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Abstract

The complete, lag and anticipated synchronizations of two identical autonomous chaotic systems, Brushless DC
Motors (BLDCM) systems, are studied in this paper. PC method, linear coupling and active control are used for
the achievements of the complete and the lag synchronizations. Linear coupling method and active control is used
for the anticipated synchronization. Generalized lag, anticipated and complete synchronization are obtained by active
control. Finally, the generalized lag synchronization of BLDCM system and Lorenz system is studied.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Chaos synchronization has been applied in many fields such as secure communication [1–3], chemical and biological
systems, etc. [4,5]. Many researchers have studied synchronization between two identical chaotic systems [6–21]. Lag
synchronization and anticipated synchronization of chaotic systems have been studied widely recently [21–23]. This
paper is organized as follows. In Section 2, the complete synchronization of BLDCM systems [24–26] is obtained by
PC (Pecora and Coroll) method and linear coupling. In Section 3, the lag synchronization is obtained by PC method
and linear coupling. In Section 4, the anticipated synchronization is obtained by linear coupling. In Section 5, general-
ized lag, anticipated and complete synchronization are obtained by active control. In Section 5, the generalized synchro-
nization of BLDCM system and Lorenz system is also obtained by active control. In Section 6, conclusions are drawn.
2. The complete synchronization of BLDCM systems

2.1. Pecora and Corroll method for complete synchronization

Pecora and Corroll method [27,28] of synchronization for identical systems is used in this subsection. The master
and slave systems are described as follows:
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_x1 ¼ mq � x1 � x2x3 þ qx3;

_x2 ¼ md � dx2 þ x1x3;

_x3 ¼ rðx1 � x3Þ þ gx1x2 � T L; ð1Þ
_y1 ¼ mq � y1 � y2y3 þ qy3;

_y2 ¼ md � dy2 þ y1y3;

_y3 ¼ rðy1 � y3Þ þ gy1y2 � T L; ð2Þ
where mq = 0.168, md = 20.66, d = 0.875, r = 4.55, g = 0.26, TL = 0.53 are parameters.
Firstly, the variable x1, in Eq. (1) is used to replace variable y1 in Eq. (2), then the new slave system is described as

follows:
_y1 ¼ mq � x1 � y2y3 þ qy3;

_y2 ¼ md � dy2 þ x1y3;

_y3 ¼ rðx1 � y3Þ þ gx1y2 � T L.

ð3Þ
Take y1 � x1, y2 � x2, y3 � x3 as errors. The complete synchronization can be obtained by simulation which is shown in
Fig. 1. Secondly, by the replacement of y3 by x3, the synchronization of these two identical systems can also be ob-
tained, as shown in Fig. 2.

Lastly, it is found that by the replacement of y1 and y2 by x1 and x2 respectively and by the replacement of y1 and y3

by x1 and x3 respectively the synchronizations can also be obtained as shown in Figs. 3 and 4 which present that the
former case requires less time for the accomplishment of synchronization than the latter case requires.

2.2. Complete synchronization by linear coupling

Take Eq. (1) as master and Eq. (2) with linear coupling as slave
Fig. 1. The complete synchronization of two BLDCM systems by replacement of y1 by x1.



Fig. 2. The complete synchronization of two BLDCM systems by replacement of y3 by x3.

Fig. 3. The complete synchronization of two BLDCM systems by replacement of y1 and y2 by x1 and x2 respectively.
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Fig. 4. The complete synchronization of two BLDCM systems by replacement of y1 and y3 by x1 and x3 respectively.
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_y1 ¼ mq � y1 � y2y3 þ qy3 þ K1ðx1 � y1Þ;
_y2 ¼ md � dy2 þ y1y3 þ K2ðx2 � y2Þ;
_y3 ¼ rðy1 � y3Þ þ gy1y2 � T L þ K3ðx3 � y3Þ.

