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Trends in Smoking Cessation: A Markov Approach 

戒菸期的傾向 : 一個馬可夫的方法 

 

中文摘要 

在戒菸實驗中，我們常會觀察到參與者有多重離散型的階段。過去已有一些關於

此的長期資料分析，我們也可假設這些資料具有馬可夫的性質。參與實驗者常會

有驅向某一階段的傾向，我們用對數轉換傾向參數模型，提出別於二元的新的模

型與方法，做出估計與檢定的問題。這些新的模型與方法將用於戒菸實驗的數

據。我們也會做模擬實驗。 

 

關鍵字 : 馬可夫鍊 , 長期資料 , 戒煙 

 

Abstract 

Intervention trials such as studies on smoking cessation may observe multiple, 

discrete outcomes over time. Participant observations may alternate states over the 

course of a study. Approaches exist which are commonly used to analyze binary, 

longitudinal data in the context of independent variables. However, the sequence of 

observations may be assumed to follow a Markov chain with stationary transition 

probabilities when observations are made at fixed time points. Participants favoring 

the transition to one particular state over the others would evidence a trend in the 

observations. Using a log-transformed trend parameter, the determinants of a trend in 

a binary, longitudinal study may be evaluated by maximizing the likelihood function. 

New methodology on extension to discrete time Markov chain model and continuous 

time Markov chain model is studied here to test for the presence and determinants of a 

trend in multiple state, rather than binary, longitudinal observations. Practical 

application of the proposed method is made to data available from an intervention 

study on smoking cessation. Simulation studies will also be taken. 

 

Keywords: Markov chains, longitudinal data, smoking cessation 

 

I.  Introduction 

Discrete outcomes are repeatedly measured in many areas of research. When the 

observation is binary, study participants may alternate between two classes ( or states ) 

over the course of a study. Subjects may tend to favor the transition to a particular 

state depending on known or unknown factors. For instance, the goal of a smoking 

cessation program may be to influence participants’ decisions in favor of smoking 

abstinence, as opposed to relapse. Study investigators may hypothesize a trend toward 

the abstinence state depending on the intervention group or covariates of interest. 



Other example of discrete, longitudinal data may include infection status, 

psychological state, or drug therapy compliance ( Liu and others, 1995; Dascalakis 

and others, 2002; Solomon and others, 2005 ). 

   Traditional analysis, such as logistic regression, are inappropriate when repeated 

measurements are made on the same subject due to an inherent correlation in the 

measurements. Generalized linear mixed models are commonly used to model 

discrete, longitudinal outcomes using random effects ( Molenberghs and Verbeke, 

2005 ). However, parameter estimates under this model are subject-specific 

( Molenberghs and Verbeke, 2005 ). A methodology that focuses on population 

average parameters is the generalized estimating equations (GEE) approach ( Liang 

and Zeger, 1986; Zeger and Liang, 1986; Hu and others, 1998; Hardin and Hilbe, 

2003 ). Discrete time Markov models may also be used to analyze binary longitudinal 

data ( Li and Chan, 2006 ). 

   Generalized estimating equations (GEE) are commonly used to analyze binary, 

longitudinal data in the context of independent variables (Liang and Zeger, 1986; 

Zeger and Liang, 1986 ). Under the GEE model, a trend may be defined as a change 

in the log-odds of an event per unit increase in time. Statistically significant 

covariate-time interactions imply that a trend in the log-odds of an event is covariate 

dependent. 

