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The Geometry of Rectangular Matrices and Their Characterizations

--- searching for cospectral mates and distance regular mates
of the bilinear forms graphs

Tayuan Huang

Abstract:
A non-distance-regular cospectral mate and a non-vertex-transitive distance- regular mates
for the Grassmann graph J,(n,d) with n>d +3>6orwith n=d +1>3 were recently

given by E.R. van Dam and J.H.Koolen, and by E.R. van Dam, W.H. Haemer, J.H. Koolen
and E. Spence respectively. From the view point that J (n,d) and the bilinear form

graph H,(n,d) are the point graphs and their dual of the close related projective incidence

structures and attenuated space, we may wonder whether similar situations hold for the
bilinear forms graphsH(n,d) ?

E.R. van Dam and J.H. Koolen, A new family of distance-regular graphs with unbounded
diameter, Invent. Math. 162, 189-193 (2005)

E.R. van Dam, W.H. Haemer, J.H. Koolen and E. Spence, Characterizing distance-regularity of
graphs by the spectrum, JCT A 113 (2006) 1805-1820.
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I Preliminary and background

Association schemes were first introduced by statisticians R.C. Bose et.al. around 1950 in
connection with the design of experiments in statistics, and independently by some group
theorists. In addition to its applications in the design of experiments, Ph. Delsarte
recognized and fully used association schemes as a basic underlying structure of coding
theory and design theory around 1970. A project of classifying association schemes in term
of their geometric structures, their parameters or even their spectra was proposed by E.
Bannai around 1980. The study of the geometry of matrices by Z. Wan provided an
abundant source for association schemes around 1960.

1-1 association schemes, Bose Mesner algebra and distance regular graphs

Definition: (commutative, symmetric) d-class association schemes

1. A (commutative, symmetric) d-class association scheme on X isa (d+1)- tuple
A=A, A A, A) of (0,1) -matrices of order | X |x| X |satisfying
a =1, AcA=5Aforij<d, >’ A=1,
b. forevery i, thereexist i with ‘A =A (or ‘A = A respectively), and
c. there exist nonnegative integers pikJ. forall i, j,ke {0,1, 2,---,d} such that
AN =AA=3 PiA .
2. The linear span of the matrices {A [1= 0,1,-~-,d} is called the Bose-Mesner algebra of the
association scheme A = (A, A, A,,-+ Ay) .
3. Asymmetric scheme (X,{A},...4) is called a distance regular graph G if pfj =0
except j =k —1,k,or k+1; usually, a =p;;, b =p,.,and ¢ =p;,,.

Let
G =(V(G),E(G)) be a connected graph of diameter d,
G,(x)=1{yly eV(G) isatdistance i fromx };

for x eV(G), consider partitions of V(G):
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Definition The graph G is called distance-regular if c,(x,y)=c;, a(x y)=4a,, b(xy)=b,
are constants whenever x,y eV (G) are at distance i <d . The array
of parameters
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in a systematic way.

Some families of examples:

1. Hammning graph H(n,q)
2. Johnson graph J(n,d)

3. The Grassmann graph J,(n,d) (also called the g-analog of the Johnson graph) is defined

on the set of all d-dimensional subspaces of an n-dimensional vector space over GF(q). Two
vertices A and B are adjacent wheneverdim(AnB)=d —1.

4. The bilinear forms graph H_ (n,d) (also called the g-analog of the Humming graph) is

defined on the vertex setM,_(q) ofall d xn matrices over GF(q) ,A,Be M, (q) adjacent

dxn dxn

if and only if the rank of A — B is 1. Then H_(n,d) is a distance-regular graph with

parameters



¢, =9'*(q' —1)/(q—1) (independent of n, d), and

b =q” (@ -)("" -)/(q-1).
5. The Petersen graph, the Odd graph O, , and the Generalized odd graphs of diameterd ,

12
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The distance-regular graph with classical parameters(d,q, «, 5)

Regular graphs related to classical graphs and groups of Lie type have an intersection array the
parameters of which can be expressed in terms of the diameter d and three other parameters ¢,
a and g, called the classical parameters, as follows:

i M) G H R H O T

(i=0,1,..,d), where m denotes the Gaussian coefficient with basis q (for gq=1, itisthe

ordinary binomial coefficient). Clearly,

sl FHHY) .

(i=0,1,...,d) . Furthermore, the corresponding eigenvalues 6, > 6, >---> 6, can be calculated
in terms of the intersection array as follows:

SR GRHIRH

(i=0,1,...,d) . Refer to [4, Chapters 6 and 8] for more details.

Some examples of distance regular graphs with classical parameters:



1. the Johnson graph J(n,d) with classical parameters (d,1,1,n—d) (n>2d >4),

2. the Hamming graph H,(d,n) with classical parameters(d,1,0,n-1) (n,d >2).
3. the Grassmann graphs J,(n,d) (with parameters(a, B) = (a.["7"1-1),

4. the bilinear forms graphs H_(n,d) (with parameters (e, ) =(q-1q"-1)),

As a consequence, the Grassmann graphs and the bilinear forms graphs are characterized
simultaneously among distance-regular graphs with classical parameters, together with some
extra geometric conditions. (HFu37) Some remarks on distance-regular graphs with classical
parameters (d,q,a, f):

1. The four families of distance-regular graphs mentioned above have the property that £ can
be arbitrary large with respect to the other three parametersd ,q, and « . The following

result shows that there are no other graphs with this property. (M24)

Corollary: Suppose that the distance-regular graph I" has classical parameters (d,q,«, f)
with d >3 andthat T" isnota Grassmann graph, a bilinear forms graph, a Hamming graph,
or a Johnson graph. Then £ is bounded in terms ofd , g and « .

