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Project: Metrical results for Diophantine approximation in positive
characteristic

by

Michael Fuchs

1 General
This is the final report on the National Science Council project “Metrical results for Diophantine
approximation in positive characteristic” with grant number NSC-98-2115-M-009-009 and term
from August 1st, 2009 to July 31st, 2010.

Before presenting the outcomes of this project, we shortly summarize them.

• All conjectures (as well as generalizations) of the project proposal have been established.

• The two papers [2] and [3] contain the main findings of this project (preprints of the papers
are attached to this report). The first one appeared this year in Acta Arithmetica and the
second one was accepted by the same journal.

2 Results
In order to describe our results, we need some notations. First, let Fq denote a finite field with q
elements. Moreover, denote by Fq[T ] the polynomial ring over Fq and by

Fq((T−1)) =

{
f =

∑
i≤n

aiT
i : n ∈ Z, ai ∈ Fq, an 6= 0

}
∪ {0}

the field of formal Laurent series over Fq. We define a norm in the usual way as |f | = qn if f 6= 0
and |0| = 0. By restricting this norm to the set

L = {f ∈ Fq((T−1)) : |f | < 1}

one obtains a compact Abelian group. Hence, there exists a unique, translation-invariant probabil-
ity measure which we are going to denote by m.

Several recent papers have studied the following Diophantine approximation problem∣∣∣∣f − P

Q

∣∣∣∣ < 1

q2n+ln
, Q monic, degQ = n, gcd(P,Q) = 1, (1)

where f ∈ L is random (with respect to m) and ln is a sequence of non-negative integers.
In order to put our results into context, we highlight some recent results. First, in [4] the

following strong law of large number with error term was established.

Theorem 1 (K. Inoue and H. Nakada). The number of solutions of (1) with degQ ≤ N satisfies

q − 1

q
Ψ(N) +O

(
(Ψ(N))1/2(log Ψ(N))3/2+ε

)
a.s.

with an arbitrary ε > 0 and Ψ(N) :=
∑

n≥N q
−ln .
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Moreover, in [5] the authors studied (1) with the condition gcd(P,Q) = 1 dropped. They
proved the following result.

Theorem 2 (H. Nakada and R. Natsui). Let ln be non-decreasing. Then, under some further tech-
nical conditions on ln, the number of solutions of (1) without the condition gcd(P,Q) = 1 and
degQ ≤ N is a.s. asymptotic to Ψ(N).

Note that compared to the previous result, the conditions in Theorem 2 are more restrictive and
the result is less precise. Our starting point of this project was to improve this result and extend it
to a more general setting.

Inhomogeneous Diophantine Approximation. Consider the inhomogeneous Diophantine ap-
proximation problem ∣∣∣∣f − g + P

Q

∣∣∣∣ < 1

q2n+ln
, Q monic, degQ = n, (2)

where f ∈ L is random, g ∈ L and ln is a sequence of non-negative integers.
Using an ingenious method of W. M. Schmidt [6], we proved the following result in [2].

Theorem 3. For any fixed g ∈ L, the number of solutions of (2) with degQ ≤ N satisfies

Ψ(N) +O
(
(Ψ(N))1/2(log Ψ(N))2+ε

)
a.s.

with an arbitrary ε > 0.

This result is remarkable because of the following reasons.

• For g = 0, it improves upon Theorem 2 by removing ALL restrictions on ln and providing
an error term.

• For g = 0, it completes the result in [1] where Diophantine approximation of linear forms
with at least two terms was studied (our result covers the missing case of only one term).

• The error term is better and the conditions are less restrictive as in the corresponding result
in the real case; see [7].

Then, we also considered (2) with several restrictions on Q.

Restricted Diophantine Approximation. Here, we proved a variety of results in [2]. We just
state some consequences of our results; for more consequences and general results the reader is
referred to [2].

Theorem 4. (i) Let C,D ∈ Fq[T ] with degC < degD. The number of solutions of (2) with
Q ≡ C mod D and degQ ≤ N satisfies

1

|D|
Ψ(N) +O

(
(Ψ(N))1/2(log Ψ(N))2+ε

)
a.s.

with an arbitrary ε > 0.
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(ii) The number of solutions of (2) with Q square-free and degQ ≤ N satisfies

q − 1

q
Ψ(N) +O

(
(Ψ(N))1/2(log Ψ(N))2+ε

)
a.s.

with an arbitrary ε > 0.