   Previous work describing binary, longitudinal data through Markov models has 

focused on logistic regression methods to model the transition probabilities and 

transition model that do not allow for the inclusion of covariates ( Rieger, 1968; 

Muenz and Rubinstein, 1985 ). Corcoran and others ( 2001 ) suggest an exact trend 

test for correlated, binary data. However, this test may be computationally infeasible 

in the presence of continuous covariates or with the inclusion os multiple covariates 

( Corcoran and others, 2001 ). A continuous time, binary Markov model has 

previously described that models the transition probabilities as exponential functions 

of covariates ( Jones and others, 2006). However, trend in the response variables is 

not evaluated. This project extends the methodologies presented by Regier (1968) to 

identify the presence and determinants of trend in multiple, rather then binary, 

longitudinal data for multiple subjects ( or groups ). The methodology developed 

utilizes a stationary, multi-state Markov chain for N subjects in the context of a 

log-transformed trend parameter described as a linear function of covariates. The 

likelihood function is described, maximum likelihood estimates of unknown 

parameters are searched, and a likelihood ratio test is used to test hypothesis about 

trend. 

 

II.  Methods 



 

 Assumptions 

The outcome of interest is assumed to be a repeatedly measured 

multiple-state variable. Pair-wise observations within a subject may be correlated, 

but observations across subjects are assumed to be independent. Transition 

probabilities are assumed to depend only on the current state of each subject, and 

otherwise do not depend on previously recorded observations. The proposed 

Markov model assumes that a log-transformed trend parameter is a linear 

function of covariates. For discrete time Markov model, the length of time 

between observations is one time unit. For continuous time Markov model, the 

observation times are Mii tt ,,1   for subject i. 

 

 Likelihood Function 

 

1. Discrete Time Markov Chain Model 

An extension of the model of Regier ( 1968 ) defines a transition 

probability matrix that describes the multi-state transition probabilities 

for a single subject with respect to a trend parameter )( . When N 

subjects are observed, let i  describe the trend for subject i 

),,1( Ni  . Let ),,( 1 mppp  , the transition probability matrix 

may then be written as  





































mmmm

mm

mmmm

m

mmmm

m

m

m

mm

m

m

mm

ppp

p

ppp

p

ppp

p

ppp

p

ppp

p

ppp

p
ppp

p

ppp

p

ppp

p

T

iii

i

iii

i

iii

i

i































































2121

2

21

1

22221

2

22221

22

22221

21

11211

1

11211

12

11211

11

1

where ),,( 1 imi    is a known permutation of ),,1( m  depending on 

cases. In this matrix i  describes the change in the transition 

probabilities for the ith individual, and p describes the population 

transition probabilities in the absence of a trend. Let )ln( i  be the link 

function that maps the transition trend to the linear function 

                 ')ln( ii X  

          where '
iX  is the vector of covariates for subjects i and   is the vector 



of population parameters. Each element of 1iT  describes the one-step 

transition probabilities in a sequence of observations. Let R be the 

matrix of observed sequences for N subjects 
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where ijr  stands for the state of subject i at time j. The likelihood 

function appears to be 
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          where ijkn  is the number of transitions between state j and state k for 

subject i. 

    This likelihood function must be modified in the presence of 

missing data to include n-step transition probabilities ( Howard and 

Karlin 1998 ). Missing data may occur at the beginning , middle or end 

of each sequence of observations. Data missing at the beginning or end 

of each sequence may be ignored with respect to the likelihood function 

as such missingness does not contribute any information about the 

transitions. However, information is contained in the observations when 

missing data are present in the middle of a sequence, between two 

observed data points. When one data point is missing between two 

observations, the 2-step transition probability matrix is 2
12 ii TT  . A 

similar fashion can be extended to n-step missing data. 

 

2. Continuous Time Markov Chain Model 

We here assume that the infinitesimal matrix 
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where for simplicity the   in Q is a symbol that the sum of each row 

of Q is zero. In order to obtain the maximum likelihood estimates of 



the parameters, it is essential to find the transition probability matrix 

)( )1(1 kiiki ttT   between two observation times kit  and ikt )1(   in 

advance. Such a problem can be solved numerically by the following 

identity, 

Proposition ( Ross, 1996 ) 
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For example, k = 20 matrix multiplications can reach high accuracy. 

