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Trends in Smoking Cessation: A Markov Approach
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Abstract

Intervention trials such as studies on smoking cessation may observe multiple,
discrete outcomes over time. Participant observations may alternate states over the
course of a study. Approaches exist which are commonly used to analyze binary,
longitudinal data in the context of independent variables. However, the sequence of
observations may be assumed to follow a Markov chain with stationary transition
probabilities when observations are made at fixed time points. Participants favoring
the transition to one particular state over the others would evidence a trend in the
observations. Using a log-transformed trend parameter, the determinants of a trend in
a binary, longitudinal study may be evaluated by maximizing the likelihood function.
New methodology on extension to discrete time Markov chain model and continuous
time Markov chain model is studied here to test for the presence and determinants of a
trend in multiple state, rather than binary, longitudinal observations. Practical
application of the proposed method is made to data available from an intervention
study on smoking cessation. Simulation studies will also be taken.
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I.  Introduction

Discrete outcomes are repeatedly measured in many areas of research. When the
observation is binary, study participants may alternate between two classes ( or states )
over the course of a study. Subjects may tend to favor the transition to a particular
state depending on known or unknown factors. For instance, the goal of a smoking
cessation program may be to influence participants’ decisions in favor of smoking
abstinence, as opposed to relapse. Study investigators may hypothesize a trend toward
the abstinence state depending on the intervention group or covariates of interest.



Other example of discrete, longitudinal data may include infection status,
psychological state, or drug therapy compliance ( Liu and others, 1995; Dascalakis
and others, 2002; Solomon and others, 2005 ).

Traditional analysis, such as logistic regression, are inappropriate when repeated
measurements are made on the same subject due to an inherent correlation in the
measurements. Generalized linear mixed models are commonly used to model
discrete, longitudinal outcomes using random effects ( Molenberghs and Verbeke,
2005 ). However, parameter estimates under this model are subject-specific
( Molenberghs and Verbeke, 2005 ). A methodology that focuses on population
average parameters is the generalized estimating equations (GEE) approach ( Liang
and Zeger, 1986; Zeger and Liang, 1986; Hu and others, 1998; Hardin and Hilbe,
2003 ). Discrete time Markov models may also be used to analyze binary longitudinal
data ( Li and Chan, 2006 ).

Generalized estimating equations (GEE) are commonly used to analyze binary,
longitudinal data in the context of independent variables (Liang and Zeger, 1986;
Zeger and Liang, 1986 ). Under the GEE model, a trend may be defined as a change
in the log-odds of an event per unit increase in time. Statistically significant
covariate-time interactions imply that a trend in the log-odds of an event is covariate
dependent.

Previous work describing binary, longitudinal data through Markov models has
focused on logistic regression methods to model the transition probabilities and
transition model that do not allow for the inclusion of covariates ( Rieger, 1968;
Muenz and Rubinstein, 1985 ). Corcoran and others ( 2001 ) suggest an exact trend
test for correlated, binary data. However, this test may be computationally infeasible
in the presence of continuous covariates or with the inclusion os multiple covariates
( Corcoran and others, 2001 ). A continuous time, binary Markov model has
previously described that models the transition probabilities as exponential functions
of covariates ( Jones and others, 2006). However, trend in the response variables is
not evaluated. This project extends the methodologies presented by Regier (1968) to
identify the presence and determinants of trend in multiple, rather then binary,
longitudinal data for multiple subjects ( or groups ). The methodology developed
utilizes a stationary, multi-state Markov chain for N subjects in the context of a
log-transformed trend parameter described as a linear function of covariates. The
likelihood function is described, maximum likelihood estimates of unknown
parameters are searched, and a likelihood ratio test is used to test hypothesis about
trend.

Il. Methods



® Assumptions

The outcome of interest is assumed to be a repeatedly measured
multiple-state variable. Pair-wise observations within a subject may be correlated,
but observations across subjects are assumed to be independent. Transition
probabilities are assumed to depend only on the current state of each subject, and
otherwise do not depend on previously recorded observations. The proposed
Markov model assumes that a log-transformed trend parameter is a linear
function of covariates. For discrete time Markov model, the length of time
between observations is one time unit. For continuous time Markov model, the
observation times are t;,---,t,, for subjecti.

