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The Geometry of Rectangular Matrices and Their Characterizations 
--- searching for cospectral mates and distance regular mates 

of the bilinear forms graphs 
 

Tayuan Huang  
 

 
Abstract:  
A non-distance-regular cospectral mate and a non-vertex-transitive distance- regular mates 
for the Grassmann graph ( , )qJ n d with 3 6n d≥ + ≥ or with 1 3n d= + ≥  were recently 
given by E.R. van Dam and J.H.Koolen, and by E.R. van Dam, W.H. Haemer, J.H. Koolen 
and E. Spence respectively. From the view point that ( , )qJ n d and the bilinear form 
graph ( , )qH n d are the point graphs and their dual of the close related projective incidence 
structures and attenuated space, we may wonder whether similar situations hold for the 
bilinear forms graphs ( , )qH n d ? 
 
E.R. van Dam and J.H. Koolen, A new family of distance-regular graphs with unbounded 
diameter, Invent. Math. 162, 189-193 (2005) 

E.R. van Dam, W.H. Haemer, J.H. Koolen and E. Spence, Characterizing distance-regularity of 
graphs by the spectrum, JCT A 113 (2006) 1805-1820. 
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3-1 some known facts about the Grassmann graphs 
3-2 cospectral mates and distance-regular mates of the Grassmann graphs 
3-3 the bilinear forms graphs 
3-4 candidates for cospectral mates distance-regular mates of the bilinear forms graphs 
3-5 a non distance-regular cospectral mates of the Johnson graphs 

 
I  Preliminary and background 
 
Association schemes were first introduced by statisticians R.C. Bose et.al. around 1950 in 
connection with the design of experiments in statistics, and independently by some group 
theorists. In addition to its applications in the design of experiments, Ph. Delsarte 
recognized and fully used association schemes as a basic underlying structure of coding 
theory and design theory around 1970. A project of classifying association schemes in term 
of their geometric structures, their parameters or even their spectra was proposed by E. 
Bannai around 1980. The study of the geometry of matrices by Z. Wan provided an 
abundant source for association schemes around 1960. 
 
1-1 association schemes, Bose Mesner algebra and distance regular graphs 

Definition: (commutative, symmetric) d-class association schemes 

1. A (commutative, symmetric) d-class association scheme on X  is a ( 1)d + - tuple 

0 1 2( , , , , ) of (0,1)dA A A AΑ = " -matrices of order | | | |X X× satisfying 

a. 0A I= ,  for ,i j ij iA A A i j dδ= ≤D , 
0

d
ii

A J
=

=∑ , 

b. for every i , there exist 'i  with '
t

i i
A A= (or i

t
iA A= respectively), and 

c. there exist nonnegative integers ,
k
i jp  for all { }, , 0,1, 2, ,i j k d∈ " such that 

,0

d k
i j j i i j kk

A A A A p A
=

= =∑ . 

2. The linear span of the matrices { }| 0,1, ,iA i d= "  is called the Bose-Mesner algebra of the 
association scheme 0 1 2( , , , , )dA A A AΑ = " .  

3. A symmetric scheme (X, 0{ }i i dA ≤ ≤ ) is called a distance regular graph G if 1,
k

jp =0 

except 1, ,or 1j k k k= − + ; usually, 1,
i

i ia p= , 1, 1
i

i ib p += and 1, 1
i

i ic p −= . 

 
Let  

( ) ( )( )GEGVG ,=  be a connected graph of diameter d, 

( ) ( ){ GVyyxGi ∈=  is at distance i from x }; 

for ( )GVx∈ , consider partitions of ( )GV : 
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Definition The graph G is called distance-regular if ( ) ii cyxc =, , ( ) ii ayxa =, , ( ) ii byxb =,  
are constants whenever ( )GVyx ∈,  are at distance di ≤ . The array 
of parameters  

0 1 2

0 1 2

0 1 2

...

...

...

d

d

d

c c c c
a a a a
b b b b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

    

or { }dd ccccbbbb ,...,,,;,...,,, 3211210 −  is called the intersection array of G. Moreover 

0 1 2

0 1 2

0 1 2

...

...

...

d

d

d

c c c c
a a a a
b b b b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   ←→    0 1 1( ) ( ( ), , , ..., )dSpec G b k θ θ θ= =  

in a systematic way. 
 
 
Some families of examples: 

1. Hammning graph ( , )H n q   
2. Johnson graph ( , )J n d   

3. The Grassmann graph ( , )qJ n d  (also called the q-analog of the Johnson graph) is defined 

on the set of all d-dimensional subspaces of an n-dimensional vector space over ( )GF q . Two 
vertices A and B are adjacent whenever dim( ) 1A B d∩ = − . 

4. The bilinear forms graph ( , )qH n d  (also called the q-analog of the Humming graph) is 

defined on the vertex set ( )d nM q×  of all d × n  matrices over GF(q) , , ( )d nA B M q×∈  adjacent 

if and only if the rank of   A B−  is 1. Then ( , )qH n d  is a distance-regular graph with 

parameters  
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1( 1) /( 1)i i
ic q q q−= − − (independent of n, d), and  

2 1( 1)( 1) /( 1)i d n i
ib q q q q− −= − − − .  

5. The Petersen graph, the Odd graph kO , and the Generalized odd graphs of diameter d , 
 

 
 
 
 
The distance-regular graph with classical parameters ( , , , )d q α β  
Regular graphs related to classical graphs and groups of Lie type have an intersection array the 
parameters of which can be expressed in terms of the diameter d  and three other parameters q , 
α  and β , called the classical parameters, as follows: 

i

1
,        c 1

1 1 1 1   1i

d i i i i
b β α α

⎛ ⎞⎛ ⎞ ⎛ ⎞−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= − − = +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠ ⎝ ⎠
          (1a, b) 

( 0,1,..., )i d= , where n
k
⎡ ⎤
⎢ ⎥
⎣ ⎦

 denotes the Gaussian coefficient with basis q  (for 1q = , it is the 

ordinary binomial coefficient). Clearly, 

1
1

1 1 1   1i

i d i i
a β α

⎛ ⎞⎛ ⎞−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= − + − −⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠

                  (1c) 

( 0,1,..., )i d= . Furthermore, the corresponding eigenvalues 0 1 dθ θ θ> > >"  can be calculated 
in terms of the intersection array as follows: 

   1 1 1i

d i i i
θ β α

⎛ ⎞−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= − −⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

                     (2) 

( 0,1,..., )i d= . Refer to [4, Chapters 6 and 8] for more details. 
 

Some examples of distance regular graphs with classical parameters: 
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1. the Johnson graph ( , )J n d  with classical parameters ( ,1,1, )d n d−  ( 2 4)n d≥ ≥ , 

2. the Hamming graph ( , )qH d n  with classical parameters ( ,1,0, 1)d n −  ( , 2)n d ≥ . 

3. the Grassmann graphs ( , )qJ n d  (with parameters 1
    1( , ) ( ,[ ] 1)n dqα β − += − ) , 

4. the bilinear forms graphs ( , )qH n d  (with parameters ( , ) ( 1, 1)nq qα β = − − ),  

 
As a consequence, the Grassmann graphs and the bilinear forms graphs are characterized 
simultaneously among distance-regular graphs with classical parameters, together with some 
extra geometric conditions. (HFu37) Some remarks on distance-regular graphs with classical 
parameters ( , , , )d q α β : 
 
1. The four families of distance-regular graphs mentioned above have the property that β  can 

be arbitrary large with respect to the other three parameters d , q , and α . The following 
result shows that there are no other graphs with this property. (M24) 

 
Corollary: Suppose that the distance-regular graph Γ  has classical parameters ( , , , )d q α β  
with 3d ≥  and that Γ  is not a Grassmann graph, a bilinear forms graph, a Hamming graph, 
or a Johnson graph. Thenβ  is bounded in terms of d , q andα . 