Moreover, if restricting Q to the set of irreducible polynomials, we even have a better error
term.

Theorem 5. Let
Ψ1(N) :=

∑
n≤N

1

nqln
.

Then, the number of solutions of (2) with Q irreducible and degQ ≤ N satisfies

Ψ1(N) +O
(
(Ψ1(N))1/2(log Ψ1(N))3/2+ε

)
a.s.

with an arbitrary ε > 0.

Simultaneous Diophantine Approximation. Now, consider the simultaneous Diophantine ap-
proximation problem∣∣∣∣fj − Pj

Q

∣∣∣∣ < 1

qn+l
(j)
n

, Q monic, degQ = n, j = 1, . . . , d, (3)

where (f1, . . . , fd) ∈ L × · · · × L is random (with respect to the m-fold product measure of m)
and l(j)n are sequences of non-negative integers. Moreover, set ln :=

∑d
j=1 l

(j)
n .

Using Schmidt’s method once more, we proved the following result which generalizes Theo-
rem 3 above (for g = 0).

Theorem 6. Let ln ≥ n. Then, the number of solutions of (3) with degQ ≤ N satisfies

Ψ(N) +O
(
(Ψ(N))1/2(log Ψ(N))2+ε

)
a.s.

with an arbitrary ε > 0.

Moreover, in [3], we considered (3) with the additional condition gcd(Pj, Q) = 1.

Theorem 7. Let ln ≥ n. Then, the number of solutions of (3) with gcd(Pj, Q) = 1 and degQ ≤ N
satisfies

c0Ψ(N) +O
(
(Ψ(N))1/2+ε

)
a.s.

with an arbitrary ε > 0. Here,

c0 :=
∑

Q1 monic

· · ·
∑

Qd monic

µ(Q1)

|Q1|
· · · µ(Qd)

|Qd|
1

|lcm(Q1, . . . , Qd)|
> 0,

where µ(·) is the Moebius µ function.

This result generalizes Theorem 1 to the multi-dimensional setting. Note, however, that the
error term in our result for d = 1 is weaker than the error term in Theorem 1. This is due to the
fact that we use a completely different (and more involved) method of proof (the method of proof
of Theorem 1 relied on continued fraction theory which is not available in higher dimensions).
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3 Summary
In this project, we established several new results concerning inhomogeneous Diophantine ap-
proximation, restricted Diophantine approximation and simultaneous Diophantine approximation
in the field of formal Laurent series over a finite base field. In particular, we were able to verify
all conjectures from the project proposal. Moreover, our results improve and generalize several
previous results in this area. Finally, our results hold under less restrictive assumptions and are
more precise compared to the corresponding results over the real number field.
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Metrical Theorems for Inhomogeneous Diophantine
Approximation in Positive Characteristic

Michael FUCHS

Dedicated to Prof. Harald Niederreiter
on the occasion of his 65th birthday

Abstract

We consider inhomogeneous Diophantine approximation for formal Laurent series over a finite base
field. We establish an analogue of a strong law of large numbers due to W. M. Schmidt with a better
error term than in the real case. A special case of our result improves upon a recent result by H. Nakada
and R. Natsui and completes a result of M. M. Dodson, S. Kristensen, and J. Levesley. Moreover, we
prove various results for inhomogeneous Diophantine approximation with restricted denominators.

1 Introduction

Several recent studies have been concerned with the metric theory of Diophantine approximation in the
field of formal Laurent series; for some references see below. The aim of this paper is to make some
further progress on the inhomogeneous Diophantine approximation problem. More precisely, we will
establish some analogues of results from the real number case (which in the sequel will be referred to
as the ”classical case”) with some improvements which are arising from the more simple nature of the
metric structure of the formal Laurent series field.