Once the transition probability matrix of continuous time Markov 

chain is obtained, the rest part of the task required is similar to that of 

discrete time Markov model. That is, 

 

 Maximum Likelihood Estimation 

    Maximizing the logarithm of the likelihood function with respect to the 

unknown parameters (   and p  ) is computationally difficult, especially in 

the presence of missing data. Therefore, the Nelder-Mead simplex algorithm, 

which does not require differentiation, is used to find maximum likelihood 

estimates ( Nelder and Mead, 1965 ). SAS is used to implement this optimization 

using the NLPNMS call function. Parameter constrains are required for ip  to 

prevent division by zero; therefore, 99999.000001.0  ip . 

 

 Simulation Studies 

    This study focuses on testing for statistically significant associations 

between trend and a binary covariate ( e.g. placebo versus experimental 

treatment groups ). The log-transformed trend parameter is modeled as 

NiX ii ,,1;)ln( 10    

    under the proposed Markov model. The null hypothesis of interest is 

0: 10 H . 

    Note that 1  represents the change in the )ln(  for X = 1 compared to  

X = 0. 

 

III.   Application of Models to Investigate Smoking Relapse Trend in the 

Smoking Treatment Study 

      Unpublished data is available from an intervention study on smoking 

cessation. Dr. David Wetter, The University of Texas M.D. Anderson Cancer 

Center in Houston, TX, initiated a study entitled “Smoking Treatment on 

Palmtops” (STOP) to evaluate the effectiveness of computer delivered therapy 



on smoking cessation. Two study sites were established to enroll participants 

( Houston, TX, and Seattle, WA ) from September 2000 through June 2002. 

Participants ( N = 303 ) were randomly assigned to a control group or 

experimental treatment group. The control group received standard therapy 

including nicotine patches and self-help materials. The experimental group 

received a computer delivered treatment in addition to standard therapy. 

 

IV. Discussion 

For both models, power increases as th number of observations per subject 

increases. Parameter estimates are not explicitly comparable. Under the proposed 

Markov model, several limitations exist. First, transition probabilities are 

assumed to be stationary, and the proposed method is inappropriate when the 

outcome variables follow a non-stationary process. The Nelder-Mead simplex 

algorithm is used to maximize the likelihood functions. This algorithm may fail 

to converge, or may not converge to global maximum. However, most of the 

calculation converge in this simulation. 

 

References 

Corcoran,C., Ryan, L., Sanchaudhuri, P. Mehta, Patel, N.(2001) An exact trend test for 

correlated binary data. Biometrics, 57(3):941-948 

 

Daskalakis, C, Laird, N. Murthy, J. (2002) Regression analysis of multiple source 

longitudinal outcomes: A stirling county depression study, American journal of 

Epidemiology, 155(1) 88-94 

 

Hardin,J. and Hilbe, J. (2003)Generalized Estimating Equations, Chapman and Hall 

 

Hu,F., Goldger,J. Hedeker, D., Flay,B.(1998) Comparison of population averaged and 

subject specific approaches for analyzing repeated binary outcomes. American journal 

of Epidemiology 147, (7), 694-703 

 

Jones, R.,Xu,S.and Grunwald, G.. (2006) Continuous time Markov models for binary 

longitudinal data, Biometrical journal, 48(3), 411-419 

 

Li,Y. and Chan,W.(2006) Analysis of longitudinal multinomial outcome data, 

Biometrical journal, 48(2), 319-326 

 

Liang K. and Zeger, S. (1986) Longitudinal data analysis using generalized linear 



models. Biometrika, 73, 13-22 

 

Liu, T. Soong, S. Alvarez, R. Butterworth, C. (1995) A longitudinal analysis of human 

papillomavirus 16 infection, nutritional status, and cervical dysplasia progression. 

Cancer Epidemiology, Biomarkers and Prevention 4(4), 373-380 

 

Molenberghs, G. and Verbeke, G. (2005) Models for discrete longitudinal data. 

