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QeR® is a domain and Q@ =QF UQ’. Denote absolute permeability by K,in Qf

and k. in Q] , phase pressure by P. in Qfand p, in Q;, and external source by

&

Q..F, in Qfand q,,f, in Q. The equations are

e! ¢

0P —V-(K.VP +Q)=F, in Q¢ x(0,T),
0,p, —eV-(k.evp, +q,) =1, in QF x(0,T)
(K. VP, +Q.)-n=¢k (¢6Vp, +q,)-n on 8Q° x(0,T),
P. = p. on 0Q: x(0,T)

P = P in Qf



pg = pO ln Qfﬂ

with periodic boundary condition on 0Q.* P E ¥ % ¢ & > P chi@ f& norm & ¢
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Uniform bound for the solutions of non-uniform parabolic equations in highly heteroge-
neous media is concerned. The space domains are periodic as well as consist of a con-
nected high permeability sub-region and a disconnected matrix block sub-region with low
permeability. Let € denote the size ratio of matrix blocks to the whole domain and let
the permeability ratio of the matrix block sub-region to the connected high permeability
sub-region be of the order €2. It is proved that the Holder norm of the non-uniform
parabolic solutions in connected sub-region is bounded uniformly in e.

Keywords: Highly heterogeneous media, pseudo-differential operator, paramatrix, strict
solution, infinitesimal generator, numerical range.
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1. Introduction

Uniform Holder estimate for the solutions of non-uniform parabolic equations in
highly heterogeneous media is presented. The equations have many applications in
multiphase flows in porous media, the stress in composite materials, and so on (see
[3, 12, 17] and references therein). The domain @ C R™ (n > 2) has boundary 02 as
well as contains a connected high permeability sub-region and a disconnected matrix
block sub-region with low permeability. Let Y = [0, 1]™ be a cell consisting of a sub-
domain Y;,, completely surrounded by another connected sub-domain Yy (= Y'\Y,,,),
e € (0,1), and Q(2¢) = {z € Q : dist(x,09) > 2¢}. The disconnected sub-region
is Q, = {z : z € Y, +7) C Q2e¢) for j € Z"}, the connected sub-region is

$ = Q\ O, and the boundary of {7, is represented by 9€y,. The non-uniform

parabolic equations in [0, T] x Q are

OUc =V - (AVU,) = F. in (0,T] x Q,

Ue=0 on (0,7] x 99, (1.1)
Uc=Ucpo in {0} x Q,
K. in Q;,

where A, = and K. and k. are positive smooth functions in €.

2k, in QF,,

Since € € (0, 1), equations (1.1) are non-uniform parabolic equations with discon-
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tinuous coefficients. In [20], existence of solution in W21 ([0, T]x ) space for uniform
parabolic equations with discontinuous coefficients can be found. For non-uniform
parabolic equations with smooth coefficients, existence of solution in C%%([0, T] x Q)
space was studied in [13]. It is also known that if F,, U, o are smooth, a piecewise
regular solution of (1.1) exists uniquely for each € and, by energy method, the H'
norm of the parabolic solution in the connected high permeability sub-region is
bounded uniformly in € [12, 16]. Many studies of the uniform estimate in e for the
elliptic equations in highly heterogeneous media had been done [4, 12, 15, 17, 19,
23], but little for parabolic equations. Existence of piecewise regular solutions for
elliptic diffraction equations in Hilbert space was considered in [12, 15]. Uniform
Lipschitz estimate in e for Laplace equation in perforated domains was given in
[23], and uniform LP estimate in € of the same problem was considered in [19]. Lip-
schitz estimate for uniform elliptic equations was studied in [17]. Uniform Holder
and Lipschitz estimates in € for uniform elliptic equations in periodic domains were
obtained in [4]. This work is to present uniform Holder estimate in € for the solutions
of the non-uniform parabolic equations with discontinuous coefficients. Permeabil-
ity fields (that is, A) are not periodic and are allowed to have large deviation. It is
proved that the Holder norm of the non-uniform parabolic solutions in connected
sub-region is bounded uniformly in e.