 
2. Suppose Γ  is a strongly regular graph. It is easy to see that Γ  has classical parameters 

(2, , , )q α β  and these can be uniquely chosen in such a way that 0β > . If the parameters are 
integers and if β  is sufficiently large with respect to α  and q , then Bose [1] (see also [8]) 
showed that the graph is the collinearity graph of a partial geometry with parameters 
( 1, 1, 1).q β α+ + +  This is the analogue to Corollary 1.3 in the case 2d = . (M24) 

 
3. Distance-regular graphs with classical parameters ( , , , )d q α β  and 1q =  have been 
characterized by Neumaier and Terwilliger [4, Theorem 6.1.1]. (HFu 37) 

 
 
 
1-2 Association Schemes, Bose Mesner Algebras and Distance Regular Graphs  

in the western world 
 
1950 Bose 
1973 Delsarte [D73] 
1980 Bannai (坂內英一) 
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geometrical characterization 
⇒  parametric characterization (with or without additional constraints) 

⇒  spectral characterization 
1984 Bannai, Ito, Algebraic Cocmbinatorics: Association Schemes, Cumminghams 
1989 Brouwer, Cohen and Neumaier, Distance Regular Graphs, Springer 
1998 Delsarte [DL98] 
2004 Bailey, Association Schemes, Design Experiments, Algebra and Combinatorics [B04] 
 

The notion of distance-regularity for graphs goes back to the platonic solids of antiquity, which 
has deep connection to many topics of the present-day theory and applications of geometrics, 
groups, codes and designs. E. Bannai [1, Chapter 3] has compiled a list of distance-regular 
graphs with large diameters, believing that has an essentially complete list around 1980. The 
characterization problems of known important classes of distance-regular graphs by their 
parameters have a long history in combinatorics. (H3) The classification of all infinite families of 
distance-regular graphs is a major problem. 
 

It seems that there are several different stages in the characterization of association schemes. 
Bannai propose to distinguish the following: 

1. geometric characterization; 
2. parametric characterization, assuming various structures of the neighborbood of a point; or 

the right sizes of maximal cliques; 
3. parametric characterization, assuming arithmetic restrictions on the parameters; 
4. complete characterization by the parameters. (Bannai 367) 

 
A way to check whether an algebra of symmetric matrices is a Bose-Mesner algebra and hence 
an association schems. 

Theorem (BCN page. 57) 
Let A be a vector space of symmentric n n×  matrices. 
1. A has a basis of mutually disjoint (0,1) matrices if and only if A is closed under Hadamard 

multiplication. 
2. A has a basis of mutually orthogonal idempotent if and only if A is closed under ordinary 

multiplication. 
3. A is the Bose Mesner algebra of an association scheme if and only if A is closed under both 
ordinary and Hadamard multiplication, and ,I J A∈  
 
Referrences: 

[BI84] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, 
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Benjamin/Cummings 1984. 
[BCN88] A.E. Brouwer, Cohen and Neumaier, Distance Regular Graphs, Springer 1989. 
[D73]. Philippe Delsarte, An Algebraic Approach to the Association Schemes of Coding Theory, 

Philips Research Reports Supple. 10 (1973). 
[DL98]. Philippe Delsarte and Vladimir I. Levenhtein, Association Schemes and Coding Theory, 

IEEE Transactions on Information Theory Vol.44, No.6 October 1998. 
[B04] R. A. Bailey, Association Schemes, Design Experiments, Algebra and Combinatorics 

Cambridge Studies in Advanced Mathematics 84, Cambridge University Press 2004 Ch. 13 
History and References 

 

1-3. a state of the art survey of the geometry of matrices 

Relating to his study of the theory of functions of several complex variables, L.K. Hua（華羅庚）

initiated the work in the geometry of matrices in the middle forties. In this geometry, the point of 
the space are a certain kind of matrices of a given size, the four types of matrices under studied 
rectangular matrices, alternate matrices, symmetric matrices, and Hermitian matrices; including 
their fundamental theorems and the characterization of motion groups in terms of their invariants 
(papers were published in Transaction of AMS around 1945-1946) 

… to each such space there is associated a group of motions, and the aim of the study is then to 
characterize the group of motions in the space by as few geometric invariants as possible. 

… studying the geometry of matrices of various types over the complex field, discovered that the 
invariant “adjacency” alone is sufficient to characterize the group of motion of space…  

… the complex field was replaced by any field or division ring around 1950 (see Annals of Math. 
1949, Chinese J. of Mathematics, Vol. 1 (1951)) 
… Hua’s pioneer work has been followed by many mathematicians, and more general results 
have been obtained. The study of the geometry of matrices was then succeeded by many 
mathematicians, and it has also been applied to graph theory in recent years. 

(Geometry of Matrices, Zhe-Xian Wan 萬哲先, World Scientific 1996) 

 

 

Let D be a division ring, , 2m n ≥ , the geometry of rectangular matrices is defined on the 
space ( ) { | over }m nM D X m n D× = × , with the group 

{ | ,  and  are  invertible matrices}X PXQ R P Q R m m+ ×6 , 
and the arithmetric distance between X and Y ( )m nM D×∈ is rank( )X Y− , and X and Y 

( )m nM D×∈  are adjacent if rank( )X Y− =1. 

Theorem (Fundamental Theorem, Wan 1965) 
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Let A be a bijection from ( )m nM D×  to itself. Assume that both A and 1A−  reserve the 
adjacency of any two points of ( )m nM D× . Then, 
1. when m n≠ , A is of the form 

( )A X PX Q Rσ= +  (*)  
where , ( )mP Q GL D∈ , ( )m nR M D×∈ , and σ  is an automorphism of D ; 

2. when m n= , in addition to (∗ ), A  can also be of the form ( ) ( )tA X P X Q Rτ= +  
where , ,P Q R are as above, andτ is an anti-automorphism of D . 

 
In the fundamental theorem of the geometry of rectangular matrices, all bijective 

mappings of ( )m nM D×  are determined such that bothϕ  and 1ϕ−  preserve adjacency. Wan 

showed that if a bijective mapϕ  of ( )m nM D×  preserves the adjacency, then so 1ϕ−  preserve 

the adjacency. Thus the supposition that 1ϕ−  preserves adjacency may be omitted in the 
fundamental theorem. It is also shown in [ ] that this is also possible in the case of symmetric 
and hermitian matrices 
 
Theorem (Wan et. al., 2004, 2006)  
Let D be a divison ring and let , 2m n ≥  be integers.  
1. If a bijective map ϕ  from ( ( ))m nM D×Γ  to itself preserves the adjacency in ( )m nM D× , then 

also 1ϕ−  preserves the adjacency.  
2. If a bijective map ϕ  is from ( ( ))m nM D×Γ  to itself for which any two adjacent vertices A, B 

of ( ( ))m nM D×Γ  implies adjacent ,A Bϕ ϕ , then ϕ  is a graph automorphism of ( ( ))m nM D×Γ . 

Geometry of rectangular matrices 
Let D be a division ring, , 2m n ≥ , and let ( ) { | over }m nM D X m n D× = ×  

space: ( )m nM D×  
group: { | ,  and  are  invertible matrices}X PXQ R P Q R m m+ ×6  
invariants: rank( )X Y−  the arithmetric distance between X and Y ,                          
adjacency: rank( )X Y− =1. 