First, let us fix some notation. Subsequently, we will denote byFq a finite field withq elements; the
polynomial ring overFq, the field of rational functions overFq, and the field of formal Laurent series
overFq will be denoted byFq[T ], Fq(T ), andFq((T−1)), respectively. Forf ∈ Fq((T−1)) with

f = anT
n + an−1T

n−1 + · · · , ak ∈ Fq, an 6= 0, n ∈ Z,

we define|f | := qn and|0| := 0. It is easily checked that| · | is a norm which satisfies the ultra-metric
property, i.e.,

|f − g| ≤ max{|f |, |g|}

with equality if |f | 6= |g|. This property in particular implies that two balls (defined in the standard
way) are either disjoint or they are contained in each other. Finally, we set

L = {f ∈ Fq((T−1)) : |f | < 1}.

Note thatL equipped with the restriction of the norm toL is a compact abelian group. Consequently,
there exist a unique, translation-invariant probability measure which will be denoted bym.

Key words:formal Laurent series, inhomogeneous Diophantine approximation, Diophantine approximation with restricted
denominators, strong laws of large numbers, Schmidt’s method.

2000Mathematics Subject Classification:11J61, 11J83, 11K60.
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In the following, we will be concerned with the inhomogeneous Diophantine approximation prob-
lem: forf, g ∈ L consider the Diophantine inequality

|Qf − g − P | < 1
qn+ln

, Q is monic, degQ = n, (1)

whose solutions are pairs of polynomials〈P,Q〉 ∈ Fq[T ] × Fq[T ] with Q 6= 0 (throughout this work
we will use 〈·, ·〉 to denote pairs, whereas(·, ·) is reserved for thegcd). Here, ln is a sequence of
non-negative integers. In particular, note thatln just depends ondegQ.

In a recent paper, C. Ma and W.-Y. Su [8] investigated the above problem and proved a Khintchine
type0-1 law for the number of solutions if bothf andg are chosen randomly (with respect tom) from
L. Their result is an analogue of a result of J. W. S. Cassels [3] from the classical case, where this
situation is sometimes called the ”double-metric” case. Moreover, the following two ”single-metric”
cases were considered over the real number field as well (e.g., see [11] and [12]): (S1) fix f and choose
a randomg ∈ L; (S2) fixg and choose a randomf ∈ L.

In this paper, we are interested in stochastic properties of the solution set of (1) for f, g such that
the number of solutions is infinite. More precisely, we will derive strong laws of large numbers with
error terms for the number of solutions〈P,Q〉 of (1) with degQ ≤ N . Such results have so far only
been established for (S2) withg = 0; see [6] and H. Nakada and R. Natsui [9]. Here, we will further
improve these results and extend them to generalg. So, the main part of the paper will focus on the
case (S2). The other ”single-metric” case and the ”double metric” case exhibit a somehow different
behavior and will be only briefly discussed in the final section.

From now on, letg ∈ L be fixed. Moreover, define

Ψ(N) :=
∑
n≤N

1
qln

.

Our first result reads as follows.

Theorem 1. The number of solutions of (1) with 0 ≤ degQ ≤ N satisfies

Ψ(N) +O
(
Ψ(N)1/2(log Ψ(N))2+ε

)
, a.s.,

whereε > 0 is an arbitrary constant.

This result is an analogue of a result of W. M. Schmidt [11] from the classical case. In fact, we will
use a variant of Schmidt’s method to prove it. Note, however, that the error term is better than the one
from the classical case. Moreover, no monotonicity assumption onln is required.

For g = 0 the improved error term was also achieved in the classical case; see G. Harman [7].
The result in this special case improves upon Theorem 3 in [9] by removing some further technical
conditions onln and providing an error term. Moreover, our result completes the main result in [4]
which was concerned with Diophantine approximation of linear forms with at least two terms. Here,
the missing case of only one term is considered. As in the real case, the current situation turns out to
be more complex, a claim which is further supported by the fact that the result in [4] has a better error
term; for a discussion of this phenomena in the real case see [10].

In fact, our method of proof can be used to obtain even more general results. More precisely, the
method will allow us to investigate inhomogeneous Diophantine approximation with restricted denom-
inators as well. Therefore, replace (1) by

|F (Q)f − g − P | < 1
qn+ln

, Q is monic, degQ = n, (2)

whereln is as above andF is a function fromFq[T ] into Fq[T ].
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First, we will fix some further notation. Let

F := {Q : Q monic andF (Q) 6= 0}

and denote byFn the subset of all polynomialsQ ∈ F with degQ = n. Subsequently, we will
only considerF that satisfy the following property: forQ,Q′ ∈ F with degQ ≤ degQ′, we have
degF (Q) ≤ degF (Q′). Finally, set

Ψ(N,F) :=
∑
n≤N

#Fn

qn+ln
.

