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Abstract

This paper presents a fuzzy control mechanism for conventional maximum likelihood linear regression (MLLR) speaker adaptation, called
FLC-MLLR, by which the effect of MLLR adaptation is regulated according to the availability of adaptation data in such a way that the advantage
of MLLR adaptation could be fully exploited when the training data are sufficient, or the consequence of poor MLLR adaptation would be
restrained otherwise. The robustness of MLLR adaptation against data scarcity is thus ensured. The proposed mechanism is conceptually simple
and computationally inexpensive and effective; the experiments in recognition rate show that FLC-MLLR outperforms standard MLLR especially
when encountering data insufficiency and performs better than MAPLR at much less computing cost.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Speech recognition systems can be classified either as speaker-independent type (SI) or speaker-dependent type (SD), depending
on how speech samples are collected during system construction. An SI system typically collects speech samples from a as large
population of speakers as possible, whereas a SD system collects a large amount of sample data from possibly just one designated
speaker. In general, a well-trained SD model achieves better performance than an SI model on recognizing the speech of a specific
speaker. However, when the amount of training data available to acquire the SD model is not sufficient, such superiority would no
longer exist. This is where speaker-adaptive techniques (SA), sometimes referred to as model-based adaptation techniques, get in
to play, which would adapt a full SI model into an SD one and achieves SD-like performance, requiring only a small fraction of the
speaker-specific training data.

To the author’s knowledge, there are mainly three categories of SA techniques: (1) Bayesian-based, (2) transformation-based,
and (3) speaker-clustering-based (also known as Eigenvoice-based). In the Bayesian-based model adaptation, the acoustic model
parameters are directly re-estimated, using maximum a posteriori (MAP) adaptation [1,2], for example, under the Bayesian reasoning
framework. In the transformation-based model adaptation, certain appropriate transformations have to be derived from a set of
adaptation utterances of a new speaker and then applied to clusters of hidden Markov model (HMM) parameters. The form of
transformation can be as simple as adding a cepstral bias for model adaptation, as was done in Ref. [3], or an affine transformation
over HMM parameters when adding a bias alone could not take care of the variations in test environments or among different
speakers. In the work by Leggetter et al. [4], maximum likelihood linear regression (MLLR) was firstly proposed as the framework
for affine transformation. The MLLR scheme has been quite successful for its rapid adaptation and a series of variants arise, many
of which aiming at the problem concerning the quality of the estimated transformation resulting from insufficient adaptation data.
For instance, the transformation parameters were estimated by maximizing the posterior density using MAP theory [5,6], or by
using a prior distribution for calculating the mean transformation matrix parameters as suggested in Refs. [7,8] and thus dubbed
as maximum a posteriori linear regression (MAPLR), or by using the so-called discounted likelihood estimation as was proposed
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in Ref. [9]. All were designed for the robust estimation of transformation against the insufficiency of adaptation data and were
essentially complicated and time consuming in computation, an adverse factor against on-line applications.

Kuhn et al. [10] proposed the eigenvoice adaptation where a priori knowledge concerning the variations among all training
speakers was represented as the set of SD model parameters in the form of eigenvectors named eigenvoices; a new speaker model
was then expressed as the linear combination of the set of eigenvoices. Following that, the eigenvoice versions of conventional
MLLR and MAPLR adaptation have been reported in Refs. [11,12], respectively. Eigenvoice-based approach has received intensive
attention and various extensions of eigenvoice adaptation have been developed recently [13–18].

In order to tackle the issue of unreliable MLLR model transformation due to the scantiness of training data without the daunting
cost of MAPLR-like adaptation, a fuzzy control mechanism is proposed in this paper so that, based on the amount of adaptation
utterances available, MLLR transformation could be regulated in the way that the rapidness of MLLR adaptation could be fully
exploited when the amount of training data allows, while the undesired effect of poor MLLR adaptation would be alleviated. In fact,
the fuzzy theory was firstly used in MLLR adaptation (fuzzy-MLLR) as described in Ref. [19] where the motivation and purpose
of using fuzzy mechanism were completely different from the work here, as will be detailed in Section 2.5. Fuzzy logic controllers
(FLC) have been deployed in a wide range of applications with great success [22], including speech recognition too. Takagi–Sugeno
(T–S) FLC is a type of fuzzy process renowned for its idea that behaviors of a seemingly complex system can be represented by a
set of fuzzy implications (or rules if one preferred) from which the system output is derived systematically [20,21].