2. Notation and main result

Let LP (resp.H*, W¥P) denote complex Sobolev space with norm || - ||z» (resp.
Il &wsll - lwee), C§° be the set containing all infinite differentiable functions with
compact support, and C (resp. C7) denote Hélder space with norm || - [|¢o (resp.
Il i) for o € (0,1],k > —1, and p € [1,00] [11]. [p]ce (resp. [¢]ci.-) denotes
the Holder semi-norms of ¢ (resp. V). If ¢ is a complex function, 7 denotes its
complex conjugate. If By and By are two Banach spaces, £(B1, Bs) is the set of all
bounded linear maps from B; to By with norm || -[|z(B,,B,). For any Banach space
B, define [|¢1, 02, -+, omlB = [[@1llB+[l92lB+- -+ [[om|[B, denote its dual space
by B’, and denote the pairing between B and its dual space B’ by (-,-)g,s/. The
function spaces L>(I; B),C(I;B),C?(I;B) for o € (0,1] and an interval I C R are
defined as those in [18]. B, (z) represents a ball centered at  with radius r. For any
domain D, D is the closure of D, D/r = {x : rz € D}, |D| is the volume of D, and
Xp is the characteristic function on D. For any ¢ € LY(B,(z) N ), we define

1
(©)ar E][ o(Y)dy = 77 e(y)dy.
B, (2)NQ |Br(z) N2 S, ()00

For any p € (1,00) and € > 0, we define
AE()O =-V: (A€V(p),

B, (A°) = {p € Wy P(Q) : p € W2P(Q5) UW2P(Q,),
Kevw : ﬁ6|395n = 62k6VQp : ﬁ€|aQ$n},
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where 1i¢ is a normal vector on 99, B,(A) with norm ¢, 4<) = | A“Q||Lr () is
a normed space. M(a, 3;D) = {¢: D — R|p € L>®(D),0 < a < p < S}
For any o € (0,1) and §, a, 8 > 0, we assume

Al. Q and Y, are smooth domains,
A2, K. ke € M(a, 3;9Q) and

[Ke(ex) — aejllwiee (v 450070 T [[Ke(€x) — e jllwieo (v, 45)n0/¢) < e,

where j € Z", a. ; depend on ¢, j, and c is small and depending on Y7,
A3. F. € 07([0,T); L"%(Q)), —AU. + F.(0,2) € Bys(—A°), and U €
BTH_(S(—AE).

The main result is:
Theorem 2.1. Under A1-A3, the solution of (1.1) satisfies

[Ueller o, 73;m+5()) + 1Uelleo,ris0m(05)) + sup llUclle(o,11:04 (e(Ym+4)))

e(Ym+3)CQs,
< c([|Ucollg, 45 cac) + |1 Fellco(o,77:00+502)) ) (2.1)

where 6 >0, u,0 € (0,1), p is a constant depending on n,6,a, 3,Ys,Q, and c is a
constant independent of €. Moreover, there is a v € (0, u) such that

1Uellevo,11x05) < e(lUe0llB, 4 sa) + | Felloo(o,mp:mmt5(92))) (2.2)

where ¢ is a constant independent of €.
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Numerical approximation for the solutions of elliptic equations in perforated domains is
concerned. Let € denote the size ratio of the holes of some perforated domains to their
whole domains. As € closes to 0, the elliptic solutions in perforated domains approach a
solution of some homogenized equation. So it is expected that the numerical approxima-
tion of the solution of the homogenized equation is a good approximation for the elliptic
solutions in perforated domains when ¢ is small. In this work, the L°° estimate and the
Lipschitz estimate for the difference between the elliptic solutions in perforated domains
and the numerical approximation of the homogenized solution are derived. Higher order
estimate in Lipschitz norm for the difference between the elliptic solutions in perforated
domains and the homogenized solution is also derived.

Keywords: elliptic solution, perforated domain, homogenized solution.

AMS Subject Classification: 656N12, 65N15, 65N22

1. Introduction

Pointwise error estimate for the numerical approximation of the solutions of elliptic
equations in perforated domains is presented. Let Q@ C R™ (n = 2 or 3) be a smooth
domain with boundary 9Q, Y = [0,1]™ consist of a sub-domain Y, completely
surrounded by another connected sub-domain Y; (= Y \ V), € € (0,1), Q(2¢) =
{z € Q: dist(z,0Q) > 2¢}, Q5, = {x : € (Vi +J) C Q2¢) for j € Z"} with
boundary 0€,, and Qf = @\ Q, be a connected region. The equations in the

perforated domain (25 are

-V - (K VU)+NU.=F in Q5,
K. VU -1 =0 on 09X, (1.1)
U.=0 on 01,
where A > 0, Kc(z) = K(%), K is a positive periodic function in R™ with period
Y, and n€ is the unit normal vector on 0f),. When € is small, direct numerical

simulation of the solution of (1.1) can be very expensive. It is known that if F' €
L?(€), the H'! solution of (1.1) exists uniquely and satisfies

||Ue||H1(Q;) < c||F| L2,
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where ¢ is a constant independent of € [9]. By compactness principle [2], there exists
a function U € H'(Q) such that the solution U, of (1.1) satisfies