Then, the following generalization of the above result holds.

Theorem 2. Assume thatF (Q) is eitherQ or 0. Then, the number of solutions of(2) withQ ∈ F and
0 ≤ degQ ≤ N satisfies

Ψ(N,F) +O
(
(Ψ(N))1/2 (log Ψ(N))2+ε

)
, a.s., (3)

whereε > 0 is an arbitrary constant.

In particular, the latter result gives a meaningful asymptotic formula whenever

lim inf
n→∞

#Fn

qn
> 0. (4)

Two important special cases are collected in the following corollary, the first of which has to be com-
pared with the results in [6].

Corollary 1. (i) LetC,D ∈ Fq[T ] with degC < degD. Then, the number of solutions of(1) with
Q ≡ C (D) and0 ≤ degQ ≤ N satisfies

1
|D|

Ψ(N) +O
(
(Ψ(N))1/2 (log Ψ(N))2+ε

)
, a.s., (5)

whereε > 0 is an arbitrary constant.

(ii) The number of solutions of(1) withQ monic, square-free and0 ≤ degQ ≤ N satisfies

q − 1
q

Ψ(N) +O
(
(Ψ(N))1/2 (log Ψ(N))2+ε

)
, a.s., (6)

whereε > 0 is an arbitrary constant.

Note that condition (4) is not satisfied for some interestingF such as the set of monic, irreducible
polynomials. This situation, however, turns out to be more simpler and we can obtain a strong law of
large numbers with an even better error term. Therefore, we first prove an analogue of Theorem 3.1 in
[7] which holds for generalF .

Theorem 3. The number of solutions of(2) withQ ∈ F and0 ≤ degQ ≤ N satisfies

Ψ(N,F) +O
(
(Ψ0(N))1/2(log Ψ0(N))3/2+ε

)
, a.s.,

whereε > 0 is an arbitrary constant and

Ψ0(N) =
∑
n≤N

1
qn+ln

∑
m≤n

∑
Q∈Fn

∑
Q′∈Fm

|(F (Q), F (Q′))|
|F (Q)|

.
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This result entails the following corollary.

Corollary 2. (i) Let

Ψ1(N) :=
∑
n≤N

1
nqln

.

Then, the number of solutions of(1) withQ monic, irreducible and0 ≤ degQ ≤ N satisfies

Ψ1(N) +O
(
(Ψ1(N))1/2 (log Ψ1(N))3/2+ε

)
, a.s.,

whereε > 0 is an arbitrary constant.

(ii) LetF (Q) = Qt with t ≥ 2. Then, the number of solutions of(2) with 0 ≤ degQ ≤ N satisfies

Ψ(N) +O
(
(Ψ(N))1/2 (log Ψ(N))3/2+ε

)
, a.s.,

whereε > 0 is an arbitrary constant.

It is worth mentioning that Theorem3 does not give a meaningful result in the situations discussed
in Theorem1 and Corollary1. Consequently, part (ii) of Corollary2 shows that the complexity oft = 1
andt ≥ 2 are rather different.

We conclude the introduction by giving a short plan of the paper. In the next section, we will prove
a weak independence result which will form the crucial step in deriving all results above. In particular,
Theorem3 will follow rather quickly from this result and this will be demonstrated in the next section
as well. Then, in Section3, we will show how to amend Schmidt’s method to the current situation to
obtain a proof of Theorem1 and Theorem2. In the final section, we will then briefly discuss the other
”single-metric” case and the ”double-metric” case.

Notation.All logarithms appearing throughout this work will only attain values≥ 1, i.e.,loga x should
be interpreted asmax{loga x, 1}. We will use Landau’s notationf(x) = O(g(x)) as well as Vino-
gradov’s notationf(x) � g(x) to indicate that there exist a constantC ≥ 0 such that|f(x)| ≤ C|g(x)|
for all x sufficiently large.