The rest of the paper is organized as follows. In Section 2, theoretical formulation of MLLR and MAPLR is briefly described first.
Then the idea of incremental model transformation under fuzzy regulation is introduced, followed by the formulation of the T–S
fuzzy mechanism for model adaptation in this work. Complexity analysis of the proposed scheme is also given, following which a
reference to SA techniques employing fuzzy schemes is mentioned. Section 3 presents the experiment results where the effectiveness
and performance of FLC-MLLR are fully demonstrated as compared to standard MLLR and MAPLR. Some concluding remarks
are given in Section 4.

2. FLC-MLLR adaptation

Under the framework of transformation-based speaker adaptation, it starts with a set of SI HMM,�, to which certain transformations
F� with parameters � derived from adaptation data, Y, of a new speaker are to be applied such that the transformed model F�(�)

would recognize the incoming speech better than � did. The transformation parameters � are usually assumed to be fixed and then
be estimated via statistical measures with specific criteria such as maximum likelihood (ML) or MAP, as were done in Refs. [4,7],
respectively.

2.1. MLLR and MAPLR

MLLR is quite popular because of the simplicity of ML criterion, which states that the transformed model �̂ML should maximize
the likelihood of the adaptation data p(Y |�, �), i.e.

�̂ML = arg max
�

p(Y |�, �). (1)

Consider the Gaussian mean vector of the model at state s, �s , and the associated affine transformation action as follows:

�̂s = As�s + bs , (2)

which sometimes is written as

�̂s = Ws�s , (3)

and �s is the extended mean vector in the form

�s = [�, �s1
, . . . , �sn

]′, (4)

where � is the offset term of the regression, usually being set as 1.
The transformation matrix Ws is estimated such that the likelihood of the adaptation data is maximized, for which a closed form

solution is available in Ref. [4] as follows:

T∑
t=1

R∑
r=1

�sr
(t)�−1

sr
ot�

′
sr

=
T∑

t=1

R∑
r=1

�sr
(t)�−1

sr
Ws�sr �

′
sr

, (5)

where �sr
(t) is the total occupation probability for the state sr at time t given the generation of the observation vectors of adaptation

data ot at time t, �−1
sr

is the covariance matrix of the output probability distribution, and R is the number of states. Ws in Eq. (5) can
be solved by the expectation–maximization (E–M) algorithm as suggested in Ref. [23].
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Besides the adaptation of Gaussian mean vectors, other HMM parameters like Gaussian variance can also be adapted as was done
in Ref. [24] where the transform action for variance vectors is estimated following the transformation of mean vectors. However,
the improvement of the recognition performance is extremely limited and, as a result, only the adaptation of the mean vectors is
considered in this work.

When the amount of adaptation data is very small, it is unlikely to calculate a regression matrix for each state. In such a case,
there would be no alternative but tying all states with one regression matrix to adapt all Gaussian distributions.

Apart from MLLR, Chesta et al. [7] suggest that the prior density can be taken into account in the estimation process of transfor-
mation parameters by using an MAP criterion:

�̂MAP = arg max
�

p(�|Y, �) (6)

which is proportional to arg max� p(Y |�, �)p(�). According to this criterion, the MAPLR technique for adaptation is thus derived,
where the transformation matrix Ws appears in the form of p × (p + 1) linear equations as follows [7]:

p∑
k=1

p+1∑
l=1

wkl

[
N∑

n=1

M∑
m=1
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T∑
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�t (n, m)

)
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lj
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=
p∑
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p+1∑
l=1
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N∑

n=1
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m=1
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t=1
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2
	kimkl
j l + 1

2
	ikmkl
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]
, 1� i�p, 1�j �p + 1, (7)

where wij ∈ Ws, �ij ∈ Rnm, mij ∈ M, 	ij ∈ �, 
ij ∈ �, �t (n, m) is the probability of the mixture m in state n at time t, given the
observation o(t), and �i is the ith component of the mean vector �nm.

Note that Rnm is the precision matrix and M , �, and � are hyperparameter matrices associated with the prior density. Solving the
system of equations in Eq. (7) for Ws is obviously much more time consuming than standard MLLR due to the use of additional
hyperparameters {M, �, �} of the prior distribution. Details for the estimation of {M, �, �} can be found in Ref. [25].

