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Abstract

The project not only provides a discrete-time framework for a strategic binomial tree,
but also derives the continuous-time counterpart. We focus on the issue of two-firm
strategic investment timing game. When the two firms are symmetric, there are two
types of Nash equilibria: pre-emptive and simultaneous equilibria. While the two
firms are asymmetric in their investment costs, there are three types of Nash equilibria:
pre-emptive, non-preemptive and simultaneous Nash equilibria. The framework can
be employed to analyze firms’ strategic financing decisions and some financial
derivatives, such as game options and convertible bonds.

Keywords: Strategic Binomial Tree, Pre-emptive Nash Equilibrium, Non-preemptive
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I. Introduction

A firm’s investment flexibilities are usually not exclusive, and hence the growing
importance of strategic interactions between firms leads to a new stream of models
situated on the intersection of real options and game theory, known as game-theoretic
real options models. In many circumstances, a firm’s optimal strategy is not only
affected by nature but also by other firms, especially when the firm is in an oligopoly
industry.

The game-theoretic binomial model proposed by Smit and Trigeorgis (2004) is
considerably intuitive and easy to use, but is only applicable when there exists merely
one pure Nash equilibrium in the games at each node of the tree. However, this is not
usually the case we deal with. As shown by Nash (1951), a finite non-cooperative
game always has at least one equilibrium point. If there is only one pure Nash
equilibrium of the game, the choice problem is not encountered, and if there is no
pure Nash equilibrium of the game, the mixed Nash equilibrium could be applied.
Nevertheless, there may exist multiple pure Nash equilibria in a game.

Weeds (2002) considers irreversible investment in competing R&D projects under
a winner-take-all patent system. Depending on the model’s parameter values, there are
two non-cooperative equilibria. One is the pre-emptive leader-follower equilibrium
where firms invest sequentially and option values are reduced by competition,
whereas the other is the symmetric equilibrium where firms investment
simultaneously. Thijssen et al. (2003) analyze the problem of investment under
uncertainty in a duopoly framework, and apply a coordination game to endogenously
solve the issue rising when both firms want to invest whereas it is only profitable if
just one invests. Miltersen and Schwartz (2004) use a game-theoretic real option
framework to investigate patent-protected R&D investment projects when the firm is
in an imperfect competition product market. Thijssen et al. (2006) examine the effect
of uncertainty and competition on the firm’s strategic investment when there exist
some imperfect signals of the investment’s profitability.

Recently, the extensive literature on real options games suggests that, when
relatively few firms compete, there does often exist a first-mover advantage (FMA).
The simple asymmetric duopoly equilibrium is often employed to analyze a firm’s
irreversible investment decision. The idea of rent equalization, provided by Funderber
and Tirole (1985), is then applied to catching up the threat of pre-emptive investment.
For some parameters, Pawlina and Kort (2006) and Mason and Weeds (2009) examine
the irreversible investment behavior when there is a competitor who can pre-empt this
investment project. They demonstrate that greater FMA will lead to a firm to adopt a
pre-emptive investment threshold which is significantly lower than the firm’s optimal
investment trigger where there is no potential rival. Carlson et al. (2010) focus on the
effects of a firm’s expansion and contraction options on risk dynamics of the required
returns when there is a rival owning the same rights. They generally find that
competition will erode the value of wait-and-see options and their Nash equilibria
satisfy the requirement of Markov subgame-perfect closed-loop equilibria.

The remainder of this project report is organized as follows. Section 2 introduces
the main issue this project concerns, and the methodology is summarized in Section3.
Section 5 summarizes results and give some remarks.

II. Main Issue
In this section, we will highlight a simple two-player investment timing game, which
can be extended to any multi-player timing games. In a timing game, there are two



players, 1 and 2, who have to decide when to make a lump-sum investment at some
future time. The player that moves first is called the leader and his/her payoff is equal
to L(t), while the other player is called the follower and his/her payoff is F(t). If
both players move simultaneously at time t, they both obtain the payoff of M (t).

At any time t before the two firms invest, each firm owns the perpetual right to
determine whether to invest or not. This leads to the following game.