K. VUcXo: — K'VU in L?(Q) weakly as € — 0, (1.2)

where XQ} is the characteristic function on Q; and K* is a constant positive definite
matrix depending on K, Y} (explicit form of K* is in (2.2) below). The function U
in (1.2) satisfies
—V - (K*VU) + A[Y;|[U = |[Y}|F  in Q, 13)
U=0 on 99, '

where |Yy| is the volume of Y. Therefore, it is expected that the numerical approx-
imation for the solution of (1.3) is a good approximation for the solution of (1.1),
especially when € is small. The error estimate between the numerical solution and
the analytic solution of (1.3) had been extensively studied (see [4, 7, 10, 15] to name
a few). So we shall focus on the error estimate for the solutions of (1.1) and (1.3).

By homogenization theory, solutions of elliptic equations in periodic domains
in general converge to a solution of some homogenized elliptic equation with con-
vergence rate ¢ in L? norm and with convergence rate /¢ in H! norm as e closes
to 0 (see [3, 11, 14] and references therein). In [5, 13], higher order asymptotic
expansion for the solutions of elliptic equations in perforated domains was given.
Higher order convergence rate for the solution of (1.1) for A\ = 0 case was derived
in Hilbert spaces [3, 6, 14]. Different from the literatures mentioned above in which
L? space was considered, we present pointwise error estimate for the solutions of
(1.1) and (1.3) for A > 0. More precisely, the L> error estimate with convergence
rate € for the solutions of (1.1) and (1.3) is proved. For equation (1.1) with A > 0
and with periodic boundary condition case, W1> error estimate with convergence
rate € is also derived. In particular, for equation (1.1) with A = 0 and with periodic
boundary condition case, higher order approximation in Lipschitz norm is obtained
as well.

2. Notation and main results

Denote by C* the Hélder space with norm || - [|ck.a, by [g]cr.e the Hélder semi-
norm of g, and by L? (resp. H®, W*P) the Sobolev space with norm || - ||z (resp.
- e, || - lwee) for & > 0, € [0,1],s > 1, and p € [1,00] (see [9]). For any
Banach space B, we define ||g1,92, -+, grllB = ll91llB + l92/lB + - - - + llgr[lB- Br(2)
is a ball centered at x with radius r. For any domain D, D is the closure of D,
D/r ={x:rx € D}, |D] is the volume of D, and Xp is the characteristic function
on D. For any g € L'(Q),

1
(9 E][ 9IWdy = ————=7 9(y)dy-
’ By (2)NQ |Br(z) N Q6 Jp, ()00



October 28, 2010

Error estimate 3

Define 2, = Ujezn (Yo, + j) with boundary 02,,, Zy =R"\ Z,, 25, = €Z,, with
boundary 0Z;,, and Z¢ =R" \ Z;,. For D € {R", Z;, Z/i}, we define

WP(D) = {g € W>?(D) : g is a periodic function in D with period [0, 1]}

per
with norm ||gllws2(p) = l|gllwsr(pny) for s > 1 and p € [1, 0c]. Similar definition
for L?. (D), Hy,,.(D),Ch%(D) when D € {R", Z;, 25}, k > 0, € [0,1],5 > 1,
and p € [1,00]. If G(z) = g(ex),g € Cgﬁ(Z}) for v € (0,1), define |||g|”c,8;7.(2;) =
1Gllne (2, |
For each i = 1,--- ,n, we find X (y) € H)..(Zy) satisfying, in cell Yy,

~V-(K(VX®D + &) =0 in Yy,

K(VX® +¢&) -1, =0 on 9Y,,, (2.1)

fo X®dy =0,
where 11, denotes the unit normal vector on 9Y;, and €; is a unit vector in the i-th
coordinate direction for i =1,--- ,n. For any v > 0, we define X (z) = I/X(i)(%),
X = X®O ... XM and X, = (Xf,l),--- ,Xf,n)). Denote by = a n X n matrix
function whose (7, j) component is 9,,X) and define

K*= [ K(y)(I+Z(y)dy. (2.2)
Yy

where I is the identity matrix. By [2] and remark in page 90 [11], K* is a constant
symmetric positive definite matrix. For i1,io = 1,- -+ ,n, find X(1:%2) (y) € H!_ (Z})

per
satisfying, in cell Y,
V- (KVXC2) 10, (KXC)) = —K (0,5, +0,X07) + St vy,
K(VX0ui2) . g5, + X(”)nyil) =0 on 9Y,, (2.3)

Jy, Xtrdy = 0.

