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Project: Metrical results for Diophantine approximation in positive
characteristic

by

Michael Fuchs

1 General

This is the final report on the National Science Council project “Metrical results for Diophantine
approximation in positive characteristic” with grant number NSC-98-2115-M-009-009 and term
from August 1st, 2009 to July 31st, 2010.

Before presenting the outcomes of this project, we shortly summarize them.

e All conjectures (as well as generalizations) of the project proposal have been established.

e The two papers [2] and [3] contain the main findings of this project (preprints of the papers
are attached to this report). The first one appeared this year in Acta Arithmetica and the
second one was accepted by the same journal.

2 Results

In order to describe our results, we need some notations. First, let [, denote a finite field with ¢
elements. Moreover, denote by F,[T’] the polynomial ring over F, and by

F,(T™)) = {f = ZaiTi :n€Z,a; €Fya, # O} u {0}

i<n

the field of formal Laurent series over IF,. We define a norm in the usual way as |f| = ¢" if f # 0
and |0| = 0. By restricting this norm to the set

L={feF,(T7) : IfI<1}

one obtains a compact Abelian group. Hence, there exists a unique, translation-invariant probabil-
ity measure which we are going to denote by m.
Several recent papers have studied the following Diophantine approximation problem

P 1
'f—@’ < iy @ monie, degQ = n, ged(P,Q) = 1, M

where f € L is random (with respect to m) and [,, is a sequence of non-negative integers.
In order to put our results into context, we highlight some recent results. First, in [4] the
following strong law of large number with error term was established.

Theorem 1 (K. Inoue and H. Nakada). The number of solutions of (1) with deg () < N satisfies
-1
qqu(N) + O ((U(N)2(log B(N))P/*+)  as.
with an arbitrary € > 0 and W(N) == 3" - q "™

1



Moreover, in [5] the authors studied (1) with the condition ged(P,Q)) = 1 dropped. They
proved the following result.

Theorem 2 (H. Nakada and R. Natsui). Let l,, be non-decreasing. Then, under some further tech-
nical conditions on l,,, the number of solutions of (1) without the condition ged(P, Q) = 1 and
deg Q@ < N is a.s. asymptotic to V(N).

Note that compared to the previous result, the conditions in Theorem 2 are more restrictive and
the result is less precise. Our starting point of this project was to improve this result and extend it
to a more general setting.

Inhomogeneous Diophantine Approximation. Consider the inhomogeneous Diophantine ap-
proximation problem

g+P 1
J— <
Q q2n+ln ?

where f € L is random, g € LL and [, is a sequence of non-negative integers.
Using an ingenious method of W. M. Schmidt [6], we proved the following result in [2].

‘f () monic, deg ) = n, 2)

Theorem 3. For any fixed g € L, the number of solutions of (2) with deg () < N satisfies
U(N) + O ((T(N))*(log W(N))*™) a.s.
with an arbitrary € > (.
This result is remarkable because of the following reasons.

e For g = 0, it improves upon Theorem 2 by removing ALL restrictions on [,, and providing
an error term.

e For g = 0, it completes the result in [1] where Diophantine approximation of linear forms
with at least two terms was studied (our result covers the missing case of only one term).

e The error term is better and the conditions are less restrictive as in the corresponding result
in the real case; see [7].

Then, we also considered (2) with several restrictions on ().
Restricted Diophantine Approximation. Here, we proved a variety of results in [2]. We just

state some consequences of our results; for more consequences and general results the reader is
referred to [2].

Theorem 4. (i) Let C,D € F,[T] with degC' < deg D. The number of solutions of (2) with
Q = Cmod D and deg () < N satisfies

,—,;‘\MN) + O (B(N)2(log B(N))*)  aus.

with an arbitrary € > 0.



(ii) The number of solutions of (2) with () square-free and deg () < N satisfies

T u(V)+ O (W) Pog NPF)  as

with an arbitrary € > 0.

Moreover, if restricting ) to the set of irreducible polynomials, we even have a better error
term.

Theorem 5. Let

Uy (N) =) n;ln.

n<N
Then, the number of solutions of (2) with () irreducible and deg () < N satisfies

Ui(N) + O ((T1(N))/2(log ¥y (N))*27) a.s.

with an arbitrary € > 0.

Simultaneous Diophantine Approximation. Now, consider the simultaneous Diophantine ap-
proximation problem

P; 1
fj—a <q+l<] , @ monic, deg@Q =n, j=1,...,d, 3)
where ( fi,---, fa) € L x -+ x L is random (with respect to the m-fold product measure of m)
and 13/ are sequences of non-negative integers. Moreover, set [,, Z?zl 19,

Using Schmidt’s method once more, we proved the followmg result which generalizes Theo-
rem 3 above (for g = 0).

Theorem 6. Let [, > n. Then, the number of solutions of (3) with deg () < N satisfies
T(N) + O ((F(N)*(log (N))*)  as.
with an arbitrary € > 0.

Moreover, in [3], we considered (3) with the additional condition gcd(Pj, Q)=1

Theorem 7. Let I, > n. Then, the number of solutions of (3) with gcd(P;, Q) = 1 and deg Q < N
satisfies

oV (N)+ O ((\IJ(N))1/2+€) a.s.
with an arbitrary € > 0. Here,

Q1)  p(Qa) 1
. 0
=2 > Q1| 1Qa| Nlem(Q1, ..., Qq)| -

1 monic d monic

where (i(-) is the Moebius |1 function.

This result generalizes Theorem 1 to the multi-dimensional setting. Note, however, that the
error term in our result for d = 1 is weaker than the error term in Theorem 1. This is due to the
fact that we use a completely different (and more involved) method of proof (the method of proof
of Theorem 1 relied on continued fraction theory which is not available in higher dimensions).
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3 Summary

In this project, we established several new results concerning inhomogeneous Diophantine ap-
proximation, restricted Diophantine approximation and simultaneous Diophantine approximation
in the field of formal Laurent series over a finite base field. In particular, we were able to verify
all conjectures from the project proposal. Moreover, our results improve and generalize several
previous results in this area. Finally, our results hold under less restrictive assumptions and are
more precise compared to the corresponding results over the real number field.
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Metrical Theorems for Inhomogeneous Diophantine
Approximation in Positive Characteristic

Michael FUCHS

Dedicated to Prof. Harald Niederreiter
on the occasion of his 65th birthday

Abstract

We consider inhomogeneous Diophantine approximation for formal Laurent series over a finite base
field. We establish an analogue of a strong law of large numbers due to W. M. Schmidt with a better
error term than in the real case. A special case of our result improves upon a recent result by H. Nakada
and R. Natsui and completes a result of M. M. Dodson, S. Kristensen, and J. Levesley. Moreover, we
prove various results for inhomogeneous Diophantine approximation with restricted denominators.

1 Introduction

Several recent studies have been concerned with the metric theory of Diophantine approximation in the
field of formal Laurent series; for some references see below. The aim of this paper is to make some
further progress on the inhomogeneous Diophantine approximation problem. More precisely, we will
establish some analogues of results from the real number case (which in the sequel will be referred to
as the "classical case”) with some improvements which are arising from the more simple nature of the
metric structure of the formal Laurent series field.

First, let us fix some notation. Subsequently, we will denot& pa finite field withg elements; the
polynomial ring overF,, the field of rational functions ovéf,, and the field of formal Laurent series
overF, will be denoted byF, [T, F,(T), andF,((T~1)), respectively. Fof € F,((T~!)) with

f=a "+ an T 4, a, € Fy, a, #0, n € Z,

we defing| f| := ¢™ and|0| := 0. Itis easily checked that | is a norm which satisfies the ultra-metric
property, i.e.,
|f — gl < max{|f],|g[}

with equality if | f| # |g|. This property in particular implies that two balls (defined in the standard
way) are either disjoint or they are contained in each other. Finally, we set

L={feF,((T™"):[fl <1}.

Note thatl. equipped with the restriction of the normltois a compact abelian group. Consequently,
there exist a unique, translation-invariant probability measure which will be denoted by

Key words:formal Laurent series, inhomogeneous Diophantine approximation, Diophantine approximation with restricted
denominators, strong laws of large numbers, Schmidt's method.
2000Mathematics Subject Classificatioh1J61, 11383, 11K60.
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In the following, we will be concerned with the inhomogeneous Diophantine approximation prob-
lem: for f, g € IL consider the Diophantine inequality

1 . .
\Qf—Q—P’<W,Q|5m0mG deg Q@ =n, @

whose solutions are pairs of polynomial, Q) € F,[T] x F,[T] with @ # 0 (throughout this work
we will use (-, -) to denote pairs, whereds, -) is reserved for thecd). Here,l,, is a sequence of
non-negative integers. In particular, note thajust depends odeg Q.

In a recent paper, C. Ma and W.-Y. Si] [nvestigated the above problem and proved a Khintchine
type0-1 law for the number of solutions if botfiandg are chosen randomly (with respecttg from
L. Their result is an analogue of a result of J. W. S. Cass2lEgm the classical case, where this
situation is sometimes called the "double-metric” case. Moreover, the following two "single-metric”
cases were considered over the real number field as well (e.g1,§emf [L2]): (S1) fix f and choose
arandomy € L; (S2) fix g and choose a randoghe L.

In this paper, we are interested in stochastic properties of the solution sgtfof (f, g such that
the number of solutions is infinite. More precisely, we will derive strong laws of large numbers with
error terms for the number of solutiok®, @) of (1) with deg @ < N. Such results have so far only
been established for (S2) with= 0; see [] and H. Nakada and R. Natsui][ Here, we will further
improve these results and extend them to gengr&o, the main part of the paper will focus on the
case (S2). The other "single-metric” case and the "double metric” case exhibit a somehow different
behavior and will be only briefly discussed in the final section.

From now on, leyy € LL be fixed. Moreover, define

U(N) =) 1

ln
n<N q
Ouir first result reads as follows.

Theorem 1. The number of solutions ofwith 0 < deg @ < N satisfies
T(N)+ 0 (qf(N)l/?(log \I/(N))2+€> . as,

wheree > 0 is an arbitrary constant.

This result is an analogue of a result of W. M. Schmidf][from the classical case. In fact, we will
use a variant of Schmidt's method to prove it. Note, however, that the error term is better than the one
from the classical case. Moreover, no monotonicity assumptidp @required.