Firm 2

Invest Defer

Firm 1 | Invest M(t), M(t) L(t), F ()
Defer F(t),L(t) repeat game

We could easily solve this timing game and there exists a discrete-time mixed-strategy
Nash equilibrium. Firstly, we could construct a binomial tree to represent a stochastic
environment and then put on the above game into each node on the tree. Next, we
could solve individually by randomizing mixed strategies and finally we put
backward to the initial and obtain the discrete-time subgame-perfect mixed strategy
Nash equilibrium. There is a crucial issue when we extend the discrete-time model to
continuous-time model by traditionally formulating the latter as the former’s
continuous-time limit. As noted by Fudenberg and Tirole (1985), the traditional
formulation is not adequate, because it leads to a loss of information in directly
passing from discrete-time with short periods to the limit in continuous-time. This
loss of information prevents a continuous-time representation for the limits of
discrete-time mixed-strategy Nash equilibria.

I11. Methodology

We employ the extensive strategy space introduced by Fudenberg and Tirole (1985) to
overcome the issue mentioned above. We first define continuous-time strategies,
payoffs, and the Nash equilibrium in this strategy space.

Definition 1. A simple strategy for player i, i=1,2, inthe game beginningat t isa
pair of real-valued functions (G;(s),;(s)):[t,o]x[t,e0] = [0,1]x[0,1] satisfying:
(1) G,(s),i=1,2,is non-decreasing and right continuous.

(2) ;(s)>0,i=12,implies G,(s)=11=12.

(3) «;(s),i1=12, is right-differentiable.

(4) If o,(s)=0,i=12, and s=inf(u>t:e;(u)>0), then ¢ (s) has positive right

derivative.
We need some more notation to define the payoffs leading to a pair of simple
strategies. Define

0 if o, (s)=0Vs=>t,
()= {inf (s=t:e;(s)>0) otherwise.
7,(t) is the time of the first interval of atoms in player i’s strategy. Let
z(t) =min(z;(t),i =1,2). Define G/ (s)= IH?Gi (u). The game begins at t>0; so let



G (t)=0,i=12. Let ai(s):!Sigg(Gi(s)—Gi(s—§)):Gi(s)—G((s) be the size of

the jumpin G, attime s>t.

Firm 2
a,(s) 1-a,(s)

Invest Defer

a,(s) | Invest | M(),M(t) | L(t),F(t)

Firm 1

1-g,(s) | Defer | F(t),L(t) | repeatgame

Definition 2. The payoff of player i,i=12, V'(t,(G, «,),(G,.a,)), in the subgame
starting at time t if the player j, j=12, j=i adopts the simple strategy (Gj,aj)
is given by

VI(t(Gua) (G )

= j‘:’ (L(s)(1-G;(5))dG, (5) + F (5) (1~ G, (5)) G, (5) )+ 2 a,(s)a;(s)M (s)

s<z(t)
+(1-G; (z(1)))(1-G; (z(t) )W (z(1).(Gy. ) (G, 1, )
where
w! (r(t),(Gl, «),(G,,a, ))
a;(z(1))
1-G; (z(1))

1-G;(z(1))
1-G; (z(t)
1-G, (=(t))
1-G/ (z(1))

)((1— o (7 (1)) F(z(1)) + & (z(©)M (z(1)) ) +[ J L(z(®), if z;(t) > 7, (t)

a ((1)
(PC;WJ((l_aj (7 (1)) L(z () + 2, ()M (r(t»){

if 7,(t)=17;(t),
W' (z(t).(G,.,).(G,.2,))
M (z(1)), if o (z(t) =, (z(t) =1
o (r(®) (1-2; () LE®) + 1, (7)) (1- o5 ¢ (1)) F ¢ (0) + e (7 () x; G OIM (2(1))
a;(z(t) + a; (2 (1)) + & (2 (1) (2 (1)) ’
if 0< o (z(t) +a,(z(t) <2,

] F(z(t)), if 7,(t) > 7;(t)

@ (z(O)L(z (1) + a; (z(1))F (z(1))
o (z(t) +a; (z(1)
where o' = 0a,(z(V)
or(t)
Using the payoff functions we can now define the Nash equilibrium of a game
starting at time t.

if o (z(1)) = «;(z(1)) = 0,

=12



Definition 3. A pair of simple strategies {(Gi () e ()1 =1, 2)} is an open-loop Nash
equilibrium of the game starting at time t, when neither player has not invested yet,

if each player i’s strategy attempts to maximize the payoff V' holding the other
player’s strategy fixed.