Definition: maximal sets in ( )m nM D×  
a maximal set in ( )m nM D× is a maximal set of points (matrices) such that any two of them are 
adjacent. The normal forms of maximal sets are 

      

11 12 1

1

 
0    0    0

:
   
0    0    0

n

i

x x x

x D

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

"
"

… …
"

, or  

11

21
1

m1

  0   0
x   0   0

:
            
x   0  0

i

x

x D

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

"
"

# # #
"
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Maximal sets are called maximal cliques in graph theory in the western world around 1980, and 
the geometric structures, called the attenuated spaces (Ray-Chaudhuri an A. Sprague 1980) in 
term of lines defined by the intersection of two maximal sets containing two adjacent points in 
common have been studied. 
 
Theorem: There are two types of maximal cliques with sizes ,n dq q respectively, and each with 

the numbers ( 1)

1
n d d

q − ⎡ ⎤
⎢ ⎥
⎣ ⎦

, ( 1)

1
d n n

q − ⎡ ⎤
⎢ ⎥
⎣ ⎦

 respectively. (Bannai 372) 

 
[H51] Hua, L.K. A theorem on matrices over a field and it sapplications. Acta Math. Sinica 

(1951), 109-163 

[W96] Zhe-Xian Wan, Geometry of Matrices: In Memory of Professor L.K. Hua (1910-1985), 
443-453 in: Progress in Algebraic Combinatorics, Advanced Studied in Pure Mathematics 24, 
1996.  

[W96] Zhe-Xian Wan, Geometry of Matrices, World Scientific, Singapore 1996 

[HW04] Wen-ling Huang, Ronald Hofer and Zhe-Xian Wan, Adjacency preserving mappings of 
symmetric and hermitian matrices, Aequationes Math. 67 (2004) 132-139 

[HW04] Wen-ling Huang and Zhe-Xian Wan, Adjacency Preserving Mappings of Rectangular 
Matrices, Beitrage zur Algebra und Geometrie, Contribution to Algebra and Geometry Volume 
45(2004) No.2, 435-446 

 

1-4. The bilinear forms graphs ( , )qH n d and their characterizations 

When the field is finite, say GF(q), the bilinear forms graph ( , )qH n d  is defined over 
( ( ))d nM GF q× , which is a distance regular graph with the intersection array 

1( 1) / 1i i
ic q q q−= − −  for 1i d≤ − , and  

2 ( 1) / 1i d i
ib q q q−= − −  for 1i d≤ − . 

 
The weak 4-vertex condition was used by Sprague and Huang respectively in the 

characterizations of the bilinear forms graphs ( , )qH n d for d = 3 or general d. Sprague [ ] 

characterized ( ,3)qH n by assuming the parameters and the weak 4-vertex condition where 

6, 2n q≥ ≥  and ( , ) (2,6)q n ≠ . Later Ray-Chaudhuri and Sprague [13] gave a combinatorial 
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characterization of 3-attenuated spaces by using the arguments similar to those used in [14]. (H 2) 
Finally, Sprague [16] characterized d-attenuated spaces in terms of the structure of their 
2-spaces: 
 

Huang (1987) 
Let Γ  be a distance-regular graph of diameter d  with intersection array 

0 1 2 1 1 2 3{ , , , , ; , , , , }d db b b b c c c c−" "  such that  

1. The weak 4-vertex conditions holds inΓ , 
the number of edges of the induced subgraph on the common neighborhood  
of vertices x and y depends only on the distance between them. (H1) 

2. 2
2 ( 1),  ( 1) / 1i d i

ic q q b q q q−= + = − − , 0 1i d≤ ≤ − , 

3. 2 4,n d≥ ≥  4q ≥ . 

Then q  is a prime power, and the graph Γ is isomorphic to the bilinear form graph ( , )qH n d . 

 
… the restriction 4q ≥  in section 3 (Prop 3.7) of [7] was used by Huang to apply a well-known 
theorem of Buekenhout. (M33) However, it was noticed by Cuypers that the use of Buekenhout 
result can be avoided, one uses a result of Thas and DeClerck [12], which also holds for 2q =  
and 3q = . A shorter proof of the results of Section 4. (C18) 
 
Cuypers (1992) improved the conditions:  

1. 1(1 ) /( 1)dq q−− −  is an eigenvalue of the adjacency matrix of Γ ; and  
2. 2 ( 1)c q q= + , 2 ( 1) / 1i d i

ib q q q−= − − , 0 1i d≤ ≤ − , 
3. 2 6n d≥ ≥ and 4q ≥ . 

i.e., the bilinear form graph ( , )qH n d  is characterized by its intersection array 

whenever 2 6n d≥ ≥ and 4q ≥ . 
 
… the conditions 2 6n d≥ ≥  and 4q ≥  are used by Huang to derive an incidence structure 
fromΓ , and 4q ≥  is needed to apply a theorem by Buekenhout (see [2]). Cuyper showed that 
the use of Buekenhout’s result can be avoided by quoting a result of Thas and Declerck [5] which 
is also valid for 2,3q = . So Cuyper generalize Huang’s theorem to the following: (M…) 

… however, Huang needs it only to show that lines have size 1β +  and that the incidence 
structure consisting of the vertices and lines satisfies the dual of Pasch’s Axiom, which we have 
already shown. Thus the arguments of Huang show that q is a prime power, 1nqβ = −  for some 
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integer n d≥  and Γ  is the bilinear forms graph ( , )qH n d . (M34)  

… the proof can be completed using the techniques of Huang … Thus the arguments of Huang 
show that q is a prime power, 1nqβ = − for some integer n d≥  and is the bilinear forms graph 
as required. (M34) 
 
Metsch (1999) further improved the conditions: 

the bilinear form graph ( , )qH n d  is characterized by its intersection array whenever either 
3, 3n d q≥ + ≥  or 4, 2n d q≥ + = . 

 
Theorem (Huang 1987 + Cuyper 1992 + Metsch 1999) 

Let Γ  be a distance-regular graph of diameter d  with intersection array 

0 1 2 1 1 2 3{ , , , , ; , , , , }d db b b b c c c c−" "  such that  

1. 2 ( 1) / 1i d i
ib q q q−= − − , 0 1i d≤ ≤ − , 1 ,  1 .

1
i

i

i
c q i d− ⎡ ⎤
= ≤ ≤⎢ ⎥

⎣ ⎦
 

2. 3, 3n d q≥ + ≥ ; 4, 2n d q≥ + = . 

Then q  is a prime power, and ( , )qH n dΓ ≅ . 

 
 
1-5. Joint Characterizations of Grassmann graphs and Bilinear forms graphs  

Because the bilinear forms graph ( , )qH n d  is an induced subgraph of the Grassman graph 

( , )qJ n d , joint characterizations of Grassmann graphs and Bilinear forms graphs are surveyed in 

the following. 
 
1. a joint characterization of Grassmann graphs and bilinear forms graphs among distance regular 

graphs with classical parameters is given by Fu and Huang (1994); and by Metsch (1999) 
respectively;  

 
2. a joint characterization of Grassmann spaces and attenuated spaces over amply 

regular (0, )α -geometries satisfying the dual of Veblen-Young’s axiom was given by by 
G.Bonoli, N. Melone (2003). 

3. a joint characterization of Grassmann graphs and bilinear forms graphs over  
distance-regular (0, )α - Reguli by F. de Clerck, S. De Winter E. Kujiken and C. Tonesi (2006). 
Moreover,  
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[FH94] T.S. Fu and T. Huang, A Unified Approach to a Characterization of Grassamn graphs and 
bilinear forms graphs, Europ. J. Combinatorics (1994)15, 363-373. 