2. Suppose I' isa strongly regular graph. It is easy to see that I" has classical parameters
(2,q,a, B) and these can be uniquely chosen in such a way that # > 0. If the parameters are
integers and if £ is sufficiently large with respectto « andq, then Bose [1] (see also [8])
showed that the graph is the collinearity graph of a partial geometry with parameters
(g+1, f+1,a+1). Thisisthe analogue to Corollary 1.3 in the case d =2.(M24)

3. Distance-regular graphs with classical parameters (d,q,«, ) and q=1 have been
characterized by Neumaier and Terwilliger [4, Theorem 6.1.1]. (HFu 37)

1-2 Association Schemes, Bose Mesner Algebras and Distance Regular Graphs
in the western world

1950 Bose
1973 Delsarte [D73]
1980 Bannai (573~ )



geometrical characterization
— parametric characterization (with or without additional constraints)
= spectral characterization
1984 Bannai, Ito, Algebraic Cocmbinatorics: Association Schemes, Cumminghams
1989 Brouwer, Cohen and Neumaier, Distance Regular Graphs, Springer
1998 Delsarte [DL98]
2004 Bailey, Association Schemes, Design Experiments, Algebra and Combinatorics [B04]

The notion of distance-regularity for graphs goes back to the platonic solids of antiquity, which
has deep connection to many topics of the present-day theory and applications of geometrics,
groups, codes and designs. E. Bannai [1, Chapter 3] has compiled a list of distance-regular
graphs with large diameters, believing that has an essentially complete list around 1980. The
characterization problems of known important classes of distance-regular graphs by their
parameters have a long history in combinatorics. (H3) The classification of all infinite families of
distance-regular graphs is a major problem.

It seems that there are several different stages in the characterization of association schemes.
Bannai propose to distinguish the following:
1. geometric characterization;
2. parametric characterization, assuming various structures of the neighborbood of a point; or
the right sizes of maximal cliques;
3. parametric characterization, assuming arithmetic restrictions on the parameters;
4. complete characterization by the parameters. (Bannai 367)

A way to check whether an algebra of symmetric matrices is a Bose-Mesner algebra and hence
an association schems.

Theorem (BCN page. 57)

Let A be a vector space of symmentric nxn matrices.

1. A has a basis of mutually disjoint (0,1) matrices if and only if A is closed under Hadamard
multiplication.

2. A has a basis of mutually orthogonal idempotent if and only if A is closed under ordinary
multiplication.

3. Ais the Bose Mesner algebra of an association scheme if and only if A is closed under both
ordinary and Hadamard multiplication, and 1,J € A

Referrences:

[B184] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes,



Benjamin/Cummings 1984.

[BCN88] A.E. Brouwer, Cohen and Neumaier, Distance Regular Graphs, Springer 1989.

[D73]. Philippe Delsarte, An Algebraic Approach to the Association Schemes of Coding Theory,
Philips Research Reports Supple. 10 (1973).

[DL98]. Philippe Delsarte and Vladimir I. Levenhtein, Association Schemes and Coding Theory,
IEEE Transactions on Information Theory Vol.44, No.6 October 1998.

[BO4] R. A. Bailey, Association Schemes, Design Experiments, Algebra and Combinatorics
Cambridge Studies in Advanced Mathematics 84, Cambridge University Press 2004 Ch. 13
History and References

1-3. a state of the art survey of the geometry of matrices

Relating to his study of the theory of functions of several complex variables, L.K. Hua (2 k45 )
initiated the work in the geometry of matrices in the middle forties. In this geometry, the point of
the space are a certain kind of matrices of a given size, the four types of matrices under studied
rectangular matrices, alternate matrices, symmetric matrices, and Hermitian matrices; including
their fundamental theorems and the characterization of motion groups in terms of their invariants
(papers were published in Transaction of AMS around 1945-1946)

... to each such space there is associated a group of motions, and the aim of the study is then to
characterize the group of motions in the space by as few geometric invariants as possible.

... studying the geometry of matrices of various types over the complex field, discovered that the
invariant “adjacency” alone is sufficient to characterize the group of motion of space...

... the complex field was replaced by any field or division ring around 1950 (see Annals of Math.
1949, Chinese J. of Mathematics, Vol. 1 (1951))
... Hua’s pioneer work has been followed by many mathematicians, and more general results

have been obtained. The study of the geometry of matrices was then succeeded by many
mathematicians, and it has also been applied to graph theory in recent years.

(Geometry of Matrices, Zhe-Xian Wan F'ﬂﬁi, World Scientific 1996)

Let D be a division ring, m,n> 2, the geometry of rectangular matrices is defined on the
spaceM . (D) ={X | mxnover D}, with the group
{X > PXQ+R|P, QandR are mxm invertible matrices},
and the arithmetric distance between X and Y e M, (D)is rank(X -Y),and XandY
eM, (D) areadjacentif rank(X -Y)=1.

Theorem (Fundamental Theorem, Wan 1965)

7



Let A be a bijection from M__ (D) to itself. Assume that both Aand A™ reserve the
adjacency of any two points of M_ (D). Then,
1.when m=n, Ais of the form
AX)=PX°Q+R (¥
whereP,QeGL, (D), ReM,_ .(D),and o isanautomorphismofD;
2.when m=n,inadditionto (*), A can also be of the form A(X)=P'(X")Q+R

where P,Q,R are as above, and 7 is an anti-automorphism of D .

In the fundamental theorem of the geometry of rectangular matrices, all bijective

mappings of M ___ (D) are determined such that bothg and ¢ preserve adjacency. Wan

mxn

showed that if a bijective mapp of M__(D) preserves the adjacency, then sop™ preserve

mxn

the adjacency. Thus the supposition that ¢ preserves adjacency may be omitted in the
fundamental theorem. It is also shown in [ ] that this is also possible in the case of symmetric
and hermitian matrices

Theorem (Wan et. al., 2004, 2006)
Let D be a divison ring and let m,n>2 be integers.

1. If a bijective map ¢ from I'(M__ (D)) to itself preserves the adjacency inM (D), then

mxn mxn

alsop™ preserves the adjacency.

2. If a bijective map ¢ isfrom I'(M__ (D)) to itself for which any two adjacent vertices A, B

mxn

of T'(M

mxn

(D)) implies adjacent A?, B?,then ¢ isa graph automorphismof I'(M__ (D)).