2 A weak independence result with applications

We start by proving a technical lemma that constitutes a refinement of Lemma 2.3 in [2].

Lemma 1. LetQ,Q′ be two non-zero polynomials withn = degQ,m = degQ′ andd = deg(Q,Q′).
Let l be a non-negative integer. Then, the numberN of pairs〈P, P ′〉 with degP < n, degP ′ < m and∣∣∣∣g + P

Q
− g + P ′

Q′

∣∣∣∣ < 1
qm+l

(7)

is given by

N

{
= qn−l, if n ≥ l + d;
≤ qd, if n < l + d.

Proof.First, (7) can be reformulated to

|g(Q′ −Q) + PQ′ − P ′Q| < qn−l.

Next, setQ = (Q,Q′) · Q̄ andQ′ = (Q,Q′) · Q̄′. Then,

|g(Q̄′ − Q̄) + PQ̄′ − P ′Q̄| < qn−l−d.
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Let−C denote the polynomial part ofg(Q̄′ − Q̄). Now, we will consider two cases.
First, assume thatn < l + d. Then, a necessary condition for〈P, P ′〉 being a solution of the above

inequality isPQ̄′ − P ′Q̄ = C. Observe that forP with degP < n and

PQ̄′ ≡ C modQ̄, (8)

we havePQ̄′ = C + P ′Q̄ with some polynomialP ′ and

degP ′ + deg Q̄ = deg(PQ̄′ − C) ≤ degP + deg Q̄′ < n+ deg Q̄′.

Consequently,degP ′ < m. So, eitherN = 0 orN equals the number of solutions of (8) which isqd.
Next, we considern ≥ l + d. Here, we can argue similar as above, the only difference being

thatN equals the number of solutions of (8) with C replaced byC + D for all polynomialsD with
degD < n− l − d. Consequently,N = qn−l.

Next, we define forQ ∈ Fn the set

FQ := {f ∈ L : f satisfies(2) with someP ∈ Fq[T ]}.

Obviously,FQ is the union of|F (Q)| disjoint balls. Consequently,

m(FQ) =
1

qn+ln
.

Moreover, we have the following weak independence result.

Proposition 1. LetQ ∈ Fn, Q
′ ∈ Fm, andd = deg(F (Q), F (Q′)). Then,

m(FQ ∩ FQ′) ≤ m(FQ)m(FQ′) + qd−deg F (Q)−n−ln .

Proof. First assume thatn + ln + degF (Q) ≥ m + lm + degF (Q′). Then, all balls which make up
FQ have radius at most as large as the radius of the balls which make upFQ′ . So, by the ultra-metric
property of the norm, we have to count how many of the(g + P )/F (Q) are contained in balls with
center(g+P ′)/F (Q′) and radiusq− deg F (Q′)−m−lm , i.e., we have to count the number of solutions of∣∣∣∣g + P

F (Q)
− g + P ′

F (Q′)

∣∣∣∣ < 1
qdeg F (Q′)+m+lm

.

The latter number is given by the above lemma. We first consider the case withdegF (Q) ≥ m+lm+d.
Here, the number of solutions equalsqdeg F (Q)−m−lm . So, we obtain

m(FQ ∩ FQ′) =
|F (Q)|q−m−lm

|F (Q)|qn+ln
=

1
qn+ln

· 1
qm+lm

= m(FQ)m(FQ′).

Hence, the assertion holds in this case. Now, consider the second case wheredegF (Q) < m+ lm + d.
Then, again by the above lemma,

m(FQ ∩ FQ′) ≤ qd

qdeg F (Q)+n+ln
.

Hence, the claim is proved in this case as well.
Next, ifn+ln degF (Q) < m+lm+degF (Q′), we obtain from the arguments above the claim with

the second term replaced byqd−deg F (Q′)−m−lm . This term is trivially bounded byqd−deg F (Q)−n−ln .
Hence, the proof of the proposition is finished.

The above proposition will turn out to be one of the key ingredients in the prove of our results. The
other key ingredient is the following important lemma which is a standard tool in metric number theory.
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Lemma 2 (Lemma 1.5 in [7]). Let ξn(ω) be a sequence of non-negative random variables defined on
a probability space(Ω,B, P ). Letψn andϕn be sequences of real numbers with

0 ≤ ψn ≤ ϕn.

