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Abstract

This paper deals with the zero-dispersion limit of the modu-
lated nonlinear Klein-Gordon equation in electromagnetic fields.
First, we derive the hydrodynamical structure of the modulated
nonlinear Klein-Gordon equation with divergence free magnetic
potential and prove the convergence of the modulated nonlin-
ear Klein-Gordon equation with divergence free magnetic poten-
tial to the anelastic system. Second, we investigate the singular
limit, indeed the nonrelativistic-semiclassical limit, of the mod-
ulated nonlinear Klein-Gordon equation with Ginzburg-Landau
type potential directly; the wave map equation (with or without
magnetic potential) is recovered as a nonrelativistic-semiclassical
limit. The magnetic effect depends on the relation between the
scaled Planck’s constant ε and the scaled light speed ν.
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1 Introduction

The nonlinear Klein-Gordon equation for a relativistic particle of spin zero
moving in an electromagnetic potential (φ, A), where φ : Rn 7→ R the electric
(scalar) potential and A : Rn 7→ Rn the magnetic (vector) potential, is given
by

− ~2

2mc2
∂2

t Ψ +
1

2m

(
~∇− ie

c
A

)2

Ψ− 1

2
mc2Ψ− (|Ψ|2(γ−1) − eφ

)
Ψ = 0 (1.1)

in which e and m indicate the charge and the rest mass of a particle, ~
and c are Planck’s constant and the speed of light respectively and |Ψ|2(γ−1)

is the external potential [25, 27]. The wave function Ψ(x, t) is a complex-
valued field over a spatial domain Ω ⊂ Rn. Based on the dimensional balance
principle we can consider the modulated wave function [16, 19, 33]

ψ(x, t) = Ψ(x, t) exp(imc2t/~) (1.2)

then ψ will satisfy the modulated nonlinear Klein-Gordon equation

i~∂tψ − ~2

2mc2
∂2

t ψ +
1

2m

(
~∇− ie

c
A

)2

ψ − (|ψ|2(γ−1) − eφ
)
ψ = 0 (1.3)

which is a combination of the nonlinear Schrödinger and the nonlinear wave
equations. This equation is not only interesting by itself but also important
in physics. It involves the speed of light c and Planck’s constant ~ which are
referred to as relativity and quantum respectively. Besides the nonrelativistic
limit (c → ∞) and semiclassical limit (~ → 0), the massless limit (m → 0)
is also interesting. However, we will not discuss this limit in this paper. In
fact after proper rescaling, we may assume m = e = 1 and rewrite (1.3) in
the dimensionless form

iε∂tψ +
1

2

(
ε∇− iνA

)2
ψ − (|ψ|2(γ−1) − φ

)
ψ =

ν2ε2

2
∂2

t ψ , (1.4)

where ε is the dimensionless scaled Planck’s constant and another dimen-
sionless parameter ν is the ratio of the reference velocity and speed of light.
The relativistic effects not only occur on the right hand side of (1.4) but
also in the magnetic potential as a part of the covariant gradient. Assuming
the electromagnetic potentials A and φ are of order O(1) with respect to ν,
then keeping ε fixed and formally letting ν → 0 (i.e. c → ∞) in (1.4), the
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so-called nonrelativistic limit, we obtain the nonlinear Schrödinger equation
with scalar potential φ

iε∂tψ +
ε2

2
∆ψ − (|ψ|2(γ−1) − φ

)
ψ = 0 , (1.5)

though one has to be extremely careful with heuristics due to the double time
derivative on the right side of (1.4). The reader is referred to [20, 31] for the
up-to-date account of results and methods in the well-posedness theory for
initial-value problems of nonlinear Schrödinger and more general nonlinear
dispersive equations. For the general introduction and physical background
to the nonlinear Schrödinger equations we will refer to [30].

The above discussion motivates that we may think of the Klein-Gordon
equation (even with magnetic potential) as the relativistic generalization of
the nonlinear Schrödinger equation (see [22] and references therein). Note
that the magnetic potential A vanishes in this limit. When φ = 1 the hy-
drodynamic and singular limits of the nonlinear Schrödinger equation (1.5)
is very well studied in the past two decades ([6, 7, 10, 14]). Hence it is inter-
esting and important to investigate similar problems for (1.4) from the point
of view of the Schrödinger equation. In particular, we would like to see what
the role played by the electromagnetic potential in the limiting process is and
therefore this paper will be devoted to the singular and hydrodynamic limits
of the nonlinear Klein-Gordon equation with electromagnetic potentials.

Rigorous studies for the singular and hydrodynamic limits of the nonlinear
Klein-Gordon equation have been carried out recently. When there is no
magnetic potential and the scalar potential is constant, say (φ,A) = (1, 0)
for example, the singular limits, including semiclassical, nonrelativistic and
nonrelativistic-semiclassical limits, i.e., ~ → 0, c → ∞ and c = ~−β for β >
0, ~ → 0 respectively, of the Cauchy problem for the modulated defocusing
nonlinear Klein-Gordon equation (1.3) were studied in [16] (see also [19] for
the fluid dynamical approximation and [17] for the review). In particular, the
authors established the connections between the solution of the Klein-Gordon
equation and the solution of the wave map equation. The nonrelativistic-
semiclassical limit of the modulated cubic nonlinear Klein-Gordon equation
with magnetic potential was also discussed by one of the authors in [32].
When Planck’s constant ~ and the speed of light c are related by c = ~−α for
some α ≥ 1, then as ~→ 0 it is shown that for α = 1 the limit wave function
satisfies the wave map with one extra term due to the effect of the magnetic
potential, however, for α > 1, the effect of the magnetic potential disappears
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and the limit equation is the typical wave map equation. The reader is also
referred to [22] for a very complete answer of the nonrelativistic limit of the
Klein-Gordon equation.

The hydrodynamic limit is also considered by the authors in [19]. In
fact, before the formation of singularities in the limit hydrodynamic system,
the nonrelativistic-semiclassical limit is shown to be the compressible Euler
equation. If we further rescale the time variable and keep the light speed
fixed, then in the semiclassical limit, the incompressible Euler equations is
recovered. The main idea to prove the convergence of the hydrodynamic
limit is the modulated energy method introduced by Brenier [1], following
an ideal due to P.-L. Lions in [21]. We successfully extend this method to
the nonlinear Klein-Gordon equation by introducing a correction term to
control the propagation of the relativistic charge and current and prove the
convergence of the charge and current defined by the modulated nonlinear
Klein-Gordon equation towards the solution of the compressible Euler equa-
tions. It is well-known that incompressible approximation may be derived
by filtering out or averaging over the fast acoustic motion; the incompress-
ible limit formalizes and makes rigorous these approximation. Thus, for the
incompressible limit, we have to introduce one more correction term which
describes the propagation of the density fluctuation, i.e., the acoustic wave
and the detail is referred to [19].

The paper is organized as follows. In section 2, we apply the Madelung
transformation to obtain the relativistic quantum hydrodynamics equations
of the modulated nonlinear Klein-Gordon equation (1.4). The formal dif-
ferent hydrodynamics limits from the relativistic quantum hydrodynami-
cal equations are also derived. When the vector potential A is stationary,
∂tA = 0, the nonrelativistic limit, ν → 0, will be the quantum hydrodynam-
ics equations which are the same as derived from the defocusing nonlinear
Schrödinger equations, then letting ε → 0, the semiclassical limit will be
the compressible Euler equation. In other word, if we let ε and ν tend to 0
simultaneously then the nonrelativistic-semiclassical limit of (1.4) will be the
compressible Euler equations. In this case (hyperbolic scaling) the electro-
magnetic potentials do not effect the singular limit. However, if we consider
the divergence free magnetic potential ∇·A = 0 and rescale the time variable
t → εαt and assume ν = εβ then, depending on the choice of the exponent β,
two different asymptotic limits appear as the effect equations. When β = α,
it is the rotating anelastic approximation (2.27)–(2.28) and for β > α the
limit is the anelastic approximation (2.30).
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Section 3 is devoted to the rigorous proof of the hydrodynamic limits.
When β = α, we show that the nonrelativistic-semiclassical limit of the
modulated nonlinear Klein-Gordon equation (1.4) with divergence free mag-
netic potential is the anelastic approximation (3.8) with rotating GA and
nonconstant density ρ0. However, when β > α, the rotating effect vanishes
and the limit is the typical anelastic system (3.9) with nonconstant density
ρ0.

