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TWO-SIDED EXIT FOR PHASE-TYPE LEVY MODELS AND PERPETUAL
CALLABLE BOND

YU-TING CHEN AND YUAN-CHUNG SHEU

ABSTRACT. We consider a firm whose asset value follows a jump diffusion and both the upward and
downward jumps are distributed as mixtures of exponential distributions. Parallel to Leland(1994)
and Goldstein et al.(2001), we consider corporate debt for which default, tax effect and bankruptcy
are all considered. As in Black and Cox(1976), Brennan and Schwartz(1978), Fischer et al.(1989),
Duffie and Singleton(2001) and Leland(1998), we allow the possibility of redemption of debt. We
give a closed form solution for such bond. For related work on pricing securities in jump diffusion
model, see Asmussen et al.(2004) and Chen et al.(2006).

1. INTRODUCTION

It is commonly stipulated in a bond covenant that the bond under consideration is callable or
redeemed under some circumstances. And such redemption can be seen as recapitalization of firm.
Therefore, in addition to the common practice of modeling corporate bond by the discounted recovery
at default, one should also consider in the case of callable debt the discounted recovery of redemption
prior to default. Indeed, such two-sided exit problem for bond pricing is well recognized and discussed
in, for example, Black and Cox(1976), Brennan and Schwartz(1978), Fischer et al.(1989), Duffie and
Lando(2001)and Leland(1998). Bodie and Taggart(1978) also provided a simplified model to explain
the phenomenon why firms prefer callable bonds.

In this paper, we assume that the firm asset value is a jump diffusion for which both upward
and downward jumps are controlled by mixtures of exponential distributions. We will give a closed
form solution of the risk neutral price of a perpetual corporate bond for which both the default and
redemption of bond are possible for two exogenously determined boundaries.

2. PRICING PERPETUAL CALLABLE COUPON BOND

As in Black and Cox(1976), Leland(1994), Goldstein et al.(2001) and many others, we assume
the existence of a constant risk free rate » > 0 for all maturities. Let P be an equivalent martingale
measure such that a given firm has its asset value following the dynamics

AV, = Vi (pdt + dMy)

up to the time of default, where y € R and M = (My;t > 0) is a martingale. Then the asset value
process V = (Vi;¢ > 0) takes the form

Vi =Voet, 120,
for some process X = (X¢;t > 0). In this paper, we assume X is given by a jump diffusion
Ny
(2.1) Xp=ct+oWy—» Yo, t>0.
n=1
Here c € R, 0 > 0, W = (Wy;t > 0) is a standard Brownian motion, N = (N;t > 0) is a compound
Poisson process with rate A > 0, and the jump sizes (Y,,,n > 1) are independent and identically

distributed; all the aforementioned objects being mutually independent. We assume the distribution
F of Y7 has probability density function

_ 1
S e,y >0,
22 =1 0. T yso
S gy el Y, oy <.

m(+)

where nf’s are distinct, n;’s are distinct, Zj:l D; + Z;’Z? g; = 1, and pj,qj,nji > 0. We will
denote by P, the law of X + x under IP and hence by the definition of P, Piogv;, = P.
1



2 YU-TING CHEN AND YUAN-CHUNG SHEU

Assume the management decides to follow the upward capital structure strategy throughout
time (see Goldstein et al.(2001) Section III). That is, at time 0, the firm chooses two thresholds
VP and V2 satisfying VP < Vo < V) and issues a perpetual callable coupon bond whose covenant
specifies

(1): The life time of the bond ends if either of the following events occurs:

(a): The firm asset value first crosses V2. Then recapitalization takes place, and the bond
is called.

(b): The firm asset value first crosses V. Then the firm declares bankruptcy, and liqui-
dation occurs.

(2): The bond pays a constant coupon rate C' > 0 up to the life time of the bond.

(3): In case (a), the firm promises a time-inhomogeneous callable price K. In case (b), the
bondholder takes over the firm and receives the remaining value of the firm. However, a
fraction « of the remaining firm value is lost due to bankruptcy costs.