0 if iy # is,
n,, is the i; component of fi,. Similarly define Xz, i) ¢ H,,,
ij€{l,---,n},and j € {1,2,--- , £} as, in cell Y},

1 if iy = io,
Here 6;,,4, = { e K; ;, is the (i1,42) component of K* in (2.2), and

(Zf) for ¢ > 3,

V- (Kvx(il,...,m) + 85, (KX(Q,...,Q))
= _K(511712X(i37""i5) + 81,1X(i27...,ig)) in Yf,

K (VX(Z‘L...,ZJ,) ﬁy + X(iz,...,ig)nyil) -0 on 8Ym,
(it yemrie) g0 —

fyf Xt ¢ dy 0.

(2.4)

By energy method and Lax-Milgram theorem [9], X(1>%) for ¢ > 1 in (2.1), (2.3),
and (2.4) are solvable uniquely. By Lemma 6.29 [9], if K € CL%(Zy) for a € (0,1),
then

[XEr i an(z,y) < e for £> 1. (2.5)
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2.1. L®° error estimate
We shall assume

Al. Q and Y,, are bounded C1* domains,
A2. K € CL%(Zy) is a positive function,

per

A3. F e Whnto(Q),

where o € (p, 1), p = %M, n € {2,3}, and § € (0,3). We recall an extension result
in [1].

Lemma 2.1. For 1 <p < oo, there is a constant ¢(Yy,p) and a linear continuous
extension operator Il : WHP(Q5) — WHP(Q) such that (1) If o € W'P(Q5), then

Hep = in Q% almost everywhere,

el ey < C(vap)||<ﬂ||Lp(Q;)7

[VILeoll e ) < (Y7, p) Vel Lras),

[Teo|l oo () < C(Yf7p)||<ﬂ||L°Q(Q;) if o € L*>(2%),
ep=¢ inQifo=(
(2) If ((x) = ¢(rx) in Bi(2) NQG/r for any z € R™ and any constant v > ¢, there
is a 0 € (0,1) so that Il /.((x) = (Ilep)(rz) in By(z) NQ/r

Lemma 2.1 also holds if Q% (resp. §2) is replaced by Z§ (resp. R"). For the
solutions of (1.1) and (1.3), we have the following error estimate:

Qs for some linear function ¢ in Q.

Lemma 2.2. Under A1-A3, there is a constant ey such that the solutions of (1.1)
and (1.8) satisfy, for any e € (0,1) and X € [0,¢),

[Uec = Ull Lo (qs) < cell Fllwrntsqy,
where ¢ is a constant independent of €, A.

We now describe the families of subspaces to be used to approximate the solution
of (1.3). Let {F" : 0 < h < 1} be a family of subdivisions of  into disjoint, non-
empty, connected, open sets 7 € F" of diameter not greater than h (a subdivision
means () = U, cz»7). Then we assume

A4. {Fh":0 < h <1} is a quasi-uniform (see page 5 [10]) family of subdivisions

of © and {S" : 0 < h < 1} is a family of linear spaces of functions on (2
such that, for each ¢ € S"* and 7 € F", we have ¢|, € P, where P is a
fixed finite dimensional space of polynomials independent of h, 7, and ¢.

A5. For some non-negative integer m not greater than n and for some integer

k greater than m, there is a linear mapping J" for each h € (0,1] of
D" ={(eC™(@): (lon =0}U{Cp: (€ C™(Q),p € 8"}
into S such that
(i) Jho = ¢ for all p € S*.
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Furthermore, for any integer £ and any p € [1, oo] such that
max{l,m}+n<e<k ifp=1,
max{l,m}+n/p<f<k ifl<p<oo,
m<{<k if p = o0,

it follows that

1 . .
(i) ZO WP DI(C = T poe () < coph®ICllwes
j=
for all 7 € F" and ¢ € D" N W¥P(7), where ¢, is independent of ¢, 7, h.
A6. For all h € (0,1], S" ¢ Wh(Q).

