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As the developments of wireless communication, stability in quality, high data rates and
high mobility have become basic requirements in next generation communication technologies.
In order to satisfy the three requirements simultaneously, we focus on two research topics in this
three-years project. One is the design of combining channel estimation and error correcting
space-time code, as well as its non-coherent decoder. The other highlights the analysis and
design of a multiple-terminal system with limited access, which is a situation that may
encounter in a highly mobile environment. In these three years, we have proposed a systematic
algorithm to generate codewords instead of doing computer searching in the research of the first
topic, and we also provided its maximum-likelihood-decoding algorithm with low complexity.
For the analysis of the novel system with limited access, we have derived the channel capacity
for general channel models and found the optimal power allocation to achieve the capacity.
Moreover, when the channel model is reduced to additive noises of the same family, we found
that the optimal power allocation can be obtained by a simple two-phase water-filling process.
Finally, following the interpretation of two-phase water-filling, we can further characterize the
degree of “noisiness” for general channels and analyze the degree of noisiness when total power
is sufficiently small and large, respectively.



2. PHTH

2.1 Reviews of the work in the first year:

In the first year, we compared our non-coherent code design under several scenarios with
Xu's code, which is specifically designed for a frequency-nonselective OFDM system (while our
systematic code construction scheme can also be applied in a frequency selective environment).
Our simulation results indicate that a blind-detectable noncohrent code can really be made robust
for channels whose taps vary more often than a coding block. A side advantage of our code
construction scheme is that its systematic structure makes it maximume-likelihoodly decodable by
the priority-first search algorithm. Thus, when being compared with the operation-intensive
exhaustive decoder, the decoding complexity is greatly reduced especially when codes of longer

code length is adopted.

2.1.1 The system model:

Suppose that a codeword b = [b; --- by]T is transmitted over a block fading channel of

memory order P, of which channel coefficients vary in every ) symbols, where b; € {+1}

and Q> P.Byletting L £ N+ P and M £ [L/Q), the system can be modelled by:
y =Bh +n,

} " with

where 7 is zero-mean white Gaussian distributed, h £ [hf hi .. hi

hk é [h(]‘k hl.k vt h-P,k]T, and
BEB, ®&B® - BBy

with B, £ 0gxp lol[be Eby, --- EF by|. Here, Og.p represents a ) x P all-zero matrix,

A

Io 1s a @ x @ identity matrix, b, = [b(k—l)Q—PJrl ces b(k_l)Q+] <o ka}T

is a portion of the

transmitted codeword b,

=
(>
o= o <

oo = O
_ o O O
oo o O

(Q+P)x(Q+P)

equates the logical left-shift operator, and “ ¢ ” is the direct sum operator of two matrices. Also,
for notational convenience, we let 7; =0 for j > L,and b; =0 for j <0 and j > N. Under
such system setting, v isan M} x 1 received vector with y; =0 for j > L.

It can be derived that the joint maximum-likelihood decoder upon the reception of y is given

by:



M
b = argrlr)leagckzluykyf—PBkH?’ (1)

where ¥y, = [Yk-10+1 Yk-1Q+2 - - Ukg| is the output portion affected by &, and
Py, 2 B,(B{B,) 'B}. In the above derivation, we assume that the receiver, although it knows

nothing about k, has perfect knowledge about the values (or the upper bounds) of P and Q).

2.1.2 Code construction:

Based on years of research efforts, we already have some knowledge in the construction of
non-coherent codes for P =( (frequency nonselective) and P =1 (frequency selective). For
completeness of this report, we list the code generating algorithm below.

Step 1. Fix by = —1.% and choose a certain integer A defined later. Find 2% codewords of the

(N, K) code by repeating Steps 2-4 for 0 < i <28 — 1.

Step 2. Let py, = 0 and p =i - A.

Step 3. For £ = 2 to N, assign the {-th bit of the i-th codeword, by, according to that if
2 < Pmin + Ve, then by = —1: else, by = 1 and ppin = Pmin + Ve, where

Ye = ‘Ap(lr)l ..... (‘}[;‘_1,[),3 = *1)|.
which will be defined shortly.

Step 4. Store the ith codeword b, and goto Step 2 for the next codeword until all 2% code-
words are selected.

In the above coding design, the A-th codeword must be of the form [—1---—1 11 w 1],

K+1
where u is a maximum-length shift-register sequence. When our code is compared with the
three-times-repetitive (12, 6) code proposed by Xu et al, we found that when the channel
coefficients remain constant over the entire coding block, the proposed (36, 6) code performs 0.7
dB better than Xu's code as shown in Figure 1. More details can be found in [3].
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Figure 1: Word error rates (WERs) for the constructed (36, 6) code and the
three-times-repetitive (12,6) code proposed by Xu et al over flat fading channel with channel
coefficients unchanged during the transmission of a codeword.