Period 0 ends whenever (a) or (b) occurs. Set yg = V{¥/Vo > 1 and vp = Vo /VP € (0,1). Then in
general, period n begins at the time R, the firm has not declared bankruptcy and the firm asset
value first rises above Wz_lan,,l after R,,. Throughout period n, a perpetual callable coupon bond
whose covenant is the same as the one issued in period 0 except that the bankruptcy level and the
recapitalization level are set respectively as v5Vp, and v3Vg,. Period n ends when the firm has not
declared bankruptcy and accumulates sufficiently large asset value above v;Vg,. We also assume
the bondholder has a personal tax rate 7, and the corporate tax rate is .

Such a capital structure leads us some natural pricing problems:

(1) What are the no arbitrage values of the perpetual callable coupon bonds issued at the
beginning of each period under PP (and hence the perpetual bond issued at the beginning of
period n)?

(2) What is the value of the firm?

(3) What are the optimal parameters V, V¥, vz and vp that can maximize the shareholders’
value? Then what are the maximized equity value and maximized firm value?

We will answer these questions in the subsequent section.
According to bond covenant, the first default time is given by

Dy _inf{tz();supvs < Vo,V gVLO},

s<t

the first recapitalization time is given by
R: :inf{t> 0; inf V, > V2V > VUO}.
EAS

and the first contract ceasing time is given by:
T — R1 A\ Dl.

Then under the risk neutral probability measure, a no-arbitrage price of the corporate bond is given
by

(23) o) = [ ot - el +2 e
0
where ( )
-~ _ l-«a Y, if Yy < VL)
9(y)_{ K, if y > V.

The right hand side of equation (2.3) has the following explanation. The first term comes from the
discounted after-tax coupon payment up to the first contract ceasing time. And the second term
can be written as the sum of

(2.4) E[(1-a)V;e "™1(Ry > D))
and
(2.5) E[Ke "™ 1(Ry < Dy)].

So, we see that (2.4) and (2.5) are the discounted payoffs upon default and recapitalization, respec-
tively. To facilitate our study of bond price, we write V; = eX* and straightforward computations
give the following lemma.
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Lemma 2.1. Under P, with x = logVy, Vi = eXt for all t > 0 and the components of the bond
price (2.8) can be written as

E Uoﬁ c@ - Tp)e—”dt] :M (1-E;[e7"™]),

E[(1-a)V;e "™1(Ry > D1)] =(1 — a)E, [67”3 1.x., <VLeX’B}
E[Ke ™ 1(Ry < D1)] =KE, [e 7™ 1 x|

Theorem 2.1. Let ¥(C) be the characteristic exponent of the process X. That is, Eg [egXl] = ¢e¥(Q),
for ¢ € IR. Then ¥ is an analytic function on C except at a finite number of poles. Suppose the
equation ¥ (¢) — r = 0 admits distinct zeros, then the bond price is given by

C(l—mp)

D(Vp) = [1-Q(g1) " e?(logVo)] + (1 — @)Q(g2) e (log Vo) + KQ(g3) " €” (log Vs).

Here g1(y) = 1, 92(y) = e¥1y<iog vy s 93(¥) = Ly>tog vy and Q(gi) is a vector of constants that solves
the following system of linear equations

Q(gr) " er(log VL) = g(log V1),
Q(gx) e (log Viy) N = g(log V),
m Q(gx)i ?—E(p'ﬁr”j ) los V. log V/; + .
(2.6) Sy el = 257 gy e Yy, 1 < j < myy,

—(n; —py)log Vy

Zm+2 Q;(gr)n; e

o — —n. .
=1 pitn; = Jiog vy 9@y 7" Yy, 1 < j < .

