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Nonparametric Test based on Outlier Mean

for Gene Expression Analysis

1. Introduction

DNA microarray technology, which simultaneously probes thousands of
gene expression profiles, has been successfully used in medical research for
disease classification (Agrawal et al. (2002); Alizadeh et al. (2000); Ohki et
al. (2005)); Sorlie et al. (2003)). Among the existed techniques in differen-
tial genes detection, common statistical methods for two-group comparisons
such as t-test, are not appropriate due to a large number of genes expressions
and a limited number of subjects available. Several statistical approaches
have been proposed to identify those genes where only a subset of the sam-
ple genes has high expression. Among them, Tomlins et al. (2005) observed
that there is small number of outliers in samples of differential genes and
then introduced a method called cancer outlier profile analysis that identifies
outlier profiles by a statistic based on the median and the median absolute
deviation of a gene expression profile. With this observation, a sequence of
approaches then concentrated on detecting differential genes based on out-

lier samples while Tibshirani and Hastie (2007) and Wu (2007) suggested to



use an outlier sum, the sum of all the gene expression values in the disease
group that are greater than a specified cutoff point. The common disad-
vantage of these techniques is that the distribution theory of the proposed
methods has not been discovered so that the distribution based p value can
not been applied. Recently Chen, Chen and Chan (2010) considered the
outlier mean (average of outlier sum) and developed a parametric study
with specifying the normal distribution. Although the framework of a test
for gene expression analysis based on outlier mean is then established, the
understanding applying this outlier mean or outlier sum in nonparametric
situation is very limited while gene expression data is generally non-normal.

Hence, in this project, we study nonparametric gene expression analysis.

2. Research Purpose

Our purpose in this research is to establish an outlier mean based non-
parametric test that is appropriate to be applied for gene expression analysis.
First, we show that the outlier mean of Chen, Chen and Chan (2009) is an
efficient technique in theoretical power performance. Second, a nonpara-
metric statistical inference procedure may be theoretically very efficient but

it is inefficient in practical application when it involves inefficient parame-



ters estimation. We see that the outlier mean based test involves unknown
densities at tail quantiles so that its power may be remarkably reduced with
inefficient extreme density estimation. Third, we propose an alternative de-
sign of outlier mean test that can avoid the difficulty of estimating unknown

density poits.

3. Literature Review

There are some manuscripts dealt with approaches closed related to the
outlier observations. Tomlins et al. (2005) observed that there is small
number of outliers in samples of differential genes and then introduced a
method called cancer outlier profile analysis that identifies outlier profiles
by a statistic based on the median and the median absolute deviation of
a gene expression profile. With this observation, a sequence of approaches
then concentrated on detecting differential genes based on outlier samples
while Tibshirani and Hastie (2007) and Wu (2007) suggested to use an
outlier sum, the sum of all the gene expression values in the disease group
that are greater than a specified cutoff point. Chen, Chen and Chan (2010)
developed parametric inferences based on outlier mean in gene expression

that allows us to formulate the p value based on its asymptotic distribution.



A nonparametric approach allowing to formulate the p value is still not

available.

4. Research Methods

The outlier mean proposed by Chen, Chen and Chan (2010) is

Yz Yil{Y; > 0}

Ly = s -
Yoo I{Y: > 0}

that is to estimate the following population outlier mean
puy = E(Y[Y =)

where Y;’s are sample from disease group and the cutoff point 7 is computed
based on sample from normal group data.

In this research, we prove that \/nz(Ly — pe, ) converges in distribution
to a normal random variable having distribution N (0,07 ) for an unknown

constants Uz . Then under H, : F, = F}, we have the following,

P V() <o) o [ gt

Oty
for z € R where ¢ represents the probability density function of N(0,1)

where we have py, in the function since the sample outlier mean Ly is to

estimate pp, that is supposed to compare with p, . If we have 64, and



fle , respectively, nonparametric estimates of oy, and py,, we may define
an outlier mean based test as

1/2(LY /MX)

ng

>z

a* .

rejecting Hy if n

Having this outlier mean based nonparametric test, it is desired to verify
the power performance of this test when there exists distributional shift for
the disease group distribution. An approximate power with significant le

vel a* may be derived as bellows

Pry {ya(ZY ) > 4

EY

Za* Oy + /Mo (flg, —
_ PFY{\/_( IMY) > Ly Z(MEX /’[’EY)}

ey o-eY

zP{ZZZ'a* + Vnz(l’l’eX _/’[’EY)}

O'gy

In this research, we consider two cutoff points, 7, = 2Fx " (1—a)— Fx'(a)
and 7y = F ' () for studying outlier mean’s power performance.
5. Results and Discussions
2

We have derived the asymptotic variance o, for cutoff point n; = 2F'y L1-

a) — Fx'(a) as
cr%y = a(l —a)((1 — a)by — abs)? 4+ 2(1 — 2a)a>(by + by)?

+a(l — a)(ab; — (1 —a)by)?* + %Var{(Y —uy)I(Y >n)}.



where

by = ﬁiym ) fr (R (R (@),
by = ;—fm i) (IR (L - a)).

We have observed that the outlier mean may have satisfactory power per-
formance when we have consistent estimators fiy,, and &y, to construct a
test. However, &y, involves estimations of fy (2F5'(1—a)), fx(Fx'(1—a))
and fx(Fx'(a)) while estimation of density function of tail quantile is ex-
tremely difficult in practice. Without an alternative proposal avoiding this
density estimation, the outlier mean based test won’t be powerful in detec-
tion of influential genes while the sample sizes in gene expression analysis
are generally not allowed to be very large.

Hence, we propose an alternative cutoff point g, = Fy '(4). The asymp-

totic variance of the outlier mean with this cutoff point estimator is

o, = By (F5 (v) — v) 2 vye (fy (Fx (V) (F () 2y (1 — )

+ By Var{(Y — Fx'(")I(Y > Fx' (7))}

With these two cutoff points, we have studied the power performance
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under the following distributional settings:
Normal: X ~ N(0,1),Y ~ N(0, %),
Mixed normal I: X ~ N(0,1),Y ~ 0.9N(0,1) + 0.1N (6, 0?).
Mixed normal II: X ~ N(0,1),Y ~ 0.8N(0,1) + 0.2N(6,0?)
Laplace distribution: X ~ Laplace(0,1) and Y ~ Laplace(6,1)
t-distribution: X ~ ¢(5) and Y ~ t(5) + 0,
Case I: X ~ N(0,1) and Y ~ 0.9N(0,1) 4 0.1(x*(10) + )

Case II: X ~ (10) and Y ~ 0.9£(10) + 0.1(x*(10) + 6)

6. Judgements for Research Results
We have several comments for the computed results in the paper:

1. The power increases as location parameter # increses indicating that
when there are more wide outliers the outlier means are more efficient in
detection of distributional shift.

2. For location shift models (Normal, Laplace and ¢ distributions), the
outlier means with cutoff point of larger percentage « is more powerful.
Hence, choosing smaller cutoff point (larger o) is advisable for application

when there is a locational shift.
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3. For a distributional shift of only a small proportion (Mixed normal), the
outlier mean with smaller percentage « is more powerful. Hence, choosing

larger cutoff point (smaller «) is advisable.
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