2.1.3 Optimal Priority-First Search Decoding:

In this year, we derived two decoding metrics that can be used by the priority first search
algorithm [1][2]. Both metrics will lead to the optimal maximum-likelihood decoding. The
difference is that the first metric f; can be computed on-the-fly, and will therefore cause much
less delay in the decoding. For the evaluation of the second metric f., however, one needs to
know all received symbols, but its computational complexity is much less than that of f;.
Continuing the derivation from (1) based on B} B, = G, for 1 < k < M, we establish that:

) | M QPP
b= arg 1%16%1 3 Z Z Z (—Wannkbk-1)0- P+mbk-1)0—P+n)

k=1 m=1 n=1

where for 1 < m,n < Q + P,

P P

Wi, e = Z Z Oi gk Re{Tm+ikTnjn
i=0 j=0

" I

Ui = [01xp Y Ouup)™ = [G1k -+ Jorork

Y

and §;;; is the (ij)-th entry of matrix D, =G;' . By adding a constant

%Z:; S S @y, | to the decoding criterion, the on-the-fly metric f; that suits for

m=1

the recursive computation of the priority-first search is given by:

P P
o — by Z Z 5i,j,kRe{gs+i,k : uj,k(bh cee 7bz)}7

=0 j=0
for P < s < Q;

P P
Filbr, .. b)) = filbr,... be_t) + & Crk —be Y > GigkRe{Grrin - win(bi, ... b}
i=0 j=0

+as,k+1
P P

—by Z Z Oi i1 Re{Jstips1 - wjpr1 (b1, ..., b0)},

i=0 j=0

L otherwise,

where s £ [(/+ P —1)mod Q]+ 1, r £ 54+ Q, k= max{[{/Q],1},

s—1

s [ £ Z ’ws,n,k| + |ws,s,k| /27

n=1

and

Uj,k(blv e bey) = Uj,k(bla oy be) + (bﬁg;tj,k + b€+1g:+j+1,k) /2
3



with initial values fi(b1,..., b)) =0 for £=0, and wu;p(by.....b4—1)0-p41) =0 for

0<j7<Pand1<Fk< M.Thelow-complexity decoding metric f. is given by

fa(by, ... be) = fi(by,...,be) + h(by,... by),

where
( QP Q+P
Z Om k. — Z |Um,k(blu SR 7bZ)| - ﬁs,k
m=s+1 m=s+1
for P < s <Q;
A Q+P Q+P
h(bl, . 7b£> - Z O k+1 — Z "Um,k—i-l(bla ceey bf)| - ﬁs,k—i—l
m=s+1 m=s—+1
Q+P Q+P
+ ) k= Y omk(br, . b)| = B
m=r-+1 m=r—+1
otherwise,

\
where s, r and k are defined the same as for f;(-),

Um,k(bla <. 7b£> = Um,k’(bla ce 7b€—1) + ws,m,kbﬂy

and
Q+P 1
ﬁs,k = ﬁsfl,k - Z |ws,n,k‘ - 5 |ws,s,k‘
n=s+1
Cy e f . p B Q4P
with initial values v, (b1, ..., b—1y0-p+1) =0 and o = Y577 Ok

2.1.4 Achievement:

The channel parameters h in simulations is zero-mean complex-Gaussian distributed with
E[hh™] = (1/(P +1))Ip,,. Note again that h is assumed an unknown constant vector at the
system design stage; hence, the system designer does not know whether h is zero-mean
complex-Gaussian distributed. Figure 2 then simulates three half-rate codes over frequency
selective channels of memory order 1, in which the channel coefficients vary independently in
every 15 symbols. The three codes are identified by (28, 14)(Q = 29), (28, 14)(Q = 15) and
CS(14, 7), which respectively represent the constructed (28, 14) code with design parameter
@ =29 (i.e., assuming at the design stage, the channel coefficients remain constant at least
during the entire decoding block L = N + P =28 4+ 1 = 29), the constructed (28, 14) code with
design parameter ) = 15 (i.e., assuming the channel coefficients vary in every 15 symbols at
the design stage), and the computer-searched (hence, structureless) (14, 7) code that minimizes
the union bound derived based on the assumption that the channel taps remain constant during the

decoding block (i.e., Q@ = L = N + P =14+ 1 = 15, which is exactly the simulated channel).
4
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Figure 2: Word error rates (WERs) for the (28, 14)(Q=29) code, the (28, 14)(Q=15) code and
the CS(14, 7) code over channels of memory order 1, whose coefficients varying

10

independently in every 15 symbols.

As anticipated, (28, 14)(Q =29) code seriously degrades in performance since its
corresponding assumption at the design stage does not match the characteristic of the true
simulated channel. This suggests that the assumption that the channel coefficients remain
constant in a coding block is very critical in the code design, and should be made with caution. A
striking result from Figure 2 is that the constructed (28, 14)(Q = 15) code performs markedly
better than the CS(14, 7) code at medium-to-high signal-to-noise ratios, despite that the CS(14, 7)
code is the computer-optimized code specifically for the simulated channel. This suggests that
when the channel memory order and varying characteristic are prior known (i.e., P and @),
performance gain can be obtained by enhancing the inter-Q-block correlation, and the system
favors a longer code design. In Table 1, we summarize the decoding complexity for the (28, 14)
(Q = 15) code simulated in Figure 2, measured by the average number of node expansions per
information bit. It shows, as previously mentioned, that the decoding metric f> requires less
decoding efforts than the on-the-fly decoding metric f;.