2.2. Incremental model transformation under fuzzy regulation

As already noted, when the amount of adaptation data is sufficient (though may be small), the model-transformed adaptation
scheme would be quite effective and the performance improvement saturates quickly as the amount of adaptation data increases.
However, when only a limited and insufficient amount of adaptation data are available, the robustness of the transformation matrix
Ws , especially derived by the MLLR approach, would be in doubt; poor estimation of Ws could lead to the corruption of underlying
structure of the acoustic space. The problem due to the scarcity of adaptation data can be alleviated by utilizing the MAPLR scheme
instead, if one disregards the heavy computation involved.

With insufficient training data, one would naturally tend to be more “conservative” while using the transformation matrix thus
derived, i.e. the effect of the adaptation should be restricted in this case so that the adapted mean vector would not vary too much
from the state prior to adaptation. Accordingly, an incremental approach to MLLR model transformation is proposed as follows:

�̃s = ��s + (1 − �)Ws�s , 0���1, (8)

where �s is the initial mean vector, �s is the extended mean vector as defined in Eq. (4), and Ws is the transformation matrix derived
from Eq. (5). Note that the weight � is to vary in a way depending on how much confidence one has in Ws . A possibly not so
well-estimated Ws due to insufficient adaptation data would preferably go with � approaching 1 so that �̃s stays closer to �s , instead
of drifting away drastically. On the opposite, 0-approaching � should be taken for full advantage of fast adaptation. Owing to the
uncertainty in the amount of adaptation data, the control of � weighting is formulated as a fuzzy control problem governed by the
simple rule: the more the training data are, the smaller � will be.

2.3. T–S fuzzy model and speaker adaptation

Under the framework of T–S fuzzy model, a generic system can be formulated as a set of fuzzy implications (or rules) together
with a system output determined by consequences in the set of implications.

The system representation would be of the form:
Rule 1: If x(1) is A1

1 and . . . and x(n) is A1
n then

y1 = a1
0 + a1

1x(1) + · · · + a1
nx(n),

...
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Fig. 1. Membership functions.

Rule i: If x(1) is Ai
1 and . . . and x(n) is Ai

n then

yi = ai
0 + ai

1x(1) + · · · + ai
nx(n),

... (9)

Rule l: IF x(1) is Al
1 and . . . and x(n) is Al

n then

yl = al
0 + al

1x(1) + · · · + al
nx(n).

System output: y = ∑l
i=1w

iyi/
∑l

i=1w
i , given that wi = ∏n

p=1 Ai
p(x(p)), for a system of n inputs and l implications. Note

that Ai
p (p = 0, 1, . . . , n) are fuzzy sets and Ai

p(x(n)) denote the fuzzy values of the membership function associated with Ai
p

for the input x(n); ai
p (p = 0, 1, . . . , n) are consequent parameters through which the ith consequence yi is expressed as a linear

combination of n inputs.
For the specific problem in this paper during speaker adaptation, the aforementioned simple rule governing � regulation, given N

training samples observed for all Gaussian mixture components, can be formulated as the following implications:
Rule 1: If N is small then � is large.
Rule 2: If N is medium then � is medium.
Rule 3: If N is large then � is small.
Let M1(N), M2(N), and M3(N) be membership functions associated, respectively, with small, medium, and large amounts of

training data available for adaptation, as shown in Fig. 1, and �L, �M , and �S be the � values determined, respectively, by functions
f1(N), f2(N), and f3(N) in each of the three cases.

Then the previous set of rules can be further clarified as
Rule 1: If N is M1(N) then �L = f1(N).
Rule 2: If N is M2(N) then �M = f2(N).
Rule 3: If N is M3(N) then �S = f3(N),
where

M1(N) =

⎧⎪⎪⎨⎪⎪⎩
1, N �N1,

N2 − N

N2 − N1
, N1 �N �N2,

0, N �N2,

M2(N) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, N �N1 or N �N3,

N − N1

N2 − N1
, N1 < N �N2,

N3 − N

N3 − N2
, N2 �N < N3,

M3(N) =

⎧⎪⎪⎨⎪⎪⎩
0, N �N2,

N − N2

N3 − N2
, N2 < N < N3,

1, N �N3,

together with the implication functions

f1(N) = a1 · N + b1, f2(N) = a2 · N + b2, f3(N) = a3 · N + b3,

and the final system output

� =
∑3

i=1 Mi(N)fi(N)∑3
i=1Mi(N)

. (10)
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By Eq. (10), it is observed that for N < N1, � is solely determined by f1(N), i.e. � = �L, whereas for N > N3, � is determined by
f3(N) alone. In the case that N is around N2, � is determined by f2(N) since M2(N) is much greater than M1(N) and M3(N).