[M99] 

[BM03] G. Bonoli, N. Melone, A Characterization of Grassman and Atteenuated Spaces as 
(0, )α -Geometries, Europ. J. Combinatorics (2003)24, 489-498. 

[CW06] F. de Clerck, S. De Winter E. Kujiken and C. Tonesi, Distance-Regular (0, )α -Reguli, 
Designs, Codes and Cryptography 38 (2006) 179-194. 

 
 
Definition: 
For an integer 1α ≥ , a connected semilinear space ( , )P BΠ =  is called a finite (0, )α -geometry 
with parameters ( , )s t if it satisfies the following axioms: 

1. each block contains 1s +  points; 
2. each point belongs to 1t +  blocks; and 
3. for every anti-flag ( , )x B , ( , ) 0,x Bα α= . 

Any (0,α)-geometry with parameters (s, t) is called an amply regular (0,α)-geometry with 
parameters (s, t,α,μ) if the number of points adjacent to any pair of points at distance two is a 
constantμ> 0. 
 

Amply regular (0, )α -geometries satisfying (VY*) for which 2 or ( 1)μ α α α= + was studied 
by G.Bonoli, N. Melone in [ ]. This result generalizes those of Debroey [ ] and of Ray-Chaudhuri 
and Sprague [ ]. It gives a common characterization of the Grassmann and attenuated spaces as 
amply regular (0, )α -geometries and, under weaker assumptions, we obtain the result due to 
Fu-Huang [9]. 
 

An important role in incidence structures is played by the so-called Pasch’s axiom 
(Veblen-Young’s axiom (VY)) and the diagonal axiom (the dual VY*), resp. (see for example  
[5, 8, 16, 17]). (P52~53) 

1. Two distinct transversals of two intersecting blocks are incident. (Pasch’s axiom) 
2. Two distinct points x, y not on a block B and adjacent to two distinct common points on B, 

are adjacent. (the diagonal axiom) 
 

Note that both Johnson and Grassmann geometries satisfy Pasch’s axiom and the diagonal 
axiom (see [14]), while the attenuated spaces satisfy the diagonal axiom but not Pasch’s axiom. 
 
Definition A distance-regular geometry is an incidence structure S satisfying the following 



 

13                   

axioms: (P60~61) 
1. S is a partial linear space of order (s, t). 
2. The point diameter (i.e. the largest possible distance between two vertices corresponding 

to points) of the incidence graph Φ of S is 42 ≥d . 
3. There exist integers 12 −iα , di ≤≤2 , such that for any point p and any line L of S which 

are at distance 2i-1 in Φ there are precisely 12 −iα  points incident with L and at distance 
2i-2 from p. 

4. There exist integers it2 , di ≤≤2 , such that for any two points p and q of S which are at 
distance 2i in Φ there are precisely 12 +it  lines incident with q and at distance 2i-1 
from p. 

 
Using results proved by Huang in [H87], Cuypers has proved in [Cu92] that a distance-regular 

graph with the same intersection array as ),( dmH q , with 62 ≥≥ dm  and 4≥q , is the point 

graph of a (0,α)-geometry satisfying the so-called diagonal axiom, which is the dual of the 
Pasch (or Veblen-Young) axiom. Form arguments similar as in [15] (see also [2]) it follows that 

the geometry is uniquely defined and hence that Γ is isomorphic to ),( dmH q . (P73~74) The 

geometry constructed in Subsection 4.1, seen as a geometry on the bilinear forms graph, is also 
known as an attenuated space [13]. (P73~74) 
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2. The geometry of rectangular matrices, the attenuated spaces and d-nets 
 
In addition to the intersectional arrays and the spectra of distance regular graphs, the geometric 
structures associated with distance regular graphs are also play vital roles. 
 
2-1 The structure of nets and d-nets 

1. A net ( of dimension 2) is a semilinear space ( , )D P B=  satisfying the following 
condition: 

1. B is partitioned into at least three non-empty classes such that 
2. the blocks of each class partition P, 
3. blocks of different classes intersect. 

2. A d -net or net of dimension d  is a semilinear space ( , )D P B=  of dimension 3d ≥  
satisfying the following three conditions. 

1. Each plane of D is a net. 
2. The intersection of two subspaces is a subspace. 
3. Two planes in a 3-space are disjoint or intersect in a block.  

 
Theorem (Sprague 1983)  
Every finite d-net, where 3d ≥  is an integer, is an (n, q, d)-attenuated space for some prime 
power q and positive integer n. (The original theorem covers the infinite case also.) 
 
 
2-2 The ( , , )d q n - projective incidence structures and the ( , , )d q n - attenuated space 

Definition 

1. The ( , , )d q n -projective incidence structure 
the collection of subspaces of the n-dimensional vector space over ( )GF q  where subspaces 
of dimension d are called points, those of dimension 1d −  are called lines, and incidence is 
the usual containment. (HF38) 

 
2. The ( , , )d q n -attenuated space 

Let V  be an ( )n d+ -dimensional vector space over ( )GF q  and let W  be a given 
n -dimensional subspace ofV . The ( , , )d q n -attenuated space is the collection of subspacesU  
of V  with 0U W∩ = , where subspacesU of dimension d  are called points, those of 
dimension 1d −  are called lines, and incidence is the usual containment. (HF38) 
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The bilinear forms graph ( , )qH n d  is therefore the induced subgraph of the Grassman graph 
( , )qJ n d d+  on the vertices that meet W trivially. Indeed, ( , )qJ n d  and ( , )qH n d  are the 

collinearity graphs of the ( , , )d q n - projective incidence structures [11] and 
the ( , , )d q n -attenuated spaces [10, 12], respectively (HFu38). The bilinear forms graph ( , )qH n d  
can be viewed not only as a subgraph but also as a geometric hyperplane of the Grassmann 
graph ( , )qJ n d d+ . (HF38) 

 
2-3  Attenuated spaces and the bilinear forms graphs 

Let V be a vector space of dimension n + d over GF(q) and 1 2, ,..., nW w w w V= ⊆  a fixed 

subspace of dimension n. Let further {w1, w2, …, wn; u1, u2, …, ud} be a basis for V, where 

1,..., dU u u= . Let 

iℑ  and dim( ) 0
V

A A A U
i

⎧ ⎫⎡ ⎤⎪ ⎪= ∈ ∩ =⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭

, 

then 1 1 2 2, ,..., d dA u v u v u v= + + +  for unique choices of 1 2, ,..., dv v v W∈ . Let 
1

n

i ij j
j

v a w
=

= ∑ , 

and A ij d n
M a

×
⎡ ⎤= ⎣ ⎦ , then each A corresponds to the unique matrix MA of order d n× . Moreover 

If ,A  B  correspond to MA, MB respectively as given, then dim( ) ( )A Bd A B rank M M− ∩ = − . 

 
 
2-4 How to associate geometric structures to distance-regular graphs? 

Two techniques dealing with the geometric structures associated with distance regular 
graphs in terms of of maximal cliques  
 
How to treat the maximal cliques of distance regular graphs ? 
 