The performance of our constructed code can be further (slightly) improved if the codewords
are selected uniformly from all feasible code design parameters (cy, ca, -+« ,car) € {—1,0, 1},
For example, select only half (i.e., 2'%) of the codewords according to ¢; =() and ¢, = —1 for
the (28, 14)(Q = 15) code, and pick the remaining half of the codewords from those binary

sequences satisfying



( T Q 1
BB, = |/ Q—l]
BB, — |9 % fora<k<M—1
a Q
BT R, — N_(M_l)Q Cym
[ M N—[(M-1)Q-1]"

with ¢; =0 and ¢y = 1. This however will slightly increase the decoding complexity. The
trade-off between selecting codewords from fixed (¢y,...,cy) or multiple (¢, ..., car)'s is thus

evident.

SNR [3dB |4dB |5dB | 6dB | 7dB | 8dB | 9dB 10dB | 11dB | 12dB | 13dB | 14dB | 15dB
N 1658 | 1367 | 1074 | 899 701 593 488 448 356 309 277 244 232

fa 766 625 482 392 321 254 219 177 149 133 121 104 92

filfa ] 22 2.2 2.2 23 2.2 23 25 24 24 23 23 23 2.5

Table 1: Average number of node expansions per information bit for the (28, 14)(Q=15) code simulated

in Figure 1.

2.2 Reviews of the work in the second vear:

As the number of mobile users as well as the requirement for data rate is rapidly increasing in
modern communication systems, the base stations are gradually evolved from macro-cell-based
to micro-cell-based. In particular, the service range of a macro-cell base station may be
partitioned into several small ones, which are in turn served by several micro-cell base stations[4].
As such, in order to maintain the seamless data transmission, signals from multiple base stations
are required to provide softer handover functionality. On the other hand, the demand for mobility
is also increased recently, resulting in a more frequent softer handover. Thus, in order to provide
high mobility and high data transmission rate simultaneously, we consider in this project a novel
system, in which the data is encoded and distributed over N base stations such that the receiver
can decode data successfully as long as a certain portion of signals (at least K) from N base
stations are received. Since the channel model only requires at least K among N signals are
received, it is named the (N,K)-limited access channel. In the second year of this project, we
analyzed the channel capacity of (V,K)-limited access channel with arbitrary channel models and
proposed an fast algorithm to evaluate the optimal power allocation which achieves the channel

capacity.

2.2.1 The system model:

As shown in Figure 3, we consider a system that consists of N parallel channels, in which

6



only a certain portion of channel outputs are guaranteed to be successfully received at the
receiver end. The receiver however does not a priori know which outputs will be nullified or
blocked, nor does the receiver have the knowledge of the statistics of these blockages. We can
realize this assumption by introducing a set of auxiliary multiplicative constants sq, s, ..., Sy
to the channel outputs, where the ith channel output is nullified when being multiplied by s; = 0,
and remains when the multiplicative constant s; is equal to 1. It is assumed that by monitoring
the channel activities, the receiver can perfectly tell the value of s=sy,So,... ,SN]T.
Furthermore, s will remain constant within a codeword transmission period but may vary for
different codeword blocks. The receiver will then decode the information based on the receptions
[soY,80Y,,...,s0Y,] if at least K out of N components of vector s are equal to one,
where Y; £ [y, Ya,, ..., Yn,|T are the channel symbols received at time instance i, n is the
codeword length, and operator “o” denotes the matrix Hadamard product[5]. Conversely, the
receiver will give up the decoding if Zf\;l s; < K. We thus refer to this channel model as an
(N,K)-limited access channel.

In this setting, we are interested in the optimal power allocation p* = [p},p5,...,py]? such
that the minimum input-output mutual information subject to Zfil s; > K 1is maximized. This

quantity is generally regarded as the achievable rate under which the decoding error can be made

arbitrarily small.

Transmitter N parallel channels Receiver

Xy T Channel 1 ? 5177
VP1 i

X T Channel 2 ? ERV D)
N S2

Xn T Channel WV % snyYy
VPN =L

{Each E[X} =1 {Each s; €{0,1}

Z?:l pi< P Z}\:l s 2 K

Figure 3: System model for an (N, K)-limited access channel.