Define
Φ(N) =

∑
n≤N

ϕn

and assume thatΦ(N) →∞ asN →∞. Finally, assume that

E

 ∑
M≤n≤N

ξn − ψn

2

�
∑

M≤n≤N

ϕn.

for all non-negativeM < N . Then,∑
n≤N

ξn(ω) =
∑
n≤N

ψn +O
(

(Φ(N))1/2(log Φ(N))3/2+ε + max
n≤N

ψn

)
, a.s.,

whereε > 0 is an arbitrary constant.

As a first application of this lemma, we show how to deduce Theorem3 from it. Therefore, set

ξn := #{〈P,Q〉 : 〈P,Q〉 is a solution of (2)}.

This sequence of random variables satisfies the following properties.

Proposition 2. (i) We have,

E

∑
n≤N

ξn

 = Ψ(N,F).

(ii) We have,

E

 ∑
M≤n≤N

ξn −
#Fn

qn+ln

2

�
∑

M≤n≤N

1
qn+ln

∑
m≤n

∑
Q∈Fn

∑
Q′∈Fm

|(F (Q), F (Q′))|
|F (Q)|

for all non-negative integersM < N .

Proof.Part (i) follows from
ξn =

∑
Q∈Fn

1FQ

and basic properties of the mean value.
For part (ii), we also use the above representation which yields

E

 ∑
M≤n≤N

ξn −
#Fn

qn+ln

2

= 2
∑

M≤n≤N

∑
M≤m≤n−1

∑
Q∈Fn,Q′∈Fm

m(FQ ∩ FQ′)−m(FQ)m(FQ′)

+
∑

M≤n≤N

∑
Q∈Fn,Q′∈Fm

m(FQ ∩ FQ′)−m(FQ)m(FQ′).

Applying Proposition1 immediately yields the claimed result.
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Now, we can prove Theorem3.

Proof of Theorem3. If Ψ(N,F) → c ≥ 0 asN → ∞, the result follows by a standard application of
the Lemma of Borel-Cantelli. Hence, we can assume thatΨ(N,F) → ∞ asN → ∞. But then the
claim follows from the Proposition above together with Lemma2.

Corollary2 follows from the last result as follows.

Proof of Corollary2. For part (i), we use the well-known result (see Chapter 3 in [1])

#Fn =
qn

n
+O (qεn) , (9)

whereε < 1 is a suitable constant. Hence,

Ψ(N,F) = Ψ1(N) +O(1).

Moreover,

Ψ0(N) =
∑
n≤N

1
q2n+ln

∑
m≤n

∑
deg Q=n

Q monic, irreducible

∑
deg Q′=m

Q′ monic, irreducible

|(Q,Q′)| � Ψ1(N),

where the last line again follows by (9). This proves the claim.
As for part (ii), first observe that#Fn = qn and henceΨ(N,F) = Ψ(N). The bound forΨ0(N)

is slightly more tricky. First,

Ψ0(N) =
∑
n≤N

1
q(t+1)n+ln

∑
m≤n

∑
deg Q=n
Q monic

∑
deg Q′=m
Q′ monic

|(Qt, (Q′)t)|

�
∑
n≤N

1
q(t+1)n+ln

∑
deg Q=n
Q monic

∑
D|Q

D monic

qn

|D|
|D|t.

Next, we have∑
deg Q=n
Q monic

∑
D|Q

D monic

|D|t−1 =
∑
d≤n

∑
deg D=d
D monic

qn

|D|
|D|t−1 = qn

∑
d≤n

q(t−1)d � qtn.

Plugging this into the estimate above yieldsΨ0(N) � Ψ(N). Hence, the result is established.

3 Schmidt’s method in positive characteristic

Note that the method from the last section does not yield a meaningful result for the caseF (Q) = Q.
More specifically, it is easily checked that the error term from the proof of part (ii) of Corollary2 for
t = 1 would be larger than the main term. The same phenomena also occurs in the real case, where this
problem was overcome by an ingenious method introduced by W. M. Schmidt in [10] and [11]. In this
section, Schmidt’s method will be amended to the current situation.