In section 4, we study the nonrelativistic-semiclassical limit of the elec-
tromagnetic Klein-Gordon equation with Ginzburg-Landau type potential.
The scaled Planck’s constant ~ and the dimensionless light speed c are re-
lated by ~ = ε and c = εβ, β ≥ 1. When β = 1, the limit wave function ψ
satisfies the wave map equation with electromagnetic potentials (φ,A), but
for β > 1 the magnetic potential A does not effect the singular limit and
the limiting equation is the wave map equation with scalar potential only.
The main reason is that other than the linear momentum W , there is an
extra term φA appearing in the limiting density fluctuation w (see (4.31)–
(4.32)). We can interpret φA as the background momentum occurring from
the electromagnetic potentials. The existence of the weak solution of the
wave map equation with electromagnetic potential (4.14)–(4.15) is given in
the appendix.

Notation. In this paper, Lp(Ω), (p ≥ 1) denotes the classical Lebesgue
space with norm ‖f‖p = (

∫
Ω
|f |pdx)1/p, the Sobolev space of functions with

all its k-th partial derivatives in L2(Ω) will be denoted by Hk(Ω), and its
dual space is H−k(Ω). We use 〈f, g〉 =

∫
Ω

fgdx to denote the standard inner
product on the Hilbert space L2(Ω). Given two vectors A and F , we define
GA(F ) = (curl A) × F . Let u = (u1, u2) be a two dimensional vector, we
define its orthogonal vector as u⊥ = (−u2, u1). It is everywhere orthogonal
to u and of the same length. Finally, we abbreviate “ ≤ C ” to “ . ”, where
C is a positive constant depending only on fixed parameters.

2 Hydrodynamics Structure

This section is devoted to the hydrodynamical structure of the n dimen-
sional (n = 2, 3) modulated nonlinear Klein-Gordon equation (1.4). Follow-
ing Madelung’s idea [7, 9, 10, 15, 30, 33], we introduce the complex-valued
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wave function
ψ = R exp(iS/ε), (2.1)

in which both R, the amplitude, and S, the action function, are real-valued
functions. The amplitude R is positive, R(x, t) > 0 for all x and t. Plugging
(2.1) into (1.4) and separating the real and imaginary parts, we obtain

∂tR +
R

2
¤νS + (∇S − νA) · ∇R− ν2∂tS∂tR = 0 , (2.2)

and

∂tS +
1

2

(
|∇S − νA|2 − ν2 (∂tS)2

)
+

(
R2(γ−1) − φ

)
=

ε2

2

¤νR

R
, (2.3)

where ¤ν ≡ ∆ − ν2∂2
t is the d’Alembertian. Equations (2.2) and (2.3)

are equivalent to the modulated nonlinear Klein-Gordon equation (1.4) for
smooth functions R and S. Furthermore, (2.2) turns out to be the continuity
equation for the relativistic quantum fluid and (2.3) is the relativistic quan-
tum Hamilton-Jacobi equation. Introducing the hydrodynamical variables ρ,
u and ρK defined respectively by

ρ = R2 = |ψ|2 = ψψ , (2.4)

u = ∇S =
iε

2

1

|ψ|2 (ψ∇ψ − ψ∇ψ) , (2.5)

and

ρK = ν2R2∂tS =
iεν2

2
(ψ∂tψ − ψ∂tψ) , (2.6)

we can rewrite (2.2)–(2.3) as the relative quantum hydrodynamics equations

∂t

(
ρ− ρK

)
+∇ · (ρ(u− νA)

)
= 0 , (2.7)

(
1− ρK

ρ

)
∂tu + (u− νA) · ∇(u− νA) +∇V ′(ρ)

+νGA(u− νA) =
ε2

2
∇

(¤ν
√

ρ√
ρ

)
,

(2.8)

where V ′(ρ) = ργ−1 − φ and GA(u− νA) = (curl A)× (u− νA). From (2.7)
and (2.8) we can derive the momentum equation

∂t

(
ρ(u− νA)− ρKu

)
+∇ ·

(
ρ(u− νA)⊗ (u− νA)

)
+∇P (ρ)

+νGA(ρu− νρA) =
ε2

4
∇ ·

(
ρ∇2 log ρ

)
− ε2ν2

4
∂t

(
ρ∇∂t log ρ

)
,

(2.9)
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where P (ρ) = ρV ′(ρ) − V (ρ) is the pressure and ∇2 denotes the Hessian.
The above derivation shows that the magnetic potential A affects both the
equation of continuity and the momentum equation, but the electric potential
φ only appears in the momentum equation. Next, we define the Schrödinger
part energy density ES and relativistic part energy density EK respectively
by

ES =
1

2
ρ|u− νA|2 +

ε2

8

|∇ρ|2
ρ

+ V (ρ) , (2.10)

EK =
1

2ν2

|ρK |2
ρ

+
ε2ν2

8

|∂tρ|2
ρ

, (2.11)

then the associated energy equation of (1.4) is

d

dt

∫
(ES + EK)dx = −ν

∫
∂tA · (ρ(u− νA))dx . (2.12)

It is obvious that the total energy E = ES + EK is conservative when the
magnetic potential A is stationary, ∂tA = 0. Formally, in the nonrelativistic
limit ν → 0, the d’Alembertian ¤ν becomes the Laplacian ∆ and ρK → 0,
one neglects all the O(ν) and O(ν2) terms in (2.7) and (2.9) and the limit
densities satisfy the quantum hydrodynamic equations [10, 11, 30]

∂tρ +∇ · (ρu) = 0 , (2.13)

∂t(ρu) +∇ · (ρu⊗ u
)

+∇P (ρ) =
ε2

4
∇ ·

[
ρ∇2 log ρ

]
, (2.14)

which are the same as derived from the defocusing nonlinear Schrödinger
equation. Furthermore, letting ε → 0 the above quantum hydrodynamics
equations will be reduced to the compressible Euler equations

∂tρ +∇ · (ρu) = 0 , (2.15)

∂t(ρu) +∇ · (ρu⊗ u
)

+∇P (ρ) = 0 . (2.16)

The above formal analysis shows that the electromagnetic potential (A, φ)
does not effect the singular limits. However, there is rarely good reason
to suppose that electromagnetic potential effects are totally absent in the
singular limit process. If we go back to (2.7) and (2.8) the real situation won’t
behave like this when the electromagnetic potentials are more involved. To
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this end we introduce the scaling t̃ = εαt, x̃ = x, 0 < α < 1, and modulated
nonlinear Klein-Gordon equation (1.4) becomes (after dropping the tilde)

iε1−α∂tψ − ν2ε2

2
∂2

t ψ +
1

2

(
ε1−α∇− iνε−αA

)2
ψ − ε−2α

(|ψ|2(γ−1) − φ
)
ψ = 0 .