ð4Þ
where K = [K1K2K3]T is a coupling strength vector. The synchronization can be obtained with rather small coupling
strengths K1 = K2 = K3 = 1, as shown in Fig. 5.
3. The lag synchronization of BLDCM systems

3.1. Pecora and Corroll method for lag synchronization

The master system and slave systems are described by Eqs. (1) and (2). Firstly, variable x1(t � s) where s = 1s in Eq.
(1) is chosen to replace variable y1 in Eq. (2), then new slave system is
_y1 ¼ mq � x1ðt � sÞ � y2y3 þ qy3;

_y2 ¼ md � dy2 þ x1ðt � sÞy3;

_y3 ¼ rðx1ðt � sÞ � y3Þ þ gx1ðt � sÞy2 � T L.

ð5Þ
The lag synchronization can be obtained by simulations which are shown in Figs. 6–8. By simulation results, it is found
that the range of time delay s is unlimited.

Variable x3(t � s) where s = 1s in Eq. (1) is used to replace variable y3 in Eq. (2), the simulation results are in Figs.
9–11. The lag phenomenon is quite clear in Fig. 11. It is found that the range of time delay s is unlimited also.

Variables x1(t � s), x2(t � s) where s = 1s in Eq. (1) are used to replace variables y1, y2 respectively in Eq. (2). The
simulation results show in Figs. 12 and 13. It is found that range of delay time s is unlimited also.

Variables x1(t � s), x3(t � s) where s � 1s in Eq. (1) are used to replace variables y1, y3 respectively in Eq. (2). The
simulation results are shown in Figs. 14 and 15.



Fig. 5. The complete synchronization of two BLDCM systems by linear coupling.

Fig. 6. The time histories of x2 in Eq. (1) and y2 in Eq. (5).
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Fig. 7. The time histories of x3 in Eq. (1) and y3 in Eq. (5).

Fig. 8. The lag synchronization of two BLDCM systems of Eq. (1) and of Eq. (5).
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Fig. 9. The time histories of x1 and y1 when y3(t) in Eq. (2) is replaced by x3(t � 1) in Eq. (1).

Fig. 10. The time histories of x2 and y2 when y3(t) in Eq. (2) is replaced by x3(t � 1) in Eq. (1).
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Fig. 12. The time histories of x3 and y3 when y1(t), y2(t) in Eq. (2) are replaced by x1(t � 1), x2(t � 1) in Eq. (1) respectively.

Fig. 11. The lag synchronization of two BLDCM systems when y3(t) in Eq. (2) is replaced by x3(t � 1) in Eq. (1).
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Fig. 13. The lag synchronization of two BLDCM systems when y1(t), y2(t) in Eq. (2) are replaced by x1(t � 1), x2(t � 1) in Eq. (1)
respectively.

Fig. 14. The time histories of x2 and y2 when y1(t), y3(t) in Eq. (2) are replaced by x1(t � 1), x3(t � 1) in Eq. (1) respectively.
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Fig. 15. The lag synchronization of two BLDCM systems when y1(t), y3(t) in Eq. (2) are replaced by x1(t � 1), x3(t � 1) in Eq. (1)
respectively.
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Lastly, it is found that the time required for synchronizations by the replacement of two variables are less than that
by the replacement of one variables. And the x1, x2 case is faster than the x1, x3 case.

3.2. Lag synchronization by linear feedback

The coupling scheme for the dynamics of the master and the slave is written as
_xðtÞ ¼ f ðxðtÞÞ;
_yðtÞ ¼ f ðyðtÞÞ þ K½xðt � sÞ � yðtÞ�;

ð6Þ
where x, y are state vectors, f(x(t)) is an arbitrary vector function, K is a coupling strength matrix and s is the time
delay. Using the above scheme, simulations are given. Results are shown in Figs. 16–19. From simulation results, when
the range of time delay s is between 1 and 10, good performances are obtained.
4. The anticipated synchronization of BLDCM systems

The synchronization of chaotic systems in a unidirectional coupling configuration has attracted great interest due to
its potential applications to secure communication systems. Particular attention has been paid to the so-called anticipat-

ing synchronization regime, where two identical chaotic systems can be synchronized by unidirectional delayed coupling
in such a manner that the ‘‘slave’’ (the system with coupling) anticipates the ‘‘master’’ (the one without coupling). More
specifically, the coupling scheme proposed in [29–33] for the dynamics of the master x(t) and slave y(t) is
_xðtÞ ¼ f ðxðtÞÞ;
_yðtÞ ¼ f ðyðtÞÞ þ K½xðtÞ � yðt � sÞ�;

ð7Þ
where x and y are state vectors, f is a vector function, s is a delay time, K is a coupling strength matrix.