Geometry of rectangular matrices
Let D be a divisionring, m,n>2,and let M

space: M, (D)

group: {X — PXQ+R|P, QandR are mxm invertible matrices}
invariants: rank(X —Y) the arithmetric distance between X and Y,
adjacency: rank(X —-Y)=1.

(D) ={X | mxnover D}

mxn

Definition: maximal sets in M, (D)
amaximal setin M_ (D) is a maximal set of points (matrices) such that any two of them are

mxn

adjacent. The normal forms of maximal sets are

Xy Xpp o Xy X; 0 -0
0O 0 ---0 X,, 0 -0

:x; €Dy, or . . "%, €D
0 0 0 Xp 0--0

ml



Maximal sets are called maximal cliques in graph theory in the western world around 1980, and
the geometric structures, called the attenuated spaces (Ray-Chaudhuri an A. Sprague 1980) in
term of lines defined by the intersection of two maximal sets containing two adjacent points in
common have been studied.

Theorem: There are two types of maximal cliques with sizes q",q° respectively, and each with

d n
the numbersq”(d”[l] qd(”“L} respectively. (Bannai 372)

[H51] Hua, L.K. A theorem on matrices over a field and it sapplications. Acta Math. Sinica
(1951), 109-163

[W96] Zhe-Xian Wan, Geometry of Matrices: In Memory of Professor L.K. Hua (1910-1985),
443-453 in: Progress in Algebraic Combinatorics, Advanced Studied in Pure Mathematics 24,
1996.

[W96] Zhe-Xian Wan, Geometry of Matrices, World Scientific, Singapore 1996

[HWO04] Wen-ling Huang, Ronald Hofer and Zhe-Xian Wan, Adjacency preserving mappings of
symmetric and hermitian matrices, Aequationes Math. 67 (2004) 132-139

[HWO04] Wen-ling Huang and Zhe-Xian Wan, Adjacency Preserving Mappings of Rectangular
Matrices, Beitrage zur Algebra und Geometrie, Contribution to Algebra and Geometry Volume
45(2004) No.2, 435-446

1-4. The bilinear forms graphs H, (n,d) and their characterizations

When the field is finite, say GF(q), the bilinear forms graph H_(n,d) is defined over
M,..(GF(q)), which is a distance regular graph with the intersection array

¢ =97(q-1)/g-1 for i<d-1,and

b =9”(q°"-1)/q-1 for i<d-1.
The weak 4-vertex condition was used by Sprague and Huang respectively in the
characterizations of the bilinear forms graphs H , (n,d) for d = 3 or general d. Sprague [ ]

characterized H(n,3) by assuming the parameters and the weak 4-vertex condition where

n>6,0>2 and(qg,n)=(2,6). Later Ray-Chaudhuri and Sprague [13] gave a combinatorial



characterization of 3-attenuated spaces by using the arguments similar to those used in [14]. (H 2)
Finally, Sprague [16] characterized d-attenuated spaces in terms of the structure of their
2-spaces:

Huang (1987)
Let T" be a distance-regular graph of diameter d with intersection array
{b,.b,,b,,---,b, ;;¢,,C,,Cy,---,C4} such that

1. The weak 4-vertex conditions holds inT",
the number of edges of the induced subgraph on the common neighborhood
of vertices x and y depends only on the distance between them. (H1)

2. ¢,=q(q+1), b =g (@' -1)/q-1, 0<i<d-1,
3. n>2d >4, q>4.

Then q isa prime power, and the graph I is isomorphic to the bilinear form graph H(n,d).

... the restriction q>4 in section 3 (Prop 3.7) of [7] was used by Huang to apply a well-known

theorem of Buekenhout. (M33) However, it was noticed by Cuypers that the use of Buekenhout
result can be avoided, one uses a result of Thas and DeClerck [12], which also holds for q=2
and q=3. Ashorter proof of the results of Section 4. (C18)

Cuypers (1992) improved the conditions:

1. 1-q*")/(q-1) is an eigenvalue of the adjacency matrix of T"; and
2. ¢,=q(q+1), b =9”(@""'-1)/q-1, 0<i<d-1,
3. n>2d>6and q>4.

i.e., the bilinear form graph H,(n,d) is characterized by its intersection array

whenevern>2d >6andq>4.

... the conditions n>2d >6 and >4 are used by Huang to derive an incidence structure
fromI",and q=>4 isneeded to apply a theorem by Buekenhout (see [2]). Cuyper showed that

the use of Buekenhout’s result can be avoided by quoting a result of Thas and Declerck [5] which
is also valid forq =2,3. So Cuyper generalize Huang’s theorem to the following: (M...)

... however, Huang needs it only to show that lines have size £ +1 and that the incidence
structure consisting of the vertices and lines satisfies the dual of Pasch’s Axiom, which we have
already shown. Thus the arguments of Huang show thatq is a prime power, g=q" -1 for some

10



integer n>d and I is the bilinear forms graph H,(n,d) . (M34)

... the proof can be completed using the techniques of Huang ... Thus the arguments of Huang
show that q is a prime power, S =q" —1for some integer n>d and is the bilinear forms graph
as required. (M34)

Metsch (1999) further improved the conditions:

the bilinear form graph H(n,d) is characterized by its intersection array whenever either
n>d+3,g>3 or n>d+4,9=2.

Theorem (Huang 1987 + Cuyper 1992 + Metsch 1999)

Let T" be a distance-regular graph of diameter d with intersection array
{b,.b,,b,,---,b, ;;¢,,C,,C,,--+,C,} such that

1 b =q?(q" ~1/q-1, 0<i<d-1, cizq”m,lsigd.
2. n>d+3,q>3; n>d+4,9=2.

Then q isaprime power,and I'=H_(n,d).

1-5. Joint Characterizations of Grassmann graphs and Bilinear forms graphs

Because the bilinear forms graph H_(n,d) is an induced subgraph of the Grassman graph

J,(n,d), joint characterizations of Grassmann graphs and Bilinear forms graphs are surveyed in

the following.

1. a joint characterization of Grassmann graphs and bilinear forms graphs among distance regular
graphs with classical parameters is given by Fu and Huang (1994); and by Metsch (1999)
respectively;

2. a joint characterization of Grassmann spaces and attenuated spaces over amply
regular (0, &) -geometries satisfying the dual of Veblen-Young’s axiom was given by by

G.Bonoli, N. Melone (2003).