Springer, NY 

 

Muenz, L. and Rubinstein,.L.(`1995) Markov models for covariate dependenceof 

binary sequences. Biometrics 41(1), 91-101 

 

Regier, M. (1968) Two state Markov model for behavioral change, Journal of 

American Statistical Association. 63, 993-999 

 

Ross, S. (1996) Stochastic Processes, 2nd ed., Wiley 

 

Solomon, D. Avron, J. Katz ,J. Finklestein, J. ( 2005) Compliance with osteoporosis 

medications. Archives of Internal Medicine, 165 (20) 2414-2419 

 

Zeger, S. and Liang, K. (1986) Longitudinal data analysis for discrete and continuous 

outcomes, Biometrics, 42, 121-130. 

 

 



無衍生研發成果推廣資料



98年度專題研究計畫研究成果彙整表 

計畫主持人：彭南夫 計畫編號：98-2118-M-009-005- 

計畫名稱：戒菸期的傾向:一個馬可夫的方法 

量化 

成果項目 實際已達成

數（被接受

或已發表）

預期總達成
數(含實際已
達成數) 

本計畫實

際貢獻百
分比 

單位 

備 註 （ 質 化 說

明：如數個計畫
共同成果、成果
列 為 該 期 刊 之
封 面 故 事 ...
等） 

期刊論文 0 0 100%  

研究報告/技術報告 0 0 100%  

研討會論文 0 0 100% 

篇 

 
論文著作 

專書 0 0 100%   

申請中件數 0 0 100%  
專利 

已獲得件數 0 0 100% 
件 

 

件數 0 0 100% 件  
技術移轉 

權利金 0 0 100% 千元  

碩士生 0 0 100%  

博士生 0 0 100%  

博士後研究員 0 0 100%  

國內 

參與計畫人力 

（本國籍） 

專任助理 0 0 100% 

人次 

 

期刊論文 0 0 100%  

研究報告/技術報告 0 0 100%  

研討會論文 0 0 100% 

篇 

 
論文著作 

專書 0 0 100% 章/本  

申請中件數 0 0 100%  
專利 

已獲得件數 0 0 100% 
件 

 

件數 0 0 100% 件  
技術移轉 

權利金 0 0 100% 千元  

碩士生 0 0 100%  

博士生 0 0 100%  

博士後研究員 0 0 100%  

國外 

參與計畫人力 

（外國籍） 

專任助理 0 0 100% 

人次 

 



其他成果 

(無法以量化表達之成

果如辦理學術活動、獲
得獎項、重要國際合
作、研究成果國際影響
力及其他協助產業技
術發展之具體效益事
項等，請以文字敘述填
列。) 

無 

 成果項目 量化 名稱或內容性質簡述 

測驗工具(含質性與量性) 0  

課程/模組 0  

電腦及網路系統或工具 0  

教材 0  

舉辦之活動/競賽 0  

研討會/工作坊 0  

電子報、網站 0  

科 
教 
處 
計 
畫 
加 
填 
項 
目 計畫成果推廣之參與（閱聽）人數 0  



 



國科會補助專題研究計畫成果報告自評表 

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）、是否適

合在學術期刊發表或申請專利、主要發現或其他有關價值等，作一綜合評估。

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估 

■達成目標 

□未達成目標（請說明，以 100字為限） 

□實驗失敗 

□因故實驗中斷 

□其他原因 

說明： 

2. 研究成果在學術期刊發表或申請專利等情形： 

論文：□已發表 ■未發表之文稿 □撰寫中 □無 

專利：□已獲得 □申請中 ■無 

技轉：□已技轉 □洽談中 ■無 

其他：（以 100字為限） 
3. 請依學術成就、技術創新、社會影響等方面，評估研究成果之學術或應用價
值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）（以

500字為限） 

本研究對長期實驗性質的研究，提供一個統計分析的方法。這是一個利用馬可夫模型的方

法，解決研究上的問題。 

 

 


