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Abstract

A scheme is proposed to achieve chaos synchronization for mutual coupled systems via partial stability theory.
Under this scheme, three criteria are given to ensure chaos synchronization. The first criterion applies to the case with-
out system perturbation and the other two apply to systems possessing vanishing and nonvanishing perturbations,
respectively. Finally, coupled Lorenz systems are simulated to illustrate the theoretical analysis.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Chaotic systems are thought difficult to be synchronized or controlled in the past since they exhibit sensitive depen-
dence on initial conditions. From the work of Pecora and Carroll [1], the researchers have realized that the synchronism
of chaotic motions is possible. Hence chaos synchronization is of great interest in these years. In particular, it is pointed
out that chaos synchronization has the potential in secure communication. Many engineers and scientists are attracted
by this discipline.

Synchronization means that the state variables of a response system approach eventually to that of a driving system.
Zero crossing of a Lyapunov exponent is used as a criterion of chaos synchronization widely. There is a drawback that
we can only calculate finite evolution time in computer simulation but infinite evolution time is needed by definition of
the Lyapunov exponent. On the other hand, it may be difficult to use the traditional Lyapunov direct method since the
equation of state errors is not a pure function of state errors in general. In the paper of Ge and Chen [9], a general
scheme is proposed to achieve chaos synchronization of unidirectional coupled systems via the partial stability theory.
Preceding two obstacles can be overcome by this scheme. Furthermore, it not only applies for unidirectional coupled
systems but also works for mutual coupled systems. The objective of this paper is to accomplish the theoretical analysis
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of chaos synchronization for mutual coupled systems via the partial stability theory. Some other achievement about
synchronization of mutual coupled systems can be found in [2–8].

In this paper, three criteria are given to ensure synchronization for mutual coupled systems. The first criterion suits
for systems without perturbation and the other two suit for systems under vanishing and nonvanishing perturbations,
respectively. The only assumption is that system equations meet the Lipschitz condition. Since there is no further
restriction on the type of systems, all criteria derived work for nonlinear nonautonomous systems. When these criteria
are used, a matrix should be negative definite and an estimation of a Lipschitz constant is needed in advance.

Theoretical analyses are arranged in Section 2 and coupled Lorenz systems are simulated to demonstrate analytical
results in Section 3. Conclusions follow sequentially in Section 4.
2. Theoretical analyses

Consider the following mutual coupled system
_x ¼ fðt; xÞ þG1ðt; x; yÞ;
_y ¼ fðt; yÞ þG2ðt; x; yÞ;

ð1Þ
where x; y 2 Rn and f : X � R� Rn ! Rn satisfy the Lipschitz condition kf(t,x1) � f(t,x2)k 6 Lkx1 � x2k in x for all (t,x1)
and (t,x2) in X with a Lipschitz constant L. This constant L is not unique since any number larger than L is also a Lipschitz
constant. G1 and G2 are coupling functions which satisfy G1(t,x,y) = 0 and G2(t,x,y) = 0 for x(t) = y(t), "t P t0.

Define e = y � x to be the state error. Then the error dynamic equation can be written as
_e ¼ fðt; eþ xÞ � fðt; xÞ þG2ðt; x; eþ xÞ �G1ðt; x; eþ xÞ. ð2Þ
In general the right hand side of Eq. (2) is not a function of the state error e only. As a result the traditional Lyapunov
method might hardly be used. Herein, we take the first equation of Eqs. (1) and (2) together with y = e + x to form an
extended system of states x and e as follows
_x ¼ fðt; xÞ þG1ðt; x; eþ xÞ;
_e ¼ fðt; eþ xÞ � fðt; xÞ þG2ðt; x; eþ xÞ �G1ðt; x; eþ xÞ.