The system now has nine hyperparameters (a1, a2, a3, b1, b2, b3, N1, N2, and N3) to be fixed, for which an iterative process is
developed as follows:

Step 1: Let N1 : N2 : N3 = 1 : 2 : 3 and take 500 as the initial value of N1.
Step 2: Estimate the parameters a1 and b1 under the condition N < N1, wherein M1(N) = 1, M2(N) = M3(N) = 0, and

� = M1(N)f1(N)

M1(N)
= f1(N) = a1 · N + b1.

The procedure for fixing a1 and b1 is explained in the following pseudo-code sequence:

a1 = initial value; b1 = 0; k = 0;
F 0 = baseline_recognition_rate;
a1 + =�a1; k + +;
Fk = speech_recognition(� = a1 · N + b1, testing_utterances);
if(F k > Fk−1)

Repeat
{a1 + =�a1; k + +;
Fk = speech_recognition(� = a1 · N + b1, testing_utterances);
} while (F k > Fk−1);

else
Repeat

{a1 − =�a1; k + +;
Fk = speech_recognition(� = a1 · N + b1, testing_utterances);
} while (F k > Fk−1);

b1 + =�b1; k + +;
Fk = speech_recognition(� = a1 · N + b1, testing_utterances);
if(F k > Fk−1)

Repeat
{b1 + =�b1; k + +;
Fk = speech_recognition(� = a1 · N + b1, testing_utterances);
} while (F k > Fk−1);

else
Repeat

{b1 − =�b1; k + +;
Fk = speech_recognition(� = a1 · N + b1, testing_utterances);
} while(F k > Fk−1);

return Fk;

Step 3: Estimate the parameters a3 and b3 under the condition N > N3, wherein M1(N) = M2(N) = 0, M3(N) = 1, and

� = M3(N)f3(N)

M3(N)
= f3(N) = a3 · N + b3.

The determination of a3 and b3 is done by the same process for a1 and b1.
Step 4: Estimate the parameters a2 and b2 under the condition N1 < N < N2, wherein M1(N) = (N2 − N)/(N2 − N1), M2(N) =

(N − N1)/(N2 − N1), M3(N) = 0, and

� = M1(N)f1(N) + M2(N)f2(N)

M1(N) + M2(N)

= ((N2 − N)/(N2 − N1))(a1 · N + b1) + ((N − N1)/(N2 − N1))(a2 · N + b2)

(N2 − N)/(N2 − N1) + (N − N1)(N2 − N1)

= (N2 − N)(a1 · N + b1) + (N − N1)(a2 · N + b2)

N2 − N1
.

With a1 and b1 already obtained at step 2, the parameters a2 and b2 are determined through the tuning for best recognition rate
process too.
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Step 5: Re-estimate the parameter N3 under the condition N2 < N < N3, wherein M1(N) = 0, M2(N) = (N3 − N)/(N3 − N2),
M3(N) = (N − N2)/(N3 − N2), and

� = M2(N)f2(N) + M3(N)f3(N)

M2(N) + M3(N)

= ((N3 − N)/(N3 − N2))(a2 · N + b2) + ((N − N2)/(N3 − N2))(a3 · N + b3)

(N3 − N)/(N3 − N2) + (N − N2)/(N3 − N2)

= (N3 − N)(a2 · N + b2) + (N − N2)(a3 · N + b3)

N3 − N2
.

With a2 and b2 together with a3 and b3 already obtained at steps 4 and 3, respectively, a new value for N3 can be found through the
same process too.

Step 6: Update N1 and N2 such that N1 : N2 : N3 = 1 : 2 : 3. Repeat from step 2 until the settings of a1, a2, a3, b1, b2, b3, N1,
N2, and N3 maximize the system performance over the training data set (10 adaptation utterances from each of the 15 subjects and
60 more from each of them for testing purposes).

2.4. Time complexity analysis

The computation time required by Eq. (8) involves two parts, the one for � computation and the other for Ws . Computing Ws by
using MLLR is much less expensive than by using MAPLR as already mentioned.

The overhead of finding � in terms of the number of multiplications, as compared to standard MLLR, can be analyzed through
its computation defined by Eq. (10). For N < N1, � = a1 · N + b1 which requires 1 multiplication, as is for the case when N > N3,
� = a3 · N + b3.