Under the system model, the input-output mutual information can be in principle represented
by
I(\/PoX;s0Y)



where I(-;-) is the mutual information function and /p = [\/p1, /P2, ---,+/Pn]’. Here, we
overload the notation by denoting the channel output vector corresponding to one channel usage
by Y =[V1,Ys,...,Yn]7, and likewisely denote by X = [X}, Xy, ..., Xy]? the channel input
vector for a single channel usage. The achievable rate that guarantees a vanishing decoding error
subject to Zfil s; > K 1is therefore optimistically

max max min I(y/poX;soY (2)
X {pemﬁzzlepigp {se{o,l}N:ZfV:1 siZK} (\/_ )

Where R, is the set of nonnegative real numbers. If the parallel channels are independent in the

sense that
N
Pr(Y|ypo X) = [ [ Pr(YilvpiX)) (3)
i=1

then the independence bound for mutual information gives that

N N
I(ypoX;s0Y) <Y I(/piXisiYy) =Y sil(VpiXi; Vi)
=1 =1

where the last equality follows from that s; is either 1 or 0. We can therefore focus on the
optimal power allocation for independent input distributions, if the channel transition probability
satisfies (3).

We next denote for convenience fi(p) =1 (vPiXi;Y;) for 1 <i <N, and make the

following assumption on these mutual information functions.

Assumption 1: For 1 <i < N, f;(p) is continuous and strictly increasing for p > 0, and its first

derivative, i.e.,

fip) = —aj;;p)

exists and is continuous and strictly decreasing in p > 0, where we define f/(0) £ lim,|o f/(p).

This assumption will be adopted as a premise in the following analysis. Under Assumption I,
it is clear that f;(p) is a strictly concave function of p with initial value f;(0) = 1(0;Y;) = 0.
Together with the fact that f;(p) > 0 for p € R,, we can replace the two inequality constraints
in (2) by their equality counterparts as

N

max min e 5 Ji(pi
{peéﬁﬁizi\rzl PzSP {86{071}]\]:21]'\]:1 S'LZK} Z ' ( )
min 25\;1 si - fi(ps) (4)

= max
{PE?TE_IH:ZiJ\Ll p;=P {SG{O,I}N:Z?:I si:K}

for a given X that validates Assumption 1.

In the next section, we will show that under Assumption I, the maximization-minimization

8



problem in (3) becomes algorithmically tractable (cf. Theorem 2).

2.2.2 Analysis of The optimal power allocation

In this section, the analysis for the optimization problem in (4) is presented.

For K =1, (4) can be simplified to

max min{ f1(p1), fa(p2), ..., fn(Pn)}
{PeRY: N, pi=P}

It is thus straightforward that the optimal power allocation p* satisfies
J1(pY) = fa(p3) = -+ = n(Py)

For K = NV, the maximization-minimization power allocation problem reduces to one that
only requires a maximization computation because s; = sy = ... = sy = 1. Therefore, one can
apply the Lagrange multipliers technique and Karush-Kuhn-Tucker (KKT) condition to find the
optimal power allocation [6]. However, for 1 < K < NV, there does not exist a straight technique
for this maximization-minimization problem. Nevertheless, we can find a necessary condition for
the optimal power allocation such that the labor of examining all possible (%) combinations of

s satisfying Zfil s; > K can be reduced as indicated in the next lemma.

Lemma I: The optimal power allocation p* for an (V,K)-limited access channel satisfies
fal(p21) S fa2<p:2) S T S faK(p:K) = faK+1(p;K+1> == faN<p:N)

for some permutation ay,as,...,ay of sequence 1,2,..., V.

An immediate implication of Lemma I is that we can distinguish the optimal power allocation

for an (N, K)-limited access channel into K disjoint cases. In other words, the condition

(max fo (o) < Jar(Pa,) = Jaris Pay) =+ = Jan (Pay) (5)
is valid exactly for one value of ¢ in {1,2,..., K'}. As aresult, if the index set

A= {ae, g1, >aN}

in which their respective mutual information function values are equal to maxi<;<y fi(p}) is
identified in advance, the maximization-minimization power allocation problem is simplified to a

maximization problem as

max {Z filpi) + (K = N + [A]) max fj(Pj)} (6)
igA

pPEP(A) 1<j<N

where



) ()Y p= P
PA) 2SpeRY . (ii)fi(p:) < maxi<jen fi(p;) fori ¢ A 3. (7)
(149) fi(p;) = maxy<j<n fi(p;) fori € A

However, the direct identification of A without knowing p* in advance is in general a
challenged. The opposite, i.e., identifying A after determining p*, is more straightforward. In
order to resolve the optimization problem, we propose in the following subsections to first
determine  the best power allocation p° corresponding to a  conjectured
maximal-mutual-information index set, denoted by B. Then, we will examine afterwards whether
this conjecture is the optimal one or not based on some condition we will establish later. In case
the conjectured B only achieves a suboptimal power allocation, a new round of maximization
computation and follow-up examination will be launched based on a newly generated B. Since

the established condition will help identifying one index that is not in A at each round, the

process can hopefully stop after N — |A| + 1 iterations after which p* is obtained.
A. Determination of the best power allocation p° corresponding to a given index set B

Based on a given index set B, we transform the maximization-minimization problem into

zgl()ﬁ){ > ign Ji(pi) + (K — N 4 |B[) maxi<j<n f;(p;)} (8)

where P(B) is defined the same as (7) except that A is replaced with B. Since the given B
may not be the optimal index set A, the solution p° of the optimization problem defined in (8)

could be at the boundary of P(B) in the sense that

fi(p}) lrglfl%)}iv fi(p5) for some i ¢ B.