For g = 0 the improved error term was also achieved in the classical case; see G. Haijman |
The result in this special case improves upon Theorem 3]iby removing some further technical
conditions onl,, and providing an error term. Moreover, our result completes the main resul} in [
which was concerned with Diophantine approximation of linear forms with at least two terms. Here,
the missing case of only one term is considered. As in the real case, the current situation turns out to
be more complex, a claim which is further supported by the fact that the resdlthiag a better error
term; for a discussion of this phenomena in the real caselske [

In fact, our method of proof can be used to obtain even more general results. More precisely, the
method will allow us to investigate inhomogeneous Diophantine approximation with restricted denom-
inators as well. Therefore, replach py

1 . .
’F(Q>f—9—P‘<anln7 @ is monig deg @ = n, 2
wherel,, is as above and' is a function fromF,[7] into F,[T7].

2



First, we will fix some further notation. Let

F :={Q : Q monic andF'(Q) # 0}

and denote byF,, the subset of all polynomial® € F with deg@ = n. Subsequently, we will
only considerF’ that satisfy the following property: fof, Q" € F with deg@Q < deg@’, we have
deg F(Q) < deg F(Q"). Finally, set

(N, F)= ) #

n—+l,
n<N q

Then, the following generalization of the above result holds.

Theorem 2. Assume thaF'(Q) is either@ or 0. Then, the number of solutions @) with @) € F and
0 < deg@ < N satisfies

U(N, F) + O ((B(N)2 (log W(N)**) . ass, €)

wheree > 0 is an arbitrary constant.

In particular, the latter result gives a meaningful asymptotic formula whenever

lim inf #f” > 0. (4)

n—oo q

Two important special cases are collected in the following corollary, the first of which has to be com-
pared with the results irf].

Corollary 1. (i) LetC, D e F,[T] withdegC < deg D. Then, the number of solutions (@f) with
Q =C (D)and0 < deg@ < N satisfies

1

oYM +0 ((\I/(N))l/z (log m(zv))“) . as, (5)

wheree > 0 is an arbitrary constant.
(i) The number of solutions ¢f) with @ monic, square-free andl < deg @ < N satisfies

‘1;1\1/(N) + O ((BV)? (og B(N)), as. (©)

wheree > 0 is an arbitrary constant.

Note that condition4) is not satisfied for some interestitfsuch as the set of monic, irreducible
polynomials. This situation, however, turns out to be more simpler and we can obtain a strong law of
large numbers with an even better error term. Therefore, we first prove an analogue of Theorem 3.1 in
[7] which holds for generak'.

Theorem 3. The number of solutions ¢2) with @ € F and0 < deg @ < N satisfies
U(N, F) + O ((Bo(N)2(log Wo(N)*2+) , as,

wheree > 0 is an arbitrary constant and

1 F(Q),F(Q
W)=Y oy Yy el

n<N msn Q€Fn Q'E€Fm




This result entails the following corollary.

Corollary 2. (i) Let

Uy (N) =) !

e
n n
n<N q

Then, the number of solutions @f) with  monic, irreducible and) < deg @ < N satisfies
3 (N) + O (B1(N)2 (log W1 (N))/) . as,

wheree > 0 is an arbitrary constant.
(i) LetF(Q) = Q! witht > 2. Then, the number of solutions @) with 0 < deg @ < N satisfies

U(N)+ O ((\II(N))W (log xI/(N))?’/?*E) . as,

wheree > 0 is an arbitrary constant.

It is worth mentioning that Theore®does not give a meaningful result in the situations discussed
in Theoreml and Corollaryl. Consequently, part (ii) of Corollargshows that the complexity of= 1
andt > 2 are rather different.

We conclude the introduction by giving a short plan of the paper. In the next section, we will prove
a weak independence result which will form the crucial step in deriving all results above. In particular,
Theorem3 will follow rather quickly from this result and this will be demonstrated in the next section
as well. Then, in SectioB, we will show how to amend Schmidt's method to the current situation to
obtain a proof of Theorerh and Theoren2. In the final section, we will then briefly discuss the other
"single-metric” case and the "double-metric” case.

Notation.All logarithms appearing throughout this work will only attain values, i.e.,log, = should
be interpreted amax{log, =, 1}. We will use Landau’s notatiofi(z) = O(g(x)) as well as Vino-
gradov’s notatiory (z) < g(z) to indicate that there exist a const@ht> 0 such thatf(x)| < C|g(x)|
for all z sufficiently large.

2 A weak independence result with applications

We start by proving a technical lemma that constitutes a refinement of Lemma 2]3 in [

Lemma 1. Let@, Q' be two non-zero polynomials with= deg Q, m = deg Q' andd = deg(Q, Q).
Let! be a non-negative integer. Then, the numbeof pairs (P, P') with deg P < n,deg P’ < m and

1
qm—H

‘g—i—P_g—i—P’
Q Q'

()

is given by
N =¢" ifn>1+d;
< ¢4, ifn<l+d.

Proof. First, (7) can be reformulated to
9(Q — Q)+ PQ' — P'Q| < ¢" ",
Next, setQ = (Q,Q’) - Q andQ’' = (Q,Q’) - Q'. Then,

9(Q' = Q) + PQ' = P'Q| < ¢" 1.

4



Let —C denote the polynomial part gf Q" — Q). Now, we will consider two cases.
First, assume that < [ 4+ d. Then, a necessary condition f@?, P’) being a solution of the above
inequality isPQ’ — P'Q = C. Observe that foP with deg P < n and

PQ = C modQ, (8)
we havePQ’ = C + P'Q with some polynomiaP’ and
deg P' +degQ = deg(PQ' — C) < deg P +deg Q' < n+degQ'.

Consequentlyleg P’ < m. So, eithetN = 0 or N equals the number of solutions @) (which isq®.

Next, we considen > [ + d. Here, we can argue similar as above, the only difference being
that N equals the number of solutions &) (with C' replaced byC' + D for all polynomialsD with
deg D < n —1— d. ConsequentlyN = ¢"~*. |

Next, we define fo) € F,, the set

Fg :={f €L : f satisfieq2) with someP € F,[T}.
Obviously, Fy is the union of F'(@)| disjoint balls. Consequently,

1
m(Fg) = P

Moreover, we have the following weak independence result.
Proposition 1. LetQ € F,,, Q" € F,, andd = deg(F(Q), F(Q')). Then,
m(FQ N FQ/) < m(FQ)m(FQ/) + qdidEgF(Q)inil".

Proof. First assume that + [, + deg F(Q) > m + I, + deg F(Q'). Then, all balls which make up
Fg have radius at most as large as the radius of the balls which makguso, by the ultra-metric
property of the norm, we have to count how many of the+ P)/F(Q) are contained in balls with
center(g + P')/F(Q’) and radiug;— de¢ F(@)—m—lm i e. we have to count the number of solutions of

1
qdeg F(Q)+m+lm

F+P_9+P
FQ)  F(Q)

The latter number is given by the above lemma. We first consider the caséogith( Q) > m+1,,, +d.
Here, the number of solutions equaf$s (@) —m—im So. we obtain

F@lg " 11
|F(Q)|gnttn  gntin gmtim

= m(Fg)m(Fy).

Hence, the assertion holds in this case. Now, consider the second caselwghB(€)) < m + 1,,, +d.
Then, again by the above lemma,

d
m(FQ N FQ/) < m.
Hence, the claim is proved in this case as well.

Next, if n+1, deg F(Q) < m+1,,+deg F(Q'), we obtain from the arguments above the claim with
the second term replaced h§de8 (@) —m~lm Thijs term is trivially bounded by?—deg F(@)—n—ln_
Hence, the proof of the proposition is finished.

The above proposition will turn out to be one of the key ingredients in the prove of our results. The
other key ingredient is the following important lemma which is a standard tool in metric number theory.
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Lemma 2 (Lemma 1.5inT]). Let¢,(w) be a sequence of non-negative random variables defined on
a probability space(, B, P). Lety,, andy,, be sequences of real numbers with

Define

=Y ¢n

n<N

and assume thab(N) — co asN — oo. Finally, assume that
2
El Y G—-va] < D ¢n
M<n<N M<n<N

for all non-negativeM < N. Then,

D baw)=> ha+0 ((@(N))l/Z(log B(N))3/2He 4 maxzpn) . as,

n<N
n<N n<N
wheree > 0 is an arbitrary constant.

As a first application of this lemma, we show how to deduce The@&&om it. Therefore, set

&n = #{(P,Q) : (P, Q) is a solution of ®)}.

This sequence of random variables satisfies the following properties.

E (Z gn) = U(N, F).
n<N
(i) We have,

(S i)« g s p x e

Proposition 2. (i) We have,

M<n<N m<n QeF, Q' €Fm
for all non-negative integerd/ < N.

Proof. Part (i) follows from

fn = Z 1FQ

QEFn

and basic properties of the mean value.
For part (ii), we also use the above representation which yields

M<n<N M<n<N M<m<n—1Q€Fn,Q €Fm

+ > Yo m(Fg N Fy) — m(Fo)m(Fg).

M<n<N QeFn, Q' €Fm

2
( D, G- an) =2 ) > Y. mFgn Fo) —m(Fo)m(Fg)

Applying Propositionl immediately yields the claimed resultl

6



Now, we can prove Theore

Proof of TheorenB. If (N, F) — ¢ > 0asN — oo, the result follows by a standard application of
the Lemma of Borel-Cantelli. Hence, we can assume¥h@, ) — oo asN — oo. But then the
claim follows from the Proposition above together with Lemzna l

Corollary 2 follows from the last result as follows.

Proof of Corollary2. For part (i), we use the well-known result (see Chapter 3jn [

n

#Fu =1+ 0™, (©)
wheree < 1 is a suitable constant. Hence,
U(N,F)=T1(N)+O(1).

Moreover,

To(N) = Y M 3 Z Y. Q)< u(W),

nSN m<n de deg Q’:m
@ monic, lrredUClbleQ’ monic, irreducible
where the last line again follows b9)( This proves the claim.