Proof. See Theorem A.1 in Appendix. O

3. A Two-SIDED EXIT PROBLEM

In this appendix, we solve the valuation problem of (2.3). We begin with the observation that we
can alternatively write the debt value as

B
D) = (1= 78 | [ et 4 (1= @B [ 1y, e Vi, 4 KE [0 1050
0

c(1- —rT —rT —rT
= % (1-E[e"™])+(1—-a)E {e P xrp SVLeXTB} + KE {e P xrp ZVu} .

So, to give solution for the valuation problem of debt, it suffices to compute the first passage time
functional

(I)(‘T) = ET [eirTBg(XTB)] 9
where ¢ is a nonnegative bounded Borel measurable function and Xy = x a.s. under P,. On the
other hand, by Dynkin’s formula and Theorem of Feynman and Kac, one needs to solve the following

boundary value problem which admits at most one solution: find ® € C([L,U]) N C?((L,U)) such
that

(L—r)®=0, in (L,U)
(3.1) { d=g, on (—oo, L] U [U,00).

Here U = log Vi7, L = log V7, and L is the infinitesimal generator of X acting on h € C3(R) by
2
(3.2) Lh(z) = TR"(2) + ch () + A / h(z — y)dF(y) — \h(x).

For details, see Bertoin(1996) or Sato(1999).

By the assumption that both tails of f are mixtures of exponential distributions, the Fourier
multiplier ¢(¢) — r of L — r is a rational function, where ¢ is the characteristic exponent of X.
Let Py(¢) be the minimal polynomial such that P;(¢) = Po(¢)(¢)(¢) — r) is a polynomial whose
zeros coincide with those of () — r. If we denote by D the differential operator such that its
characteristic polynomial is P;((), then, as we will show below in Lemma A.1,

(3.3) D® =0, on (L,U),

which is a homogeneous ODE of higher order.
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Lemma 3.1. Suppose there exists a bounded solution ® to the boundary value problem (3.1) and
the jump distribution F has a density f given by (2.2). Then on (L,U), ® is infinitely differentiable
on (L,U) and satisfies (3.3).

Proof. We now prove this lemma by direct computation. And we will first show that & is infinitely
differentiable and then transform the integro-differential equation (L — r)® = 0 into an ODE.

Plugging the density function f given by (2.2) into (3.2), we deduce that the generator L acting
on ® is given by

9 m(+) Sy 0 _
LO(z) :%(I)”(x) + @' (z) + A Z i, / (z —y)e™™ Ydy + > gy / Oz —y)e" Ydy | — AP (x)
j=1 -
o2 m(4) . m— B o) B
=5 (@) + c®'(z) + A Z pinfe " / O(y)es Yy + Y qim; € ‘r/ D(y)e M Vdy | — AD().

j=1
From the last equation and by the fact that ¢ > 0 and (L —r)® = 0, ® is infinitely differentiable on

(L,U) by an induction argument.
Next, we show that ® satisfies an ODE. Observe the following differentiation rule:

d —nta [* +
(dx + n}) pin, e / D(y)e Ydy
i | (= [T ey o))+ e [ e = prfato)
and similarly
d [ - _
(dx - m—) q;n; € $/ P(y)e” " Ydy = —q;n; (z).
x

So, by the fact that @ is infinitely differentiable on (L,U) and (L —r)® =0 on (L,U), we get that

d 4 d 4 d _ d _
0=<dx+771>'“<d + m(+)> (dx—7h>“'<dz_77m()>(L_7")‘I)(33)
_(d 4 d 4 d _ d _ o? d&? d
_(d +771)(d1_+77m(+)> (dx_n1> (dz nm( ))<2d1‘2+cd$_)\_r (P(l‘)

M) M) M=) ™M(-)
SO | N GRS EUCCED ol | ) CA 3 LK O
j=1 k=1k#j j=1 k=1k#j

Note in the last equation, we have used the fact that the order of differentiation for an infinitely
differentiable function is irrelevant. In addition, we have adopted the notation that