For this reason, we use supremum instead of maximum in (8).
We next show that this inequality constraint can be relaxed by means of the incorporation of
the aggregate mutual information function that transforms the N-dimensional power allocation

problem into an equivalent N — |B| + 1-dimensional one.

Definition 1: The aggregate mutual information function Fp with respect to a sequence of

mutual information functions {f;};cp is defined through its inverse function as

FS™(y) 23 £ (y) fory >0 ©)

1€B

provided that all the inverse functions exist (which is guaranteed by Assumption 1).

10



A graphical illustration of the aggregate mutual information function for B = {1,2,3} is

given in Figure 4. In this figure, it is clear that

Fléinv) _ 1(inv) (y) + f2(inV) (y) 4+ féinv) (y) =D1 +p2+p3

" P2 B3 Pr— Po— Py

Figure 4: Graphical illustration of the aggregate mutual information function when
fi(p) =log(1 +p/o?) and o2 =i for i € B={1,2,3}.

As a specific example, if f;(p) = log(1 + p/o?) for some o7 >0 and 1 < i < 3, then

Fa(p) = log (1 + L) .

2 2 2
o1 + 05 + 03

In terms of the aggregate mutual information function, we can simplify the constraints in P(B)

in the following lemma.

Lemma 2: Fix an index set B. The solution p° of the optimization problem in (8) satisfies

R q; fori ¢ B
D; :{ ¢

fi(inv)(FB(qﬁ)) fori e B (10)

where the N — |B| + 1-dimensional vector g° is the solution of the optimization problem

below:
sup { > g fi(@:) + (K — N + [B[) Fs(gs) } (11)
qeQ(B)
where
a | : N-Bl+1, ()Y s+ as =P
O®m) £ {a= (st of i ¢ B <RI (et 0 o )

In addition, ¢° € Q(B) if, and only if, p® € P(B).
11



By the reduction of constraints down to two in Q(B) in Lemma 2, we can further proceed to
show that the inequality constraint in Q(B) is redundant in case ¢° € Q(B) as summarized in

Theorem 1.

Theorem I: Given that ¢° € Q(B), the maximize ¢° for (11) is equal to the maximize ¢ of the

problem below:

qreng(ﬁ){Ziw fil@) + (K — N + [B|) Fi(gs) } (12)

where
OB) £ {qeR) " Y sq+a="P}

We conclude this subsection by pointing out that the maximization computation in (12) is
now performed over the usual single power-sum constraint, and hence can be solved by the
Lagrange multipliers technique and KKT condition by treating (K — N + |B|)Fr(¢s) as the
mutual information function of an auxiliary aggregate channel. Based on the result in Theorem 1,
we are ready to present the algorithmic approach that helps identifying the optimal

maximal-mutual-information index set A and the optimal power allocation p*.

B. Determination of the Optimal Maximal-Mutual-Information Index Set A and the

Optimal Power Allocation p*

N

For an (N,K)-limited access channel, there are possibly Zf:l ( 1

) candidate index sets for
the choices of B in Theorem I, and it may be time-consuming to perform the optimization
computation for (12) for each of them. The next theorem then shows that this time-consuming

maximization labor can be reduced to only N — |A| + 1.

Theorem 2: The optimal maximal-mutual-information index set A as well as the optimal power
allocation p* can be obtained through the following algorithmic procedure:

Step 1. Initialize M =1 and B; = {1,2,..., N}.

Step 2. Obtain the maximize q,, for (12) by setting B = B,,, and calculate

Das = [Para, Doy > Pun]”

corresponding to the obtained q,, and the given B,, through an assignment similar to (10).

Step 3. Assign By = By \ {jn} where jy is anindex in B,, that satisfies
fJ,'M<ﬁM,jM) = min fz,(ﬁM,z) (13)
i€By s

(If there are more than one indices satistfying (13), just pick up any one of them as j.)

Step 4. If
12



(K — M)k, O icn,,,, Pvi) < f,, (Parga,) (14)

then set A =B,, and p* = p,, and stop the algorithm; otherwise, set M = M + 1 and go

to Step 2.

We would like to point out that the algorithm in Theorem 2 will stop when (usually before)
M reaches K because (14) trivially holds when A/ = K. This coincides with the definition of
A in (5) that at most K — 1 indices are outside A.

Theorem 2 indicates that given the first derivative of the marginal mutual information
function f;(p) = I(\/pX;;Y;:) being positive, strictly decreasing and continuous in p for every
1<i< N (i.e., Assumption I), we can determine the optimal power allocation p* for a spatially
independent (N,K)-limited access channel with input /po Xby performing N — [A]+1

maximizations in the sense of (12).