ð3Þ
If the partial state variable e in Eq. (3) is asymptotically stable about e = 0, then x and y in Eq. (1) are synchronized.
The stability of partial state variables can be verified via the partial stability theory. A brief review of the partial stability
theory can be found in the appendix of paper [9] or in [10]. Although the acquirement of the extended system Eq. (3)
doubles the order of the original error dynamic equation Eq. (2), only partial variables e are handled. This scheme does
not increase any difficulty due to the increase of the order. Furthermore, the usage of the partial stability theory is sim-
ilar to the traditional Lyapunov method.

The proposed scheme not only applies to mutual coupled systems but also applies to unidirectional cases. Actually, it
reduces to unidirectional cases if G1 = 0 is satisfied [9]. The rest mission is to choose appropriate controllers G1 and G2

to guarantee the occurrence of synchronization. There are many forms of G1 and G2 for choice. We choose
G1 = C1(y � x) and G2 = C2(x � y) and Eq. (1) can be rewritten as
_x ¼ fðt; xÞ þ C1ðy� xÞ;
_y ¼ fðt; yÞ þ C2ðx� yÞ;

ð4Þ
where C1, C2 2Mn·n are two constant matrices whose entries represent the coupling strength. An extended system can
be obtained as
_x ¼ fðt; xÞ þ C1e;

_e ¼ fðt; eþ xÞ � fðt; xÞ � ðC1 þ C2Þe.
ð5Þ
A synchronization criterion of Eq. (5) is derived as follows.

Theorem 1. The partial state e in Eq. (5) uniformly asymptotically approaches 0 if LIn � (C1 + C2) is negative definite.
This means that two subsystems in Eq. (4) are synchronized if LIn � (C1 + C2) is negative definite.

Proof. Choose a function V ðx; eÞ ¼ 1
2
eTe which is positive definite with respect to e and possesses an infinitesimal upper

bound. Using the Cauchy–Schwarz inequality and the Lipschitz condition, we get
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_V ðx; eÞ ¼ eT _e 6 Lkek2 � eTðC1 þ C2Þe ¼ eT ½LIn � ðC1 þ C2Þ�e.
The state error e approaches 0 uniformly asymptotically if LIn � (C1 + C2) is negative definite by Theorem A2 in the
appendix of [9]. h

A special case C1 = C2 = diag(c1,c2, . . . ,cn) with ci > 0, i = 1, . . . ,n is commonly used. Since the time derivative of
V(x,e) along x(t) and e(t) satisfies _V ðx; eÞ 6 ðL� 2cminÞkek

2, the synchronization criterion reduces to cmin > L/2,
cmin 6 ci, i = 1, . . . ,n. When c = c1, . . . ,cn, synchronization occurs if c > L/2. This means that the synchronization of
mutual coupled chaotic systems is guaranteed by the large coupling strength c. If the system is autonomous, the thresh-
old value of c for the occurrence of synchronization is one half of the largest Lyapunov exponent of the chaotic system
[2].

If perturbations exist in the system, similar criterion can also be obtained. Consider a mutual coupled nonautono-
mous system with the perturbations in the form of
_x ¼ fðt; xÞ þ Df1ðt; x; yÞ þ C1ðy� xÞ;
_y ¼ fðt; yÞ þ Df2ðt; x; yÞ þ C2ðx� yÞ;

ð6Þ
where Df1(t,x,y) and Df2(t,x,y) are the vanishing perturbation. Vanishing perturbation means that Dfj(t,x,y) = 0 when-
ever x(t) = y(t), "t for j = 1,2. Dfj(t,x,y) can be rephrased as Dfj(t,x,e) for j = 1,2. Then an extended system can be
obtained as
_x ¼ fðt; xÞ þ Df1ðt; x; eÞ þ C1e;

_e ¼ fðt; eþ xÞ � fðxÞ þ Df2ðt; x; eÞ � Df1ðt; x; eÞ � ðC1 þ C2Þe.
ð7Þ
Theorem 2. Assume that $Kj > 0) kDfjk < Kjkek, j = 1,2. Then null solution of the partial state e of Eq. (7) is
uniformly asymptotically stable if (L + K1 + K2)In � (C1 + C2) is negative definite, i.e., the two subsystems in Eq. (6)
are synchronized if (L + K1 + K2)In � (C1 + C2) is negative definite.