Fig. 16. The time histories of x1 and y1 in Eq. (6), s = 1s.

Fig. 17. The time histories of x2 and y2 in Eq. (6), s = 1s.
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Fig. 18. The time histories of x3 and y3 in Eq. (6), s = 1s.

Fig. 19. The lag synchronization of two BLDCM systems in Eq. (6), s = 1s.
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Fig. 20. The time histories of all states, K1 = K2 = K3 = 145, and s = 0.02.

Fig. 21. Anticipated synchronization of two BLDCM systems, K1 = K2 = K3 = 145, and s = 0.02.
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For BLDCM system, the master is described in Eq. (1) and slave is
_y1 ¼ mq � y1 � y2y3 þ qy3 þ K1ðx1 � y1ðt � sÞÞ;
_y2 ¼ md � dy2 þ y1y3 þ K2ðx2 � y2ðt � sÞÞ;
_y3 ¼ rðy1 � y3Þ þ gy1y2 � T L þ K3ðx3 � y3ðt � sÞÞ.

ð8Þ
For appropriate values of the delay time s and coupling strength K, the basic results can be obtained such that
y(t) = x(t + s), i.e., the slave ‘‘anticipates’’ by an amount s the output of the master while the value of s is limited.
The simulation results are shown in Figs. 20 and 21 where K1 = K2 = K3 = 145, s = 0.02.
5. Generalized lag, anticipated, and complete synchronizations of BLDCM chaos system by active control

In this section, active control [27] is used to the generalized lag, anticipated, and complete synchronizations. When
generalized synchronization is accomplished, the response state vector y is a given function of the drive state vector x.
We use a type of generalized (lag, anticipated, and complete) synchronization which is defined as the presence of certain
relationship between the states of the drive and response systems, i.e., there exists a smooth vector function H such that
y(t) = H(x(t � s)) with s 2 R, which includes the generalized lag synchronization (GLS, y(t) = H(x(t � s)) with s 2 R+),
the generalized anticipated synchronization (GAS, y(t) = H(x(t � s)) with s 2 R�), and generalized complete synchro-
nization GS(y(t) = H(x(t)) with s = 0).

5.1. Linear vector function H

The drive and response system is as following:
_x1

_x2

_x3

2
64

3
75 ¼ A

x1

x2

x3

2
64

3
75þ F ðxÞ; A ¼

�1 0 q

0 �d 0

r 0 �r

2
64

3
75; F ðxÞ ¼

�x2x3 þ mq

x1x3 þ md
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2
64

3
75 ð9Þ

_y1
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_y3

2
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3
75 ¼ B

y1

y2

y3

2
64

3
75þ GðxÞ þ Uðx; yÞ;

B ¼
�1 0 q

0 �d 0

r 0 �r

2
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3
75; GðxÞ ¼

�y2y3 þ mq

y1y3 þ md

gy1y2 � T L

2
64

3
75; Uðx; yÞ ¼

U 1ðx; yÞ
U 2ðx; yÞ
U 3ðx; yÞ

2
64

3
75; ð10Þ
Let the error state vector e(t) = y(t) � H(x(t � s)), where s 2 R and H(x(t � s)) = [H1(x(t � s)), H2(x(t � s)), . . .,Hn

(x(t � s))]T is a smooth vector function. We can obtain the error dynamic system and choose controller U(x,y) as
follows:
_eðtÞ ¼ AeðtÞ þ BHðxðt � sÞÞ þ Gðyðt � sÞÞ;
þ DHðxðt � sÞÞ½Axðt � sÞ þ F ðxðt � sÞÞ þ Uðx; yÞ�; ð11Þ
U ¼ De� BHðxðt � sÞÞ � Gðyðt � sÞÞ;
� DHðxðt � sÞÞ½Axðt � sÞ þ F ðxðt � sÞÞ�; ð12Þ
where D is a constant matrix and DH(x(t � s)) is the Jacobian matrix of H(x(t � s)). A linear vector function
H(x(t � s)) is chosen as follows:
Hðx1; x2; x3Þ ¼
h11 0 0