For N1 < N < N2,

� = M1(N)f1(N) + M2(N)f2(N)

M1(N) + M2(N)

= N2(a2 − a1) + N(a1N2 − a2N1 + b2 − b1) + b1N2 − b2N1

N2 − N1
= p(c1N

2 + c2N + c3),

the computation of which involves 4 multiplications, as is for the case when N2 < N < N3,

� = M2(N)f2(N) + M3(N)f3(N)

M2(N) + M3(N)

= N2(a3 − a2) + N(a2N3 − a3N2 + b3 − b2) + b2N3 − b3N2

N3 − N2
= q(d1N

2 + d2N + d3).

Thus the computation of Eq. (8) is of the same order as computing Eq. (3), given that Ws is estimated by MLLR.

2.5. FLC-MLLR and fuzzy-MLLR

While T–S fuzzy control mechanism was applied in determining the weight � for incremental MLLR adaptation in this work,
other fuzzy techniques were also used for MLLR adaptation. For instance, in order to solve the problem of component clustering
such that the components clustered into a certain base class can be transformed by an associated regression matrix in the context of
multiple regression classes, Gales proposed a fuzzy clustering scheme [19] for determining the weight �p in the adaptation below:

�̂s =
⎡⎣ P∑

p=1

�pW
(p)
s

⎤⎦ �s , (11)

where �p represents the degree of how much �s belongs to regression class p. As a result, in the case that transformation matrices
are few, the adaptation for those base classes without a corresponding regression matrix can still be carried out with more reliability
guaranteed. The role of �p in Gales’ work is thus quite different from that of � herein. Interestingly, Eq. (11) could be extended as

�̃s = ��s + (1 − �)

⎡⎣ P∑
p=1

�pW
(p)
s

⎤⎦ �s , (12)
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which would reduce to the form of Eq. (8) in the context of one regression class adaptation, i.e. p = 1, as is the case considered in
this paper.

3. Experiments and results

In Mandarin, each syllable consists of a beginning initial part and an ending final part. The modeling of Mandarin syllables assumes
that the initial part is right dependent on the beginning phone of the following final part and the final part is context independent [27].
A Mandarin utterance may contain one to several syllables. The experiments involve: (1) the establishment of initial SI models, (2)
the training phase for fixing hyperparameters of the FLC, and (3) the recognition phase for performance evaluation on the tuning of
� weight by FLC.

3.1. Database and experiment design

The initial SI models are trained for a set of HMM parameters using the database MAT400 sub-database DB3 [26], which consists
of 4800 utterances from native Mandarin speakers. The HMM of a syllable consists of HMM of 3 states for the initial part and HMM
of 6 states for the final part, and HMM of an utterance includes HMMs of the constituent syllables. Together there are 440 states,
each of which has 4 Gaussian distributions, in the SI models.

In the training phase, the training data used for tuning the hyperparameters of the FLC as described in Section 2.3 were collected
from 15 speakers. From each of the 15 speakers, 10 utterances of city names (picked among 30 cities) were requested as adaptation
data, and then 60 utterances for all cities (two utterances for each) as testing data, which were recorded by a close-talking microphone.
Note that speech signals were sampled at 8 kHz. The analysis frames were 30-ms wide with a 20-ms overlap. For each frame, a
24-dimensional feature vector was extracted. The feature vector for each frame consisted of a 12-dimensional (12-D) mel-cepstral
vector and a 12-D delta-mel-cepstral vector. The training phase experiment procedure is explained in the pseudo-code sequence
below for readability and clearness:

F 0 = baseline recognition rate; t = 0;
Repeat
{ t + +;
F t

2 = 2_utterances_training (SI_models, hyperparameters);
F t

4 = 4_utterances_training (SI_models, hyperparameters);
F t

6 = 6_utterances_training (SI_models, hyperparameters);
F t

8 = 8_utterances_training (SI_models, hyperparameters);
F t

10 = 10_utterances_training (SI_models, hyperparameters);

F t =
∑5

i=1F
t
2·i

5
;

�F t = |F t − F t−1|;
} until �F t < threshold;

where 2 · i_utterances_training(·), i = 1, 2, 3, 4, 5, is the procedure using 2 · i adaptation utterances from 15 speakers for fixing the
nine hyperparameters of FLC defined in Section 2.3 and thus returning a somewhat satisfactory overall recognition rate F 2·i t for
the 15 training speakers as explained in the code-like sequence below:

2 · i_utterances_training (SI_models, hyperparameters) // i = 1, 2, 3, 4, 5.
{k = 0;
F 0

2·i = baseline recognition rate;
Repeat

{k + +;
Fk

(2·i)1 = speaker_training (SI_models, test_data1, hyperparameters,
2 · i_utterances1);
...