ﬂ(di‘ak)q’(x): <(Z:_a1>~-~<$:_azv>¢>(x); memisEEn

k=1
So, (3.4) shows us the transformation of the integro-differential equation (L —r)® = 0 into an ODE:
D'® =0, where D’ is a higher order differential operator.
To complete the proof, we need to show that D’ coincides with D(see the definition of D in the
paragraph above (3.3)). First, we note that the Laplace exponent ¥ (¢) of X is given by

0_2
w0 =5 ¢+ ¢+ A [ e -
0_2 ) 0
“Te e ([T [ epma) -

o2 , oy &K gy
(3.5) =—C+cC+A -+ —2L -\ (€iR
2 ; ¢+ Z; ¢
j
Therefore, by the definition of the minimal polynomial Py((), we get
m(y) m()
(3.6) Po(¢) = [T €+n)) [T €—n),

j=1 j=1
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Now, we are in the position to show D = D’. And it suffices to show that the characteristic
polynomials of D and D’ coincide. Write P’(¢) as the characteristic polynomial of D’. Then by
(3.4), P’ is given by

m(+) mi—) 02 m(+) pj"f'r m(—) _anf
PO =T[C+n) [[C—n) |5C+eC+A D+ > —L | —(A+7)
j=1 j=1 2 j=1 ¢+ j=1 ¢ =

=Po(O)((C) — 1),

by (3.5) and (3.6). This shows the characteristic polynomial P;({) of D is equal to that P’({) of
D’. We have completed the proof. ([l

If we assume the zeros of P (¢) are distinct and are given by {—o00 < p1 < p2 < -++ < pg < 0},
a general solution of the last equation is given by

S

(3.7) O(z) = ZQie"iz,

i=1
for some constants @;. Note that that S = m) + m_) + 2. For details of these arguments, see
Chen et al.(2006).

Proposition 3.1. The constant Q satisfies (2.6) with Q(g;) replaced by Q.
Proof. Let m = m4y +m(_y. Since (L —r)® = 0 on (L,U), we have for x € (L,U),

(3.8) 0=Dd"(z) + ®'(z) + A / B(x — y)f(y)dy — (A + )0 (z)
m+2
(39) =Y Qe (Dp +ap— (A 1)+ [ B - ) )y,
i=1
Furthermore, we have
L [e's) z—L
[ o= sy - ( [+ ) o)1= idy+ [ @ -y
—co U z—U
m(+) . L N ) _ oo _
=) pe ””/ gly)nfem Vdy + Y qzes I/ g(y)n; e " Ydy
j=1 - j=1 U
m42 m(_) 0 B m+2 m(+) x—L n
+ Z Q,e’® Z an;/ e PVl Ydy + Z Q,e"" Z PjU;L/ e PYe ™ Yy
i=1 j=1 z—=U i=1 j=1 0
m(+) . L N ) _ oo _
= pe™ ””/ gy el vy + Y gze’s I/ g(y)n; e Vdy
j=1 - j=1 U
+ Qiepiw — J (1 — ey —p:)(U—z )
i=1 =1 —Pi
s ‘& pin; +
(3.10) + Z Q,e’" Z 37J+ (1 —_ e~ (pstnj )(sz))
i=1 o Pt
Now, by (3.9), (3.10) and the fact ¢(p;) — r = 0 for all i, we deduce that
m(4) . L N M) _ 00 _
0= pje™ ”/ gly)nfe Wy + Y gze™s ”/ g(y)n; e Vdy
j=1 —oo j=1 v
4 Qiep"’f’: - J (—e_ n; —pi)(U—z )
i=1 =1 TP
m+2 gt I
+ Qiepﬂ: J (—e_ pitn; ) (z—L ) )
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By comparing e~ 9% and e *, we get (2.6). This completes the proof. O

Write Q = [Qq, -+ ,Qs|" and eP(z) = [eM%, -+ ,ers*]T. By (3.7) and Proposition A.2, we
conclude that

Theorem 3.1. Suppose there exists a solution ® to the boundary value problem (3.1). Then on
[U, L], ®(z) = QTe”(m), where Q is a constant vector that solves (2.6) with Q(gi) replaced by Q.
Conversely, if (2.6) admits a solution, then the solution must be unique and the function ®(x) which
is equal to QeP(x) on [L,U] and g(z) on [L,U]° solves the boundary value problem (3.1).