1. The Bose and Laskar argument  

One of the crucial steps to characterize distance regular graphs is to show the existence of 
maximal cliques of the right size. The characterization of the Hamming graph ( , 2)H n  and the 
Johnson graph ( ,2)J v  by Bose and Lasker (1967) is one of the original papers towards this goal; 
the technique used by them is called Bose-Laskar argument. This argument provide essential 
information on intersections of maximal cliques of a distance-regular graph simply in terms of 
the parameters of the graphs. In order to apply this technique, we usually need some restriction 
on the parameters; for example, q must be sufficiently large compare with n in ( , )H n q , and v 
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must be sufficiently large compare with k in ( , )J v k . 
 
Theorem (Bose and Laskar 1967) Let G be a graph satisfying the following conditions: 

1. deg( ) ( 1)x r k= − for all ( )x V G∈ , 
2. 1 1| ( ) ( ) | 2G x G y k α∩ = − +  if x and ( )y V G∈  are adjacent, 
3. 1 1| ( ) ( ) | 1G x G y β∩ ≤ +  if x and ( )y V G∈  are not adjacent, where 1r ≥ , 2k ≥ , 0α ≥  

and 0β ≥  are fixed integers.  
A maximal clique with at least ( 1)k r α− −  vertices is called a grand clique. 
Suppose ( , , ), ( , , )k p α β γ ρ α β γ> , where 

( , , ) 1 (( 1)( 2 ) / 2)p α β γ γ γβ α= + + − , and ( , , ) 1 (2 1)ρ α β γ β γ α= + + − . 
Then 

1. each vertex of G is contained in exactly γ  grand cliques, and 
2. each pair of adjacent vertices is contained in exactly one grand clique. 

 
 
2.  A technique in terms of graph representation 
In addition to the Bose-Laskar argument, the following theorem obtained by the technique of 
graph representations provides another mechanism to deal with the structures of maximal cliques. 
The above two theorems provide essential information on intersections of maximal cliques of a 
distance-regular graph simply in terms of the parameters of the graphs. 
 
Theorem (BCN, p.160) 
Let Γ be a distance-regular graph of diameter d with eigenvalues dk θθθ >>>= "10 .  
1. If 3d ≥ , 111 −< bθ  and suppose that every singular line of Γ has size at least s+1; 

a. if 3≥s , 2
1 1/( 1) 1b s sθ + ≤ − + , or if s = 2, 1 1/( 1) 2b θ + ≤ , then distinct maximal cliques 

intersect in a singular line, a point or the empty set. 
b. if 4≥s  and 1 1/( 1) 1b sθ + ≤ + , then every edge is in at most two maximal cliques. 

2. If 2d ≥ , then the size of a clique C in Γ is bounded by dkC θ/1−≤ . If equality holds 

then every vertex Cx∉  is adjacent to either 0 or 1 /( 1) 1 /d db kθ θ+ + −  vertices of C. No 
vertex of Γ has distance d to C. 

 
Theorem (Hoffman bound). Let Γ  be a distance-regular graph with valency k and an 

eigenvalue 0θ < , then the size of a clique C in Γ  is bounded by 1 / .C k θ≤ +  (C20) 
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2-4 The structure of maximal cliques 
 
The Bose-Laskar argument provide essential information on intersections of maximal cliques of 
a distance-regular graph simply in terms of the parameters of the graphs. (HFu38). In order to 
apply this technique, we usually need some restriction on the parameters; for example, 

1. q must be sufficiently large compare with n in ( , )H n q , and  
2. v must be sufficiently large compare with k in ( , )J v k .  

For the case of the bilinear form graph with intersection parameters 0 ( 1)( 1) /( 1)n db q q q= − − − , 

1 2n da q q q= + − −  and 2 ( 1)c q q= + , 2( , , , ) ( , ( 1) /( 1), , 1)n d dk q q q q q q qγ α β = − − − + + . In 

order that k is larger than the maximum ( , , )p rα β and ( , , )ρ α β γ , this causes some constraints 
over n, d, and q. Moreover each grand clique contains at least 

2( 1) (( ) /( 1))n dk q q q qγ α− − = − − −  
vertices. 
 
In addition to the Bose-Laskar argument, the following theorem (BCN 160) obtained by the 
technique of graph representations provides another mechanism to deal with the tructures of 
maximal cliques. (HFu38) 

… tthe above two numerical constraints on n and d, interpreted as 2
 1[ ]dβ α≥  with 3d ≥  in 

terms of the classical parameters, were needed in both cases because both Sprague and Huang 
used the Bose-Laskar argument. 
 
… instead of the Bose-Laskar argument, the following two theorems in terms of the technique of 

graph representations were used by Huang and Fu [ ] to improve the bound from 2
1[ ]dβ α≥  

to 1[ ]dβ α> , i.e. 2 1n d≥ +  for ( , )qJ n d  and 1n d≥ +  for ( , )qH n d . However, the assumption 

{ }1 max 5,qα + ≥  is still required. (Theorem A(ii)) [HFu 38] 

… the Grassmann graphs ( , )qJ n d  with 3 9, 3n d q≥ ≥ ≥ , or with 3 1 4n d≥ + ≥  whenever 

2q = , and the bilinear forms graphs ( , )qH n d  with 2 6, 4n d q≥ ≥ ≥  have been characterized 

by Sprague [13], Huang [10] respectively. 
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… regarding the classes of maximal cliques as their lines, two incidence structures are derived 
from the distance-regular graph considered in the Main Theorem; note that any two points at 
distance 2 have ( 1)( 1)q α+ + , i.e. 2c  in the theorem, common neighbors in both incidence 
structures. (HFu38) 
 
 
2-5 A pairs of incidence structures derived from Γ   

A maximal clique in Γwith at least nq  vertices is called a grand clique. Let , ( )x y V∈ Γ  be 

adjacent and , 1 2x yA S S= ∪ , where 

1 1 1( ( ) ( )) ,S x y x y= Γ Γ − < >∩ , and 

2 1{ | , is adjacent to each point of }S z z x y S= ∈< >  

Then ,x yA , called the assembly determined by the adjacent pair x, y, is a clique. Let  

L = the set of all grand clique of Γ , and 
A = the set of all assemblies of Γ .  

 
A pair of semilinear incidence structures ( ( ), , )V LΠ = Γ ∈  and ( ( ), , )V AΓ ∈  are considered by 
Huang and Cuyper. The weak 4-vertex condition is used by Huang in the proof of 2.2 and 2.4 of 
[4]. (C20) However, the role played by the weak 4-vertex condition can be replaced by Hoffman 
bound and a result of Brouwer and Wilbrink. Indeed,  

1. Proposition 2.2 of [4] is a direct consequence of the fact that 1(1 ) /( 1)dq q−− −  is an 
eigenvalue of the adjacency matrix (i.e., condition (1) of Theorem 1.3) and the following 
Hoffman bound (see [3]). (C20) 

2. It remains to prove 2.4 of [4] without using the weak 4-vertex condition. 
 
Proposition 2.4 1 1( ( ) ( )) ,x y x yΓ Γ − < >∩ is a clique for any adjacent pair x and y. 
 

Proposition 2.4 is a first step in attaching an affine structure to a subset of the form 

1 1( ( ) ( )) { , }x y x yΓ Γ∩ ∪  for adjacent pair x and y which is essential in determining the structure 
of the subspaces of ∏ . 
 

The above mentioned incidence structures have been considered by Brouwer and Wilbrink 
[1], even under weaker conditions. We then conclude that the incidence structure ∏  satisfies 
the dual of Pasch’s axiom, and hence Prop 2.4 follows. The proof of Theorem 1.3 as in [4] 
continues. Wilbrink and Brouwer [18] proved that certain semi-partial geometries with some 
weak restrictions on parameters satisfy the dual of Pasch’s axiom. (HFu37) 
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Theorem The semi-linear incidence structure ( ( ), , )V L∏ = Γ ∈  satisfies the following 
properties; 

1. each point of Γ  is contained in exactly ( 1) /( 1)dq qγ = − −  lines, and  

2. each pair of adjacent points x, y is contained in exactly one line, denoted by ,x y .  