(2.17)
The magnetic potential A is assumed to be divergence free, ∇ ·A = 0. Now,
the Madelung transformation (2.1) becomes

ψ = R exp(iS/ε1−α), (2.18)

and the hydrodynamics equations (2.7) and (2.8) will be

∂t

(
ρ− ρK

)
+∇ · (ρ(u− ε−ανA)

)
= 0 , (2.19)

(
1− ρK

ρ

)
∂tu + (u− ε−ανA) · ∇(u− ε−ανA) + νε−αGA(u− ε−ανA)

+
1

ε2α
∇V ′(ρ) =

ε2−2α

2
∇

(
∆
√

ρ√
ρ

)
− ε2ν2

2
∇

(
∂2

t

√
ρ√

ρ

)

(2.20)
where the hydrodynamical variables ρ, u and ρK are now given by

ρ = R2 = |ψ|2 = ψψ , (2.21)

u = ∇S =
iε1−α

2

1

|ψ|2
(
ψ∇ψ − ψ∇ψ

)
, (2.22)

ρK = ν2ε2αR2∂tS =
iν2ε1+α

2

(
ψ∂tψ − ψ∂tψ

)
. (2.23)

Similarly, the Schrödinger part energy density ES and relativistic part energy
density EK are now given respectively by

ES =
1

2
ρ|u− ε−ανA|2 +

ε2−2α

8

|∇ρ|2
ρ

+
1

ε2α
V (ρ) , (2.24)

EK =
1

2ε2αν2

|ρK |2
ρ

+
ε2ν2

8

|∂tρ|2
ρ

, (2.25)

then the associated energy equation of the modulated nonlinear Klein-Gordon
equation (2.17) is

d

dt

∫
(ES + EK)dx = −ε−αν

∫
∂tA · (ρu− ε−ανρA)dx . (2.26)
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For the sake of simplicity, the scaled light speed ν and the scaled Planck’s
constant ε are chosen to satisfy the relation ν = εβ, for some β ≥ α. Since
V (ρ) is a convex function with minimum occuring at ρ = ρ0, where ρ0 =

φ
1

γ−1 , if we have the proper apriori estimate of the energy equation, then the
uniform boundedness of the Schrödinger part energy density ES will imply
ρ → ρ0 as ε → 0.

To derive the limiting equations, we will discus two different situations.
First, β = α, we expect that the continuity equation (2.19) yields the limit:

∇ · [ρ0(u− A)
]

= 0 . (2.27)

Since V ′(ρ0) = 0 then writing ∇V ′(ρ) = ∇(V ′(ρ)− V ′(ρ0)), we deduce from
(2.20) that

∂tu +
[
(u− A) · ∇]

(u− A) +GA(u− A) +∇π = 0 . (2.28)

If A is stationary, ∂tA = 0, then we can further rewrite (2.27)–(2.28) as

∂tuA + (uA · ∇)uA +GA(uA) +∇π = 0 , ∇ · (ρ0uA) = 0 (2.29)

where uA = u− A is the relative velocity. When A = 0 the system of equa-
tions (2.27)–(2.28) or (2.29) is usually termed anelastic approximation. An
anelastic approximation is a filtering approximation for the equations of mo-
tion that eliminates sound waves by assuming that the flow has velocities and
phase speeds much smaller than the speed of sound. This approximation has
been used to model astrophysical and geophysical fluids [23, 26]. Next, when
β > α, the effect of the magnetic potential vanishes, GA(uA) = 0 and the
limiting equations of (2.19)–(2.20) will be the typical anelastic approximation
[2, 3, 8, 24]

∂tu + u · ∇u +∇π = 0 , ∇ · (ρ0u) = 0 (2.30)

where the pressure π is the limit of 1
ε2α (V ′(ρ)− V ′(ρ0)).

3 Hydrodynamic Limit

3.1 Main results

The first result we shall prove rigorously in this paper is the convergence
of the n dimensional (n = 2, 3) modulated nonlinear Klein-Gordon equa-
tion with electromagnetic potential to the anelastic system with rotation
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(3.8) and without rotation (3.9) respectively. In fact, we will consider the
nonrelativistic-semiclassical limit, i.e., ν → 0 and ε → 0 simultaneously. In
order to avoid carrying out a double limit, the two parameters ν and ε must
be related, ν = εβ, β ≥ α, 0 < α < 1. By the energy estimate discussed in

the previous section, we have ρ0 = φ
1

γ−1 or φ = ργ−1
0 , where ρ0 is the limiting

initial density. Thus, instead of (2.17) we will investigate the time-scaled
modulated nonlinear Klein-Gordon equation with divergence free magnetic
vector potential A,

iε1−α∂tψ
ε − 1

2
ε2+2β∂2

t ψ
ε +

1

2
(ε1−α∇− iεβ−αA)2ψε

− 1

ε2α

(
|ψε|2(γ−1) − ργ−1

0

)
ψε = 0 .

(3.1)

The initial conditions are supplemented by

ψε(x, 0) = ψε
0(x) , ∂tψ

ε(x, 0) = ψε
1(x) . (3.2)

To avoid the complications at the boundary, we concentrate below on the
case when x ∈ Tn, the n-dimensional torus. We define the hydrodynamical
variables: Schrödinger part charge ρε, relativistic part charge ρε

K , Schrödinger
part momentum (current) Jε, Schrödinger part velocity uε, relativistic part
momentum Jε

K and the energy eε as follows:

ρε = |ψε|2, ρε
K =

i

2
ε1+α+2β

(
ψε∂tψε − ψε∂tψ

ε
)

,

Jε =
i

2
ε1−α

(
ψε∇ψε − ψε∇ψε

)
,

Jε
K =

ρε
K

ρε
Jε + ε2+2β∂t

√
ρε∇√ρε , uε =

Jε

ρε
,

eε =
1

2
ρε

∣∣uε − εβ−αA
∣∣2 +

ε2−2α

2

∣∣∇√ρε
∣∣2 +

1

2ε2α+2β

∣∣∣ ρε
K√
ρε

∣∣∣
2

+
ε2+2β

2

∣∣∂t

√
ρε

∣∣2 +
1

ε2α
Θ(ρε) ,

(3.3)
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where

Θ(ρ) =
1

γ

(
ργ − ργ

0 − γργ−1
0 (ρ− ρ0)

)
, ρ > 0 (3.4)

is a convex function, where minimum occurs at ρ = ρ0 and satisfies Θ(ρ) ≥ 0.
We also define the relative Schrödinger part momentum and velocity by
Jε

A = Jε − εβ−αρεA, uε
A = uε − εβ−αA, respectively. The most important hy-

drodynamic equations associated with the time-scaled modulated nonlinear
Klein-Gordon equation (3.1) are the charge, momentum and energy equations
given respectively by:
(A) Charge equation

∂

∂t

(
ρε − ρε

K

)
+∇ · Jε

A = 0 , (3.5)

(B) Momentum equation

∂

∂t

(
Jε

A − Jε
K

)
+∇ · (ρεuε

A ⊗ uε
A) +

1

4
ε2+2β∇∂2

t ρ
ε

+ε2−2α∇ · (∇√ρε ⊗∇√ρε
)− 1

4
ε2−2α∇∆ρε

+εβ−αρε∂tA + εβ−αGA(Jε
A) +

1

ε2α
ρε∇

(
(ρε)γ−1 − ργ−1

0

)
= 0 ,

(3.6)

(C) Energy equation

d

dt

∫
eε(·, t)dx = −εβ−α

∫
∂tA · Jε

Adx . (3.7)

The nonrelativistic-semiclassical limit of (3.1) depends on the relation of α
and β. If β = α, then the limit is the anelastic system with rotating effect
GA and nonconstant density ρ0





∂t(ρ0u) +
[
ρ0(u− A) · ∇]

(u− A) + ρ0GA(u− A) + ρ0∇π = 0 ,

∇ · [ρ0(u− A)
]

= 0 .

u(x, 0) = u0(x) , ∇ · (ρ0u0) = 0,

(3.8)
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However, when β > α, the limit is the typical anelastic system





∂t(ρ0u) +∇ · (ρ0u⊗ u) + ρ0∇π = 0 ,

∇ · (ρ0u) = 0 ,

u(x, 0) = u0(x) , ∇ · (ρ0u)(x, 0) = 0 .