3. ajoint characterization of Grassmann graphs and bilinear forms graphs over
distance-regular (0, «) - Reguli by F. de Clerck, S. De Winter E. Kujiken and C. Tonesi (2006).

Moreover,

11



[FH94] T.S. Fu and T. Huang, A Unified Approach to a Characterization of Grassamn graphs and
bilinear forms graphs, Europ. J. Combinatorics (1994)15, 363-373.

[M99]

[BMO03] G. Bonoli, N. Melone, A Characterization of Grassman and Atteenuated Spaces as
(0, ) -Geometries, Europ. J. Combinatorics (2003)24, 489-498.
[CWO06] F. de Clerck, S. De Winter E. Kujiken and C. Tonesi, Distance-Regular (0, «)-Reguli,

Designs, Codes and Cryptography 38 (2006) 179-194.

Definition:
For an integer @ >1, a connected semilinear space IT1=(P,B) iscalled a finite (0, «) -geometry
with parameters (s, t) if it satisfies the following axioms:

1. each block containss+1 points;

2. each point belongs tot+1 blocks; and

3. for every anti-flag (x,B) ,«(x,B) =0, «.

Any (0, a )-geometry with parameters (s, t) is called an amply regular (0, & )-geometry with
parameters (s, t, a, 1) if the number of points adjacent to any pair of points at distance two is a
constant ¢ > 0.

Amply regular (0, ) -geometries satisfying (VY*) for which = a? or a(a +1) was studied
by G.Bonoli, N. Melone in [ ]. This result generalizes those of Debroey [ ] and of Ray-Chaudhuri
and Sprague [ ]. It gives a common characterization of the Grassmann and attenuated spaces as
amply regular (0, «)-geometries and, under weaker assumptions, we obtain the result due to

Fu-Huang [9].

An important role in incidence structures is played by the so-called Pasch’s axiom
(Veblen-Young’s axiom (VY)) and the diagonal axiom (the dual VY*), resp. (see for example
[5, 8, 16, 17]). (P52~53)

1. Two distinct transversals of two intersecting blocks are incident. (Pasch’ axiom)
2. Two distinct points X, y not on a block B and adjacent to two distinct common points on B,
are adjacent. (the diagonal axiom)

Note that both Johnson and Grassmann geometries satisfy Pasch’s axiom and the diagonal
axiom (see [14]), while the attenuated spaces satisfy the diagonal axiom but not Pasch’s axiom.

Definition A distance-regular geometry is an incidence structure S satisfying the following

12



axioms: (P60~61)
1. Siis a partial linear space of order (s, t).
2. The point diameter (i.e. the largest possible distance between two vertices corresponding
to points) of the incidence graph @ of Sis 2d > 4.
3. There exist integers «,, ,, 2<1i<d, such that for any point p and any line L of S which
are at distance 2i-1 in @ there are precisely «,,_, points incident with L and at distance

2i-2 from p.
4. There exist integers t,;, 2<1i<d, such that for any two points p and q of S which are at
distance 2i in @ there are precisely t,, +1 lines incident with g and at distance 2i-1

from p.

Using results proved by Huang in [H87], Cuypers has proved in [Cu92] that a distance-regular

graph with the same intersection array as H (m,d), with m>2d >6 and g >4, is the point

graph of a (0, a )-geometry satisfying the so-called diagonal axiom, which is the dual of the
Pasch (or Veblen-Young) axiom. Form arguments similar as in [15] (see also [2]) it follows that

the geometry is uniquely defined and hence that I" is isomorphicto H,(m,d). (P73~74) The

geometry constructed in Subsection 4.1, seen as a geometry on the bilinear forms graph, is also
known as an attenuated space [13]. (P73~74)

13
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2. The geometry of rectangular matrices, the attenuated spaces and d-nets

In addition to the intersectional arrays and the spectra of distance regular graphs, the geometric
structures associated with distance regular graphs are also play vital roles.

2-1 The structure of nets and d-nets

1. A net ( of dimension 2) is a semilinear space D = (P, B) satisfying the following
condition:
1. B is partitioned into at least three non-empty classes such that
2. the blocks of each class partition P,
3. blocks of different classes intersect.

2. A d-net or net of dimension d is a semilinear space D = (P,B) of dimension d >3
satisfying the following three conditions.
1. Each plane of D is a net.
2. The intersection of two subspaces is a subspace.
3. Two planes in a 3-space are disjoint or intersect in a block.

Theorem (Sprague 1983)
Every finite d-net, where d >3 isan integer, is an (n, g, d)-attenuated space for some prime
power g and positive integer n. (The original theorem covers the infinite case also.)

2-2 The(d, g,n) - projective incidence structures and the (d, g, n) - attenuated space
Definition

1. The (d,q,n)-projective incidence structure
the collection of subspaces of the n-dimensional vector space over GF(q) where subspaces
of dimension d are called points, those of dimension d —1 are called lines, and incidence is
the usual containment. (HF38)

2. The (d,q,n)-attenuated space
Let V bean (n+d)-dimensional vector space over GF(q) andlet W be a given
n -dimensional subspace ofV . The (d,q,n)-attenuated space is the collection of subspacesU
of V with U W =0, where subspacesU of dimension d are called points, those of
dimension d -1 are called lines, and incidence is the usual containment. (HF38)

15



The bilinear forms graph H,(n,d) is therefore the induced subgraph of the Grassman graph
J,(n+d,d) on the vertices that meet W trivially. Indeed, J,(n,d) andH, (n,d) are the
collinearity graphs of the (d,q,n)- projective incidence structures [11] and

the (d, g, n) -attenuated spaces [10, 12], respectively (HFu38). The bilinear forms graph H_(n,d)

can be viewed not only as a subgraph but also as a geometric hyperplane of the Grassmann
graphJ,(n+d,d). (HF38)

2-3 Attenuated spaces and the bilinear forms graphs

Let V be a vector space of dimension n + d over GF(q) andW = (w,,w,,...,w,)cV a fixed

subspace of dimension n. Let further {wy, Wo, ..., Wy; Us, Uy, ..., Ug} be a basis for V, where

U=(u,..,u,). Let

n
then A= (U, +V,,U, +V,,...Us +Vy) for unique choices of v,,v,,...v, eW.Let v, => aw,,
j=1

\Y .
A{i} and dlm(AmU)zo},

and M, = [aij ]d o then each A corresponds to the unique matrix Ma of order d xn. Moreover

If A, B correspond to Ma, Mg respectively as given, then d —dim(AnB) =rank(M,—-M;).