3. every line contains nq  points; 
4. a point x is adjacent to 0 or q points on a line not containing x; 

5. for any two non-adjacent points x and y we have 1 1( ) ( ) 0x yΓ ∩Γ =  or ( 1)q q + . 

Moreover, Γ  is the adjacency graph of∏ . 
 

We then show that the restriction of ∏ to ,x yA is an affine space of dimension d over ( )GF q , 

which is the first in determining the structure of the subspaces of ∏ . (H6) 
 
 
Theorem The incidence structure ( ( ), , )V AΓ ∈ is a semi-linear incidence structure withΓ as its 
collinearity graph, having many properties in common with ( ( ), , )V AΓ ∈ .  
 

The crucial observation in the proof of Theorem 1.2 (C). With the lines of ∏  playing the 
role of the assemblies for ( ( ), , )V AΓ ∈ , we can prove similar results. (C19) 
 
We recall that the 2-spaces of any assembly are affine plane of order q. To prove that the 
assembly is indeed isomorphic to a d-dimensional affine space over ( )GF q . (C18) The structure 
of 2-spaces of∏  is studied in Section 4 in terms of the structure of assemblies obtained in the 
last section. (H10), we show that any 2-space of ∏ is a net. Further properties about parallel 
lines, which are essential to subsequent development of the structure of 2-spaces of ∏ . (H10) 
 
Any 3-space of ∏  is a ( , ,3)n q -attenuated space is proved in Proposition 5.2 , which provides 
a starting point of the induction argument. We finally show that ( ( ), )V L∏ = Γ  is a d-net. (H13) 
 
Sections 4 and 5 of Huang [12] provide the rest of the proof; precisely, 
－ the definition of parallelism between blocks, and the characterization of planes as net are 

exactly the same of Section 4 of [12]; 
－ the intersection of two subspaces is a subspace (D2) follows from the assumption of 

connectedness of intersection between subspaces. 
－ two planes in a 3-space are disjoint or intersect in a block (D3) is exactly the same as 

Proposition 5.2 of [12]. (B53) 
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3. Searching for cospectral mates and distance regular mates of bilinear forms graphs 
 

Recently, a non-distance-regular cospectral mate and a non-vertex-transitive distance-regular 
mates for the Grassmann graph ( , )qJ n d with 3 6n d≥ + ≥ or with 1 3n d= + ≥  respectively 
were given by E.R. van Dam and J.H.Koolen, and by E.R. van Dam, W.H. Haemer, J.H. Koolen 
and E. Spence respectively. From the view point that ( , )qJ n d is the point graph of the projective 

incidence structures , ;
1

V V
d d

⎛ ⎞⎡ ⎤ ⎡ ⎤
⊇⎜ ⎟⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎝ ⎠

, , ;
1

V V
d d

⎛ ⎞⎡ ⎤ ⎡ ⎤
⊆⎜ ⎟⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦⎝ ⎠

, and the bilinear form graph 

( , )qH n d  is the collinearity graph of the attenuated space ( )1( , ), ( , );d dV W V W−ℑ ℑ ⊇ , we may 
wonder whether similar situations hold for the bilinear forms graphs ( , )qH n d due to the close 
relationship between the projective incidence structures and the attenuated spaces,. 

 
Some necessary backgrounds and some proposal are collected for references. 

 
[DK05] E.R. van Dam and J.H.Koolen, A new family of distance-regular graphs with unbounded 
diameter, Invent. Math. 162, 189-193 (2005) 

[DH 06] E.R. van Dam, W.H. Haemer, J.H. Koolen and E. Spence, Characterizing 
distance-regularity of graphs by the spectrum, JCT A 113 (2006) 1805-1820. 
 
 

3-1 some known facts about the Grassmann graph ( , )qJ n d  

Let n
qV F= , consider the semilinear incidence structures 

1 , ;
1

V V
d d

π
⎛ ⎞⎡ ⎤ ⎡ ⎤

= ⊇⎜ ⎟⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎝ ⎠
, 2 , ;

1
V V
d d

π
⎛ ⎞⎡ ⎤ ⎡ ⎤

= ⊆⎜ ⎟⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦⎝ ⎠
 

 

1. . for the incidence structure 1 , ;
1

V V
d d

π
⎛ ⎞⎡ ⎤ ⎡ ⎤

= ⊇⎜ ⎟⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎝ ⎠
 

a. there are 
n
d
⎡ ⎤
⎢ ⎥
⎣ ⎦

 points and there are 
1

n
d
⎡ ⎤
⎢ ⎥−⎣ ⎦

 lines. 

b. each line is incident to 
( 1) 1
( 1) 1

n d n d
d d
− − − +⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
 points, and each point is incident to 

1 1
d d

d
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
 lines. 

c. two points are collinear if and only if they meet in an ( 1)d − -dimensional subspace. 

d. the point graph is the Grassmann graph ( , )qJ n d  with the adjacency matrix of 

1
t d

NN I⎡ ⎤
− ⎢ ⎥
⎣ ⎦

, where N is the point-line incidence matrix of 1π . 
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2. for the incidence structure 2 , ;
1

V V
d d

π
⎛ ⎞⎡ ⎤ ⎡ ⎤

= ⊆⎜ ⎟⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦⎝ ⎠
 

a. there are 
n
d
⎡ ⎤
⎢ ⎥
⎣ ⎦

 points, and there are
1

n
d
⎡ ⎤
⎢ ⎥+⎣ ⎦

 lines. 

b. each line is incident to 
1 1

1
d d

d
+ +⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 points, and each point is incident to 

( 1) 1
n d n d

d d
− −⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
 lines. 

c. two points are collinear if and only if they together generate a d+1 subspace, and hence they 
meet in an ( 1)d − -dimensional subspace. 

d. the point graph is the Grassmann graph ( , )qJ n d  with the adjacency matrix of 

1
t n d

NN I
−⎡ ⎤

− ⎢ ⎥
⎣ ⎦

, where N is the point-line incidence matrix of 2π . 

3. The lines in 1 2,π π  correspond to the two types of maximal cliques of the Grassmann graph 
( , )qJ n d respectively. 

 

3-2 cospectral mates and distance-regular mate of the Grassmann graph ( , )qJ n d  

 
3-2 a. A non-distance-regular cospectral mate of ( , )qJ n d  

in terms of the line graphs of some incidence structures: 

[DH 06] E.R. van Dam, W.H. Haemer, J.H. Koolen and E. Spence, Characterizing 
distance-regularity of graphs by the spectrum, JCT A 113 (2006) 1805-1820. 

 
1. the Grassmann graph ( , )qJ n d is the line graph of the incidence structure ( , )qI n d : 

Let n
qV F= , consider the semilinear incidence structure 

( , ) , )
1q

V V
I n d

d d
⎛ ⎞⎡ ⎤ ⎡ ⎤

= ⎜ ⎟⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎝ ⎠
 

with the point-line incidence matrix N, 

1. the point graph of ( , )qI n d with adjacent matrix 
1

1
t n d

NN I
− +⎡ ⎤

− ⎢ ⎥
⎣ ⎦

 is isomorphic to 

 ( , 1)qJ n d −  

2. the line graph of ( , )qI n d with an adjacent matrix 
1

t d
N N I⎡ ⎤

− ⎢ ⎥
⎣ ⎦

 is isomorphic to ( , )qJ n d . 