Many finite element spaces satisfying A4—A6 have been constructed, see [7, 10] and
references therein. Inverse inequalities (see Theorem 3.2.6 [7]) hold in these finite
element spaces. Define a bilinear form Efy on 8" x 8P as

ﬁg((p,C)E/K*VQDVC dx—!—/ AY¢|pC dx—/ K*pV( -1 do
Q Q o0

- K*gw-ﬁdaﬂh*l/ ¢ do
o oN

where ¢, ¢ € S", 1l is the unit outward normal vector on 9, K* is that in (2.2),
and + is some positive number. Now we find U” € S such that

iUt Q) z/Q|Yf|FCdx for all ¢ € S™. (2.6)

Here U" is the numerical approximation of the solution of (1.3). By Lax-Milgram
theorem [9], (2.6) is solvable uniquely. Let us recall Theorem 3.1 [10].

Theorem 2.1. Suppose A4-A6 hold, U solves (1.3), U" solves (2.6), and n = 2,3.
Let U € W (Q) with max{m,1} < s < k, where m and k are the parameters in
A5 and k > 3. Then there are constants y1 < oo and hy > 0 such that, for v > 1
and 0 < h < hq,

U = U || (o) < eh®|Ulws= (o) (2.7)
where ¢ is independent of h and U.

By A3 and Theorem 9.15 [9], we know U € W2>°(Q2). Lemma 2.2 and Theorem
2.1 imply that the maximum norm estimate of U, — U" (that is, difference between
the solution of (1.1) and the solution of (2.6)) satisfies

1Ue = UMl =05y < U = Ullzoe(ag) + U = Ul z=(as)
< c(e+ h?)||F|lwrin+s (- (2.8)

where ¢ is a constant independent of €, h. In other words, if Lemma 2.2 holds, we
have the following results:
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Theorem 2.2. Under A1-A6, there exist positive constants €y, h1,71 such that
when € € (0,1),\ € [0,€0),h € (0,h1), and v > 1, the solution of (1.1) and the
numerical approzimation in (2.6) satisfy the L™ error estimate (2.8).

2.2. Lipschitz error estimate

In this subsection, functions considered are periodic and have period [0,1]™ for
ne{2,3}.fA>0and F e L?,.(R"), we find U, € H},,.(Z%) satisfying

per per

{—v (KVU) + M\, = Fin 25, 29)

K. VU, -1 =0 on 0Z;,.

By Lax-Milgram theorem [9], (2.9) is solvable uniquely in H;GT(Z;) and the solution
satisfies ||U€||H;w(g;) < c||F|z,, &), where c is a constant independent of €. By
compactness principle [2] and Lemma 2.1, there is a function U € H],  (R") such

per
that the solution U, of (2.9) satisfies

{HeUe —U in H),, (R") weakly
. . N ase—0
K VUXz: — K*'VU in L;,.(R") weakly
and U satisfies
V- (K*VU) + A[Y;|[U = |[Y}|F  inR". (2.10)

Here |Yy| is the volume of Yy and K* is the positive definite matrix in (2.2).

Lemma 2.3. Under the following conditions

A1'. 5 €(0,3), a >0, and Yy, is a C1* domain,
A2 . K e CL(Zy) is a positive function,

A8’ F e W (R"),

there is a constant €9 < 1 such that the solutions of (2.9) and (2.10) satisfy, for
any € € (0,1) and A € (0,¢€p),

|IVU(z) — (I + VX(m/e))VU(m)HLoo(Z;) < C€||F||W§£+5(]R")’ (2.11)
where ¢ is a constant independent of €.

Next we describe the finite element spaces to approximate the solution of (2.10).
Let {F* : 0 < h < 1} be a family of subdivisions of R™ into disjoint, non-
empty, connected, open sets 7 € F of diameter not greater than h (a subdivision
means R" = U, cz»7) and each subdivision is periodic with period [0, 1]™ (that is,
T4+ j € Fh for any 7 € F" and j € Z"). For r > 2, S*(R") is a family of finite di-
mensional subspace of WL (R"). If D C R", then S”(D) (resp. W 12°(D)) denotes

per per

the restriction of functions in S?(R") (resp. WL (R")) to D. Let kh + d; < dit1

per

for some k € N and i € {—1,0,1,2,3}. Let us assume
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AT. Ift € {0,1},t < £ <7, 1 < p < o0, then for each ¢ € W*P(B,,) there
exists a ( € S"(B,,) such that
llo — C||W*~P(Bdl) < Chz*t”SDHWM(B,izy