As for part (ii), first observe tha#F,, = ¢" and hencel/( N, F) = ¥(N). The bound for¥( (V)
is slightly more tricky. First,

Wo(N) = Z t—i—l)n-l—ln Z Z Z

n<N q m<n degQ=n degQ’'=m
Q monic Q' monic

<) q(t+1)n+ln > Z ’D|t

n<N degQ=n D|Q
@ monic D monic

Next, we have

Z Z ’D‘tl Z Z "D‘tl—q thl <<qtn

degQ=n D|Q d<n deg D= d d<n
Q monic D monic D monic

Plugging this into the estimate above yielllg(N) < ¥ (V). Hence, the result is established.

3 Schmidt’'s method in positive characteristic

Note that the method from the last section does not yield a meaningful result for the'@se- Q.
More specifically, it is easily checked that the error term from the proof of part (ii) of Cordtidoy
t = 1 would be larger than the main term. The same phenomena also occurs in the real case, where this
problem was overcome by an ingenious method introduced by W. M. Schmitt]iad [L1]. In this
section, Schmidt’s method will be amended to the current situation.
We start with a couple of (easy) lemmas.

Lemma 3 (Dirichlet’s principle in positive characteristicjor all non-zero polynomial§) there exist
polynomials4, B with0 < |A| < |Q|and(A, B) = 1 such that

o3l

g— — — .
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Proof. This is proved as in the classical casé.

Observe thatd and B in the previous lemma just depend deg Q. Subsequently, for any given
non-zero polynomiaf), we will choose a fixed paifA, B) satisfying the assumption of the previous
lemma for a polynomiaf)’ with deg Q' = |deg Q/2].

Next, we define the following two sets

S(Q;k) ={P :deg P < deg@ anddeg(P, Q) < k},
S*(Q; k) ={P :deg P < deg@ anddeg(AP + B, Q) < k},

whose cardinalities will be denote y(Q; k) andy*(Q; k), respectively.

Lemma 4. We have,

O (Q: k) > p(Qs k).

Proof.First, letQ = Q1Q2, where every prime factor @} is also a prime factor ol and(Q2, A) = 1.
Then, we have

P(Q; k) < @(Qu; k)p(Q2; k) < [Q1lp(Q2; k).

Now, note thatA P + B with deg P < deg Q)2 are all different modul&)2. Hencep(Q2; k) = #{ P :
deg P < deg Q2 anddeg(AP + B, Q2) < k}. Finally notice that

Consequently,
0" (Q; k) = |Q1] - #{P : deg P < deg Q2 and deg(AP + B, Q2) < k}.

Combining everything yields the claimed resull.

Next, we fix F'(QQ) = Q. Moreover, as in the last section, it suffices to consider the case where
U(N) — oo asN — oo. The method of the last section did not work when directly applied to the
sequencé,,. Therefore, we will approximate this sequence by the following one

&o=#{(P,Q): PeS*(Q;T'(n)) and(P, Q) is a solution of 1) },
wherel'(n) = [log, ¥(n)?|. Moreover, similar as in the last section, we define
Fg = {f € L: f satisfies {) with someP’ € S*(Q;T'(n))}.

& = Z 1r,

deg Q=n
@ monic

Then,

and consequently

2n-+ln,
deg Q=n
@ monic

The next result shows that the mean values of the partial sug)said¢ are very close to each
other.

Proposition 3. We have,

IE( 3 5;;) > o

M<n<N M<n<N

for all non-negative integer8/ < N.



Proof. First, observe that

1 . — o*(Q;T(n
s ¥ oo F 8] 2w reggn

M<n<N M<n<N M<n<N (ggm%nré
<y q" —p(Q;T'(n))

q2n+ln ’

M<n<N degQ=n
@ monic

where we have used the above lemma in the last step. Next, it is well-knowrb[stef the number
of pairs(P, Q) with deg P = | < deg @ = n, P, @ monic anddeg(P, Q) = k < L is given by

qn+l—k <1 - 1) _
q

Consequently,
n—1 T(n) I'(n) 1
Z 0(Q,T(n)) = 2 ) an+l—k — 40 (q2n—F(n)) ‘
deg Q=n q I=T'(n)+1 k=0 =0 k=0
@ monic

Plugging this into the above expression, we obtain
N 1
0< > *—E 2. G < > awme
M<n<N M<n<N N<n<M

Since the latter series is convergent by the Abel-Dini theorem, the claim is proled.
Finally, we need the following property.

Proposition 4. We have,

o Z G-+ < Z I'(n)

M<n<N M<n<N

for all non-negative integer8/ < N.

Proof. We start with an observation that is needed below. By a close inspection of the proof of Propo-

sition 1, we have
1 1 1

anrln ’ qm+lm q2n+ln

A(Q,Q"), (10)

whereA(Q, Q) is the number of all pair®, P’ with P € S*(Q;T'(n)), P’ € S*(Q;T'(m)) and

m(Fy N FYy) <

9(Q = Q) + P'Q — PQ/| < min {|(Q, Q)] gm={r=mtmm=nti}}, (11)

Moreover, observe that(Q, Q) < [(Q,Q")].
We will use this to bound the expected value from the claim. First,

2
(2
M<n<N



- Y YEa-—:y 2Bl Y al+s Y ¥ &

M<n<N M<m<N M<n<N N<n<M M<n<N M<m<N
1 1 1
* *
>, D <Efn'5m—z'z +o| > -
M<n<N M<m<N M<n<N

e o 11 . 1 1
=2 Z Z <E§n'§m—qln'qlm>+ Z <E(£n)2_qgln>+o Z |

M<n<N M<m<n-—1 M<n<N M<n<N

where the third step follows from Propositi@nNow, applying L0) gives

doOEGgn= D D> Y mFEGNFY)

M<m<n M<m<n degQ=n degQ=m
@ monic @ monic

1

1
San' Z qlm 2n+ln Z Z Z A(Q, Q")

M<m<n M<m<n degQ=n degQ'=m
Q monic Q" monic

Using this to bound the first and second term in the expression above yields

(Lo t)es Ly v 5 aeen >

M<n<N M<n<N M<m<n degQ=n degQ'=m M<n<N
Q monic Q' monic

Next, we will estimate

1 !

M<n<N M<m<n degQ=n degQ'=m
Q monic Q' monic

Therefore, we fix an arbitrary smalland break® into two partsy’ andX”, where the first part runs
over all pairs(Q, Q") with deg Q" < [n — § deg(Q, Q)] and the second part runs over the remaining
pairs. In order to boun®’, we change the order of summation as follows: first we sum @yehen
over D|@ and finally over@Q’ with D = (Q,Q’). Note that for fixedQ and D the number ofQ"’s is
bounded by;"/|D\1+‘5. This together withd(Q, Q') < |D| then yields

1 1
¥ = Z q2n+ln Z Z |D|1+5‘D|<< Z g Z |DJ+e <

M<n<N deg Q=n M<n<N deg D<n
@ monic D monlc D monic

ln
M<n<N q
As for ©.” observe thatleg Q' > [n — ¢ deg(Q, Q’)] implies

min {!(Q,Q’)!,qma"{”‘m‘lm’m‘"‘l"}} <[(Q.Q).
Hence, for al{Q, Q) involved in the range of” the relation 1) can be replaced by
9(Q Q)+ P'Q - PQ'| < |(Q.Q). (13)

This yields

I JD DI DI

M<n<N M<m<n degQ=n degQ'=m
@ monic Q' monic

10



whereB(Q, Q') denotes the number of alt, P’ with P € S*(Q;T'(n)) andP’ € S*(Q';T'(m)) that

satisfy (L3). Again note thaB3(Q, Q') < |(Q, Q).
Collecting all bounds so far, we see that the right hand sid&é2)fqan be replaced by

> anl-H > > > B+ Y ; (14)

M<n<N M<m<n degQ=n degQ'=m M<n<N
Q@ monic Q" monic

Next, we will estimate the first term

1 /
Soi= Y o 2. X 2 BQQ)

M<n<N M<m<n degQ=n degQ'=m
Q monic Q" monic
which we will break into three parts;, 2{, X', where the ranges will be given below. For every part
we will proceed similar as foE’ above. More precisely, we will change the order of summation as
follows: as forY the first two sums will run ove® and D|Q. The final sum will run oveQ’ with
(Q',Q/D) = 1. Here, we introduce the notatigpi = DQ’ and@Q = D(Q. Using this notation, we can
rewrite (L3) to
9(Q - Q")+ P'Q - PQ'| < |D|7'*". (15)

Finally, we need the notatioR = g — B/A, where(A, B) is the pair belonging t@). Now, we will
separately estimate the three patfs X(, X’

As for X)), the first two sums of this part run over &, D) with D|Q and|A| > |D|%, wheres;
will be chosen later. The last sum runs ogrand our goal is to count the number®@f such that {5)
has solutions irP, P’ (whose number will then be bounded [y|). First, we conside€)’ of the form
Q' = C; + Cy, where( is fixed andCy is an arbitrary polynomial withleg C, < deg A. Plugging
this into (15) and doing some simplifications yields

|9C2 + L +g| < |D|7'*°,

whereg € L does not depend ofi; € F,[7] might depend orC’;. From the ultra-metric property of
the norm, we obtain

B
‘ACQ + L —|—§' < max{|gCy + L + g|,|RCs|} < max{|D|_1+5, |RA|}.

Observe that sinc€’, runs through a complete set of residues moddland (A, B) = 1, BC also
runs through a complete set of residues modilld@Consequently,

)Z + L+ g' < max{|D|71* |RA|},

where we now have to count the number(8§$ satisfying this inequality withleg C' < deg A. Here,
L is another polynomial that might depend 6h However, since the right hand side of the above
inequality is smaller thaih, L must be equal t6. Thus,

|C + Ag| < max{|A||D|~"**, |RA®*|} < max{|A||D|~***, 1}

and the number of sudfi’s is clearly bounded byA||D|~'+° + 1. Next, observe that the number of
Cy’s above is bounded bi)||DA|~! + 1. Therefore, the number ¢}’ such that {5) has a solution in
P, P"is bounded by

(|AHD’_1+5 + 1)(‘QHDA|_1 4 1) < ’Q||D|_2+5 + |QHD’_1_61 + \/@|D‘_1+5 +1
< QDI +1,

11



whered, ¢ are chosen such that- 6, < 1/2. Overall, this yields the following bound faz;,

i< ¥ omm XY (o 1) )

M<n<N degQ=n D|Q
Q monic D monic

ey iy Lyiey L as)

M<n<N M<n<N deg D<n M<n<N
D monic

Next, we turn to%}) whose first two sums run over all pait®, D) with D|Q,|A| < |D|%, and
|R| > |D|/|QA|. Again, we will estimate the number of solutions @b in Q’, P, P'. Therefore, first
observe thati5) can be rewritten as

L
‘RC +7| < |D|~1F0 (17)

for some polynomial€’ and L. If L is fixed, then the number of solutions@hof the above inequality
is bounded byR|~!|D|~*9 + 1. On the other hand, we have

|L| < max{|A||D| "%, |RCA| < max{|A||D|~**,|RQA|/|D]}.
So, overall, we obtain for the number ©fs such that there exidt satisfying (7)
(|IRI7Y DI + 1)(JAIID|~* + |RQA|/|D| + 1)
< [QA%||IDI7* +1QA|ID|** + V/IQIID| " +1
< Q[P+ ¢ \/|Q]| DI +- 1.