Definition 4. A closed-loop strategy for players is a collection of simple strategies
{(Git () (),i=12t> O)} satisfying the intertemporal consistency conditions:

(1) G(v)=G/()+(1-G')G'(v) fort<u<v<l.

) af(V)=a'(V)=¢, (v) fort<u<v<l.

Definition 5. A pair of closed-loop strategies {(G;(-),a;(-),i=1,2,tzo)} is a
subgame-perfect Nash equilibrium if for every t, the pair of simple strategies
{(G; O ()i =1,2)} is Nash equilibrium.

We further make the following assumptions on the value functions to focus on
analyzing a particular class of symmetric pre-emption game.
Assumption 1. L(t), F(t) and M(t) are continuous.

Assumption 2. 3T, suchthat L(t)=F(t)=M()Vt>T. and F(t)>M(t) Vt<T..
Assumption 3. F(t) isstrictly increasingon t<T..

Assumption 4. L(t)—F(t) is quasi concave.

Let T, =inf(t>0:L(t)>F(t)), T =arg max L(t), T, =arg max M (t) and

T =inf(t=T. :M(t)=L(T.)).

Next, several lemmas and propositions are provided. For the formal proofs, we
refer to Fudenberg and Tirole (1985).

Lemmal. T, <T,.
Lemma2. T, >T..
Proposition 1. If L(T,)>M(T,,), then

0, s<T,
0, - : .
G‘(s):{ Prand a(s) = M T, <s<T. is the unique subgame-
1, s>T, L(s)—M(s)

1, s>T.

perfect mixed-strategy Nash equilibrium for the pre-emption game satisfying
Assumptions 1-4.

Proposition 2. If L(T,)<M(T,,), then there are two types of subgame-perfect

mixed-strategy Nash equilibria. The first type is the pre-emptive equilibrium as
defined in Proposition 1, and there are an infinite number equilibria of the second type
which are characterized by its investment date u, where u [T, T,,], given by

0, t<s<u 0, t<s<u
Gi(s) = “Yand a(s) = =
1 u<s 1 s>u
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Fudenberg and Tirole (1985) argue that the second type, if exists, would Pareto
dominates the first type and is therefore the most reasonable outcome of the
preemption satisfying Assumptions 1-4.

V. Results and Remarks

Based on the methodology developed above, the two-firm symmetric investment
timing game under uncertainty can be solved. Overall, there are three scenarios. In the
first scenario when the first mover’s advantages are large, a pre-emptive equilibrium
occurs where the two firms’ investment timings are dispersed. In the second, the two
firms simultaneously invest when the uncertainty is large and thus the wait-and-see
option value is high. In the last scenario, it turns out that the pre-emption is applied
when there is lower uncertainty, while the simultaneous equilibrium appears at the
moment that the uncertainty is larger. Compared to the first-best monopolistic
investment timing, the investment timing of the leader in the pre-emptive equilibrium
is earlier. In order to preempt its rival, the firm is satisfied with lower profits when it
invests. On the other hand, the investment timing in the simultaneous equilibrium is
late relative to that of the monopolistic case. This is because the two firms share the
wait-and-see option value in the simultaneous equilibrium.

Moreover, we also extend the methodology by introducing asymmetric investment
costs between the two firms. The results show that the potential of rival’s pre-emption
also precipitates investment in the asymmetric setting, but in a milder intensity. More
precisely, there are two possibilities. When the investment costs of the rival (say firm
2) are very high (i.e., the two firms are extremely asymmetric), firm 1 will simply
invest at its first-best monopolistic investment timing. This result appears in both the
cases of negative and positive externalities. On the other hand, when the rival’s
investment costs are low enough, the preemptive effect prevails. Both in the cases of
negative and positive externalities, this effect turns out to precipitate investment, but
for totally different reasons. When there are negative externalities, the threat of rival’s
pre-emption leads firm 1 to invest earlier; when there are positive externalities, the
two firms simultaneously invest early in anticipation that the other firm will also
invest early.

The methodology developed in this project could be further employed to analyze
game options and convertible bonds since the two financial derivatives are both
involved closely in strategic interactions between issuers and buyers of derivatives.
Firms’ strategic financing strategies can also be investigated in the present framework.
The two topics are research in progress.
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