2.2.3 Achievement:

For (N, K )-limited access channels with arbitrary inputs, the capacity formula is derived as a
maximization-minimization problem. We then analyze the maximization-minimization problem
to get two properties as shown in Lemma 1 and Lemma 2. According to these two properties and
the definition of aggregate mutual information, we then simplify the maximization-minimization
problem to a simple maximization problem with only one single power-sum constraint. Based on
the simple maximization problem with single power-sum constraint, we propose an algorithm to

find the optimal power allocation p* by N — |A| + 1 time-consuming maximization labor.
3. FELpEGH=E)

3.1 Introduction:

In the second year of this project, we have proposed an algorithm of finding the optimal
power allocation for general channels with limited access constraint. Following the proposed
algorithm, in this year we further establish that when channel disturbances, in addition to
independence, are reduced to being additive with distributions scaled from a common random
variable, the optimal power allocation can be directly obtained from a two-phase water-filling
process if the arbitrary inputs are given by the respective component variables in an independent
and identical distributed (i.i.d.) random vector, multiplying by the square root of the allocated
power. The two-phase water-filling interpretation then hints that the degree of “noisiness” for a
general (possibly, non-additive and non-Gaussian) limited access channel might be identified by

composing the derivative of the mutual information function with its inverse.
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3.2 The system model:

Although Gaussians are generally appropriate noise models for physical additive channels,
experimental measurement indicates that the noises in certain environments are by no means
Gaussian distributed [7][8][9]. As such, in the third year of this project, we consider additive
noise of the same family in (N, K)-limited access channels.

By additive noises of the same family, we mean that the relationship between channel inputs

and outputs can be characterized by

where {X;}Y, and {Z;}Y, are both i.i.d. complex random variables with unit second moments,

and they are independent from each other; the system model is shown as Figure 5.

R O A

N 0141 1

- _’Q?*EP*Q?*”YQ

0224

XN_’?*EP%?%MN

ONZN

Figure 5: System model for an (V, K)-limited access channel with additive noise of the same family, where
E[X;2 = E[|Z]?] =1, s; € {0,1} for 1 <i<N, >N 5> K and YN p; < P.

We then restrict our attention only to the case that Z; is a continuous random variable
because Assumption I(at page 8) may fail when both X; and Z; are discrete. Notably, X; often
takes values in a finite alphabet (e.g., {£1}) in practice. Specifically, when the intersection of
two sets {,/px + 0,2 : Py, (z) >0} and {\/piZ + 02 : Pz,(2) >0} is empty for every = # &
with Px,(x) >0 and Px,(Z) > 0, we have

filpi) = I(/piX3;Yi) = H(\/piXi) = H(X;)

where H(X;) is the entropy of the channel input X, [10]. This implies that in a discrete system,
fi(pi) can be equal to its maximum value H(X;) almost everywhere in p;, in which case
Assumption I is unquestionably violated.

Observe that for continuous additive noises,
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I(VpiXi i) = h(Yz) h(Yilv/piXi)
h(Yi) = h(VpiXi + 0:Zi|\/piXi)
h(azfﬁ) Wi Z;) (16)

h(Y;) — h(Z;)
—r(YPix.y,
()

%

where h(-) is the differential entropy function [10], and (16) follows from the independence
between X; andZ;, and Y; = (\/p;/0;)X; + Z;. This immediately yields

filpi) =g (5 ) forevery 1 <i < N (17)
with
9(p) 2 I(V/pXi; /0 Xi + Zs). (18)

Assumption 1 thus reduces to the single condition that function ¢ is continuous and strictly

increasing, and its first derivative exists and is continuous and strictly decreasing.

3.3 The optimal power allocation for additive noise of the same family:

Based on this system setting, we show in the next theorem that the optimal power allocation
p* follows a two-phase water-filling scheme} Specifically, in the first phase (which we refer to

as the noise-power re-distribution phase), the least N — K noise powers among {o2}Y

v, owill
be first poured as noise water into a tank consisting of K interconnected vessels with solid base
heights equal to the remaining K noise powers and with widths of unit length as shown in
Figure 6(b). Afterwards those 1/ vessels either with water inside or with solid base height equal
to the water surface level will be subdivided into /N — K + W vessels of rectangular shape with
the same heights (as the water surface level) and with widths in proportion to their noise powers
(but the total volume remaining unchanged). As such, a tank with N vessels of proper heights
and widths (corresponding to /N channels) is ready for the second phase as exemplified in
Figure 6(c). It is worth mentioning that after the first phase, the optimal
maximal-mutual-information index set A has already been identified and consists of the channel
indices corresponding to the aforementioned 1/ vessels and the least NV — K noise powers
(hence, |A| =W + N — K).