We start with a couple of (easy) lemmas.

Lemma 3 (Dirichlet’s principle in positive characteristic). For all non-zero polynomialsQ there exist
polynomialsA,B with 0 < |A| ≤ |Q| and(A,B) = 1 such that∣∣∣∣g − B

A

∣∣∣∣ < 1
|A||Q|

.

7



Proof.This is proved as in the classical case.
Observe thatA andB in the previous lemma just depend ondegQ. Subsequently, for any given

non-zero polynomialQ, we will choose a fixed pair〈A,B〉 satisfying the assumption of the previous
lemma for a polynomialQ′ with degQ′ = bdegQ/2c.

Next, we define the following two sets

S(Q; k) = {P : degP < degQ and deg(P,Q) ≤ k},
S∗(Q; k) = {P : degP < degQ and deg(AP +B,Q) ≤ k},

whose cardinalities will be denote byϕ(Q; k) andϕ∗(Q; k), respectively.

Lemma 4. We have,
ϕ∗(Q; k) ≥ ϕ(Q; k).

Proof.First, letQ = Q1Q2, where every prime factor ofQ1 is also a prime factor ofA and(Q2, A) = 1.
Then, we have

ϕ(Q; k) ≤ ϕ(Q1; k)ϕ(Q2; k) ≤ |Q1|ϕ(Q2; k).

Now, note thatAP +B with degP < degQ2 are all different moduleQ2. Hence,ϕ(Q2; k) = #{P :
degP < degQ2 anddeg(AP +B,Q2) ≤ k}. Finally notice that

(AP +B,Q2) = (AP +B,Q1Q2) = (AP +B,Q).

Consequently,

ϕ∗(Q; k) = |Q1| ·#{P : degP < degQ2 and deg(AP +B,Q2) ≤ k}.

Combining everything yields the claimed result.
Next, we fixF (Q) = Q. Moreover, as in the last section, it suffices to consider the case where

Ψ(N) → ∞ asN → ∞. The method of the last section did not work when directly applied to the
sequenceξn. Therefore, we will approximate this sequence by the following one

ξ∗n := #{〈P,Q〉 : P ∈ S∗(Q; Γ(n)) and〈P,Q〉 is a solution of (1)},

whereΓ(n) = blogq Ψ(n)2c. Moreover, similar as in the last section, we define

F ∗Q := {f ∈ L : f satisfies (1) with someP ∈ S∗(Q; Γ(n))}.

Then,
ξ∗n =

∑
deg Q=n
Q monic

1F ∗
Q

and consequently

Eξ∗n =
∑

deg Q=n
Q monic

ϕ∗(Q; Γ(n))
q2n+ln

.

The next result shows that the mean values of the partial sums ofξn andξ∗n are very close to each
other.

Proposition 3. We have,

E

 ∑
M≤n≤N

ξ∗n

 =
∑

M≤n≤N

1
qln

+O(1)

for all non-negative integersM < N .
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Proof.First, observe that

0 ≤
∑

M≤n≤N

1
qln

− E

 ∑
M≤n≤N

ξ∗n

 =
∑

M≤n≤N

∑
deg Q=n
Q monic

qn − ϕ∗(Q; Γ(n))
q2n+ln

≤
∑

M≤n≤N

∑
deg Q=n
Q monic

qn − ϕ(Q; Γ(n))
q2n+ln

,

where we have used the above lemma in the last step. Next, it is well-known (see [5]) that the number
of pairs〈P,Q〉 with degP = l < degQ = n, P,Q monic anddeg(P,Q) = k < l is given by

qn+l−k

(
1− 1

q

)
.

Consequently,

∑
deg Q=n
Q monic

ϕ(Q,Γ(n)) =
(q − 1)2

q

n−1∑
l=Γ(n)+1

Γ(n)∑
k=0

qn+l−k +O

Γ(n)∑
l=0

l∑
k=0

qn+l−k

 = q2n +O
(
q2n−Γ(n)

)
.

Plugging this into the above expression, we obtain

0 ≤
∑

M≤n≤N

1
qln

− E

 ∑
M≤n≤N

ξ∗n

�
∑

N≤n≤M

1
qlnΨ(n)2

.