(3.9)

The well-posedness results of anelastic systems (3.8) and (3.9) can be found
in [4, 12, 13]. Before the presentation of the main result of this paper, let us
make the following assumptions of the initial conditions:
(A1) The initial data is assumed to be with Sobolev regularity, (ψε

0, ψ
ε
1) ∈

Hs+1(Tn) ⊕ Hs(Tn), s > n
2

+ 2. It will guarantee the local existence and
uniqueness of classical solution of the time-scaled modulated nonlinear Klein-
Gordon equation (3.1).
(A2) The initial potential energy converges to 0 as ε goes to zero:

ε−2α

∫

Tn

Θ(ρε
0)dx → 0 as ε → 0.

(A3) The quantum and relativistic part of the initial energy converges to 0
as ε tends to zero:
∫

Tn

ε2−2α

2

∣∣∇√
ρε

0

∣∣2 +
1

2ε2α+2β

∣∣∣ ρε
0K√
ρε

0

∣∣∣
2

+
ε2+2β

2

∣∣∂t

√
ρε

0

∣∣2dx → 0 as ε → 0.

(A4) The initial kinetic energy is well prepared:

√
ρε

0u
ε
0 →

√
ρ0u0 in L2(Tn) as ε → 0.

(A5) The initial density is bounded away from zero, ρ0 ≥ c > 0, u0 ∈
(Hs(Tn))2, s > n

2
+1, and satisfies∇·(ρ0u0A) = 0 for β = α and∇·(ρ0u0) = 0

for β > α. This condition will guarantee the local existence and uniqueness of
classical solution of the rotating anelastic system (3.8) and typical anelastic
system (3.9) respectively for the well prepared initial condition.

Theorem 3.1 Let n = 2 or 3, 0 < α < 1, β ≥ α, γ ≥ 2 and ψε be the
solution of the time scaled modulated nonlinear Klein-Gordon equation (3.1)
with divergence free magnetic potential, ∇ · A = 0, and the initial condition
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(ψε
0, ψ

ε
1) satisfying the assumptions (A1)–(A5). Then there exists T > 0 such

that

‖(ρε − ρ0)(·, t)‖Lγ(Tn) → 0 , ‖ρε
K(·, t)‖

L
2γ

γ+1 (Tn)
→ 0 , (3.10)

‖(Jε − ρ0u)(·, t)‖
L

2γ
γ+1 (Tn)

→ 0 , ‖Jε
K(·, t)‖L1(Tn) → 0 , (3.11)

for all t ∈ [0, T ] as ε → 0, where u is the unique local smooth solution of the
rotating anelastic approximation system (3.8) for β = α and anelastic system
(3.9) for β > α rspectively.

3.2 Proof of Theorem 3.1

The proof of Theorem 3.1 is based on Lemma 3.2 and Lemma 3.3 given
below.

Lemma 3.2 Under the same hypothesis of Theorem 3.1, we have

‖ρε
K(·, t)‖

L
2γ

γ+1 (Tn)
= O(εα+β) , ‖Jε

K(·, t)‖L1(Tn) = O(εα+β) , (3.12)

and
‖(ρε − ρ0)(·, t)‖Lγ(Tn) = O

(
ε

2α
γ

)
, t ∈ [0, T ] . (3.13)

Proof. Applying the Cauchy-Schwarz and Young’s inequalities, we obtain
from the charge equation (3.5) that

∫

Tn

ρεdx ≤ C +

∫

Tn

(
ε2α+2βρε +

1

ε2α+2β

∣∣∣ ρε
K√
ρε

∣∣∣
2
)

dx , (3.14)

for all t ∈ [0, T ], i.e.,

∫

Tn

ρεdx ≤ C +

∫

Tn

1

ε2α+2β

∣∣∣ ρε
K√
ρε

∣∣∣
2

dx . (3.15)

We also derive from the assumptions (A1)–(A4) and the equation of energy
(3.7) the following estimate

∫

Tn

eε(x, t)dx ≤ C +

∫ t

0

∫

Tn

εβ−α|∂tA|
(
|√ρεuε

A|2 + ρε
)
dxdτ . (3.16)
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Combining (3.14) and (3.16) together yields

∫

Tn

Eε(x, t)dx ≤ C1 + C2

∫ t

0

∫

Tn

Eε(x, s)dxds , (3.17)

where

Eε(x, t) = ρε + ρε
∣∣uε

A

∣∣2 +
ε2−2α

2

∣∣∇√ρε
∣∣2 +

1

2ε2α+2β

∣∣∣ ρε
K√
ρε

∣∣∣
2

+
ε2+2β

2

∣∣∂t

√
ρε

∣∣2 +
1

ε2α
Θ(ρε) ,

(3.18)

then the Gronwall inequality gives the uniform bound

∫

Tn

Eε(x, t)dx ≤ C . (3.19)

In particular, we have ∫

Tn

Θ(ρε)dx = O(ε2α) . (3.20)

It is easy to see that (3.20) will imply (3.13) by the following elementary
inequality

1

γ

∣∣ρε − ρ0

∣∣γ ≤ Θ(ρε) if γ ≥ 2 . (3.21)

To prove the estimates (3.12), we deduce from (3.19) and the Hölder inequal-
ity that

‖ρε
K‖

L
2γ

γ+1 (Tn)
≤ ∥∥√ρε

∥∥
L2γ(Tn)

∥∥∥ 1√
ρε

ρε
K

∥∥∥
L2(Tn)

(3.22)

and

‖Jε
K‖L1(Tn) ≤

∥∥√ρεuε
∥∥

L2(Tn)

∥∥∥ 1√
ρε

ρε
K

∥∥∥
L2(Tn)

+εα+β
∥∥ε1+β∂t

√
ρε

∥∥
L2(Tn)

∥∥ε1−α∇√ρε
∥∥

L2(Tn)
.

(3.23)

Therefore we have proved the estimates (3.12).
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Lemma 3.3 Let v = u−A for β = α and v = u for β > α. Under the same
hypothesis of Theorem 3.1, the modulated energy defined by

Hε(t) =
1

2

∫

Tn

ρε
∣∣uε

A − v
∣∣2dx +

ε2−2α

2

∫

Tn

∣∣∇√ρε
∣∣2dx

+
1

2ε2α+2β

∫

Tn

∣∣∣ ρε
K√
ρε

∣∣∣
2

dx +
ε2+2β

2

∫

Tn

∣∣∂t

√
ρε

∣∣2dx +
1

ε2α

∫

Tn

Θ(ρε)dx ,

(3.24)
satisfies the decay property

Hε(t) → 0 as ε → 0 , t ∈ [0, T ] .

Proof. The modulated energy Hε(t) can be further rewritten in terms of the
hydrodynamic variables as

Hε(t) =

∫

Tn

eεdx−
∫

Tn

v · Jε
Adx +

1

2

∫

Tn

ρε|v|2dx . (3.25)

Differentiating the modulated energy (3.25) with respect to t and using en-
ergy equation (3.7), we obtain

d

dt
Hε(t) = −

∫

Tn

εβ−α∂tA · Jε
Adx− d

dt

∫

Tn

v · Jε
Adx +

d

dt

∫

Tn

1

2
ρε|v|2dx

≡ I1 + I2 + I3 .
(3.26)
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Employing the momentum equation (3.6) and integration by part, we can
write the integral I2 as

I2 = − d

dt

∫

Tn

v · Jε
K +

1

4
ε2+2β∇ · v∂tρ

εdx +

∫

Tn

εβ−αρεv · ∂tAdx

−
∫

Tn

∂tv · (Jε
A − Jε

K)dx +

∫

Tn

εβ−αv ·GA(Jε
A)dx

−
∫

Tn

[(
ρεuε

A ⊗ uε
A

)
+ ε2−2α

(∇√ρε ⊗∇√ρε
)]

: ∇vdx

−ε2−2α

4

∫

Tn

∇ρε · (∇∇ · v)dx− 1

ε2α

∫

Tn

ρεv · ∇
(
(ρε)γ−1 − ργ−1

0

)
dx

+
1

4
ε2+2β

∫

Tn

∇ · ∂tv∂tρ
εdx .

