratic form is a quadratic form in two variablésthe
case of the ideal class group of function fields, it can be gulahat
there is exactly one reduced binary quadratic form in eaciivalgnce
class. The reduced binary quadratic form is defined as:

Definition 3.12. A quadratic formaaz? + bzy + cy? is called a reduced
binary quadratic form if it satisfies

e b <a<c
e b=>0ifa=|bora=c

e gcd(a,b,c) =1.

Therefore, we search for all reduced binary quadratic farfrdis-
criminantd to obtain allr;’s. For each reduced binary quadratic form
ax?® + bxy + cy?, it corresponds to the ideadl = Z + Zr where

b+ d

2a

T
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On the other hand, the conditions of the redeuced binaryrgtiad
form make the correspondingbelonging to the fundamental domain
F. Given ar;, one can computg(r;) by following

Definition 3.13 (Dedekind’sn-function). Let 7 be a complex number
with positive imaginary part, i.er € H, defineq = €*>™" and the
n-function by

0
1 n 1 n ([ n(3n— n(3n
n(m) =g [ [(1-q") =g (1 + 2, (=) ("R 4 g “)/2)) .

Alr)=n(n)* =g¢ ﬁ (1-¢"* =gq (1 + 3 (=) (g 4 q"(?’"“)/Q))

v =500 - (256hh((77))+ Dt

Since the computations are ov€r the results would be the approx-
imate value forj (7;). By the fact that the coefficients of the Hilbert
polynomial are all integers, we can obtain the actual patyiabby us-
ing sufficient precision.

3.6 Weber Polynomial

Since the coefficients of the Hilbert polynomial grow fastamtthe de-
gree of the polynomial increases, the computation of thedtilpoly-
nomial was suggested to be taken in advance. Another soligito
use other class invariant insteadjehvariant. Different class invariant
leads different class polynomial. The Weber polynomialsedimost.
The Weber functions are defined as following, using the Dextiky)-
function (see Definition 3.13),

(r+1)/2)

rn = @B o 210 g - Vel




where¢, = e, and
f(r)* 16 (D" +8) (i () = L))
f(r) f(r)

For more details, refer to [2], [15]. The relation of thesadtions and
the j-function are

72 (7) = s (T) =

j(r) = (f (7')24 — 16)3 _ (fl (7)24 + 16)3 _ (f2 (7_)24 n 16)3
S (0 ()

— 72 (7)° = 35 (7)? + 1728,

Then the Weber polynomidl/,, (x) is defined as
h/
Wp (z) = [ [(@—p(x)

i=1

Atkin and Morain suggest a list of the choige r;) for different dis-
criminantD in [2]:

e If D=3 (mod6), useu (1) = v/—Dv3 (7).
e If D=7 (mod8), useu (1) = f (1) /2.

If D=3 (mod8), useu (1) = f (7).

If d = +2 (mod8), useu (1) = f1 (1) /vV2.

If d =5 (mod8), usey (1) = f (7).

e If d =1 (mod8), useu(r) = f(1)° /2.

where

- D, if D=3 (mod4)

B { D/4, if D =0 (mod4)
In the case wherD = 3 (mod 8) and D # 3 (mod 6), the degree
of Weber polynomial will besh,, hp denotes the degree of the Hilbert
polynomial. Therefore, it usually avoid to choose theseesiforD in
practice.
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3.7 Finding Roots of Polynomial overf,

After computing the Hilbert polynomial, next we want to findaat j,
in the finite fieldF, to construct the corresponding elliptic curve. Before
finding a root of the Hilbert polynomial modu}g some criteria need to
be satisfied when choosing the prime figld

Assume the prime numberis decomposed iQ (v/—d), by the
class field theory of imaginary quadratic fields, we haveofeihg the-
orem.

Theorem 3.14. There is an integer € Q (1/—d) such thatrw = p and
lp+1— (7 + 7)| equals to# E (F,) or its twists.

From the theorem above, we have = p andr + 7 = #E (F,) —
(p + 1) = t, then the minimal polynomial of would be

z? —tr + p.
Recall the characteristic polynomial of Frobenius mgp

¢327 - t¢p +p7

wheret is called the Frobenius trace. We can observe that in Theorem
3.14, the algebraic integer is actually the Frobenius endomorphism
acting onk, or its twist modulop.

Hence, we need to choogevhich can be decomposedd?. These
primes would be the ones such that there are integer sadutmithe
norm equation

1 ifd=1,2 (mod4)

2 2
+ dy® = ep, Wwheree = ,
Lo me ‘ { 4 ifd=3 (modd)

From the equation above, we obtain that must be a square modulo
p. To find such a suitable prime one usually uses the Cornacchia’s
algorithm to get a solution.