Proof. We have shown the first statement in the above. The second statement follows directly from
the Theorem of Feynman and Kac. For details, see Chen et al.(2006). O

APPENDIX A. APPROXIMATION OF BOND WITH FINITE MATURITY

We now consider a bond whose covenant has the same term as the perpetual bond that we consider
in the previous section, except that it has a finite maturity and a par value P upon maturity date.
More precisely, the bond price under consideration has its risk neutral price as the following:

T8 A\T
D(Vy, T) =E l/ C(l—mp)e "dt| +E[e "™ G(Vry)ley<r| + PPl > T1.
0

In this case, closed form solutions of D(Vy,T) is not available. Indeed, solving D(Vh,T) in the
probabilistic way will require the density of the contract ceasing time, which is not available. And
solving D(Vp,T) in the analytic way will require us solving a partial integro-differential equation,
which is not an easy work. Instead, we will show in the following that we can approximate the bond
price D(Vy, T) via a sequence of linear combinations of the perpetual bond prices considered in the
previous section and some zero coupon defaultable bonds.

To see this, we first rewrite D(Vy,T) as

@

D(Vo, T) :%TD) (1=E [ ")) + (1 - )E [ "™ v, <v; Vo Lrn<r

+ KE [6_”31%3 >Vy 1TB§T] +P(1-Plrp <TJ)
-
) {1-E[e1,<r] —e ™ +e " Plrg < T} + (1 — 2)E [e_TTBlv <vi Vrp 1TB§T}
+ KE [eirTB]_VTB >V 17’B§T] + P(l - P[TB < TD

We show how to approximate the functional E; [e”""2§(X,,)1,,<7| by linear combinations of
functions of the form E, [e"""2h(X,,)]. Moreover, the error bound of such approximation will be
provided.

First, for each n > 1, define a piecewise linear function f,, on Ry by

0,t € [0,5] U[T,o0),
(A1) falt)=< Lte [t T-2L],

linear, otherwise.

Also, take ¢(t) = 1jo,7)(t). Then
[Ex [ g(X)8(n)] ~ Ba [ g(X ) fuD)]| < lgloe (Polr € [0,1/m] + TR, [r € [T~ 1/n, T1))

By the absolute continuity of P, [7g € dt, 75 < 0], we have P, [75 € (0,1/n]] ,Py [75 € (T — 1/n,T]] —
0, as n — 00. On the other hand, take the Bernstein polynomial

(A.2) an ( log 7) (7;‘:) e (1—e)" F 0 <a < o

Here, we define f,(—log 0) = 0. Then f,(—logz) is continuous on [0,1] and we have

1
Bn_n <s n_l _n_l ; - Sia Sv Sl o
|| fu_m{u<%ﬂf<owMtﬂ S.0<ts }+%
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see Resnick(1997) page 177 for details. We estimate the supremum term. First, note that for
s,t > e T and |s — t| < J5, by Mean Value Theorem, we have

T
|logs —logt| < el|s —t| < 6—3.
n

Hence,
T

e
su B O
plr} <5
We now conclude that

Theorem A.1. We can approzimate the function By [e™ "™ g(X,,)1;,<7] by Ey [ 9(X ) Bn(7B)],
where By, is given by (A.2) and B, [e”" "B g(X,,)Bn(7)] has a closed form given by Theorem A.1.
Moreover, the approximation error bound is given by

’]Ez [eiTTBg(XTB)]‘[TBST]] 7]Ex I:e*TTBg(XTB)Bn(TB)} ’
A3 < P 0.1 —r(T—1/n)p T 1/n.T el 1
(&3) < lgllo (Balr € [0,1/n] + ¢ el —1nT)) + S+ o
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