Note that the above number also equals the numb@r'skuch that {4) has solutions itP, P’. Hence,
¥ is bounded as follows

n/2
0< D 2n+ln > > (\DP =01 +q‘D| +1> D]

M<n<N degQ=n D|Q
Q monic D monic

1 1 1
<<ZW+ZWZ@

M<n<N M<n<N q deg D<n
D monic
1
<Y ey Aiey as)
M<n<N ]V[gngN M<n<N

So, what is left is to bountL{’. Here, the first two sums run over all pa{@, D) with D|Q, | 4| <
|D|%, and|R| < |D|/|QA|. Then, (L5) together with the ultra-metric property of the norm yields

|Q(AP' + B) — Q' (AP + B)| < max{|R(Q — Q")A],|A[|¢g(Q - Q") + P'Q - PQ'[} < L.
Consequently,
Q(AP' + B) = Q'(AP + B).
ThusAP + B = 0 (Q) and this impliesleg Q < I'(n). The latter in turn yieldsleg D > n — T'(n).
So, in this case, we obtain the bound

g Y e XY ﬁ;]lm

M<n<N deg @=n DI|Q,Q monic
Q monic deg D>n—I'(n)

=aniznZ Yo 3 (19)

M<n<N deg Q=n D|Q,Q monic M<n<N
Q monic deg D<I'(n)

12



Finally, combining 16), (18), and (9) gives the bound

Plugging this into {4) then proves the claimed result.l
Now, we can start with the proof of Theorein

Proof of Theoren. First, from Propositior together with Lemma, we obtain
> &= W(N) + O (U (N)/2(1og W (N))), as,
n<N

wheree > 0 is an arbitrary constant. Next, observe

TN = Fq(l’:) < U(N)log U(N).
n<N

Hence, the claimed result holds for the sequefjce
In order to show that the claimed result holds §gras well, observe that from Propositi8n

P (Z (60— €) > logw)) < (log W(N)) ™",

n<N

Next, chooseVy to be the minimal positive integer witlog U (V) > 2k Then, the Borel-Cantelli
lemma implies that

D (& — &) < log U(Ny)

for almost all f andk large enough. Now, lelV be a large enough integer withi, < N < Ni.1.
Then,
Y G- Y (€ —&) <logU(Niy1) < log U(Ny,) < log W(N).

n<N n<Ngi1

Overall, we have shown that for almost #ll

S 6= 3 &+ Ollog U(N)).

n<N n<N

Combining with the above result yields the claiml
We note that Theorer also follows from the method above with only minor modifications. So,
what is left is the proof of Corollary.

Proof of Corollaryl. For part (i), choosé" such that
F ={C+ LD : monic andL € F,[T]}.

Then,#F,, = ¢"/|D| for all n > deg D. Consequently,
1

For part (ii), it suffices to point out that it is well-known (see Chapter 3L that the number of
monic, square-free polynomials of degree> 2 is given byg” — ¢"~!. Hence,

-1
(N, F) = QTW(N) +O(1).
From this the result follows. 1

13



4 The "double-metric” and the other "single-metric” case

We first turn our attention to the "double-metric” case. So, in the following, we consijierith both
f,g random. As before, we define the set

Fo :={(f,9) e LxL:(f,g)is asolution of {) with someP € F,[T},

where() is a hon-zero polynomial.

As already mentioned in the introduction, this case is much easier than the "single-metric” case
discussed in the previous sections. The reason for this is the second property of the following lemma
which was proved ind].

Lemmab5. (i) We have,
1

(m xm)(Fg) = i
(i) For @ # @', we have
(m x m)(Fo N Fg) = (m x m)(FQ)(m x m)(Fg).

So, if we define

&n = #{(P,Q) : (P,Q) is a solution of )},

gn = Z 1FQ'

deg Q=n
@ monic

then we again have

However, the above lemma shows thaiconsidered as a sequence of random variables on the product
probability space is pairwise independent. This yields

2
1 1 1 1

M<n<N M<n<N M<n<N
Hence, if we assume that
1
U(N) := Z—Hoo, asN — oo,
n<N q

then Lemma2 directly applies and yields the following result (whose proof in case the above assump-
tion does not hold is trivial).

Theorem 4. The number of solutions ofwith 0 < deg Q < N satisfies
U(N) + 0 ((R(N)2(log w(N)/), as.

wheree > 0 is an arbitrary constant.

Note that a.s. here means with respect to the product measure:.

Finally, we briefly discuss the other "single-metric” case where the roleg ahd g are inter-
changed. Therefore, assume now tfias fixed andg is random. Here, without proof, we state the
following result: for any sequendg tending to infinity arbitrarily slowly, there exists ghe L such
that for almost ally the number of solutions dfi) is finite (see P. Sisz [L7] for the corresponding re-
sultin the real number case). Consequently, results of a similar type as in the cases above are impossible
in this case.

14
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A Note on Simultaneous Diophantine Approximation in
Positive Characteristic

Michael Fuchs

Abstract

In a recent paper, Inoue and Nakada proved a 0-1 law and a strong law of large numbers with error
term for the number of coprime solutions of the one-dimensional Diophantine approximation problem
in the field of formal Laurent series over a finite base field. In this note, we generalize their results to
higher dimensions.

1 Introduction

Let F,, be a finite field with g elements and denote by F,((7~!)) the field of formal Laurent series. For
f eF,((T7Y)) let | f| = g8/ be the valuation induced by the generalized degree function. Set

L={feF,((T™"):fl <1}.

Then, with the restriction of | - | to L, LL is a compact topological group. Hence, there exists a (unique)
translation-invariant probability measure which will be denoted by m.
We are interested in the Diophantine approximation problem

P 1 .
‘f_Q‘<qn+ln’ deg @ = n, @ monic, (P,Q) =1, (D
where f € L, P,Q € F,[T] with @ # 0, and [,, is a sequence of non-negative integers (subsequently,
we will use (-, -) to denote the gcd, whereas (-, -) will be used for pairs).

Concerning the number of solutions of (1), Inoue and Nakada [5] proved the following 0-1 law: the
number of solutions is either finite or infinite for almost all f € L, the latter holding if and only if

o
>
n=0

Moreover, the method of proof in [5] also gives a quantitative result under one additional assump-
tion on I, if [,, > n, then the number of solutions of (1) with deg () < N is given by

(L=q7) W) + O (W(N)'/? (log W(N))*/**)

where € > 0 is an arbitrary small constant and ¥(N) := > ¢" .

Key words: formal Laurent series, simultaneous Diophantine approximation, 0-1 law, strong law of large numbers.
2010 Mathematics Subject Classification: 11J61, 11J83, 11K60.



The purpose of this note is to prove generalizations of the above two results to multidimensional
Diophantine approximation. Therefore, consider

PA
fi—5|<

! | |
0| < o deg@=n, Qmonic, (P, Q) =1,j=1,...d, @)

where (fi,...,fa) eLx---xL,Pj,j=1,...,d,Q € F,[T] withQ#O,andlg),j =1,...,dare
sequences of non-negative integers. Moreover, set [, := Z?Zl l,g] ),

Then, the first result above has the following extension to the multidimensional setting.

Theorem 1. The number of solutions of (2) is either finite or infinite for almost all (fi,...,fq) €
L x --- x I, the latter holding if and only if
o0
> ¢ =0 3)
n=0

Moreover, also the second result admits an extension to higher dimensions.

Theorem 2. Assume that l,, > n. Then, for almost all (f1, ..., fq), the number of solutions of (2) with
deg @ < N is given by

QU(N) + O (W(N)1/2+f) ,

where € > 0 is an arbitrary small constant, V(N) := " _\ ¢""'n, and

Q1)  p(Qa) 1
=2 ) Q1] |Qal Nlem(Q1, ..., Qa)l >0

Q1 monic Q4 monic

where i(-) is the Moebius 1 function.

Remark 1. Observe that the error term in the above result for d = 1 is weaker than the corresponding
one in the result of Inoue and Nakada. The reason for this is that our method is completely different
from the approach used by the latter two authors (it is not obvious how to generalize their approach to
higher dimensions).

Notation. We will use [D1, ..., Dy to denote the lcm of the polynomials Dy, ..., Dy. All sums will
be over monic polynomials. Logarithms in this paper just take on values > 1, i.e. log, x should
be interpreted as max{log, z,1}. We will use both Landau’s notation f(z) = O(g(x)) as well as
Vinogradov’s notation f(z) < g(x). Finally, e will denote an arbitrary small positive number whose
value might change from one appearance to the next.

2 Proof of Theorem 1

First, note that the necessity of (3) for the number of solutions of (2) being infinite follows from a
standard application of the Borel-Cantelli lemma. Hence, we only have to focus on the sufficiency part.
For this purpose, we use a slight extension of the d-dimensional Duffin-Schaeffer theorem for formal
Laurent series due to Inoue [4].

Theorem 3 (Inoue). Consider
b

fj—a <

1

l“ , deg Q@ =n, Q monic, (P;,Q) =1, j=1,...,d, )




where (f1,..., fq) e Lx---xL, P;,j=1,. d,QwithQ#O,andlg),j:1,...,daresequences
of non-negative integers. Assume that

)
Zq_lQ lé —
Q

and that for infinitely many N

@0 @G
D B Al S Rt BT (2) LY 1]

deg Q<N deg Q<N
where C' is some positive constant. Then, (4) has infinitely many solutions for almost all (f1, ..., fq) €
Lx---xL.
Remark 2. Note that the result in [4] is just stated for the special case W= lgl ). An inspection
of the proof, however, shows that the result continues to hold for different approximation functions in
every coordinate.