(3.27)
Applying the same idea as above to the charge equation (3.5), we have

I3 =
d

dt

∫

Tn

1

2
ρε

K |v|2dx +

∫

Tn

ρεv · ∂tvdx

+

∫

Tn

1

2
∇|v|2 · Jε

Adx−
∫

Tn

1

2
ρε

K∂t|v|2dx .

(3.28)

To discuss the hydrodynamic limit, we introduce the relativistic correction
term of the modulation energy defined by

Gε(t) = −1

2

∫

Tn

ρε
K |v|2dx +

∫

Tn

v · Jε
K +

1

4
ε2+2β∇ · v∂tρ

εdx. (3.29)

Combining (3.26)–(3.29), we have the evolution of the modified modulated
energy Hε(t) + Gε(t)

d

dt
(Hε(t) + Gε(t))

=

∫

Tn

1

2
∇|v|2 · Jε

Adx +

∫

Tn

∂t(v + εβ−α) · (ρεv − Jε
A)dx

−
∫

Tn

ε2−2α
(∇√ρε ⊗∇√ρε

)
: ∇vdx + R1 + R2 + R3 + R4

(3.30)
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where R1, R2, R3 and R4 are defined respectively by

R1 = −
∫

Tn

(
ρεuε

A ⊗ uε
A

)
: ∇vdx ,

R2 =
1

ε2α

∫

Tn

ρεv · ∇
(
(ρε)γ−1 − ργ−1

0

)
dx ,

R3 =

∫

Tn

εβ−αv ·GA(Jε
A)dx ,

R4 =

∫

Tn

∂tv · Jε
K −

1

2
ρε

K∂t|v|2 − ε2−2α

4
∇ρε · (∇∇ · v)

+
1

4
ε2+2β∇ · ∂tv∂tρ

εdx .

We can rewrite the kinetic part R1 as

R1 = −
∫

Tn

(
ρε(uε

A − v)⊗ (uε
A − v)

)
: ∇vdx

−
∫

Tn

(
ρεv ⊗ uε

A

)
: ∇vdx

+

∫

Tn

(
ρεv ⊗ v

)
: ∇vdx−

∫

Tn

(
ρεuε

A ⊗ v
)

: ∇vdx,

(3.31)

where A : B denotes the trace of the product of the tensors, such as A : B ≡
tr(AB). Simple computation gives the following two equalities

−
∫

Tn

(
ρεuε

A ⊗ v
)

: ∇vdx =

∫

Tn

1

2
|v|2∇ · Jε

Adx , (3.32)

and ∫

Tn

(
ρεv ⊗ v

)
: ∇vdx−

∫

Tn

(
ρεv ⊗ uε

A

)
: ∇vdx

=

∫

Tn

[(
v · ∇)

v
]
· (ρεv − Jε

A)dx .

(3.33)
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Thus R1 given by (3.31) becomes

R1 = −
∫

Tn

(
ρε(uε

A − v)⊗ (uε
A − v)

)
: ∇vdx

+

∫

Tn

1

2
|v|2∇ · Jε

Adx +

∫

Tn

[(
v · ∇)

v
]
· (ρεv − Jε

A)dx .

(3.34)

To deal with the potential part R2, we employ the relation

ρεv · ∇(ρε)γ−1 = γ−1
γ

v · ∇(ρε)γ , (3.35)

and use the divergence free of ρ0v to obtain

−ρεv · ∇ργ−1
0 = (γ − 1)ρεργ−1

0 ∇ · v (3.36)

then combining (3.35) and (3.36) together we obtain

ρεv · ∇
(
(ρε)γ−1 − ργ−1

0

)
= γ−1

γ

[
v · ∇(ρε)γ + γρεργ−1

0 ∇ · v
]
. (3.37)

Moreover, using integration by parts and divergence free of ρ0v again, we
have

∫

Tn

ργ
0∇ · vdx = −

∫

Tn

v · ∇ργ
0dx = − γ

γ − 1

∫

Tn

ρ0v · ∇ργ−1
0 dx = 0 .

(3.38)
Consequently, by (3.37) and (3.38) we can represent R2 as

R2 = − 1

ε2α

∫

Tn

γ − 1

γ
∇ · v

[
(ρε)γ − γρεργ−1

0 + (γ − 1)ργ
0

]
dx . (3.39)

For the rotating part R3, we have

v ·GA(Jε
A) = v · (curl A× Jε

A

)
= −Jε

A ·
(
curl A× v

)

= (ρεv − Jε
A − ρεv) · (curl A× v

)
= GA(v) · (ρεv − Jε

A) ,

and hence

R3 =

∫

Tn

εβ−αv ·GA(Jε
A)d =

∫

Tn

εβ−αGA(v) · (ρεv − Jε
A)dx .
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To treat the quantum-relativistic potential part R4, we need the following
inequalities ∫

Tn

∂tv · Jε
Kdx . εα+β‖∂tv‖L∞(Tn) , (3.40)

∫

Tn

ρε
K∂t|v|2dx . εα+β‖∂t|v|2‖

L
2γ

γ−1 (Tn)
, (3.41)

and ∫

Tn

εβ−αρε
Kv · ∂tAdx . ε2β‖v‖L∞(Tn) . (3.42)

Furthermore, by the Hölder inequality we have the estimates

ε2−2α

∫

Tn

∇ρε · (∇∇ · v)dx

≤ ε1−α‖ε1−α∇√ρε‖L2(Tn)‖
√

ρε‖L2γ(Tn)‖∇∇ · v‖
L

2γ
γ−1 (Tn)

. ε1−α‖v‖Hs(Tn) ,

(3.43)

and

ε2+2β

∫

Tn

∇ · ∂tv∂tρ
εdx

≤ ε1+β‖ε1+α∂t

√
ρε‖L2(Tn)‖

√
ρε‖L2γ(Tn)‖∇ · ∂tv‖

L
2γ

γ−1 (Tn)

. ε1+β‖v‖Hs(Tn) .

(3.44)

Thus R4 → 0 as ε → 0. Combining the above estimates, the evolution of the
modified modulated energy (3.30) becomes
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d

dt

(
Hε(t) + Gε(t)

)
= −

∫

Tn

(
ρε(uε

A − v)⊗ (uε
A − v)

)
: ∇vdx

−
∫

Tn

ε2−2α
(∇√ρε ⊗∇√ρε

)
: ∇vdx

− 1

ε2α

∫

Tn

γ − 1

γ

[
(ρε)γ − γρεργ−1

0 + (γ − 1)ργ
0

]
∇ · vdx

+

∫

Tn

[
∂t(v + εβ−αA) +

(
v · ∇)

v + εβ−αGA(v)
]
· (ρεv − Jε

A)dx + o(1) .

(3.45)
We will estimate the first three integrals of the right side of (3.45), and show
that they can be bounded by ‖∇v‖L∞(Tn)H

ε(t). Indeed, if β > α, we have
(by uniform bound of the total energy and the Hölder inequality)
∫

Ω

[
∂tA +GA(v)

] · (ρεv − Jε
A)dx . ‖ρε‖L1(Tn) + ‖ρε‖2

L1(Tn)‖
√

ρεuε
A‖L2(Tn) .

(3.46)
Note that (3.45) can be transformed into

d

dt

(
Hε(t) + Gε(t)

)
≤ C1H

ε(t)−
∫

Tn

∇π · (ρεv − Jε
A)dx + o(1) . (3.47)

Now we will estimate the second term of the right side of (3.47). By (3.12),
(3.13) and the Hölder inequality, we arrive at the inequality

∫

Tn

ρεv · ∇πdx =

∫

Tn

(ρε − ρ0)v · ∇πdx

. ε
2α
γ ‖v‖L∞(Tn)‖∇π‖

L
γ

γ−1 (Tn)
.