0 h22 0

0 0 h33

0
B@

1
CA

x1ðt � sÞ
x2ðt � sÞ
x3ðt � sÞ

0
B@

1
CAþ

c1

c2

c3

0
B@

1
CA; ð13Þ
where h11, h22, h33, c1, c2, c3 are constants. Then the error dynamic system (11) becomes
_e1

_e2

_e3

2
64

3
75 ¼ ðBþ DÞ

e1

e2

e3

2
64

3
75 ¼

D11 � 1 D12 D13 þ q

D21 D22 � d D23

D31 � r D32 D33 þ r

2
64

3
75

e1

e2

e3

2
64

3
75. ð14Þ
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Proper Dij can be obtained such that all eigenvalues of system (14) have negative real parts, i.e., the null solution of
the system (14) is globally asymptotically stable. The parameters in system (9) and system (10) are chosen as mq = 0.168,
md = 20.66, TL = 0.53, r = 4.55, q = 60, g = 0.26. Let D11 = �3, D12 = �2, D13 = 3, D21 = 0, D22 = �30, D23 = 2,
D31 = �4.55, D32 = 0, D33 = �30. The initial values of the states of system (9) and system (10) are x1 = 0.01,
x2 = 0.01, x3 = 0.01, y1 = 0.1, y2 = �5, y3 = �10. The time constants s = 1 and s = �1.5 are used in the lag synchro-
nization and the anticipated synchronization respectively. Finally, the dynamics of generalized lag, anticipated and
complete synchronization errors for the drive system (9) and the response system (10) are shown in Figs. 22–25.
5.2. Nonlinear vector function

The drive system and response system are also Eqs. (9) and (10). In this section, we choose nonlinear vector function
H(x(t � s))
Hðx1; x2; x3Þ ¼
2x1ðt � sÞ 0 0

0 2x2ðt � sÞ 0

0 0 2x3ðt � sÞ

0
B@

1
CA

x1ðt � sÞ
x2ðt � sÞ
x3ðt � sÞ

0
B@

1
CA. ð15Þ
We can also obtain the error dynamic system (14) from (9) and (10). Choose proper Dij such that all eigenvalues of
system (14) have negative real parts, i.e., the null solution of system (14) is globally asymptotically stable. Take the
parameters in system (9) and (10) as mq = 0.168, md = 20.66, TL = 0.53, r = 4.55, q = 60, g = 0.26. Let D11 = �30,
D12 = 2, D13 = 3, D21 = 0, D22 = �30, D23 = 2, D31 = �4.55, D32 = 0, D33 = �33 and the initial values of the states of
system (9) and (10) as x1 = 10, x2 = 5, x3 = 7, y1 = 21, y2 = 30, y3 = 15. The time constant s = 0.5 and s = �1 are used
in lag and anticipated synchronization respectively. Finally the dynamics of the generalized complete lag and antici-
pated synchronization errors for the drive system (9) and the response system (10) are shown in Figs. 26–31.
Fig. 22. The time histories of y1, y2, y3 and x1(s � 1) + 1, x2(s � 1) + 1, x3(s � 1)+1 for linear vector function H.



Fig. 23. The time histories of the generalized lag synchronization error e = y(t) � (x(t � 1)+1) for linear vector function H.

Fig. 24. The time histories of y1, y2, y3 and x1(s + 1.5) + 1, x2(s + 1.5) + 1, x3(s + 1.5) + 1 for linear vector function H.
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Fig. 25. The time histories of the generalized anticipated synchronization error e = y(t) � (x(t + 1.5) + 1) for linear vector function H.

Fig. 26. The time histories of y1, y2, y3 and 2x2
1, 2x2

2, 2x2
3 for nonlinear vector function H.
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Fig. 27. The generalized complete synchronization error e = y(t) � (2x2) for nonlinear vector function H.

Fig. 28. The time histories of y1, y2, y3 and 2x2
1ðt � 0:5Þ, 2x2

2ðt � 0:5Þ, 2x2
3ðt � 0:5Þ for nonlinear vector function H.
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Fig. 29. The generalized lag synchronization error e = y(t) � (2x2(t � 0.5)) for nonlinear vector function H.