Before we can apply this result, we need a technical lemma.

Lemma 1. We have,

Z @(Q)d _ Can(d+1) +0 <qn(d+e)> ’

deg Q=n

where cg is as in Theorem 2 and (-) is Euler’s totient function.

Proof. Note that

S oe@i=¢ Y Z“

deg Q=n deg Q=n \ D|Q
_ g p(D1) (D)
%% 2ol

gt Y Y M .__N(Dd) $ 1

D
deg D1<n deg Dg<n | d’ [D1,...,D4]|Q,deg Q=n

The latter sum becomes

e {q"/|[D1,...,Dd]

’ if deg[Dla"'uDd]Sn;

[D1,....D][Q,deg Q=n 0, otherwise.
Consequently,
w(D1)  p(Da) 1
Q) = ¢+ - .
®§;<d ) > D1 |Da| |[D1,-..,Dd]
gQ=n deg D1<n  degDy<n
d
1
+0 | ¢ Z
deg D<n ‘ ’
= g4+ “ 1(Dq) 1 < d nd>
= ' + O (n% 5)
Z Z 1| |Dal |[D1, ..., Ddl|

deg D1<n deg Dy<n



Next, observe that

M 1(Da) 1
> > Dyl [Dl,...,DdH_CO)

deg D1<n deg Dg<n 1‘

1 w(D)?
Z Z |D1---Dd|-|D|§ Z D2’

deg D>n [Dy deg D>n

77777

where w(D) denotes the number of monic divisors of D. Since w(D) = O(|D|°) for arbitrary small
€ > 0 (this is proved as for integers; see page 296 in [1]), we obtain

d oo
Z w(D) < Z =1 o gnled=1)

|DJ?
deg D>n l=n+1

So, we have

”  1(Da) 1 B e
2 |Dgl I[Dl,...,Dd]|—CO+(9<q I+ )

deg D1<n deg Dyg<n 1|

Plugging this into (5) yields the claimed expansion.
What is left to show is that ¢y > 0. Therefore, observe that

Y. oe@"= D e =("=1)" > 1> ("= 1) /n,
deg Q=n deg I=n deg I=n

where the second and third sum runs over all irreducible polynomials and the last bound is well-known.
Hence, co > 0 as claimed. |

Remark 3. For d = 1, note that

w@) < ) 1
Cy = = 1-— =1--.
e 10 m) = (S ;
In this situation even more is known, namely,

Y eQ) = (1 - ;) 7",

deg Q=n

For a proof of the latter claim e.g. see [5].

Now, we can proof our first main result.
Proof of Theorem 1. As already mentioned before, we only have to show that (3) is sufficient for the
number of solutions of (2) being infinity. For this purpose, we just have to check the two conditions in

(d)

Inoue’s result. First, note that since 18 ) ~+ 1y = laeg @, we have

Z q—ldegQ _ Z qn—ln

deg Q<N n<N
and
IR R DTS SPSLETD RIS SPLUREcY b SPast
deg Q<N n<N deg Q=n n<N n<N

Moreover, by Cauchy’s inequality

Z qenfln < Z qn*ln

n<N n<N

1/2

Hence, both conditions are satisfied and our result follows from Inoue’s result. 1
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3 Proof of Theorem 2

We start with a technical lemma.

Lemma 2. We have,

Proof. First note that

1 1
2 DS, 2 B DT

deg(Dl)r“vdeg(Dd)Sn deg(D1)77deg(Dd)§n

|([D17 cee 7Dd—1])Dd)‘1_E

< Z |
D 1—e . 1—
deg(D1),...,deg(Dgq)<n H IEEERE Dd 1” € |D l‘ €

Next we change the order of summation and obtain

1
Z |[_D1,...,l)d]|1_6

deg(Dl)""vdeg(Dd)gn

1 D]\
< > > (D1, Da_1]]' 2 (IDd!>

deg D<n D|[D1,...,Dq_1],deg D;<n D|Dg,deg Dg<n

1 1
= Z Z HDlv'”7Dd—1”1_E Z W

deg D<n D|[D1,...,Dq_1],deg D;<n deg Q<n

ne 1
< Z I[D1, ..., Dg—1] Z !

1—e
deg(D1),...,deg(Dg—1)<n | DI[D1,...,Dg1]

_ ne w([Dl,...,Dd,ﬂ)
— 1 Z HDl,...,Ddfl]‘l_e'

deg(Dl)v"wdeg(Ddfl)gn

Now, as before, we use the estimate w(D) = O(|D|) for all sufficiently small e. Hence,

1 1
< qne '
Z I[D1, ..., Dg]|1—¢ Z I[D1,...,Dg]|1—2¢
deg(D1),...,deg(Dgq)<n deg(D1),...,deg(Dg—_1)<n

Iterating this result proves the claim. |

Now, we turn to the proof of Theorem 2. For this purpose, we extend an approach due to Harman
(see proof of Theorem 4.4 starting on page 109 in [3]) to higher dimensions.

We first need some notation. Let I'1 (V) = |log, U(N)?| and Ty(N) = [ log, U(N)*|. Moreover,
consider the following approximation problem
b

fj—a

where D1, ..., Dy are fixed monic polynomials. For fixed (f1, ..., fq) and @ denote by s(Q; D1, ..., Dy)
the number of solutions of (6).
We gather some properties of s(Q; D1, ..., D;) needed below.

1 _ )
< +l<j)7 degQ = TZ, QmOHlC, D]’(PJ7Q)7 deg(P]7Q) S FQ(N)v ] = 17" . 7d7 (6)
qrTin

Lemma 3. We have,

1
B :Dy,...,D o
Z Z S(Q7 1, ) d) < |D1Dd|‘[D177Dd” Z 1

My <n<M> deg Q=n,[D1,...,Dq]|Q M <n<May



and

2
E E 1 1

My<n<Mj deg Q=n, [D1,...,Dq]|Q

F2(N) n—l
< E qg "
|D1 -+ Dyl -|[D1,...,D4l|

for all My < M.

Proof. Both properties are easy extensions of the corresponding properties from the case d = 1 (see
Proposition 3 and Proposition 4 in [2]). For the reader’s convenience, we recall the proof of the first
property.

Therefore, observe that s(Q; D1, ..., Dg) < s*(Q; D1,. .., Dg) where the latter denotes the num-
ber of solutions of (6) with the upper bound on the gcd removed. Of course, s*(Q; D1, ..., Dg) = 0 if
[D1,...,Dal 1 Q.

Now, for [D1,..., D4]|Q, note that s*(Q; D1,...,Dy) = 14 (14 denotes an indicator random
variable) with

A= U B(P/Qig ) o x B (PyfQia ).

P;|Dj,deg Pj<n,1<j<d

where B(f; ¢~ ™) denotes the open ball with center f and radius ¢—™ and the above union is disjoint.
Since

(mx - xm) (B (Pl/Q;q_"_lg)) x---xB (Pd/Q;q_"_l'%) =g

and consequently
1 —1

Dy Dgl?

the result follows from elementary properties of the mean. |
Next, we prove the following proposition for the number of solutions of (6).

m(A) =

Proposition 1. For almost all (f1, ..., fq), the number of solutions of (6) with deg @ < N is given by

1
|Dy---Dg| - |[D1,-..,Ddl|

\I/(N)+E(N;D1,...,Dd),

where the second term satisfies

3 E(N;Di,...,Dg) =0 (\I/(N)l/“f)
deg(D1),...,deg(Dgq)<I'1(N)

with € > 0 an arbitrary small constant.

Proof. First note that it suffices to prove our claim for the case where W(N) — oo as N — oo (other-

wise, the result is an easy consequence of the Borel-Cantelli lemma). Next, denote by N the largest

integer with W(Ny) < k. It is easy to see that we only have to prove the result for the subsequence N.
We are going to need some notation. First, put

l

k=Y a;2, a#0, a; €{0,1} Vj.
=0



Define the following set
l . .
Sk)y=<(,m): a;=1, m= Z a; 27"
j=i+1
Moreover, denote by
up = ug(i,m) =max {n € N: ¥(n) < (m+ t)2i} ,

where ¢ € {0, 1}. Finally, with the notation of Lemma 3, we put

: 1 1
E(i,m;Dy,...,Dg) = Y > <5(Q;D1,...,Dd)_M.qln).

up<n<ui deg Q=n, [D1,...,D4]|Q

Then, we obviously have

E(Ng;Dy,...,Dg)= Y E(i,m;Di,...,Dq).

(i,m)eS (k)
Now, set
E(l) := > |D; -+~ Dy > E(i,m;Dy,...,Dy)>
deg(D1),...,deg(Da)<I'1 (Nyi+1) 0<i<l, m<2l—i+1
Then, with the estimate from Lemma 3
. I's(Noita _
EE(i,m; Dy, ..., Dg)? < DD ’(. |[2D ) o >
1 d 1,---y4d wo<n<ui
we obtain .
E(l) < 2412 3 o < 2!(1+)

deg(D1),...,deg(Dq)<T'1(Nyr41)

where the last step follows from Lemma 2 and € will be chosen below. This in turn implies that

po = #000) < s

where we choose € < e. Hence, the Borel-Cantelli lemma yields that
E(l) < 2/0+9), a.s.

for [ large enough.
Finally consider

S BNeDu...D)
deg(D1)7"'7deg(Dd)§Fl(Nk)
1/2

< 2 Dby X 1] )

4 Dy---Dg| .
eg(D1),...,deg(Dq)<I'1 (Ny) (i,m)€S(k)
< QM1/2+ a1 o l(1/2+6)

From this the assertion follows. |



Now, we can prove our second main result.

Proof of Theorem 2. As in the proof of the proposition, we can assume w.l.o.g. that U(N) — oo as
N — oo. Then, we again choose Ny, as the largest integer with W(Ny) < k. As before, it is easy to see
that it is suffices to prove our claim for the sequence Ny.