In the second phase (which we refer to as the signal-power allocation phase), the heights of
vessel bases will be first either /iffed or possibly lowered according to total signal power P and
function ¢ as well as their current heights as shown in Figure 6(e). What follows, as exemplified

in Figure 6(f), is the usual water-filling power allocation scheme. The pre-adjustment of base

heights before water filling can be viewed as preparation for these vessels to be “capable” of
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supporting the water that is going to be poured in with amount P. As a result, the volume of
water ended up in each vessel is exactly the power that should be allocated. Notably, for the
special case that the noises {Z;}Y, are complex Gaussian distributed, the heights of vessel bases
can never be lowered in the pre-adjustment step; hence, a mercury-filling scheme before water
pouring has been proposed to materialize the lifting of heights of vessel bases [11]. However,
since the adjustment of heights of vessel bases generally can be in both up and down directions,
the use of the name mercury/water filling may induce that the vessel bases should be lifted under
general non-Gaussian additive noises; hence, we simply use the conventional name of

water-filling in this work.

Theorem 3: Suppose that the information transmitted over an (N, K)-limited access channel is
corrupted by additive noises of the same family characterized by (15) and the mutual information

function ¢(p) defined in (18) satisfies Assumption 1. Assume without loss of generality that
0122052... 2072\/,.

Then, the optimal maximal-mutual-information index set A is given by

A={00+1,-- N} (19)

where
Eémin{ie{l,z---,K}Jfgé}%(foreverylgigl(} (20)
and 62202+ [A—0o?]F for 1<i<K with X chosen to  satisfy

Zfil AN—o2" = Zf\; )41 00, and [y]T 2 max{0,y}. The optimal power allocation p* can
therefore be obtained from q* through an assignment similar to (10), where g* is the maximizer

for (12) with B equal to the above A. In other words,

i} q; for 1 <7</
Pi = ii(’?-qg for/ <i< N 21
with
o? - 9" (va?) if g'(c0) <wvo? < ¢ (0) .
* 1 7 ) <
q; { 0 if vo? > ¢/(0) for 1 <i< /¥ (22)
and

N N 2

* inv ZA: g

qp = (ZUJQ> g’ (V# (23)
Jj=t

where ¢’("") is the inverse function of the first derivative ¢’ of function g, and v is chosen
such that
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G tq =P (24)

(=W =3
A ={3,4,5,6,7,8}

o? 52 m2 1
o5 op) 2
; 3 45679
o5 N
ot ot R
(a) (b) (c)
P
lowered
1 |
2 ¥ |
¥ lifted
3 ’—1: 5 6 ?8 »T\ 1 1 1 [}
(d) (e) (H

Figure 6: The graphical interpretation of the optimal two-phase water-filling power allocation for an (8,5)
-limited access channel with independent additive noises characterized by (15). In this figure,
[02,03,--+ 03] = [8,7,4,3,3,2,2, 1]. Subfigures (a), (b) and (c) correspond to the noise-power redistribution phase,
while subfigures (d), (e) and (f) illustrate the signal-power allocation phase.

Several remarks can be made based on Theorem 3.

® First, it can be extended from Theorem 3 that as long as A is pre-determined, the
maximization labor can always be reduced down to one. In the special case that the noises
are additive and originated from the same family (as considered in this section), we can
directly determine A in terms of (20).

® Sccondly, when ¢ =1 (equivalently, A ={1,2,...,N}), p* can be determined without
any maximization labor since we immediately have g3 = P by (24). In such a case, the

optimal power allocation follows the equal signal-to-noise ratio (SNR) principle as

* P
b - for every 1 <i < N.

2 N
® Finally, the validity of Theorem 3 does not need to be restricted to channels with additive

noises of the same family but can be extended to any (N, K )-limited access channel with

marginal mutual information functions satisfying (17) for some function g that obeys
17



Assumption 1. A straightforward example is the flat fading channels with known channel

states at the receiver end, characterized by
Y= (8:H:)(\/piXi) +0:Z; for1<i<N (25)

where {H,;}Y, is i.i.d. with unit second moment, and is independent of the channel input
and additive noise. We then obtain filps) = g(B%p;/c?) with
9(p) = I(\/pXi; pH; X; + Z;|H;). Theorem 3 thus can be used to establish the optimal

power allocation by treating o?/3? as the new noise power level.

An exemplified illustration of the two-phase water-filling scheme is depicted in Figure 6. Details

are given below.

<The noise-power re-distribution phase>

Fig. 6(a) Set K vessels with widths of unit length and with base height of the ith vessel being
o? for 1 <i < K. (Note that we assume 0% > g5 > --- > 04:.)

2

N o2 and set 52 as the new water level of

Fig. 6(b) Pour in the “noise water” of amount » " ;. | 07 :

vessel i for 1 <i < K. Let ¢ be the smallest integer among {1,2,..., K} such that
0? < 5% (cf. (20)). Assign A={(,(+1,...,N} and W=K —(+1.

Fig. 6(c) Sub-divide the space of the last W vessels (ie., K —W+1, K—-W+2,...,K)
into W + (N — K) new vessels of rectangular shape with base height the same as the
water surface level and widths in proportion to ¢? for ¢ <7 < N.