Proof. Choose a function V ðx; eÞ ¼ 1
2
eTe which is positive definite with respect to e and possesses an infinitesimal upper

bound. By the Cauchy-Schwarz inequality and the Lipschitz condition, _V ðx; eÞ satisfies
_V ðx; eÞ 6 eT½ðLþ K1 þ K2ÞIn � ðC1 þ C2Þ�e.
Hence the null solution of Eq. (7) is uniformly asymptotically e-stable if (L + K1 + K2)In � (C1 + C2) is negative
definite. h

When C1 = C2 = diag (c1,c2, . . . ,cn) with ci > 0 for i = 1, . . . ,n, synchronization occurs if cmin > (L + K1 + K2)/2,
where cmin is the minimum of ci. If c = c1, . . . ,cn, the synchronization criterion reduces to c > (L + K1 + K2)/2. More-
over, by Theorem A4 [11], the synchronization in Theorem 1 and 2 are global if f is globally Lipschitzian.

If perturbations Df1(t,x1,x2) and Df2(t,x1,x2) are not vanishing, it is difficult to design a controller to guarantee
the occurrence of asymptotically partial stability as that in Theorem 2. The reason is that the origin is not an equi-
librium point anymore. The stability under constantly acting perturbation small on the average [11] must be studied
instead.

Theorem 3. Assume that the functions f and Df(x) are continuous and bounded. The null solution of Eq. (6) is
uniformly e-stable under constantly acting perturbation small on the average if LIn � 2C is negative definite.

Proof. From Theorem 1, the partial state e uniformly asymptotically approaches 0 in Eq. (5) if LIn � 2C is negative
definite. By corollary in [11], the null solution of Eq. (7) is uniformly e-stable under constantly acting perturbation small
on the average if LIn � 2C is negative definite with the assumption that f and Df(x) are continuous and bounded. This
completes the proof. h

If C = diag(c1,c2, . . . ,cn) with ci > 0 for i = 1, . . . ,n, practical synchronization occurs if cmin > L, where cmin 6 ci,
i = 1, . . . ,n. Moreover, the larger cmin is, the smaller bounds of the state errors are. This criterion is global if f is globally
Lipschitzian.
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Fig. 1. State errors versus time for mutual coupled Lorenz systems without perturbation while c = 0.6.
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Fig. 2. Lyapunov spectra for mutual coupled Lorenz systems without perturbation.
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Fig. 3. State errors versus time for mutual coupled Lorenz systems without perturbation while c = 0.6.
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Fig. 4. State errors versus time for mutual coupled Lorenz systems with vanishing perturbations Df1 = cost Æ (y1 � y2) and
Df6 = x1 � x2.
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3. Numerical illustrations

Consider a Lorenz system
Fig. 5
Df6 =
_x ¼ �rðx� yÞ;
_y ¼ rx� y � xz;

_z ¼ xy � bz;
where r = 10, r = 28 and b = 8/3 ensure that there exists chaotic behavior. When Theorem 1 is applied, an estimation of
a Lipschitz constant is needed. By Cauchy–Schwarz inequality, we have
jf1ðx2Þ � f1ðx1Þj ¼ j � re1 þ re2j 6 k½�r r 0 �kkx2 � x1k;
jf2ðx2Þ � f2ðx1Þj ¼ jre1 � e2 � x2e3 � z1e1jkx2 � x1k 6 k½ r þ B3 �1 B1 �kkx2 � x1k;
jf3ðx2Þ � f3ðx1Þj ¼ jx2y2 � x1y1 � be3j 6 k½B2 B1 �b �kkx2 � x1k;
for any x2 ¼ ½ x2 y2 z2 �T; x1 ¼ ½ x1 y1 z1 �T, where jx(t)j 6 B1, jy(t)j 6 B2, jz(t)j 6 B3 "t > t0. Hence a Lipschitz con-
stant is obtained as
L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k½�r r 0 �k2 þ k½ r þ B3 �1 B1 �k2 þ k½B2 B1 �b �k2

q
.