F k
(2·i)j = speaker_training (SI_models, test_dataj ,hyperparameters,

2 · i_utterancesj );
...
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Fk
(2·i)15 = speaker_training (SI_models, test_data15,hyperparameters,

2 · i_utterances15);

Fk
2·i =

∑15
j=1 Fk

(2·i)j
15

;

�F 2·i = |Fk
2·i − Fk−1

2·i |;

} until �F 2·i < threshold 1;
return Fk

2·i ;
};

where 2 · i_utterancesj and test_dataj denote the adaptation utterances in the number of 2, 4, 6, 8, and 10 and the 60 test utterances
from the jth speaker, 1�j �15. And speaker_training(·) is the procedure that would incrementally adapt the SI models by appropriate
settings of the hyperparameters of the T–S FLC, as already described in Section 2.3, such that the adaptation would not jeopardize
the recognition rate, given 2 · i utterances.

speaker_training (SI_models, test_dataj , hyperparameters, 2 · i_utterancesj )

// j = 1, . . . , 15.
{

Estimation_of_Ws(2 · i_utterancesj );
F (2·i)j = Iterative_process (SI_models, test_dataj , Ws , hyperparameters);
// as described in Section 2.3 for maximizing the recognition rate F (2·i)j .
return F (2·i)j ;

};

In the recognition phase, a group of 15 speakers that are entirely different from the previous group were recruited and again
each were requested 10 and 60 utterances for adaptation and recognition, respectively. The weight � is calculated by using the
hyperparameters acquired in the training stage for adaptation. For comparison, full transformation matrices were used for standard
MLLR, MAPLR, and the proposed FLC-MLLR. Since the amount of adaptation data was very small, only one common regression
matrix tying all states was used for MLLR to make the most efficient use of the data available for adaptation, and MAPLR and
FLC-MLLR used one single regression matrix of their own too. The prior densities required by MAPLR were derived directly
from the SI models alone. Five adapted models were constructed using 2, 4, 6, 8, and 10 adaptation utterances from each of the 15
speakers, each model being associated with an � weight. Then 60 utterances from each of the 15 speakers were fed into the five
adapted models for recognition rate evaluation.

3.2. Experiment results

Several observations were made during experiment works and these are described here:

(1) It is observed that the weight � decreases as the number of adaptation utterances increases. As depicted in Fig. 2, � drops by a
noticeable step when the number of utterances increases from two to four, and then declines gradually, somewhat stabilized, as
the number of utterances increases.

(2) Recognition performance comparisons with various numbers of adaptation utterances were made among the proposed FLC-
MLLR utilizing a T–S FLC, the conventional MLLR without exploiting prior knowledge of the initial SI model, and the MAPLR
with the prior density derived directly from the initial SI model alone. As shown in Fig. 3, it is observed that FLC-MLLR is
better than MAPLR and MLLR for all cases, especially when training data are quite limited. Note that the performance of
MLLR falls below the baseline when two utterances were available for adaptation. All three methods demonstrate improved
recognition rate and MAPLR tends to catch up FLC-MLLR when the amount of training data increases.

(3) Effects of full-range variation of � on the recognition performance of MLLR under extreme cases of training data availability are
also observed, as shown in Figs. 4 and 5, respectively. The former shows that while the training data are scarce, two utterances
say the performance would go below the baseline if, for � being less than 0.5, the model adaptation is to be largely determined
by the transformation matrix Ws which is very much likely poorly estimated. With increasing �, the influence of Ws on the
adaptation will be reduced and the recognition rate is improved as expected. However, when � goes beyond 0.5, further the
performance degrades as the system in a sense ceases to adapt. On the other hand, when the training data are sufficient, 10
utterances, for instance, full advantage of adaptation by Ws should be exploited, by using a small � value, for good performance,
as depicted in Fig. 5.
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Fig. 3. The performance curves of FLC-MLLR, MAPLR, and conventional MLLR in the recognition testing experiments of the different amount of adaption data.
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4. Conclusions

The proposed FLC-MLLR adaptation uses a T–S FLC for adjusting the weight � during model adaptation governed by

�̃s = ��s + (1 − �)Ws�s .

The experiments showed that, via the T–S fuzzy mechanism, � is regulated in the way as expected: getting greater so as to compromise
the incorrectness lurking in Ws due to insufficient adaptation data and getting smaller when Ws is trust-worthy. Thus, FLC-MLLR
not only demonstrates the robustness against data scantiness when compared to conventional MLLR, but also executes at much
lower computing cost than MAPLR, while attaining better recognition rate in all experiment conditions.
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