Next, we introduce the notation S(Ny; D1, ..., D) for the number of solutions of (6) with deg Q <
N (here, (f1,. .., fq) is fixed). Then, by an inclusion-exclusion argument, the number of solutions of
(2) with deg @ < Ny, is given by

> u(D1) -+ p(Dg)S(Ni; D1, ..., Da),
deg(D1),...,deg(Dgq)<T'2(Ng)

where 1(-) denotes the Moebius function. We split the sum into two parts A and B according to
whether there is an D; with deg D; > I'1(Ny) or not, respectively.
First, we will consider A. Note that

E|A| < > ES(Ng; D1, ..., D)

deg(D1),...,deg(Dg)<I'2(Ng)
deg D;>T'1 (N},) for some ¢

< U(N,) > L L

Dy---Dy| |[Dy,....D
des(D1)..cdeg(Da)<Ts () P! al [P, Dall
deg D;>TI"1 (Ny) for some ¢

deg Dy>T1(Ng) = ¢ deg Dy<Ta(Ny) | D deg Dy<T'2(Ny) |Dd
(log W(N))*~*
U(Ng)
where we have used Lemma 3. Consequently,
1 1

P(IA] > (log V(N ™) € Grps oG E < Riog 2

Hence, the Borel-Cantelli lemma implies that for almost all (f1, ..., f1),
A = O((log U(Ng,))*tH).

So, in view of our claimed result, the main contribution will come from B. Here, we can use the
above proposition and obtain

p#(D1) - - - p(Da)

B (NVe) Z \D1-~Dd\'|[D1,..-,Dd]|+O< (Vi) )
deg(D1),...,deg(D4) <1 (Ny)

Now, as in the proof of Lemma 1

p(D1) - - - p(Da) -2
> = o+ U(Ny) 2
) Dy Dyl ... Dg] @YW
eg(D1),...,deg(Dg)<T'1 (Ng)

Combining all the estimates proves the claimed result. 1
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I participated in the 21st International Meeting on Probabilistic, Combinato-
rial and Asymptotic Methods for the Analysis of Algorithms which took place in
Vienna, Austria from June 28th to July 2nd, 2010. This was the first joint meeting
of previously two different conference and seminar series on "Mathematics and
Computer Science” and ”Analysis of Algorithms”. It will be held every year and
is the major conference in the area of analysis of algorithms which is currently my
main field of interest.

I gave a talk on July Ist, 2010 based on my conference paper entitled “The
Variance of Partial Match Retrievals in k-dimensional Bucket Digital Trees” (at-
tached to this report). This paper was accepted after the usual scientific peer re-
view process and is about to be published in one of the forthcoming issues of the
journal Discrete Mathematics and Theoretical Computer Science Proceedings.

My paper was concerned with digital trees, which was a popular topic at the
conference with overall four papers dedicated to it. The others were written by
Svante Janson (Uppsala University), Philippe Flajolet (INRIA Rocquencourt) and
Stephan Wagner (Stellenbosch University), all experts in the field. Their papers
and talks gave me further input for possible future research directions.



The variance for partial match retrievals in
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Department of Applied Mathematics, National Chiao Tung University, Hsinchu, 300, Taiwan

received January 13, 2010, revised May 19, 2010, accepted ???.

The variance of partial match queries in k-dimensional tries was investigated in a couple of papers in the mid-nineties,
the resulting analysis being long and complicated. In this paper, we are going to re-derive these results with a much
easier approach. Moreover, our approach works for k-dimensional PATRICIA tries, k-dimensional digital search
trees and bucket versions as well.

Keywords: k-dimensional digital trees, partial match retrieval, variance, JS-admissibility, Mellin transform

1 Introduction and Results

Data structures for storing and retrieving multidimensional data are of vital importance in several areas of
computer science such as design of data base systems and graphics algorithms. One possible class of such
data structures was introduced in [10] and is based on digital data, i.e., data which is composed of infinite
0-1 strings. We assume throughout this work that every bit in these strings is generated independently and
with the same probability (symmetric Bernoulli model).

We will first describe the above data structure in more details. Therefore, assume that we have given a
set of multidimensional data. Then, we apply a “ regular shuffling” procedure to transform the multidi-
mensional data into one-dimensional data. Finally, this data is stored in a digital tree. To be more precise,
let Rq,..., R, denote k-dimensional records, i.e.,

R = (R BB,

3

Rij = (RE?,L,.R,[?,L, RPL.. ) .

After shuffling, we obtain the one-dimensional string R;

Ri = (Rﬂ,...,RE,L,Rf{,...,RE,L,RE{,...,RE?,L,...).

)

Then, ﬁl, ce R,, are used to construct a digital tree.

1365-8050 (©) 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



2 Michael Fuchs

As digital trees, we use the three standard types (see [8]]). First, for the k-dimensional trie the underlying
digital tree is the trie data structure. For the readers convenience, we recall how a trie is constructed: if
we only have one record, then we place it into the root which is considered an external node; if we have
more than one record, then the root becomes an (empty) internal node and the records are either directed
to the left or to right subtree according to whether their first bit is O or 1; finally, the subtrees are build
recursively by the same procedure, where the first bits are removed; see Figure[I]for an example.

Fig. 1: A 2-dimensional trie, PATRICIA trie and digital search tree built from the data

data ‘ D1 ‘ D2 ‘ D3 ‘ D4
R;q | 0010--- | 1001--- | 0001--- | O111---
R;» | 1000--- | 1010--- | 1101--- | 1011---

A variant of k-dimensional tries are k-dimensional PATRICIA tries, where the shuffled data is stored in
a PATRICIA trie. Recall that a PATRICIA trie is constructed as a trie only multiple one-way branching
is suppressed; again see Figure[I|for an example. This yields a more balanced tree improving the overall
performance of tries.

A final type is given by the k-dimensional digital search tree which is based on the digital search tree
data structure. Recall that a digital search tree is constructed as follows: the first record is placed in the
root; all other records are directed to the left or right subtree according to whether their first bit is 0 or 1;
finally, the subtrees are constructed by the same principle again with the first bits removed; see Figure
for an example. So, in contrast to tries and PATRICIA tries, no distinction between internal and external
nodes is necessary for digital search trees.

Note that all trees introduced above have the common feature that nodes only hold at most one record.
If we allow nodes to hold up to b > 1 records, then the resulting trees are called k-dimensional bucket
digital trees.

In this paper, we will study the cost of partial match retrievals in k-dimensional bucket digital trees.
Here, a partial match query will ask for the retrieval of all records matching certain criteria. Formally, a
partial match query is a k-dimensional vector R = (Ry, ..., Rj) with some of its coordinates a string of



Partial match retrievals in digital trees 3

0-1 bits and others unspecified. For instance, for £ = 2, we might have

Ry = (%, Kk, %, %, ...),
Ry =(0,1,1,0,...),

Then, a shuffled record R is produced as before. For the above example this yields

R = (%0,%1,%x,1,%0,...).

The partial match query asks now for the retrieval of all data in the tree with R being used as search query.
Here, 0 or 1 in R means either going to the left or right subtree of the current node, whereas * means
that we have to proceed with our search in both subtrees. The cost of such a partial match query will be
measured by the number of nodes visited (where we only consider internal nodes for tries and PATRICIA
tries); so for the query R above, we have a cost of 2 for the trie and Patricia trie of Figure|l|and a cost of
3 for the digital search tree.

Before going on, we will fix some notation which we are going to use throughout the work. First,
it should be clear that under our random model, the cost of a partial match query only depends on the
partial match pattern ¢ which is a k-tuple of symbols from {5, x}, where the i-th coordinate is S if R; is
specified and * otherwise, We will fix such a ¢ throughout this work and denote the number of * entries
in ¢ by u, where we assume that 0 < u < k. Furthermore, we will consider cyclic shifts of the entries
of ¢ by one position to the left which will be denoted by ¢’; more generally, ¢*) will denote the cyclic
shift of the entries of ¢ by [ position to the left. Also, we will associate to a partial match pattern g an
infinite sequence (01, 02, d3,...) with &; = 1 if ¢; mea x = S and §; = 2 otherwise. Finally, we denote
the random variable describing the cost of the partial match query by X, ,, for all three types of bucket
digital trees of size n and bucket size b > 1 (for the sake of simplicity, we suppress the index b).

In this paper, we will be concerned with stochastic properties of X ,,. Therefore, let us recall what is
known about this random variable. First, the mean value of X, ,, for k-dimensional tries was investigated
in [2] where the authors proved that

E(X,.0) ~ n*/* Py (logy n'/*)

with P;(z) a one-periodic function whose Fourier expansion was given in [2] as well (for a comparison
of this result with other data structure for multidimensional search see [8]] and [10]). Similar results were
subsequently proved in [6] for k-dimensional bucket digital tries, k-dimensional PATRICIA tries, and k-
dimensional digital search trees, too. As for the variance, it was conjectured in [7] that for k-dimensional
tries

Var(X,.n) ~ n"/* Py(log, n'/*) (1)

with P5(z) a one-periodic function. The authors proved this conjecture for & = 2 in [[7]. The general case
was then settled in [[11]]. Note that this result implies that X, ,,/E(X,,,) converges to 1 in probability.
Hence, the distribution of X, ,, is concentrated around its mean.

As for the method of proof of (I), the authors of [7]] applied the analytic approach from [2] to derive
asymptotic expansions of mean and second moment. Then, they used these expansions to compute the
variance, where they had to cope with highly non-trivial cancellations. Here, their proof crucially rested
on an identity of Ramanujan which only works in the case £ = 2 and does not seem to have an analogue
for £ > 2. In [11], a new and mainly elementary approach was devised to settle the general case.
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In this paper, we will re-derive the above result with a more simpler approach. Our approach will be
analytic and use some standard tools from the analysis of algorithms (the same approach was already used
in other contexts; see [4,[S],[12]]). The crucial difference to the approach from [7] is that we incorpo-
rate the cancellations at a much earlier stage, making the resulting analysis more easier. Moreover, our
approach will work for k-dimensional bucket tries as well.

Before explaining our approach in more details, we are going to state our result. Therefore, we need
some notation. Set

he(2) = 261ep(2)e * Ly (2/2) + ep(2)e ™% — ep(2)%e 2%,

where e(2) = 1+ 2 + 22/20 4 --- + 2b/bl and L,(2) = exp{—z} > >0 E(Xgn)2"/nl.