(3.48)

To proceed, we need the relation
∫

Tn

Jε
A · ∇πdx =

∫

Tn

π∂t

[
(ρε − ρ0)− ρε

K

]
dx

=
d

dt

∫

Tn

π[(ρε − ρ0)− ρε
K

]
dx−

∫

Tn

∂tπ[(ρε − ρ0)− ρε
K

]
dx ,

(3.49)
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and the last integral of (3.49) can be estimated by the Hölder inequality
∫

Tn

∂tπ[(ρε − ρ0)− ρε
K

]
dx . ε

2α
γ ‖∂tπ‖

L
γ

γ−1 (Tn)
+ εα+β‖∂tπ‖

L
2γ

γ−1 (Tn)
. (3.50)

In addition to Gε(t), we have to introduce one more correction term W ε of
the modulated energy Hε(t) defined by

W ε(t) =

∫

Tn

[
ρε

K − (ρε − ρ0)
]
πdx . (3.51)

Note that W ε(t) can be served as the acoustic part (density fluctuation) of
the modulated energy Hε(t). It is designed to control the propagation of the
acoustic wave. For t ∈ [0, T ] we have

d

dt

(
Hε(t) + Gε(t) + W ε(t)

)
. C1H

ε(t) + o(1) , (3.52)

then after integrating it becomes

Hε(t) ≤ Hε(0) + Gε(0) + W ε(0)−Gε(t)−W ε(t)

+C1

∫ t

0

Hε(τ)dτ + o(1) .

(3.53)

One can show that Gε(0) + W ε(0)−Gε(t)−W ε(t) = o(1), and hence

Hε(t) ≤ C1

∫ t

0

Hε(τ)dτ + Hε(0) + o(1). (3.54)

In order to obtain the convergent results, we have to estimate the initial
modulated energy functional Hε(0). For β = α, it is easy to see that

‖√ρε
0u

ε
0 −

√
ρε

0u0‖L2(Tn)

≤ ‖√ρε
0u

ε
0 −

√
ρ0u0‖L2(Tn) + ‖(√ρ0 −

√
ρε

0)u0‖L2(Tn) ,

(3.55)

and the first term of the right side of (3.55) converges to 0 by assumption
(A4). For the second term, using the boundedness of |Tn|, assumption (A1)
and an elementary inequality

|√x−√a|2 ≤ a−1|x− a|2,
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for x ≥ 0 and a ≥ c > 0, we have

‖(√ρ0 −
√

ρε
0)u0‖L2(Tn) ≤ ‖u0‖L∞(Tn)‖√ρ0 −

√
ρε

0‖L2(Tn)

≤ 1√
ρ0

‖u0‖L∞(Tn)‖ρ0 − ρε
0‖L2(Tn)

≤ C‖u0‖L∞(Tn)‖ρ0 − ρε
0‖Lγ(Tn) ,

(3.56)

which converges to 0 as ε tends to 0 by assumption (A2). Thus Hε(0) → 0 as
ε → 0. Then applying the Gronwall’s inequality we can show that Hε(t) → 0
for all t ∈ [0, T ] as ε tends to 0. The case β > α is similar, and we omit the
detail.

Proof of Theorem 3.1. We rewrite the modulated energy Hε(t) defined by
(3.24) as

Hε(t) =
ε2−2α

2

∫

Tn

∣∣∣∇√ρε

∣∣∣
2

dx +
1

2

∫

Tn

∣∣∣ 1√
ρε

(Jε
A − ρεv)

∣∣∣
2

dx

+
1

2ε2α+2β

∫

Tn

∣∣∣ ρε
K√
ρε

∣∣∣
2

dx +
ε2+2β

2

∫

Tn

∣∣∂t

√
ρε

∣∣2dx +
1

ε2α

∫

Tn

Θ(ρε)dx ,

(3.57)
then from Lemma 3.3 and (3.57) we have∫

Tn

∣∣∣ 1√
ρε

(Jε − ρεu)
∣∣∣
2

dx → 0 (3.58)

for β = α and ∫

Tn

∣∣∣ 1√
ρε

(Jε
A − ρεu)

∣∣∣
2

dx → 0 (3.59)

for β > α, as ε → 0. Firstly, if β = α, we deduce from (3.58) and the Hölder
inequality that

‖(Jε − ρ0u)‖
L

2γ
γ+1 (Tn)

≤
∥∥∥√ρε

∥∥∥
L2γ(Tn)

∥∥∥∥
1√
ρε

(Jε − ρεu)

∥∥∥∥
L2(Tn)

+‖ρε − ρ0‖Lγ(Tn)‖u‖L2(Tn) ,

(3.60)

which converges to zero as ε → 0. This resolves the case β = α. The case
for β > α is similar and we omit the details. This completes the proof of
Theorem 3.1.
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4 Singular Limits

4.1 Main results

In this section, we will consider the singular limit of the modulated nonlinear
Klein-Gordon equation with Ginzburg-Landau type potential directly with-
out transforming into the hydrodynamic equations. We limit our discussion
to the nonrelativistic-semiclassical limit to avoid carrying out double limits.
In this case Planck’s constant ~ and the speed of light c are chosen such that
~ = ε and c = ε−β, 0 < ε ¿ 1, β ≥ 1. After proper rescaling or nondimen-
sionlization, we may assume the unit mass m = 1 and unit charge e = 1,
then (1.3) is rewritten as

i∂tψ
ε − ε1+2β

2
∂2

t ψ
ε +

ε

2
(∇− iεβ−1A)2ψε −

( |ψε|2 − φ

ε

)
ψε = 0 , (4.1)

where ∇ − iεβ−1A is the covariant derivative and the initial conditions are
supplemented by

ψε(x, 0) = ψε
0(x) , ∂tψ

ε(x, 0) = ψε
1(x) . (4.2)

Similar to the hydrodynamic limits discussed in the previous section, we
concentrate below on the n-dimensional torus Tn and state the existence
theorem of (4.1)–(4.2) for finite initial energy.

Theorem 4.1 Let 0 < ε ¿ 1, β ≥ 1, φ(x) ∈ C1(Tn) satisfying φ(x) ≥ c > 0
and A(x, t) ∈ C1([0,∞) × Tn) for all x ∈ Tn and t > 0. Given (ψε

0, ψ
ε
1) ∈

H1(Tn)⊕ L2(Tn) and
|ψε

0|2−φ

ε
∈ L2(Tn), there exists a function ψε such that

ψε ∈ L∞([0, T ]; H1(Tn)) ∩ C([0, T ]; L2(Tn)) ,

∂tψ
ε ∈ L∞([0, T ]; L2(Tn)) ∩ C([0, T ]; H−1(Tn)) ,

|ψε|2 − φ

ε
∈ L∞([0, T ]; L2(Tn)) ,

and solves the weak formulation of (4.1) given by

i
〈
ψε(·, t), ϕ

〉∣∣∣
t2

t=t1
+

ε

2

∫ t2

t1

〈
(∇− iεβ−1A)ψε(·, τ), (∇+ iεβ−1A)ϕ

〉
dτ

−ε2β

2

〈
ε∂tψ

ε(·, t), ϕ
〉∣∣∣

t2

t=t1
−

∫ t2

t1

〈( |ψε|2 − φ

ε

)
ψε(·, τ), ϕ

〉
dτ = 0 ,

(4.3)
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for every [t1, t2] ⊂ [0, T ] and for all ϕ ∈ C∞
0 (Tn). Moreover, it satisfies the

charge-energy inequality

sup
t∈[0,T ]

∫

Tn

|ψε|2 + |εβ∂tψ
ε|2 + |∇ψε|2 +

( |ψε|2 − φ

ε

)2

dx ≤ C , (4.4)

where C = C(ψε
0, ψ

ε
1, T, ‖(φ,A, ∂tA)‖L∞([0,T ]×Tn)) is a constant.