Note that tNN and tN N  have the same nonzero eigenvalues; 
 
2. Adjusting the partial linear space ( , )qI n d to the partial linear space ( , )qC n d while  
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a. the point graph remains the same, and  
b. the number of lines, and the sizes of lines  

remain the same, then the line graph of ( , )qC n d is cospectral with that of ( , )qI n d , i.e., the 
Grassmann graph ( , )qJ n d . 
 

First we define the partial linear space ( , )qC n d for 1t ≥  in general, and then reduce to the 

special case that 1t = . For 2 1, 3n d d≥ − ≥ , let n
qV F= , and 1,..., tH H be (2 2)d − - 

dimensional subspaces of V such that dim( ) 1i jH H d≤ −∩ for i j≠ . Consider the semilinear 
incidence structure 

     1 2( , ) ,
1q

V
C n d L L

d
⎛ ⎞⎡ ⎤

= ⎜ ⎟⎢ ⎥−⎣ ⎦⎝ ⎠
∪  

where  

1 {( , ) | is a 2 dimensional subspace of }iL S i S d H= −  
the line ( , )S i consists of all 1d −  dimensional subspaces of iH  containing S; 

2 { | is a dimensional subspace not contained in any }iL T T d H=   
the line T consists of all its 1d −  subspaces. 

 

More explicitly, 

lines 1( , ), ( , )S i T j L∈ are adjacent in the line graph, 
if i j=  and S T∪  spans a ( 1)d − dimensional subspace, or 
if i jH H∩  is a ( 1)d −  dimensional subspace containing S T∪ . 

lines 1( , )S i L∈  and 2T L∈ are adjacent  
 if S T⊆ and moreover T intersect iH in a ( 1)d − dimensional subspace; 

lines '
2,T T L∈  are adjacent if they intersect in a ( 1)d − dimensional subspace. Q.E.D. 

 
Theorem The line graph of the semilinear space ( , )qC n d is cospectral with ( , )qJ n d , which is not 
distance-regular. 
 

For 1t = , ( ,1)U and W are not adjacent, and have at least 
2

1 1
d⎡ ⎤ ⎡ ⎤

⋅⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

many common neighbors, 

while 
2

2

2
1

c ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

for ( , )qJ n d , the line graph of ( , )qC n d  is a non-distance-regular cospectral 

with the Grassmann graph ( , )qJ n d . 

 
 
Remark: If 2n d≥ , many (if not all) of the constructed cospectral graphs are not distance-regular, 
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for example: there is a d-dimensional subspace W that intersects 1H (say) in a ( 2)d − dimensional 
subspace U and not contained in iH  for each i. 
 
Question: Do similar arguments work for the bilinear forms graphs in terms of the attenuated 
spaces?   
 
There is a correspondence between bipartite regular graphs with 5 eigenvalues and so called 
partial geometric designs. Examples of the latter are transversal designs, and these form the key 
to the construction of graphs cospectral with distance-regular antipodal covers of complete 
bipartite graphs.  
 
The incidence structure between the two biparts of such a cover is a (square) resolvable 
transversal deigns (also called a symmetric net). A transversal design is a design of points and 
lines, such that all blocks have the same size, each point is in the same number of blocks, and 
such that the points can be partitioned into groups, such that each block intersects each group in 
one point, and such that two points from different groups meet in a constant numberμ points. 
 
Lemma [Lemma 9.3.2, BCN 269] 
Let V be a vector space of dimension n over ( )GF q , and 0 ,i j n≤ ≤ , then 

a. the number of m-subspaces is 
n
m
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

b. if X is a j-spaces of V, then there are precisely ij n j
q

i
−⎡ ⎤

⎢ ⎥
⎣ ⎦

 i-spaces Y in V such that 0X Y =∩ . 

c. if X is a j-spaces of V, then there are precisely ( )( )i m j m n j j
q

i m m
− − −⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
 i-spaces Y in V such that 

X Y∩  is an m-space. 
 

 

3-2 b: a non-transitive distance-regular mate of the Grassmann graph (2 1, )qJ e e+  
[DK05] E.R. van Dam and J.H.Koolen, A new family of distance-regular graphs with unbounded 
diameter, Invent. Math. 162, 189-193 (2005) 

The case ( , ) (2 1, )n d e e= +  

Let 2 1e
qV F +=  with a fixed hyperplane H, consider the semilinear incidence structure 

3 1 2, ;#
V

L L
e

π
⎛ ⎞⎡ ⎤

= ⎜ ⎟⎢ ⎥
⎣ ⎦⎝ ⎠

∪  

where  

1 { |  but }
1

V
L A A A H

e
⎡ ⎤

= ∈ ⊄⎢ ⎥+⎣ ⎦
, the line 1A L∈ is incident to its e - dimensional subspaces; 
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2 1
H

L
e
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 , the line 2B L∈  is incident to the e-dimensional subspaces of H containing B. 

 

Note that in the semilinear incidence structure 3 1 2, ;#
V

L L
e

π
⎛ ⎞⎡ ⎤

= ⎜ ⎟⎢ ⎥
⎣ ⎦⎝ ⎠

∪  

1. there are 
2 1e

e
+⎡ ⎤

⎢ ⎥
⎣ ⎦

 points and 
2 1e

e
+⎡ ⎤

⎢ ⎥
⎣ ⎦

 lines; (check: 
2 1

1
e

e
+⎡ ⎤

⎢ ⎥+⎣ ⎦

2
1

e
e
⎡ ⎤

− ⎢ ⎥+⎣ ⎦

2
1

e
e
⎡ ⎤

+ ⎢ ⎥−⎣ ⎦

2 1e
e
+⎡ ⎤

= ⎢ ⎥
⎣ ⎦

?) 

2. each line is incident to 
1

1
e +⎡ ⎤
⎢ ⎥
⎣ ⎦

 points, and each point is incident to 
1

1
e +⎡ ⎤
⎢ ⎥
⎣ ⎦

 lines; 

3. two points are collinear if and only if they meet in an ( 1)e− -dimensional subspace. 

4. its point graph is the Grassmann graph (2 1, )qJ e e+ with 
1

1
t e

NN I
+⎡ ⎤

− ⎢ ⎥
⎣ ⎦

 as its adjacency 

matrix where N is the point-line incidence matrix of 3π .  

6. its the line graph (or called the block graph), with 
1

1
t e

N N I
+⎡ ⎤

− ⎢ ⎥
⎣ ⎦

 as its adjacency 

matrix, has the same spectrum as that of the Grassmann graph (2 1, )qJ e e+ , 

because tNN and tN N  have the same nonzero eigenvalues. 
 

Theorem [ DK05] 
Let G be the graph with vertex set  

all ( 1)e+ -dimensional subspaces of V not contained in H, together with  
the ( 1)e− -dimensional subspaces of H, where 

1. two vertices of the 1st kind are adjacent if they intersect in an e-dimensional subspace; 
2. a vertex of the 1st kind is adjacent to a vertex of the 2nd kind if the first contains the second;  
3. two vertices of the 2nd kind are adjacent if they intersect in an ( 2)e− dimensional subspaces.  

Then G is distance-regular with the same parameters as that of the Grassmann graph (2 1, )qJ e e+ , not 
vertex-transitive and hence not isomorphic to (2 1, )qJ e e+ . 