From numerical simulation, B1 = 20, B2 = 28, B3 = 49, then L = 87.87. The mutual coupled systems are in the form of
Eq. (4) with C1 = C2 = diag(c, . . . ,c) and c = 44 > L/2. The initial value is x0 = [1,�0.01,3,0,0,5]T. The simulated re-
sults are shown in Figs. 1–6. In Fig. 1, three state errors approach zero as time evolves. Lyapunov exponents versus
coupling strength c are shown in Fig. 2. There is a zero-crossing of one Lyapunov spectrum while c � 0.41. This value
of c is a threshold value where synchronization occurs. Fujisaka and Yamada [2] proved that synchronization of linear
mutual coupled autonomous systems occurs if the coupling strength larger than one half of the largest Lyapunov expo-
nent. The largest Lyapunov exponent of the Lorenz system is 0.82 and its half is 0.41. This coincides with the value of c
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. State errors versus time for mutual coupled Lorenz systems with nonvanishing perturbations Df2 = 2 sin(20pt), Df4 = r(t),
5 cos(30pt) and c = 44.
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Fig. 6. State errors versus time for mutual coupled Lorenz systems with nonvanishing perturbations Df2 = 2 sin(20pt), Df4 = r(t),
Df6 = 5 cos(30pt) and c = 130.
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at the zero-crossing of the Lyapunov spectrum. Choose c = 0.6, the simulated result in Fig. 3 shows that the state errors
still converge to zero but the transient time of convergence is long. This fact agrees with our intuition.

If there exist vanishing perturbations in mutual coupled Lorenz systems as
_x1 ¼ �rðx1 � y1Þ þ Df1 þ cðx2 � x1Þ;

_y1 ¼ rx1 � y1 � x1z1 þ cðy2 � y1Þ;

_z1 ¼ x1y1 � bz1 þ cðz2 � z1Þ;

_x2 ¼ �rðx2 � y2Þ þ cðx1 � x2Þ;

_y2 ¼ rx2 � y2 � x2z2 þ cðy1 � y2Þ;

_z2 ¼ x2y2 � bz2 þ Df6 þ cðz1 � z2Þ.
System perturbations are bounded since jDf1j = jcost Æ (y1 � y2)j 6 kek and jDf6j = jx1 � x2j 6 kek. Choose c = 45 to
satisfy c > (L + K1 + K2)/2. In Fig. 4, state errors approach zero as time goes to infinity although there are persistent
acting perturbations.

If not all perturbations are vanishing as Df1 = Df3 = Df5 = 0, Df2 = 2 sin(20pt), Df4 = r(t) and Df6 = 5 cos(30pt),
where r(t) is the unit normal random variable. These perturbations are bounded on the average sinceR tþT

t supfjDf2jgds 6 2T ;
R tþT

t supfjDf4jgds 6 T and
R tþT

t supfjDf6jgds 6 5T ; 8t 2 ½0;1Þ; T > 0. The initial condition
is the same and c = 44. State errors versus time are shown in Fig. 5 and they are bounded as time evolves. If
c = 130, results are shown in Fig. 6. As coupling strength c increases, the error bounds decrease.

When these criteria are used, a matrix should be negative definite and an estimation of a Lipschitz constant is needed
in advance. Moreover, this estimation is often conservative. An adaptive method can improve these two shortcomings
[12].
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4. Conclusions

A general scheme to achieve the chaos synchronization of mutual coupled systems via the partial stability theory is
proposed in this paper. By the procedure of the proposed scheme, three criteria are proven to ensure the chaos synchro-
nization for a general kind of mutual coupled systems. The first theorem applies for the system without perturbation.
The other two theorems suit for systems possessing vanishing and nonvanishing perturbations, respectively. All these
criteria work for nonlinear nonautonomous systems. Numerical simulations show that these criteria are effective.
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