We make a formal analysis on the model (4.1)–(4.2) and begin with a
derivation of the apriori estimates through the standard energy estimate.
For simplicity, we define some quantities associated with the modulated cubic
nonlinear Klein-Gordon equation (4.1) as follows:

W (ψε) =
i

2

(
ψε∇ψε − ψε∇ψε

)
, Z(ψε) =

i

2
ε2β

(
ψε∂tψ

ε − ψε∂tψε
)

,

eε =
1

2
|εβ∂tψ

ε|2 +
1

2
|(∇− iεβ−1A)ψε|2 +

1

2

( |ψε|2 − φ

ε

)2

.

The equations of charge and energy associated with (4.1) are given below:
(A) Equation of charge

∂

∂t

[
|ψε|2 + εZ(ψε)

]
+ ε∇ ·

[
W (ψε)− εβ−1|ψε|2A

]
= 0 , (4.5)

(B) Equation of energy

d

dt

∫

Tn

eε(x, t)dx = −
∫

Tn

εβ−1∂tA ·
[
W (ψε)− εβ−1|ψε|2A

]
dx . (4.6)

Proof of the charge-energy inequality (4.4). The charge-energy inequality
(4.4) playing the role of apriori estimate follows easily from (4.5)–(4.6). In
fact, by the Cauchy-Schwarz and Young’s inequalities, we deduce from the
charge equation (4.5) that

∫

Tn

|ψε|2dx ≤ C + ε1+β

∫

Tn

(|ψε|2 + |εβ∂tψ
ε|2)dx , (4.7)

for all t ∈ [0, T ], i.e.,

∫

Tn

|ψε|2dx ≤ C + ε1+β

∫

Tn

|εβ∂tψ
ε|2dx . (4.8)
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We also derive from the equation of energy (4.6) that

∫

Tn

eε(x, t)dx ≤ C+

∫ t

0

∫

Tn

εβ−1|∂tA|
(
|(∇−iεβ−1A)ψε|2+|ψε|2

)
dxdτ . (4.9)

Combining (4.7) and (4.9) together yields

∫

Tn

Eε(x, t)dx ≤ C1 + C2

∫ t

0

∫

Tn

Eε(x, s)dxds , (4.10)

where

Eε(x, t) = |ψε|2 + |εβ∂tψ
ε|2 + |(∇− iεβ−1A)ψε|2 +

( |ψε|2 − φ

ε

)2

,

then the Gronwall inequality gives the uniform bound of the energy
∫

Tn

Eε(x, t)dx ≤ C , (4.11)

From (4.8) and (4.11), we have the charge-energy inequality (4.4).

The idea of the proof of Theorem 4.1 is to obtain a family of approxi-
mation solutions {ψn} constructed by any method that yields a consistent
weak formulation (4.3) and charge-energy inequality (4.4), for example, the
Fourier-Galerkin method, then apply the compactness arguments to prove
the existence of weak solutions, which is similar to the defocusing cubic non-
linear Klein-Gordon equation without electromagnetic potential as given in
the appendix of [16] with modification. Therefore, we omit the details. The
main result concerning the nonrelativistic-semiclassical limit of (4.1)–(4.2) is
stated as follows:

Theorem 4.2 Let φ(x) ≥ c > 0, φ(x) ∈ C1(Tn), A(x, t) ∈ C1([0,∞)× Tn),
(ψε

0, ψ
ε
1) ∈ H1(Tn)⊕ L2(Tn), |ψε

0|2 = φ almost everywhere and satisfy

(ψε
0, ψ

ε
1) → (ψ0, 0) in H1(Tn)⊕ L2(Tn),

such that |ψ0|2 = φ almost everywhere and ψε be the corresponding weak
solution of the Cauchy problem (4.1)–(4.2). For β = 1, the weak limit ψ of
{ψε}ε, satisfying |ψ|2 = φ almost everywhere, solves the initial value problem

∂2
t ψ − φ∆ψ =

[
|∇ψ|2 − 1

φ
|∂tψ|2 − 1

2
∆φ− i∇ · (φA)

]
ψ , (4.12)
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ψ(x, 0) = ψ0(x), ∂tψ(x, 0) = 0. (4.13)

Using the fact |ψ|2 = φ a.e., we can write ψ =
√

φh then h solves the initial
value problem of the wave map equation with electromagnetic potential

∂2
t h−∇ · (φ∇h) =

[
φ|∇h|2 − |∂th|2 − i∇ · (φA)

]
h , |h| = 1 , (4.14)

h(x, 0) =
ψ0

|ψ0| , ∂th(x, 0) = 0 . (4.15)

Moreover, let h = eiθ; then the phase function θ solves the initial value
problem of the linear wave equation with electromagnetic potential

∂2
t θ −∇ · (φ∇θ) = −∇ · (φA) , (4.16)

θ(x, 0) = arg ψ0, ∂tθ(x, 0) = 0 . (4.17)

For β > 1, the effect of the magnetic potential A vanishes, (4.12) becomes

∂2
t ψ − φ∆ψ =

(
|∇ψ|2 − 1

φ
|∂tψ|2 − 1

2
∆φ

)
ψ , (4.18)

and equations (4.14) and (4.16) are replaced by

∂2
t h−∇ · (φ∇h) =

(
φ|∇h|2 − |∂th|2

)
h , |h| = 1 , (4.19)

and
∂2

t θ −∇ · (φ∇θ) = 0 , (4.20)

respectively. The initial conditions (4.13), (4.15) and (4.17) remain un-
changed.

Remarks: For β = 1, when φ = 1 and vector potential A satisfies ∇·A = 0,
the electromagnetic wave map equation (4.12) will be reduced to the typical
wave map equation

∂2
t ψ −∆ψ = (|∇ψ|2 − |∂tψ|2)ψ . (4.21)

However, when β > 1 even without the assumption ∇ ·A = 0 we still obtain
the wave map (4.21) as the limit equation. The existence of weak solution of
(4.14)–(4.15) will be given in the appendix.
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4.2 Proof of the Theorem 4.2

We deduce from charge-energy inequality (4.4) that

{ψε}ε is bounded in L∞
(
[0, T ]; H1(Tn)

)
, (4.22)

{εβ∂tψ
ε}ε is bounded in L∞

(
[0, T ]; L2(Tn)

)
, (4.23)

{ |ψε|2 − φ

ε

}

ε

is bounded in L∞
(
[0, T ]; L2(Tn)

)
. (4.24)

It follows from (4.22) that there exists a subsequence still denoted by {ψε}ε

and a function ψ ∈ L∞
(
[0, T ]; H1(Tn)

)
such that

ψε ⇀ ψ weakly ∗ in L∞
(
[0, T ]; H1(Tn)

)
. (4.25)

Next, from (4.24), we have

|ψε|2 → φ a.e. and strongly in L2(Tn). (4.26)

Note that (4.24) only shows that
{ |ψε|2−φ

ε

}
ε

converges weakly ∗ to some

function η ∈ L∞
(
[0, T ]; L2(Tn)

)
. Thus to overcome the difficulty caused by

nonlinearity, i.e., the fourth term on the left hand side of (4.1), we can use
(4.22)–(4.23) via the Arzela-Ascoli theorem to prove

ψε → ψ in C
(
[0, T ]; L2(Tn)

)
as ε → 0 . (4.27)

To find the explicit form of η, we rewrite the equation of charge (4.5) as

|ψε|2 − φ

ε
= −Z(ψε)

∣∣∣
t

0
−

∫ t

0

∇ ·
[
W (ψε)− εβ−1|ψε|2A

]
dτ . (4.28)