2-4 How to associate geometric structures to distance-regular graphs?

Two techniques dealing with the geometric structures associated with distance regular
graphs in terms of of maximal cliques

How to treat the maximal cliques of distance regular graphs ?

1. The Bose and Laskar argument

One of the crucial steps to characterize distance regular graphs is to show the existence of
maximal cliques of the right size. The characterization of the Hamming graph H(n,2) and the
Johnson graph J(v,2) by Bose and Lasker (1967) is one of the original papers towards this goal;
the technique used by them is called Bose-Laskar argument. This argument provide essential
information on intersections of maximal cliques of a distance-regular graph simply in terms of
the parameters of the graphs. In order to apply this technique, we usually need some restriction
on the parameters; for example, g must be sufficiently large compare with ninH(n,q), and v
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must be sufficiently large compare with k in J (v, k).

Theorem (Bose and Laskar 1967) Let G be a graph satisfying the following conditions:
1.deg(x)=r(k-1) forallx eV (G),
2. |G (X)NnG(Y)|=k-2+a ifxand yeV(G) are adjacent,
3. |G (X)NG,(Y)|<1+p ifxand yeV(G) are notadjacent, where r>1, k>2,a>0
and S >0 are fixed integers.
A maximal clique with at least k —(r—21)a vertices is called a grand clique.
Suppose k > p(e, f,7), p(a, B,7) , where
pla, B,7) =1+ ((r +D(B-22)/2), and p(a, B,7) =1+ + (2y D .
Then
1. each vertex of G is contained in exactly » grand cliques, and

2. each pair of adjacent vertices is contained in exactly one grand clique.

2. Atechnique in terms of graph representation

In addition to the Bose-Laskar argument, the following theorem obtained by the technique of
graph representations provides another mechanism to deal with the structures of maximal cliques.
The above two theorems provide essential information on intersections of maximal cliques of a
distance-regular graph simply in terms of the parameters of the graphs.

Theorem (BCN, p.160)
Let I" be adistance-regular graph of diameter d with eigenvalues k=6, > 6, >--->6,.
1.1f d>3, 6, <b -1 and suppose that every singular line of I" has size at least s+1;

a.if s>3, b/(0,+1)<s’—s+1,orifs=2, b /(6,+1) <2, then distinct maximal cliques

intersect in a singular line, a point or the empty set.
b.if s>4 and b /(6,+1) <s+1, then every edge is in at most two maximal cliques.

2.1f d>2,thenthesize of aclique Cin T" isbounded by |C|<1-k/éj. If equality holds
then every vertex x ¢ C is adjacent to either O or b, /(6, +1)+1-k /8, vertices of C. No

vertex of T" has distance d to C.

Theorem (Hoffman bound). Let T" be a distance-regular graph with valency k and an

eigenvalue 6 <0, then the size of a cligue Cin T is bounded by |C|<1+|k/6|. (C20)
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2-4 The structure of maximal cliques

The Bose-Laskar argument provide essential information on intersections of maximal cliques of
a distance-regular graph simply in terms of the parameters of the graphs. (HFu38). In order to
apply this technique, we usually need some restriction on the parameters; for example,

1. g must be sufficiently large compare with ninH(n,q), and
2. v must be sufficiently large compare with k in J (v, k) .

For the case of the bilinear form graph with intersection parameters b, = (9" -1)(q° -1)/(q-1),

a=0"+9"-q-2 and c,=q(q+1), (k7@ B)=(q", (@’ -1)/(q-1),9° 9,9’ +q+1). In

order that k is larger than the maximum p(e, S,r) and p(ex, £, 7) , this causes some constraints
over n, d, and g. Moreover each grand clique contains at least

k-(-Da=9"-((a’-9)*/(q-1)
vertices.

In addition to the Bose-Laskar argument, the following theorem (BCN 160) obtained by the

technique of graph representations provides another mechanism to deal with the tructures of
maximal cliques. (HFu38)

... tthe above two numerical constraints on n and d, interpreted as B> o[%'] with d >3 in

terms of the classical parameters, were needed in both cases because both Sprague and Huang
used the Bose-Laskar argument.

... instead of the Bose-Laskar argument, the following two theorems in terms of the technique of

graph representations were used by Huang and Fu [ ] to improve the bound from £ > o[%']
to > a[f] ,i.e.n>2d+1 forJ,(n,d) andn>d+1 forH_(n,d). However, the assumption
a+1>max{5,q} isstill required. (Theorem A(ii)) [HFu 38]

... the Grassmann graphs J,(n,d) with n>3d >9,q>3, orwith n>3d +1>4 whenever

g =2, and the bilinear forms graphsH_(n,d) with n>2d >6,q>4 have been characterized

by Sprague [13], Huang [10] respectively.
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... regarding the classes of maximal cliques as their lines, two incidence structures are derived

from the distance-regular graph considered in the Main Theorem; note that any two points at
distance 2 have (q+1)(« +1), i.e. ¢, in the theorem, common neighbors in both incidence

structures. (HFu38)

2-5 A pairs of incidence structures derived from T’
A maximal clique in T"with at least q" vertices is called a grand clique. Let x,yeV (') be

adjacentand A, =S, US,, where

S, = (I, () NIy (y))-<x,y>, and
S, ={z|z e<x,y>is adjacent to each point of S }

Then A, called the assembly determined by the adjacent pair X, y, is a clique. Let

L = the set of all grand clique of T, and
A = the set of all assemblies of T.