1. G is distance - regular 
a. a graph cospectral with a distance-regular graph Γ  with diameter e is itself distance 

regular if for every vertex the number of vertices at distance e is the same as in Γ ; 
b. since ek  in G is indeed the same as in the Grassmann graph, and hence G is 
distance-regular; c. the parameters of a distance-regular graph follows from its spectrum, G 
has the same 
  parameters as (2 1, )qJ e e+ . 

2. G is not vertex-transitive: 

Question: Do similar arguments work for (2 , )qJ e e ? ( 2, ), ( 1, )q qH d d H d d+ + or ( , )qH d d ? 
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3-3 the bilinear forms graph ( , )qH n d  

Let n d
qV F += , and 

V
W

n
⎡ ⎤

∈ ⎢ ⎥
⎣ ⎦

; moreover let  

( , ) { | , with {0}}d

V
V W A A A W

d
⎡ ⎤

ℑ = ∈ =⎢ ⎥
⎣ ⎦

∩ , 

1( , ) { | , with {0}}
1d

V
V W A A A W

d−

⎡ ⎤
ℑ = ∈ =⎢ ⎥−⎣ ⎦

∩  

consider the semilinear incidence structure ( )1 1( , ), ( , );d dV W V Wπ −= ℑ ℑ ⊇ , called attenuated 
spaces. 

 
 
Note that 

1. there are ndq  points and ( 1)

1
n dd

q −⎡ ⎤
⎢ ⎥
⎣ ⎦

 lines in the semilinear incidence structure; 

2. each line is incident to nq  points, and each point is incident to 
1 1

d d
d
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
 lines; 

3. two points are collinear if and only if they meet in an ( 1)d − -dimensional subspace. 

4. the point graph of 1π  is the bilinear forms graph ( , )qH n d with 
1

t d
NN I

d
⎡ ⎤

− ⎢ ⎥−⎣ ⎦
as its 

adjacency graph where N is the point-line incidence matrix of 1π .  
.  
  
 
3-4 candidates for distance-regular mate of the bilinear forms graphs ( , )qH n d  
(all need to be further checked) 

 
3-4 a: Searching for cospectral mates of the the bilinear forms graphs    

 
3-4 b: Searching for distance regular mates of the the bilinear forms graphs    

The case ( , ) ( 1, )n d d d= +  

Let 2 1d
qV F += , 

1
V

W
d
⎡ ⎤

∈ ⎢ ⎥+⎣ ⎦
 and 

2
V

H
d

⎡ ⎤
∈ ⎢ ⎥
⎣ ⎦

 with W H⊆ ; moreover let 

( , ) { | , and {0}}i

V
V W A A A W

i
⎡ ⎤

ℑ = ∈ =⎢ ⎥
⎣ ⎦

∩ , and 

    { | , }
1

V
B B B H

d
⎡ ⎤

ℜ = ∈ ⊄⎢ ⎥+⎣ ⎦
 (the condition B H⊄  needs double checks!) 

Consider the semilinear incidence structure  

( )2 1( , ), ( , );#d dV W H Wπ −= ℑ ℜ ℑ∪ . 
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(The condition B H⊄  considered in ℜ  needs double checks, one check point is that 

1| | | ( , ) |d H W−ℜ + ℑ  = ndq .) 

Note that 
1. there are ndq  points and … lines in 2π ; 

2. each line is incident to nq  points, and each point is incident to 
1 1

d d
d
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
 lines in 2π ; 

3. two points are collinear in 2π  if and only if they meet in an ( 1)d − -dimensional subspace. 

4. the point graph of 2π  is the bilinear forms graph ( , )qH n d with 
1

t d
NN I

d
⎡ ⎤

− ⎢ ⎥−⎣ ⎦
 as its 

adjacency matrix where N is the point-line incidence matrix of 2π . 

5. the line graph G of 2π  is defined on the vertex set consisting of all ( 1)d + -dimensional 
subspaces of V not contained in H, together with the ( 1)d − -dimensional subspaces of H 
meeting trivially with W, where 

1. two vertices of the 1st kind are adjacent if they intersect in an e-dimensional subspace; 
2. a vertex of the 1st kind is adjacent to a vertex of the 2nd kind if the first contains the 2nd;  
3. two vertices of the 2nd kind are adjacent if they intersect in an ( 2)d − dimensional subspaces. 

 
Claim: the line graph G is distance-regular with the same parameters as that of the bilinear form 
graph ( 1, )qH d d+ , not vertex-transitive and hence not isomorphic to ( 1, )qH d d+ . 

 

3.5 A non-distance-regular cospectral mate of ( , )J n d   
E.R. van Dam, W.H. Haemers, J. H. Koolen, E. Spence,  
Journal of Combinatorial Theory Series A 113 (2006) 1805-1820   

A constructions of cospectral mates in terms of switching tool by Godsil and McKay: 
 
Theorem [Godsil switching G82]Let G be a graph and let ∏ = 1 2{ , , ,..., }mD C C C  be a partition 
of the vertex set of G. Suppose that  

1. 1 2{ , ,..., }mC C C  is a regular partition of ( )V G D− ;  
2. every vertex x D∈ and every {1,2,..., }i m∈ , x has either 0, 1

2 | |iC  or | |iC  neighbors in iC .  
Make a new graph H as follows: 
 for each x D∈ and {1,2,..., }i m∈ such that x has 1

2 | |iC  neighbors in iC , delete the 
corresponding 1

2 | |iC edges and join x instead to the 1
2 | |iC other vertices in | |iC . 

Then G  and H have the same spectrum. 
 
Theorem The Johnson graph ( , )J n d  with 3 4n d≥ + ≥  has a non-distance regular cospetral 
mate. 
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Question: Does Godsil switching preserve the walk-regularity of graphs? 
 
Reference: 

[BI84] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, 
Benjamin/Cummings 1984 

[BM03] G. Bonoli, N. Melone, A Characterization of Grassman and Atteenuated Spaces as 
(0, )α -Geometries, Europ. J. Combinatorics (2003)24, 489-498. 

[Cu92] Hans Cuypers, Two Remarks on Huang’s Characterization of the Bilinear Forms Graphs 
Europ. J. Combinatorics (1992)13, 33-37. 

[CW06] F. de Clerck, S. De Winter E. Kujiken and C. Tonesi, Distance-Regular (0, )α -Reguli, 
Designs, Codes and Cryptography 38 (2006) 179-194. 

[FH94] T.S. Fu and T. Huang, A Unified Approach to a Characterization of Grassamn graphs and 
bilinear forms graphs, Europ. J. Combinatorics (1994)15, 363-373. 

[H87] Tayuan Hunag, A Characterization of the Association Schemes of Bilinear Forms Europ. J. 
Combinatorics (1987)8, 159-173 

[HW04] Wen-ling Huang and Zhe-Xian Wan, Adjacency Preserving Mappings of Rectangular 
Matrices, Beitrage zur Algebra und Geometrie, Contribution to Algebra and Geometry Volume 
45(2004) No.2, 435-446 

[Me99] Klaus Metsch, On a Characterization of Bilinear Forms Graphs, Europ. J. Combinatorics 
(1999)20, 293-306. 

[RS79] D.K.Ray-Chaudhuri and Alan Sprague, A Combinatorial Characterization of Attenuated 
Spaces , Util. Mathematics 15 (1979) 3-29. 

[Sp81] Alan P. Sprague, Incidence Structures whose Planes are Nets, Europ. J. Combinatorics 
(1981)2, 193-204 

[W96] Zhe-Xian Wan, Geometry of Matrices: In Memory of Professor L.K. Hua (1910-1985), 
443-453 in: Progress in Algebraic Combinatorics, Advanced Studied in Pure Mathematics 24, 
1996.  
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