® Likelihood Function

1. Discrete Time Markov Chain Model
An extension of the model of Regier ( 1968 ) defines a transition
probability matrix that describes the multi-state transition probabilities
for a single subject with respect to a trend parameter (). When N
subjects are observed, let 6, describe the trend for subject i
(i=1---,N).Let p=(p;,--, P,), the transition probability matrix
may then be written as

Ty =
ei pTu ple . pTlm |
ei pfn + p71z Tt pflm ei pfu + p712 Tt p71m ei an + p71z Tt pfm
ei p721 pTzz . pTZm
ei p721 + pTzz ot pTZm ei p721 + pTzz oot pTZm ei pT21 + pTzz Tt pTZm
ei F')Tml p;mz .:. p;mm
ei pfml + mez teeet mem ei mel + mez R mem Hi prml + mez teeet prmm

where (z,,---,7;,) IS aknown permutation of (1,---,m) depending on
cases. In this matrix 6, describes the change in the transition

probabilities for the ith individual, and p describes the population
transition probabilities in the absence of a trend. Let In(€,) be the link

function that maps the transition trend to the linear function

In(é,) = Xilﬁ

where X, is the vector of covariates for subjectsiand £ is the vector



of population parameters. Each element of T,, describes the one-step
transition probabilities in a sequence of observations. Let R be the
matrix of observed sequences for N subjects

M1 f, = Oy

r r KR ¢
R = ?1 2.2 . 2.M

i ™o o N

where r; stands for the state of subject i at time j. The likelihood

function appears to be

N m m

LGB, o[ X, R) =T TTTT [ (TulikD™

izl j=1 k=1

where n;, is the number of transitions between state j and state k for

subject i.

This likelihood function must be modified in the presence of
missing data to include n-step transition probabilities ( Howard and
Karlin 1998 ). Missing data may occur at the beginning , middle or end
of each sequence of observations. Data missing at the beginning or end
of each sequence may be ignored with respect to the likelihood function
as such missingness does not contribute any information about the
transitions. However, information is contained in the observations when
missing data are present in the middle of a sequence, between two
observed data points. When one data point is missing between two

observations, the 2-step transition probability matrix is T, =T,*. A
similar fashion can be extended to n-step missing data.

Continuous Time Markov Chain Model
We here assume that the infinitesimal matrix

A ei pT12 ei p‘rlm
0, P, A A

Q= : : . .
0p., P, - A

Tm1 Tm2

where for simplicity the A in Q is a symbol that the sum of each row
of Q is zero. In order to obtain the maximum likelihood estimates of



the parameters, it is essential to find the transition probability matrix

Ty (tu.i —ty) between two observation times t,; and t,.,; in

advance. Such a problem can be solved numerically by the following
identity,
Proposition ( Ross, 1996 )

)*
For example, k = 20 matrix multiplications can reach high accuracy.
Once the transition probability matrix of continuous time Markov

chain is obtained, the rest part of the task required is similar to that of
discrete time Markov model. That is,

Q(t(k+l)i — 1 )
2m

Til(t(k+1)i 1) = r!}'_)'g(' +

® Maximum Likelihood Estimation

Maximizing the logarithm of the likelihood function with respect to the
unknown parameters ( S and p ) is computationally difficult, especially in
the presence of missing data. Therefore, the Nelder-Mead simplex algorithm,
which does not require differentiation, is used to find maximum likelihood

estimates ( Nelder and Mead, 1965 ). SAS is used to implement this optimization
using the NLPNMS call function. Parameter constrains are required for p, to

prevent division by zero; therefore, 0.00001< p, <0.99999.

® Simulation Studies

This study focuses on testing for statistically significant associations
between trend and a binary covariate ( e.g. placebo versus experimental
treatment groups ). The log-transformed trend parameter is modeled as

In(@@)=p5,+p X; ;i=1---N
under the proposed Markov model. The null hypothesis of interest is
H,:p, =0.

Note that g, represents the change in the In(8) for X =1 compared to
X=0.

Application of Models to Investigate Smoking Relapse Trend in the
Smoking Treatment Study
Unpublished data is available from an intervention study on smoking
cessation. Dr. David Wetter, The University of Texas M.D. Anderson Cancer
Center in Houston, TX, initiated a study entitled “Smoking Treatment on
Palmtops” (STOP) to evaluate the effectiveness of computer delivered therapy



on smoking cessation. Two study sites were established to enroll participants
( Houston, TX, and Seattle, WA ) from September 2000 through June 2002.
Participants ( N = 303 ) were randomly assigned to a control group or
experimental treatment group. The control group received standard therapy
including nicotine patches and self-help materials. The experimental group
received a computer delivered treatment in addition to standard therapy.

IV.  Discussion
For both models, power increases as th number of observations per subject
increases. Parameter estimates are not explicitly comparable. Under the proposed
Markov model, several limitations exist. First, transition probabilities are
assumed to be stationary, and the proposed method is inappropriate when the
outcome variables follow a non-stationary process. The Nelder-Mead simplex
algorithm is used to maximize the likelihood functions. This algorithm may fail
to converge, or may not converge to global maximum. However, most of the
calculation converge in this simulation.
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