A pair of semilinear incidence structures IT=((I'),L,e) and (V(I'), A,e) are considered by
Huang and Cuyper. The weak 4-vertex condition is used by Huang in the proof of 2.2 and 2.4 of
[4]. (C20) However, the role played by the weak 4-vertex condition can be replaced by Hoffman
bound and a result of Brouwer and Wilbrink. Indeed,

1. Proposition 2.2 of [4] is a direct consequence of the fact that (1-qg°*)/(q-1) isan
eigenvalue of the adjacency matrix (i.e., condition (1) of Theorem 1.3) and the following
Hoffman bound (see [3]). (C20)

2. It remains to prove 2.4 of [4] without using the weak 4-vertex condition.

Proposition 2.4 (I',(x)T,(y))—<x, y >is a clique for any adjacent pair x and y.

Proposition 2.4 is a first step in attaching an affine structure to a subset of the form
(C,)NTL () U{x, y} for adjacent pair x and y which is essential in determining the structure

of the subspaces of [].

The above mentioned incidence structures have been considered by Brouwer and Wilbrink
[1], even under weaker conditions. We then conclude that the incidence structure [] satisfies
the dual of Pasch’s axiom, and hence Prop 2.4 follows. The proof of Theorem 1.3 as in [4]
continues. Wilbrink and Brouwer [18] proved that certain semi-partial geometries with some
weak restrictions on parameters satisfy the dual of Pasch’s axiom. (HFu37)
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Theorem The semi-linear incidence structure [[=(V(I'),L,e) satisfies the following
properties;
1. each point of T is contained in exactly y =(q’-1)/(q—1) lines, and

2. each pair of adjacent points x, y is contained in exactly one line, denoted by<x, y> :

3. every line contains " points;
4. a point x is adjacent to 0 or q points on a line not containing Xx;

5. for any two non-adjacent points x and y we have |1"l(x) ml“l(y)| =0 or q(q+1).

Moreover, T" isthe adjacency graph of [].

We then show that the restriction of []to A ,is an affine space of dimension d over GF (q),

which is the first in determining the structure of the subspaces of 1. (H6)

Theorem The incidence structure (V (I'), A, €) is a semi-linear incidence structure withI" as its
collinearity graph, having many properties in common with (V (I'), A,€) .

The crucial observation in the proof of Theorem 1.2 (C). With the lines of [I playing the
role of the assemblies for (V (I'), A, €) , we can prove similar results. (C19)

We recall that the 2-spaces of any assembly are affine plane of order g. To prove that the
assembly is indeed isomorphic to a d-dimensional affine space over GF(q). (C18) The structure
of 2-spaces of [ is studied in Section 4 in terms of the structure of assemblies obtained in the
last section. (H10), we show that any 2-space of []is a net. Further properties about parallel
lines, which are essential to subsequent development of the structure of 2-spaces of []. (H10)

Any 3-space of [] isa (n,q,3)-attenuated space is proved in Proposition 5.2 , which provides
a starting point of the induction argument. We finally show that []=(V(I'),L) isad-net. (H13)

Sections 4 and 5 of Huang [12] provide the rest of the proof; precisely,

the definition of parallelism between blocks, and the characterization of planes as net are
exactly the same of Section 4 of [12];

the intersection of two subspaces is a subspace (D2) follows from the assumption of
connectedness of intersection between subspaces.

two planes in a 3-space are disjoint or intersect in a block (D3) is exactly the same as
Proposition 5.2 of [12]. (B53)
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3. Searching for cospectral mates and distance regular mates of bilinear forms graphs

Recently, a non-distance-regular cospectral mate and a non-vertex-transitive distance-regular
mates for the Grassmann graph J (n,d) with n>d +3>6o0rwith n=d+1>3 respectively

were given by E.R. van Dam and J.H.Koolen, and by E.R. van Dam, W.H. Haemer, J.H. Koolen
and E. Spence respectively. From the view point that J,(n,d) is the point graph of the projective

\Y \Y \Y \Y;
incidence structures , o, , ;< |, and the bilinear form graph
d||d-1 d||d+1

H,(n,d) is the collinearity graph of the attenuated space (Sd V,W), 3,V ,W);;) , We may
wonder whether similar situations hold for the bilinear forms graphs H , (n,d) due to the close
relationship between the projective incidence structures and the attenuated spaces,.

Some necessary backgrounds and some proposal are collected for references.

[DKO5] E.R. van Dam and J.H.Koolen, A new family of distance-regular graphs with unbounded
diameter, Invent. Math. 162, 189-193 (2005)

[DH 06] E.R. van Dam, W.H. Haemer, J.H. Koolen and E. Spence, Characterizing
distance-regularity of graphs by the spectrum, JCT A 113 (2006) 1805-1820.

3-1 some known facts about the Grassmann graph J, (n,d)

Let V = Fqn , consider the semilinear incidence structures

e

\Y \Y
1.. for the incidence structure 7z, = [[d}[d J;;j

a. there are Lﬂ points and there are {d n J lines.

n—(d —1)}_{n—d +1

b. each line is incident to =
d-(d-1) 1

g e

c. two points are collinear if and only if they meet in an (d —1) -dimensional subspace.

} points, and each point is incident to

d. the point graph is the Grassmann graph J,(n,d) with the adjacency matrix of

d
NN* —[J I, where N is the point-line incidence matrix of 7.
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2. for the incidence structure 7z, = [[\cﬂ{dv J;g}
+

a. there are " points, and there are " lines.
d d+1

d+1
d

= lines.
d-(d-1) 1

c. two points are collinear if and only if they together generate a d+1 subspace, and hence they
meet inan (d —1) -dimensional subspace.

d+1
b. each line is incident to [ }z{ I } points, and each point is incident to

d. the point graph is the Grassmann graph J,(n,d) with the adjacency matrix of

n-d
NN' —[ 1 }I , Where N is the point-line incidence matrix of =, .

3. The linesin =, 7, correspond to the two types of maximal cliques of the Grassmann graph
J,(n,d) respectively.

3-2 cospectral mates and distance-regular mate of the Grassmann graph J, (n,d)

3-2 a. A non-distance-regular cospectral mate of J, (n,d)
in terms of the line graphs of some incidence structures:

[DH 06] E.R. van Dam, W.H. Haemer, J.H. Koolen and E. Spence, Characterizing
distance-regularity of graphs by the spectrum, JCT A 113 (2006) 1805-1820.