Fig. 30. The time histories of y1, y2, y3 and 2x2
1ðt þ 1Þ, 2x2

2ðt þ 1Þ, 2x2
3ðt þ 1Þ for nonlinear vector function H.
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Fig. 31. The generalized anticipated synchronization error e = y(t) � (2x2(t + 1)) for nonlinear vector function H.

Fig. 32. The time histories of y1, y2, y3 for Lorenz system and of 3 cosðx1Þ, 3 cosðx2Þ, 3 cosðx3Þ for BLDCM system, with nonlinear
vector function H.
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Fig. 33. The generalized complete synchronization error e ¼ yðtÞ � 3 cosðxÞ for different systems for nonlinear vector function H.

Fig. 34. The time histories of y1, y2, y3 for Lorenz system and of 3 cosðx1ðt � 1ÞÞ, 3 cosðx2ðt � 1ÞÞ, 3 cosðx3ðt � 1ÞÞ for BLDCM system,
with nonlinear vector function H.
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Fig. 35. The generalized lag synchronization error e ¼ yðtÞ � 3 cosðxðt � 1ÞÞ for different systems with nonlinear vector function H.

Fig. 36. The time histories of y1, y2, y3 for Lorenz system and of 3 cosðx1ðt þ 0:2ÞÞ, 3 cosðx2ðt þ 0:2ÞÞ, 3 cosðx3ðt þ 0:2ÞÞ for BLDCM
system, with nonlinear vector function H.

Z.-M. Ge, G.-H. Lin / Chaos, Solitons and Fractals 34 (2007) 740–764 761



Fig. 37. The generalized anticipated synchronization error e ¼ yðtÞ � 3 cosðxðt þ 0:2ÞÞ for different systems with nonlinear vector
function H.
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5.3. The generalized synchronization of BLDCM and Lorenz chaotic system for nonlinear vector function

In this section, we use nonlinear vector function H(x(t � s)) and different chaotic systems for generalized synchro-
nization. The drive system is Eq. (9) and the response system is Lorenz system :
_y1

_y2

_y3

8><
>:

9>=
>;
¼ B

y1

y2

y3

8><
>:

9>=
>;
þ GðyÞ þ U ; B ¼

�a a 0

c 0 �1

0 0 �b

2
64

3
75; GðyÞ ¼

0

�y1y3

y1y2

2
64

3
75; ð16Þ

Hðx1; x2; x3Þ ¼
3 0 0

0 3 0

0 0 3

0
B@

1
CA

cosðx1ðt � sÞÞ
cosðx2ðt � sÞÞ
cosðx3ðt � sÞÞ

0
B@

1
CA. ð17Þ
We can also obtain the error dynamic system (14) from (9) and (16). Choose proper Dij such that all eigenvalues of system
(14) have negative real parts, i.e., the null solution of system (14) is globally asymptotically stable. Take the parameters in
system (9) and (16) as mq = 0.168, md = 20.66, TL = 0.53, r = 4.55, q = 60, g = 0.26, a = 10, b = 8/3, and c = 28. Let
D11 = �5, D12 = 2, D13 = 5, D21 = �28, D22 = �5, D23 = 1, D31 = 0, D32 = 0, D33 = �5, and the initial values of the states
of system (9) and (16) as x1 = �15, x2 = 5, x3 = 30, y1 = �5, y2 = �4, y3 = 5. The time constant s = 1 and s = �0.2 are
used in lag and anticipated synchronization respectively. Finally, the dynamics of generalized lag, anticipated and
complete synchronization errors for the drive system (9) and the response system (16) are shown in Figs. 32–37.
6. Conclusions

By Pecora and Corroll method, complete synchronization and lag synchronization are accomplished successfully.
The larger the number of states of the response system replaced by states of the drive system is, the quicker the chaos
synchronization can be accomplished. Linear coupling for complete, lag and anticipated synchronization is achieved,
and time delay s can be arbitrarily chosen for lag synchronization, and the range of negative s has limitation for antic-



Z.-M. Ge, G.-H. Lin / Chaos, Solitons and Fractals 34 (2007) 740–764 763
ipated synchronization. The generalized complete, lag and anticipated synchronization are achieved by active control.
Finally generalized lag synchronization are studied for different systems, BLDCM system and Lorenz system, by active
control.
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