Algorithm : Cornacchia’s algorithm
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INPUT: A squarefree integet > 0 and a primep such that the Legendre sym%o@—d) =1L
OUTPUT: (x,y) € Z* such thatr® + dy* = p if possible.
compute square roat of —d with p/2 < ag < p,i.e.a2 = —d (modp)
a<p, beay, c—|p]
whileb > ¢ do
r<—a (Modb), a<0b b<r
ifd jp—b*orif 2= (p—0?) /dis not a square, return "no solution”
else returriz, y) = (b, /2)

ok wdPRE

Choosing the prime by the Cornacchia’s algorithm, now we can
factor the Hilbert polynomial iff, to find rootsj, € F,. We introduce
the general way to find roots of a polynomial, then discussrb#od
to find roots of Hilbert polynomial.

For finding roots of a polynomiaf (x), it usually needs to make
the polynomial squarefree first. Due to the characterigtibefield we
deal with, we discuss this step in two cases.

(1) If the characteristic of the field (&

We can obtain the squarefree version of the polynorhial) by
computing

f(x)
ged (f (), f' (x))

(2) If the characteristic of the field js

Since a polynomialf (x) satisfiesf’ (xr) = 0 precisely when
f(z) = w(x)” for some polynomiaky (z), we write f (z) =
v (z)w (z)” (if deg (f (x)) < p, thenw (z) = 1). Then use the
same process to deal with thézx).

After reducing the square part of the polynomial, we fadberpolyno-
mial such that

fe) = fr(@) fa@) - fon ()

43



wheref; (x) is the product of irreducible polynomials with degre&or
eachf; (x), applying the Cantor-Zassenhaus algorithm to find individ-
ual factors. The Cantor-Zassenhaus algorithm can fact@alygomial
with all irreducible factors having the same degree.

Focus on finding roots of reduced Hilbert polynomial modp)o
sincedeg (HD (x)p) < p, reducing the square part can be done by

<l Hfii)(:,)éb @) For the roots we interest are those lie in
ground fieldF,, we only process the polynomig (x), i.e. the product
of the irreducible polynomials with degrae

We also can use the fact thatx) = 2P — = is the product of all
irreducible polynomial of degreein F,. The polynomialf; (z) then

can be obtained by computing

computingg

fi (@) = ged (Hp (2),,9 ().

Finally, using the Cantor-Zassenhaus algorithm to find tio¢srmF,,.

Algorithm : Cantor-Zassenhaus algorithm

INPUT: A polynomial f (z) with all irreducible factors having the same degree. Assur
deg (f (2)) = n.

OUTPUT: All the factors off (z).

1 repeat

2 select a random polynomialz) with degree less tham

3 if ged (r (z), f (z)) # 1, then return- ()

4. computes (z) = r (z)*V*  (mod f (z))
5

6

thenged (s (z) + 1, f (z)) is a factor with probabilityt — 2-(—1)
until factor f (x) successful

3.8 Twist Curves

After finding the roots of the Hilbert polynomial (or transfioing the
roots of the Weber polynomial) in the finite fielt), we can compute
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the equations of the elliptic curves with the prescribeceotay taking
the roots agj-invariants of the curves. Since we set the discriminant
—D = t?> — 4p, the order of the curve we get might be

#E(F,)=p+1—t or #E(F,)=p+1+t.

The elliptic curveE is called a twist of. Here we introduce the twist
curves.

Lemma 3.15. Let £ be an elliptic curve defined ovéf. Assume the
characteristic of{ is prime to6 andF is given by the simplified Weier-
strass equation

E:y* =2+ Az + B.

The j-invariant;jz depends only on the isomorphism clasgof
e jp=_0ifandonlyif A = 0.
e jp=1728 ifand onlyif B = 0.

e If jp € K is not equal ta), 1728, thenE' is a quadratic twist of
the elliptic curve
oy 9
n JE oy JE .
1728 — jg 1728 — jg

By =

Corollary 3.16. Let E be an elliptic curve defined ovéf. Assume the
characteristic of{ is prime to6 andF is given by the simplified Weier-
strass equation

E:y* =2+ Az + B.

e If A =0, then for everyB’ € K* the curveE is isomorphic to

B\ /6
E' :y* =2+ B over K((E) )

e If B =0, then for everyd’ € K* the curveF is isomorphic to

1/4
E :y? =23+ Ax over K((é) />
Yy T )
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e If AB # 0, then for every € K* the curveF is isomorphic to

E,:y* =2"+A'z+B with A" =v*A, B =v"B over K (\v).

The curves occuring in the Corollary above are called twidt on
the last case, the curvés, are called guadratic twists d@f. Note that
FE is isomorphic toF, over K if and only if v is a square irf*.

In Corollary 3.16, by taking € K* a quadratic nonresidue, one can
define the quadratic twist df as

E,-vy) =2+ Az + B

by dividing byv?* and transforming — y/v andz — z/v. Then it can
be seen that botl and £, contain exactly two pointéz, ;) for each
x € F,. Hence we have the following proposition.

Proposition 3.17. Let E be a curve defined ovét, and let £ be the
guadratic twist ofF. Then

#E(F,) + #E (F,) = 2p + 2.

Hence, if#F (F,) = p+1—tthen#E (F,) = p+1+t. Therefore, if
the order of the curve we get from the algorithm is not the oaevant,
then find a quadratic nonresidu@nd the twist curve by would be the
actual curve with desired order.
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