1. the Grassmann graph J  (n,d) is the line graph of the incidence structure I (n,d):
LetV = F,", consider the semilinear incidence structure

|q(n,d)=([dv_1ﬂm)

with the point-line incidence matrix N,
n—d+1
1. the point graph of I (n,d)with adjacent matrix NN' { 1 " }I IS isomorphic to
J,(n,d-1)
d
2. the line graph of I, (n,d) with an adjacent matrix N'N —[J | isisomorphicto J (n,d).

Note that NN'and N'N have the same nonzero eigenvalues;

2. Adjusting the partial linear space I, (n,d) to the partial linear space C,(n,d) while
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a. the point graph remains the same, and
b. the number of lines, and the sizes of lines
remain the same, then the line graph of C, (n,d) is cospectral with that of 1 (n,d), i.e. the

Grassmann graph J (n,d) .

First we define the partial linear space C,(n,d)for t>1 in general, and then reduce to the
special case that t=1.For n>2d-1,d>3,let V=F",and H,,..,H be (2d-2)-
dimensional subspaces of V such thatdim(H; (1H ;) <d —1for i# j. Consider the semilinear
incidence structure

c,(n.d) :qd\/_l}, LU LZJ

L, ={(S,1)|Sisad —2dimensional subspace of H.}

the line (S, i) consists of all d —1 dimensional subspaces of H. containing S;
L, ={T |T is a d dimensional subspace not contained in any H, }

the line T consists of all its d —1 subspaces.

where

More explicitly,

lines (S,i), (T, ) e L are adjacent in the line graph,
if i=j and SUT spansa (d—1)dimensional subspace, or
if H,H; isa (d-1) dimensional subspace containingSUT .

lines(S,i)e L, and T eL,are adjacent
if ScTand moreover T intersect H,ina (d —1) dimensional subspace;

lines T,T eL, areadjacent if they intersect ina (d —1) dimensional subspace. Q.E.D.

Theorem The line graph of the semilinear space C, (n,d) is cospectral with J,(n,d) , which is not
distance-regular.

d||2
Fort=1,(U,1)and W are not adjacent, and have at least L}L} many common neighbors,
2 2
while ¢, = L} for J,(n,d), the line graph of C,(n,d) is a non-distance-regular cospectral

with the Grassmann graph J, (n,d).

Remark: Ifn > 2d , many (if not all) of the constructed cospectral graphs are not distance-regular,
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for example: there is a d-dimensional subspace W that intersects H, (say) in a(d —2) dimensional
subspace U and not contained in H, for each .

Question: Do similar arguments work for the bilinear forms graphs in terms of the attenuated
spaces?

There is a correspondence between bipartite regular graphs with 5 eigenvalues and so called
partial geometric designs. Examples of the latter are transversal designs, and these form the key
to the construction of graphs cospectral with distance-regular antipodal covers of complete
bipartite graphs.

The incidence structure between the two biparts of such a cover is a (square) resolvable
transversal deigns (also called a symmetric net). A transversal design is a design of points and
lines, such that all blocks have the same size, each point is in the same number of blocks, and
such that the points can be partitioned into groups, such that each block intersects each group in
one point, and such that two points from different groups meet in a constant number g points.

Lemma [Lemma 9.3.2, BCN 269]
Let V be a vector space of dimension n overGF(q), and 0<i, j<n, then

n
a. the number of m-subspaces is {m}

ln—
b. if X is a j-spaces of V, then there are precisely " { i J} i-spaces Y in V such that X (Y =0.

n—]

c. if X is a j-spaces of V, then there are precisely g ™/-™ [
i—m

}Lﬂ i-spaces Y in V such that

XY is an m-space.

3-2 b: a non-transitive distance-regular mate of the Grassmann graph J,(2e +1€)

[DKO5] E.R. van Dam and J.H.Koolen, A new family of distance-regular graphs with unbounded
diameter, Invent. Math. 162, 189-193 (2005)

The case (n,d)=(2e+1e)

Let V= qu”l with a fixed hyperplane H, consider the semilinear incidence structure

e

where

L ={A]| Ae{ J but Az H}, the line Ae L is incident to its e - dimensional subspaces;
e+
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H
L, = L J ,the line B e L, isincident to the e-dimensional subspaces of H containing B.

\Y
Note that in the semilinear incidence structure 7z, = H } LU LZ;#j
e

2e+1 . 2e+1| . 2e+1 2e 2e 2e+1
1. there are points and lines; (check: - + = ?)
e e e+l e+l e-1 e

e+l ) e+l| ..

2. each line is incident to 1 points, and each point is incident to 1 lines;
3. two points are collinear if and only if they meet in an (e —1)-dimensional subspace.

. . : i . e+l . .
4. its point graph is the Grassmann graph J (2e +1,e)with NN' - 1 | as its adjacency

matrix where N is the point-line incidence matrix of 7,.

e+l

6. its the line graph (or called the block graph), with N'N { 1 } | as its adjacency

matrix, has the same spectrum as that of the Grassmann graph J,(2e +1,¢),
because NN'and N'N have the same nonzero eigenvalues.

Theorem [ DKO05]
Let G be the graph with vertex set
all (e +1) -dimensional subspaces of V not contained in H, together with
the (e —1) -dimensional subspaces of H, where
1. two vertices of the 1% kind are adjacent if they intersect in an e-dimensional subspace;
2. a vertex of the 1% kind is adjacent to a vertex of the 2" kind if the first contains the second:;
3. two vertices of the 2" kind are adjacent if they intersect in an (e — 2) dimensional subspaces.
Then G is distance-regular with the same parameters as that of the Grassmann graph J, (2e +1,€), not
vertex-transitive and hence not isomorphic toJ (2e+1.e).