Ifn<p<oo,

e = Cllwroe(Bay) < A" P @llwrn (B,

Furthermore if ¢ vanishes outside of By,, ( vanishes outside of By,. The
constant ¢ is independent of h, ¢, (, Bq,, and By, .
A8. If ¢ € S"(R"), then for t € {0,1} and ¢ > 0 is an integerand 1 < ¢ < p < o0,

||<||Wt,p(Bd1) < Chi(n/qin/p)itie”q‘W—E’G(B@)'

The constant ¢ is independent of h, {, By, , and Bq,.
A9. Let ¢ € C§°(Ba,), then for each ¢ € S*(Bg,) there exists an n € S"(By,),
vanishing outside of Bg,, such that for some integer v > 0

16¢ = nll a1 (Bay) < chllllwroe Bl 1 (B4,)-
Furthermore, if ¢ =1 on By,, then n = ¢ on B, , and

¢ =l (Bay) < chllllwrce B ICI Y (Boy\Bay)-

Here c is independent of ¢, (,n, h, B4y, Ba, , Bd, -

A10. Let zp € R™ and d > kh. The transformation y = *=* takes Bg(xo)

into a domain B; (7o) and 8" (Bg4(z¢)) into a function space S’f/d(Bl (20)).
Then S’f/d(Bl (x0)) satisfies A7-A9 with h replaced by h/d. The constants
in A7-A9 remain unchanged, in particular independent of d.

Finite element spaces satisfying A7-A10 can be found in [15] and reference therein.
We find U" € S*(R") such that

/ K*VUhvgdx+/ )\|Yf|Uh§dx:/ Y| F¢da, (2.12)
[0,1]™ [0,1]™ [0,1]™

where ¢ € S?(R"). By A3’ and Theorem 9.11 [9], the solution of (2.10) satisfies
U € Whn+9(R™). Theorem 3.1 [15] implies

per

Theorem 2.3. If AT-A10 hold, U € WL>(R"™) solves (2.10), and U" € SF(R™)

per

solves (2.12), then there exists a constant ¢ independent of U, U™ h such that
U — UhHW,}‘;io(]R") < Chg_n/(n-i—é)|‘F||W§é'ﬁ+5(]Rn). (2.13)

Lemma 2.3, Theorem 2.3, and (2.5) imply that the Lipschitz norm estimate of
U. — U" (that is, difference between the solution of (2.9) and the solution of (2.12))
satisfies

IVUe = (I + VX)VU || oo (z5) < c(e+ B> )| Fllyznssony,  (2.14)

where ¢ is a constant independent of €, h. So we have the following results:
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Theorem 2.4. Assume Al’, A2, A3', A7T-A10. There exist positive constants €g, h1
such that if € € (0,1),A € (0,€), and h € (0,hy), the solution of (2.9) and the
approximation in (2.12) satisfy the Lipschitz error estimate (2.14).

2.3. Higher order Lipschitz estimate

Besides L and Lipschitz error estimates, we also have higher order Lipschitz esti-
mate. Functions in this subsection are periodic and have period [0, 1]™ for n € {2, 3}.
If F e L2, (R") satisfies |, Fdz =0, we find U, € Hp,,.(25) such that

per [O,l]”I’TZ6 per

V. (K.VU.)=F in 25,
K. VU, -ic =0 on 0Z¢,, (2.15)

cUdx = 0.
f[o,1]nmzf z

By Lax-Milgram theorem [9], (2.15) is solvable uniquely in H,,,(Z$) and the so-
lution satisfies ||U. ”H;pr (z5) < c||F||L2 _(rn), Where ¢ is a constant mdependent of
€. By compactness principle [2] and Lemma 2. 1, there is a function U € H!,  (R")

per
such that the solution U, of (2.15) satisfies

n.u.—-U in H!,,.(R") weakly
ase—0
K VUc&Xze — K*VU  in L2, (R™) weakly

and U satisfies

—V-(K*VU) = |Y¢|F  in R",
{ (K*VU) = |Vj|F in 216)

Jiouayn Utz = 0.
Here |Yy| is the volume of Yy and K* is the positive definite matrix in (2.2).
Theorem 2.5. Under Al’, A2, and
A3". F € WERTS(R™) for k > 2,

per

the solutions of (2.15) and (2.16) satisfy, for any € € (0,1),

||V<Pe||L°o(2 ey < ce ||F||Wk 5 () -
where ¢ is a constant independent of € and
k

— _ L (i1, w) ) .
@e(x) = Udlz) — Uz ¢ Z X 6)ah,,,,,wU(x).

=1 ,l[ 1
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