< The signal-power allocation phase >

Fig. 6(d) Retain the NV vessels from the previous phase.
Fig. 6(e) Adjust the base height of the ith vessel to

Li(v) & (26)

o?-G(vo?) forl1<i</{
5% -G(vo%) ford <i<N

where v is the parameter chosen in Theorem 3 according to (24), and

{% —g'E(Q) if g'(o0) < ¢ < g(0)

G() &
SUA if ¢ > ¢/(0).

Fig. 6(f) Pour in the “signal water” of amount P. Then the volume of water in the ith vessel is

the optimal power p; to be allocated for channel 1.

3.4 Implications from the optimal power allocation:

Theorem 2 indicates that the sequence of candidate maximal-mutual-information index sets

By,By, B3, ... can be identified via the determination of ji, jo, js, . ... In a sense, this sequence
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can be regarded as sorting the channels in their descending degrees of “noisiness,” which can be
supported by the result from Theorem 3, where the sequence of ji,js2,J3,... coincides with
2 2 2
%5 ZUJ2 Zajs Z
For a general (N, K)-limited access channel in which the noises are not necessarily additive

or scaled from the same family, can one identify such sequence through their mutual information

functions? The next theorem may provide a guide along this direction of thinking.

Theorem 4: For a general (N, K )-limited access channel, if
i (180w < g (£E W) <+ < fiy (A7) forall y =0
then ]M = kM for M = 1,2,3,....

Here, regardless of the original goal of the determination of optimal power allocation,
Theorem 4 (as an extension from Theorem 3) proposes a way to compare the degree of “noisiness”
of general channels via their mutual information functions. For the additive noise channels of the

same family, we have
7 (£ W) = 250 (65w).
0;
Hence, the proposed ordering coincides with the general impression that the larger the o2, the
noisier the ith channel is considered to be. To simplify the notation, we drop the parentheses
between f/ and "™ in the sequel.
For channels other than additive noise of the same family, there could be no apparent winner

between any two channels in the sense of {f] fi(inv) 1 . In other words, it could happen that
LS ) > 1) but S5 ) < 177 ()

for two distinct 1, and ¥, and two distinct ¢ and j. As such, the sequence of j1, jo2, j3,... will
become a function of the total signal power P. However, if a certain condition is satisfied, the
pre-identification of the degrees of channel noisiness is still possible at two extreme situations:
P — 0 and P — oc, which we will respectively refer to as the low- and high-power regimes in

later discussion.

Lemma 3:

1. If

lim sup ( FLES ) — L (y)> <0 foreveryl <i<j<N 27)
yl0

then j; = i in the low-power regime, where sign function sgn(p) is equal to either 1,

0 or —1 depending on whether p >0, p=0 or p <0.
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limsup sen (f/£"7 () = [ (1)) SO forevery 1<i<j<N  (8)

yTmin{w;,w;}

then j; = ¢ in the high-power regime, provided that lim, .. f/(p) =0 for 1 <i < N,

where w; £ lim,, . fi(p).

Since the input alphabet is usually finite for channels of practical interest, we have
w; =lim, . fi(p) < H(X;) <oco. This immediately validates the premise, i.e.,
lim, .o f/(p) =0, for condition (28) implying j; = ¢ in the high-power regime. In other
words, lim, . f/(p) =0 is true for all finite-input channels. There however exists a certain
kind of channels where w; =oc while lim, . f/(p) = 0. An example is the Gaussian-input
AWGN channel for which f;(p) = log (1 + p/o?). We would like to emphasize that the inference
regarding (28) still remains valid for channels with unbounded mutual information as long as
lim, s f/(p) = 0.

Conditions (27) and (28) in Lemma 3 involve the examination of the limit supremum of
function differences. The following corollary shows that their validity can be guaranteed by

comparing the limiting behaviors of individual functions.

Corollary 1:
1. The validity of (27) for an (i,j) pair is certain if one of the three conditions below is
satisfied:
fi(0) < £3(0)
£1(0) = f;(0) and £{0) < £50) (29)
(30>0) fi(p) < fi(p) for 0 <p <
(4,

2. The validity of (28) for an

<.

J) pair is certain if

wi = lim fi(p) <w; = lim f;(p). (30)

p—00
According to the above discussions, we can identify the degree of noisiness for general

channel easily by the sufficient conditions provided in Theorem 4, Lemma 3 and Corollary 1.
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4. PEF%xp=

In this three-years project, we have investigated several scenarios of codes designing for
non-coherent detection system that combines channel estimation and error correction. This design
can directly construct a code of any desired code length and code rate, of which the performance
is shown to be comparable to the best computer-searched code for the channels simulated. For the
designing and analysis of the novel (N, K)-limited access system, we have derived the channel
capacity and proposed a fast algorithm of finding optimal power allocation to achieve the
capacity. Following the proposed algorithm, the optimal power allocation can be obtained by a
two-phase water-filling process when the channel model is additive noise of the same family.
From the interpretation of two-phase water-filling, we further define the degree of noisiness for
general channels. The works for the novel (N, K)-limited access system will appear in /IEEE
Transactions on Information Theory and was presented in part at the 2011 International

Symposium on Information Theory.
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