Thus to obtain the compactness of the sequence
{
|ψε(x,t)|2−φ

ε

}
ε
, we have to

treat the integral term of the right hand side of (4.28). By (4.22)–(4.23), we
have Z(ψε) ⇀ 0 in D′((0, T ) × Tn). Therefore we can apply integration by
parts, Fubini’s theorem and Lebesgue’s dominated convergence theorem to
show that

∫ t

0

∇ · (|ψε|2A)
dτ ⇀

∫ t

0

∇ · (φA)dτ (4.29)

27



and ∫ t

0

∇ · (ψε∇ψε
)
dτ ⇀

∫ t

0

∇ · (ψ∇ψ
)
dτ (4.30)

in D′((0, T )× Tn). Therefore we have the convergences

|ψε|2 − φ

ε
⇀ η ≡ −

∫ t

0

∇ ·
[
W (ψ)− φA

]
dτ . (4.31)

for β = 1 and
|ψε|2 − φ

ε
⇀ η ≡ −

∫ t

0

∇ ·W (ψ)dτ . (4.32)

for β > 1. By (4.22), (4.23) and (4.31), passing to the limit of the weak
formulation (4.3), we can show that if β = 1, the limit wave function ψ
satisfies

i∂tψ +
[ ∫ t

0

∇ · (W (ψ)− φA
)
dτ

]
ψ = 0 (4.33)

in the sense of distribution. Since |ψ(x, t)|2 = φ(x) is t-independent, then we
have ψ∂tψ + ψ∂tψ = 0 and ψ∇ψ + ψ∇ψ = ∇φ, hence

1

2

(
ψ∂tψ − ψ∂tψ

)
= ψ∂tψ = −ψ∂tψ ,

1

2

(
ψ∇ψ − ψ∇ψ

)
= ψ∇ψ − 1

2
∇φ .

Differentiating (4.33) with respect to t, we have

∂2
t ψ −∇ ·

(
ψ∇ψ − 1

2
∇φ− iφA

)
ψ − ∂tψ

ψ
∂tψ = 0 .

Therefore ψ satisfies the wave map equation with electromagnetic potential

∂2
t ψ − φ∆ψ =

[
|∇ψ|2 − 1

φ
|∂tψ|2 − 1

2
∆φ− i∇ · (φA)

]
ψ , |ψ|2 = φ a.e.

Furthermore, using the fact |ψ|2 = φ and writing ψ =
√

φh, then h solves
the wave map equation

∂2
t h−∇ · (φ∇h) =

[
φ|∇h|2 − |∂th|2 − i∇ · (φA)

]
h , |h| = 1 .

Moreover, using the fact |h| = 1 and writing h = eiθ, we have

∂2
t θ −∇ · (φ∇θ) = −∇ · (φA) ,

i.e., θ is a distribution solution of wave equation with electromagnetic poten-
tial. The case for β > 1 is similar, and we omit the details. This completes
the proof of Theorem 4.2.
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5 Appendix

Let Re h and Imh denote the real and imaginary parts of the complex-
valued function h, i.e., h = Re h + iImh. We define the 2-dimensional
vector function ω by ω = (ω1, ω2) ≡ (Re h, Imh)t, then ω⊥ = (−ω2, ω1) and
(4.14)–(4.15) can be rewritten as

∂2
t ω −∇ · (φ∇ω) =

(
φ|∇ω|2 − |∂tω|2

)
ω −∇ · (φA)ω⊥ , |ω| = 1 , (5.1)

ω(x, 0) = ω0(x), ∂tω(x, 0) = 0 . (5.2)

Lemma 5.1 If |ω| = 1 almost everywhere and satisfies

∇ω ∈ L∞
(
[0, T ]; L2(Tn)

)
, ∂tω ∈ L∞

(
[0, T ]; L2(Tn)

)

then ω is a weak solution of the Cauchy problem (5.1)–(5.2) if and only if

∂t(∂tω × ω)−∇ · (φ∇ω × ω) = ∇ · (φA) .

Proof. Suppose that ω is a weak solution of (5.1)–(5.2), then taking the cross
product of (5.1), we have ∂t(∂tω×ω)−∇·(φ∇ω×ω) = ∇·(φA). Conversely,
assuming ∂t(∂tω × ω)−∇ · (φ∇ω × ω) = ∇ · (φA) or equivalently

[
∂2

t ω −∇ · (φ∇ω) +∇ · (φA)ω⊥
]× ω = 0 ,

which implies ∂2
t ω −∇ · (φ∇ω) +∇ · (φA)ω⊥ = λω for some scalar function

λ. Taking the inner product with ω and employing the property |ω| = 1, we
have

λ = φ|∇ω|2 − |∂tω|2 .

This completes the proof of the lemma.

Theorem 5.2 Given ω0 ∈ H1(Tn) and |ω0| = 1 a.e., there exists a function
ω satisfying |ω| = 1 a.e., such that

∇ω ∈ L∞
(
[0, T ]; L2(Tn)

)
, ∂tω ∈ L∞

(
[0, T ]; L2(Tn)

)
(5.3)

and solves the wave map equation with electromagnetic potential (φ,A) :

∂2
t ω −∇ · (φ∇ω) =

(
φ|∇ω|2 − |∂tω|2

)
ω −∇ · (φA)ω⊥ (5.4)

in D′((0, T )× Tn).
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Proof. As discussed in [29] for the wave map equation, we need to construct
an approximate equation ωn which preserves the energy |∂tωn|2 + φ|∇ωn|2
and satisfies |ωn| → 1, so we can approximate the equation (5.4) by

∂2
t ωn −∇ · (φ∇ωn) + n2(|ωn|2 − 1)ωn = −∇ · (φA)ω⊥n , (5.5)

ωn(x, 0) = ω0(x), ∂tωn(x, 0) = 0 . (5.6)

For each n the initial value problem (5.5)–(5.6) has a strong solution ωn such
that ωn ∈ C([0, T ]; H1(Tn)), ∂tωn ∈ C([0, T ]; L2(Tn)) and satisfies the energy
relation

d

dt

∫

Tn

|∂tωn|2 + φ|∇ωn|2 +
1

2
n2(|ωn|2 − 1)2dx

≤ C(Tn) + C

∫

Tn

|∂tωn|2 + (ω2
n − 1)dx

≤ C(Tn) + C

∫

Tn

|∂tωn|2 + n2(ω2
n − 1)2dx ,

(5.7)

this shows
∫

Tn

|∂tωn|2 + φ|∇ωn|2 + n2(|ωn|2 − 1)2dx ≤ C . (5.8)

It follows from (5.8) that there exists a subsequence still denoted by {ωn}n

and a function ω ∈ L∞
(
[0, T ]; H1(Tn)

)
such that

ωn ⇀ ω weakly ∗ in L∞
(
[0, T ]; H1(Tn)

)
, (5.9)

∂tωn ⇀ ∂tω weakly ∗ in L∞
(
[0, T ]; L2(Tn)

)
, (5.10)

and

|ωn|2 → 1 a.e. and strongly in L2(Tn). (5.11)

Moreover, after applying the Lions-Aubin’s lemma (5.9)–(5.10) shows that
ωn → ω strongly in L∞([0, T ]; L2(Tn)).

Now, in order to show that ω satisfies the equation (5.4) by Lemma 5.1,
we take the cross product of (5.5) with ωn to obtain

∂t(∂tωn × ωn)−∇ · (φ∇ωn × ωn) = ∇ · (φA) . (5.12)
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Since ωn → ω strongly in L∞
(
[0, T ]; L2(Tn)

)
, ∂tωn and ∇ωn are weakly ∗

convergent in L∞
(
[0, T ]; L2(Tn)

)
, we can pass to the limit in (5.12) and show

that ω satisfies

∂t(∂tω × ω)−∇ · (φ∇ω × ω) = ∇ · (φA) . (5.13)

By Lemma 5.1 we have completed the proof of Theorem 5.2.
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