Theorem 1 The cost of a partial match query with u non-specified coordinates in a k-dimensional trie of
size n satisfies

Var(X, ) = n*/* Py(logy n'/*) + O(n®*/*~1)

with one-periodic function

PQ(Z): i creQTrirz

r=—00

and Fourier coefficients

k—1

1 & ~
cr = 57 Z 8y 0,27t / z*w"'*lhqm (z)dz,
1=0 0

where w, = u/k + 2mir/(kL) and L = log 2.
With slightly more work, the Fourier coefficients can be further simplified.

Corollary 1 The Fourier coefficient in the above theorem can be expressed as

b . . ) .
['(-w:) - (—wr + b) (Jl +J2) <—wr +n +jz> i
cr = o(27wr — 2w E . ] ' 9—J1—J2
" kL ( ( ) b J1 J1+ 792

J1,52=0

—1+ b\ [(~wr + 1+ b\ (w2 (279 271))
-2 )0, ®

I>b+1
where
k—1 k—1
_E : j _ § : Ji ,J
(5(2’) = (51"'(5]‘2’], 0'(21,22) = (51"-(5j1+j2+12:112:22.
Jj=0 J1,j2=0

For instance, for k = 2, s = 1, and ¢ = (%, S), the value of ¢y becomes

(1L+v2)ym (72 —1-4v2Y% (1/2) (L= DE+1/2270) ) o1sa. .
. . 5

—9-1+1/2
2In2 8 >3 1-2 /
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where the last approximation was computed with Maple. This value coincides with the one given in [7].
Note that the expression given in the latter paper is slightly different; we leave it as an exercise to the
reader to show that they are the same.

Next, our approach can also be straightforwardly applied to k-dimensional bucket PATRICIA tries.
Here, we have the same result as above only iLq (z) replaced by

hy(z) =261 (ep(2)e* — brey(2/2)e™* + (01 — 1)e™*/?) Ly (2/2)
+ep(2)e™ — drep(2/2)e ™" + d1e” 7% — (ep(2)e™* — drep(2/2)e ™ + dre /)2,

Also, a similar explicit expression for the Fourier coefficients as in Corollary 1 can be given. Since, the
resulting formula is more messy we do not give details.

Finally, k-dimensional bucket digital search trees are slightly more involved. Here, we will use a
variant of the above approach which was introduced in [3]]. In order to state our result, we again need
some notation. Therefore, set

= P
and
Ro(z) = ]io (j) L0() 2 _Jg: (?) (L22)”.

Theorem 2 The cost of a partial match query with u non-specified coordinates in a k-dimensional digital
search tree of size n satisfies

Var(X,.,) = n/* Py(logy n'/*) + O(n?*/*~1)

with one-periodic function

o0
PQ(Z) — Z CT€27rzrz
r=—00

and Fourier coefficients

k—1

= ; —wrl OOL > — 257
o= ELT(1 4 w,) ;61 02 /0 Q(—2s)? (/0 e *hyw (2)dz +p(3)> ds, 3)

where
(st (-1)
p(s) = P
Moreover, the Fourier coefficients can be further simplified here, too. We will state the result for b = 1.
Therefore, set

7w/ sin(rw), ifex=1.

o(w;z) = {W(xw —1)/(sin(rw)(z = 1)) ifz#1;

Then, we have the following corollary.
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Corollary 2 If the bucket size equals one, then the Fourier coefficient in the above theorem can be ex-
pressed as

k—1

1
.= §r v 82 wrl
T RLQMIT(1 + w,) ; Lo

>

J1,J2,J32>0

(_1)11 gq(l)hjé 5q(l)’j32_(j21)+(1_wr)jl

2J2 7 .9J1=J2 4 9j1—Js
2j2+73 le sz ng, (P(wr, + )a

where (o) 1
—(H1) 1+
_ (—1)i27 2 )
= > 2
1>0 ! h=1
We conclude the introduction by giving a short sketch of the paper. In the next section, we will treat
k-dimensional bucket tries. Then, in Section 3, we will briefly discuss k-dimensional bucket PATRICIA

tries. Finally, in Section 5, we will prove the results for k-dimensional bucket digital search trees.

2 k-dimensional Bucket Tries

Note that from the definition of k-dimensional bucket tries, we have

Xg1, + 1, ifg=1(5,...),
where I, = Binom(n, 1/2), (X}) is an independent copy of (X,,) with X, < Xyand Xg0 = X1 =
=X, = 0.

From this recurrence we will proceed as follows. First, we are going to apply the poissonization-
depoissonization procedure from [5]. This will allow us to entirely focus on the Poisson model. Next,
we will define a poissonized variance which is not really a variance, but asymptotically behaves like one
(this idea was probably first used in [4]]). This will be the crucial step leading to a much more simplified
derivation. The remaining analysis is then carried out by using Mellin transform, a standard tool from the
analysis of algorithm (for an excellent introduction see [1]]).

Poissonization. Let P,(z,y) denote the Poisson generating function of E(exp{X, ,y}), i.e.,
~ . . ik
Pyle,y) = e Y OB
n>0
Then, we obtain from the above distributional recurrence
Py(z,y) = € Py (2/2,9)" + ep(2)e > (1 — €¥).

Next, by taking first and second derivatives with respect to y and setting y = 0, we obtain the following
functional equation for the Poisson generating function of the mean (denoted by L(z))

Ly(2) =81y (2/2) +1 —ep(2)e™*
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and for the Poisson generating function of the second moment (denoted by Mq (2))

1(2) = 2My(2/2) + 4Ly (2/2) + 2Ly (2/2)? + 1 — ep(2)e™2, if g = (x,...);

I My (2/2) + 2Ly (2/2) + 1 — ep(2)e 7, ifg=(S,...).
Going from these Poisson generating functions back to the original quantity is done via the depois-
sonization tools from [5]. We will use here the language from [3l], where we coined the term Jacquet-
Szpankowski admissibility (or JS-admissibility for short). Recall that f(z) is called JS-admissible if the

following two conditions hold (where here and throughout this work, € will denote a small constant whose
value might change from one appearance to the next).

(I) There exists an & € R such that uniformly for | arg(z)| < e
f(z) = O(|z]%) .
(0) We have, uniformly for € < | arg(z)| < ,

f2) =€ f(2) =0 (eufe)m) .

The importance of this notation is due to the following proposition which is proved by a standard appli-
cation of the saddle point method (see [S|] for many more such results).

Proposition 1 Ler f(z) be the Poisson generating function of fn. If f(z) is JS-admissibility, then

f(j)(n)

A () + O

with 7;(n) = n![z"](z — n)’e?
In our context, JS-admissible is easily checked via the following result.

Proposition 2 Assume that we have

fq(z)(z) = 5l+1fq(z+1)(2’/2) + gq(z)(z), (0<1l<k),

where all involved functions are entire. Moreover, assume that §,u)(z) is JS-admissible for 0 < 1 < k.
Then, fq(z) (z) is JS-admissible for 0 <1 < k.

Proof: We only show how to prove (I). Therefore, we start by iterating the recurrence. This yields

k-1
fa(2) = 2" Fo(2/25) + > 01+ digan (2/2").
1=0
Now set ~ ~
By(r) == max | fq(2)]-

|z|=r| arg(z)|<e
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Then, by the assumptions, we obtain
Bq(r) < Q“Bz(r/Zk) + 0O (r%).

Next, we define K, (r) by
Kq(r) = 2"Kq(r/2") + O ().

Then, B, (r) < K,(r). Moreover, we immediately obtain by iteration

re, ifa>u/k;
K, (r) = r/Flogr, if a=u/k;
ru/k, ifa<u/k.
This proves our claim. O

Using this result together with the closure properties from [3] proves that both Eq(z) and Mq (z) are
JS-addmissible. Also, note that we have

L) =0 ("), My(z) = 0 (|=*/F) @

uniformly as |z| — oo and | arg(z)| < e.
Next, we define the poissonized variance as

Then, by a straightforward computation
Va(2) = 61V (2/2) + I 2),

where h,(z) was defined in the introduction.

Note that f/q(z) is not the Poisson generating function of a variance but only mimicks the defintion of
the variance. However, it behaves asymptotically like the variance as proved in the following proposition
(see also Theorem 6 in [3]]).

Proposition 3 As n — oo,
Var(Xgn) = Vy(n) + O (nzu/k—l) .

Proof: From Proposition[2]and (4)), we have

Var(Xg )

E(X7,) — (B(Xgn))”
M,(n) + O (nQ"/kfl) - (f/q(n) +0 (n“/k71>)2
Vy(n) + 0O (nZ“/k’_l) .

This proves the claim. O
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Asymptotic Expansion of f/q(z). We will first look at the mean value (in the Poisson model) which
is needed in the proof of Corollary [I] Therefore, by using iteration as in the proof of Proposition 2} we

obtain
k—1

Ly(z) = 2"Lg(2/2") + Z 81+ G1gqw (2/21),
1=0

where g, (2) = 1 — ep(2)e™*. Our goal is to derive an asymptotic expansion of L,(2). A standard tool
for that purpose is the Mellin transform which we are going to apply next.

First, we have to clarify existence of the Mellin transform of f/q(z). Therefore, note that by @) and
the trivial bound L,(z) = O (2°F1) as = — 0. Hence, the Mellin transform of L,(z) exists in the strip
(—b—1,—u/k). Applying Mellin transform to the above functional equation then yields

k—1
M(Ly(2); ] M(”Zb)251---5l2wl, R(w) € (=b—1,—u/k). (5)

= 1— 2wk:+u
=0

Moreover, by inverse Mellin transform and shifting the line of integration to the right (see the converse
mapping theorem in [1]]), we have

Ly(2) ~ 2"k Pi(logy 2'/%), (2 — o0), (6)

where

o) k—1
; —I'(—w,) (—wy +b _
— 2mirz _ T T wyl
Pi(z) = E cre , Cr=——r ( b ) g 01---0;2 .

r=—00 =0

Note that due to the fast decay of (5)) along vertical lines, @ more generally holds uniformly for |z| — oo
and |arg(z)| < 7/2 —e.

Asymptotic Expansion of Vq(n). Here, we proceed as for the mean. First, by using iteration as above
and applying Mellin transform to the resulting functional equation, we have

k—1
- 1 -
///[VZI(Z);W] = Hm E 0y 5l2wl///[hq(z)(z);w], ?R(w) S <—b -1, —u/k:>
=0

Now, from @, we have that as z — oo
Bq(z)(z) = O(Z_ﬁ)

forany 3 > 0 and 0 <[ < k. Obviously, ﬁgl)(z) = O(z**1) as z — 0 for 0 < I < k. Hence, the Mellin
transform of h, ) (z) exists in the strip (—b — 1,00). Our claimed result follows from this by inverse
Mellin transform and shifting the line of integration to the right.