1. G is distance - regular

a. a graph cospectral with a distance-regular graph T" with diameter e is itself distance
regular if for every vertex the number of vertices at distance e is the same asin TI;
b. sincek, in G is indeed the same as in the Grassmann graph, and hence G is

distance-regular; c. the parameters of a distance-regular graph follows from its spectrum, G
has the same

parameters as J  (2e +1e).

2. G is not vertex-transitive:

Question: Do similar arguments work forJ,(2e,e)? H,(d+2,d),H,(d+1d)orH,(d,d)?
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3-3 the bilinear forms graph H, (n,d)

Vv
Let V=F"" and W e{

} : moreover let
n

Sd(v,vv) :{Al Ae|:\(;i|,W|th AﬂW :{0}}’

3,,(V,W)={A| Ac LIV J,with ANW ={0}}

consider the semilinear incidence structure 7, = (3, (V,W), 3,_,(V.W); ), called attenuated
spaces.

Note that

1. there are g™ points and L}q”(d‘l’ lines in the semilinear incidence structure;

d d
2. each line is incidentto q" points, and each point is incident to {d J = L} lines;
3. two points are collinear if and only if they meet in an (d —1) -dimensional subspace.

d
4. the point graph of 7, is the bilinear forms graph H_(n,d) with NN' {d

}I as its
1

adjacency graph where N is the point-line incidence matrix of 7.

3-4 candidates for distance-regular mate of the bilinear forms graphsH(n,d)
(all need to be further checked)

3-4 a: Searching for cospectral mates of the the bilinear forms graphs

3-4 b: Searching for distance regular mates of the the bilinear forms graphs

The case (n,d)=(d+1,d)

2d+1 V V H .
Let V=F , We and H e with W < H ; moreover let
d d+1 2d
V
Si(\/,W):{A|Ae[_]and ANW ={0}}, and
i

iR={B|Be{V

d J, B« H} (the condition B ¢ H needs double checks!)
+

Consider the semilinear incidence structure

71, = (3 (V W), RUST, L (H,W);#).
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(The condition B ¢ H considered in R needs double checks, one check point is that
|R|+]Fy (HW)| = g")

Note that
1.there are g™ pointsand ... linesin 7,;

2. each line is incidentto q" points, and each point is incident to {dd—l} = {ﬂ linesinz,;

3. two points are collinear in 7z, if and only if they meet in an (d —1) -dimensional subspace.

4. the point graph of 7, is the bilinear forms graph H (n,d) with NN' {dd—J I asits
adjacency matrix where N is the point-line incidence matrix of z,.

5. the line graph G of 7, is defined on the vertex set consisting of all (d +1) -dimensional
subspaces of V not contained in H, together with the (d —1) -dimensional subspaces of H
meeting trivially with W, where

1. two vertices of the 1* kind are adjacent if they intersect in an e-dimensional subspace;
2. a vertex of the 1% kind is adjacent to a vertex of the 2" kind if the first contains the 2nd;
3. two vertices of the 2" kind are adjacent if they intersect in an (d — 2) dimensional subspaces.

Claim: the line graph G is distance-regular with the same parameters as that of the bilinear form
graphH, (d +1,d), not vertex-transitive and hence not isomorphic toH, (d +1,d) .

3.5 A non-distance-regular cospectral mate of J(n,d)
E.R. van Dam, W.H. Haemers, J. H. Koolen, E. Spence,
Journal of Combinatorial Theory Series A 113 (2006) 1805-1820

A constructions of cospectral mates in terms of switching tool by Godsil and McKay:

Theorem [Godsil switching G82]Let G be a graph and let [[= {D,C,,C,,...,C_} be a partition

of the vertex set of G. Suppose that
1.{C,.C,,...,C} isaregular partition ofV(G)-D;

2. every vertex xe Dandeveryie{l 2,..,m}, x has either 0, $|C,| or |C,| neighborsinC,.

Make a new graph H as follows:
foreachx e D andi e{L,2,...,m}such that x has$|C, | neighbors inC,, delete the

corresponding 3| C; |edges and join x instead to the | C, | other vertices in |C, |.
Then G and H have the same spectrum.

Theorem The Johnson graph J(n,d) with n>d+3>4 has a non-distance regular cospetral
mate.
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Question: Does Godsil switching preserve the walk-regularity of graphs?

Reference:

[B184] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes,
Benjamin/Cummings 1984

[BMO3] G. Bonoli, N. Melone, A Characterization of Grassman and Atteenuated Spaces as
(0, ) -Geometries, Europ. J. Combinatorics (2003)24, 489-498.

[Cu92] Hans Cuypers, Two Remarks on Huang’s Characterization of the Bilinear Forms Graphs
Europ. J. Combinatorics (1992)13, 33-37.

[CWO06] F. de Clerck, S. De Winter E. Kujiken and C. Tonesi, Distance-Regular (0, «)-Reguli,
Designs, Codes and Cryptography 38 (2006) 179-194.

[FH94] T.S. Fu and T. Huang, A Unified Approach to a Characterization of Grassamn graphs and
bilinear forms graphs, Europ. J. Combinatorics (1994)15, 363-373.

[H87] Tayuan Hunag, A Characterization of the Association Schemes of Bilinear Forms Europ. J.
Combinatorics (1987)8, 159-173

[HWO04] Wen-ling Huang and Zhe-Xian Wan, Adjacency Preserving Mappings of Rectangular
Matrices, Beitrage zur Algebra und Geometrie, Contribution to Algebra and Geometry Volume
45(2004) No.2, 435-446

[Me99] Klaus Metsch, On a Characterization of Bilinear Forms Graphs, Europ. J. Combinatorics
(1999)20, 293-306.

[RS79] D.K.Ray-Chaudhuri and Alan Sprague, A Combinatorial Characterization of Attenuated
Spaces , Util. Mathematics 15 (1979) 3-29.

[Sp81] Alan P. Sprague, Incidence Structures whose Planes are Nets, Europ. J. Combinatorics
(1981)2, 193-204

[W96] Zhe-Xian Wan, Geometry of Matrices: In Memory of Professor L.K. Hua (1910-1985),
443-453 in: Progress in Algebraic Combinatorics, Advanced Studied in Pure Mathematics 24,
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