Simplification of the Fourier Coefficients. The main task is the evaluation of

/ zmwrl (2514,161,(2)67'221(1(“1)(2/2) +ep(z)e* — 65(2)26722> dz.
0
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Therefore, we concentrate on

/ z_“”_leb(z)e_zqu<z+1> (z/2)dz,
0

the remaining parts being easy. Note that due to (5), we have

- —9°T +b
MLy (2/2);0] = Higfil (0 b )6q“+1)(20)a

where

k—1
5q(z+1) (Z) = Z 5l+2 ce (51+j+12j.
j=0
Now, by inverse Mellin transform

o0
/ 27 ey (2)e* Lyarn (2/2)dz
0

—29T(0) (o +b o .
:/( b)1—2‘7’(€+)u< b >5q(z+1)(2")/0 279 ey (2)e *dzdo

o+ b) <wr —o+ b) —2°T (o) (—w, — o)
= ) (1+1) 27 dO’,
/<b> < b b 1 — 20k+u a0 (27)

where the outer integral is along the line (o) = —b. Finally, by shifting the line of integration to the left
and collecting residues, we obtain the absolute convergent series

/ z*ww-fleb(z)efziquﬂ)(Z/Q)dz
0

14 b\ [(—w, F LB (w0 27 00 (270
ree 3 () (03 (V)

I>b+1

Collecting everything and standard computation yields the claimed result.

3 k-dimensional Bucket PATRICIA Tries

Here, from the definition of Patricia tries, we have for ¢ = (x,...)

Xpo, + X5, . ifI, €{0,n},
Ko = 4 0 Tt it I, € {0,n) (n>b+1)
Xg .1, + Xy nog, +1, otherwise,
and for ¢ = (S,...)
Xy if I, = n,
g =4 0 B m T > ),
/ Xg.1, +1, otherwise,

where notation and initial conditions are as in the previous section.
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From this we then obtain for the Poisson generating function of the mean (with notation as before)
Ly(2) = 81y (2/2) + 1+ §4(2)

where
Gq(2) = —ep(2)e™" + brey(2/2)e™* — d1e7 /2,

and the Poisson generating function of the second moment

M,(z) = QMq'(Z/2) + 2I~’q’(z/2)2 +4(1 - 6_2/2)£q’(z/2) +14Gq(2), ifg=(x...);
e My (2/2) +2(1 — e /2 Ly (2/2) + 1+ G4(2), ifg=(S,...).

Moreover, we have for the poissonized variance
Va(2) = 04V (2/2) + hy(2),

where Bq(z) was defined in the introduction. The remaining analysis now proceeds from these functional
equational equations as in the previous section.

4 k-dimensional Bucket Digital Search Trees

Again, we start from a distributional recurrence for X, ,, which for the current situation reads as follows

a ) Xy, + X0, +1, ifg=(x...);
Xq,n+b = a ¢'n=In . ( ) (n > 0),
Xq’,I,L+17 lfq: (S,),
where the notation is as before and initial conditions are givenby X, 0 = O0and Xy = --- = X ;1 = L.

From here, we can in principle proceed as before. However, we will see that the equation satisfied by
the Poisson generating function is more complicated. More precisely, we have to cope with a differential-
functional equation compared with the functional equation from the trie case. Here, we will first use
Laplace transform to get rid of the differential operator. Then, after suitable normalization, we will be
able to proceed as before. This combined use of Laplace and Mellin transform was introduced in [3]] and
we direct the interested reader to that paper for more details concerning technicalities.

Poissonization. We again define

~ . . Zn
Pyzy) =7 ) B ).
n>0 ’

Then,
b

Z (?‘)pﬂ}(zvy) — Y Py (2/2,y)".

§=0
Taking derivatives yields for the Poisson generating function of mean and second moment (denoted as
before)

b
> <b) L) (2) = 61Ly (2/2) + 1 7)

i=o
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and

b Y T T .
3 (b> MO (2) = 2My (2/2) + 4Ly (2/2) + 2y (2/2)%+1, ifqg=(x...);
=0 M ! My (2/2) + 2Ly (2/2) + 1, ifg=1(5,...).
The first step is again to show that L,(z) and M, (z) are JS-admissible. Therefore, we need the follow-
ing result which is proved by a reduction to the trie case (see [3]] for similar results).

Proposition 4 Assume that we have

b

b\ (¢ - )
Z <]> ;{L)) (Z) = 5l+1fq(l+1) (Z/Q) + gqu)(z), (0 <l< k}),
7=0

where all involved functions are entire and 0 at z = 0. Moreover, assume that j,u)(z) is JS-admissible
for0 <1 < k. Then, f,u) (2) is JS-admissible for 0 < < k.

From this it then follows as in the trie case that L, () and M, (z) are JS-admissible.

Next, we consider the poissonized variance V,(z) = M,(z) — Ly(z)?. An easy computation proves
that

b
b\ ~ . . _
2 ( ) VO (z) = 81V (2/2) + g (2),
— \Jj
J=

where h,(z) was defined in the introduction. Then, from the JS-admissibility of L,(z) and M,(z), we
obtain as for tries the following result.

Proposition 5 As n — oo,
Var(Xyn) = Vy(n) + O (n2/571).

Asymptotic Expansion of I~/q (z). Again, we first consider the mean value. Note that due to the differ-
ential operator it is not possible to iterate (7). Therefore, we first have to get rid of the differential operator
which is achieved by applying Laplace transform. This yields

(s + 1" [Ly(2); 8] = 2002 Ly (2)328] + (5 + 1) . ®)

Next, we normalize with Q)(s) from the introduction. Therefore, set Ly(s) = g[iq(z); s]/Q(—s) and
G(s) = (s +1)*71/(Q(—2s)"s). Then,

Ly(s) = 261 Ly (28) + G(s).

Now, we can iterate and obtain

k—1
Lg(s) = 25T Ly(2%s) + ) 216, -+ 6,G(2's).
1=0
Observe that this is a similar functional equation as in the trie case. Hence, we can proceed as before.

Thus, we again apply Mellin transform. First, note that the Mellin transform of Eq(s) exists in a non-
trivial strip. Moreover, due to the rapid growth of Q(s) at infinity (see [3]]), the Mellin transform of G(s)
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exists in the strip (1, c0). Applying Mellin transform yields

~ -1
MLy(5);w] = 1_2k wk+ Z 52t R(w) € (1 +u/k,oc0).
1=0
Next, by inverse Mellin transform and shifting the line of integration to the left, we obtain

Eq(z>N Z crs—l—u/k—27rir/(kL), (S—>O)

rT=—00

Since, Q(—s)® = 1 + O(]s|) as s — 0, the same asymptotic expansion holds for .Z[L,(2); s] as well.
Finally, by formal inverse Laplace transform (see [3]] for technical details justifying this step), we have

f/q(z) ~ 2k Py (log, zl/k) (z — 00),

where P; is a computable, 1-periodic function. A more careful analysis shows that the above asymptotic
expansion holds uniformly for |z| — oo and | arg(z)| < 7/2 — €.

Asymptotic Expansion of \N/q (z). Here, we proceed as above and obtain
k—1

Vo(s) = 25F00(2%s) + > 61+ 012" Hy (2'9),
=0

where V,(s) = Z[V,(2); s]/Q(—s)? and H,w(s) = (.i”[ﬁqa) (2); 5] + p(s))/Q(—25)" with

(1+s) 1+ (-1)°
s+2

p(s) =

Now, observe that

ho(z) = O(22*=2) " if 2 — oo0;
T o), if z — 0%,

where the first bound follows from the bound of the previous paragraph (which we are allowed to dif-
ferentiate due to Ritt’s theorem; see [9]) and the second bound is trivial. This together with the growth
properties of Q(s) then in turn yields

_ O(1/s), ifs— oo;
H =
q(8) {0(8—6)7 ifs — 0T,

where 3 > 0 is an arbitrary constant. Consequently, the Mellin transform of H, o exists in the strip (1, c0).
The remaining proof of Theorem [2] proceeds then as in the previous paragraph.
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Simplification of the Fourier Coefficients for b = 1. First, by iteration of ,

- 1 o .
ZLNLy(2);8] = = DI ,
[La(2); 5] S§(8+1)~~~(278+1)
where 6 ; = H{:l d;. Next, by partial fraction expansion,
j ] l2 ( +1)5*
LIEy()s) = LY > —Y ks
520120 25+1Q1Q7l z>o 2s+1
where (41
_ —1)i9—("2
= V2
>0 /

Consequently, by inverse Laplace transform

This implies

- 5 , ~ 8q.10 , ,
Lg(z) :Z q,! 67z/2’, L;(Z)z _ Z _Yq,l%,h z/2’7z/2h'

l I+h
= 2t o 2 Qth

Plugging this into (3) (note that for b = 1, we have hy(2) = f/q(z)z) and using

9-(3)
Q( ZQ35+2j

together with some standard computations proves the claim.

5 Conclusion

In this paper, we gave a new and simpler approach to the variance of partial match queries in k-dimensional
bucket digital trees. Our method used standard tools from the analysis of algorithm such as poissonization-
depoissonization and Mellin transform. The main simplification comes from the poissonized variance
which incorporates cancellations at a much earlier stage compared to previous derivations.

Our approach allowed us to derive asymptotic expansions of the variance in k-dimensional bucket tries,
k-dimensional bucket PATRICIA tries and k-dimensional bucket digital search trees. In all cases, the
variance is asymptotic to n"/* P(log, n'/*) where P is a 1-periodic function. Since the mean has the
same order, our results show that the cost of partial match retrievals is concentrated around the mean.

We conclude by pointing out that even though we only derived the main term in the asymptotic expan-
sions, our approach can be straightforwardly applied to derive longer asymptotic expansions, too.
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In this project, we established several new results concerning inhomogeneous
Diophantine approximation, restricted Diophantine approximation and simul taneous
Diophantine approximation in the field of formal Laurent series over a finite base
field. Our results improve and generalize several recent results in this area.
Moreover, compared to the real number case, our results hold under less restrictive

assumptions and are more precise.
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