Since the latter series is convergent by the Abel-Dini theorem, the claim is proved.
Finally, we need the following property.

Proposition 4. We have,

E

 ∑
M≤n≤N

ξ∗n −
1
qln

2

�
∑

M≤n≤N

Γ(n)
qln

for all non-negative integersM < N .

Proof.We start with an observation that is needed below. By a close inspection of the proof of Propo-
sition1, we have

m(F ∗Q ∩ F ∗Q′) ≤
1

qn+ln
· 1
qm+lm

+
1

q2n+ln
A(Q,Q′), (10)

whereA(Q,Q) is the number of all pairsP, P ′ with P ∈ S∗(Q; Γ(n)), P ′ ∈ S∗(Q′; Γ(m)) and

|g(Q−Q′) + P ′Q− PQ′| < min
{
|(Q,Q′)|, qmax{n−m−lm,m−n−ln}

}
. (11)

Moreover, observe thatA(Q,Q) ≤ |(Q,Q′)|.
We will use this to bound the expected value from the claim. First,

E

( ∑
M≤n≤N

ξ∗n −
1
qln

)2

=

9



=
∑

M≤n≤N

∑
M≤m≤N

Eξ∗n · ξ∗m − 2
∑

M≤n≤N

1
qln

E

 ∑
N≤n≤M

ξ∗n

+
∑

M≤n≤N

∑
M≤m≤N

1
qln

· 1
qlm

=
∑

M≤n≤N

∑
M≤m≤N

(
Eξ∗n · ξ∗m − 1

qln
· 1
qlm

)
+O

 ∑
M≤n≤N

1
qln


= 2

∑
M≤n≤N

∑
M≤m≤n−1

(
Eξ∗n · ξ∗m − 1

qln
· 1
qlm

)
+

∑
M≤n≤N

(
E(ξ∗n)2 − 1

q2ln

)
+O

 ∑
M≤n≤N

1
qln

 ,

where the third step follows from Proposition3. Now, applying (10) gives∑
M≤m≤n

Eξ∗n · ξ∗m =
∑

M≤m≤n

∑
deg Q=n
Q monic

∑
deg Q=m
Q monic

m(F ∗Q ∩ F ∗Q′)

≤ 1
qln

·
∑

M≤m≤n

1
qlm

+
1

q2n+ln

∑
M≤m≤n

∑
deg Q=n
Q monic

∑
deg Q′=m
Q′ monic

A(Q,Q′)

Using this to bound the first and second term in the expression above yields

E

 ∑
M≤n≤N

ξ∗n −
1
qln

2

�
∑

M≤n≤N

1
q2n+ln

∑
M≤m≤n

∑
deg Q=n
Q monic

∑
deg Q′=m
Q′ monic

A(Q,Q′)+
∑

M≤n≤N

1
qln

. (12)

Next, we will estimate

Σ :=
∑

M≤n≤N

1
q2n+ln

∑
M≤m≤n

∑
deg Q=n
Q monic

∑
deg Q′=m
Q′ monic

A(Q,Q′).

Therefore, we fix an arbitrary smallδ and breakΣ into two partsΣ′ andΣ′′, where the first part runs
over all pairs〈Q,Q′〉 with degQ′ ≤ dn − δ deg(Q,Q′)e and the second part runs over the remaining
pairs. In order to boundΣ′, we change the order of summation as follows: first we sum overQ, then
overD|Q and finally overQ′ with D = (Q,Q′). Note that for fixedQ andD the number ofQ′’s is
bounded byqn/|D|1+δ. This together withA(Q,Q′) ≤ |D| then yields

Σ′ =
∑

M≤n≤N

1
q2n+ln

∑
deg Q=n
Q monic

∑
D|Q

D monic

qn

|D|1+δ
|D| �

∑
M≤n≤N

1
qln

∑
deg D≤n
D monic

1
|D|1+δ

�
∑

M≤n≤N

1
qln

.

As for Σ′′ observe thatdegQ′ > dn− δ deg(Q,Q′)e implies

min
{
|(Q,Q′)|, qmax{n−m−lm,m−n−ln}

}
< |(Q,Q′)|δ.

Hence, for all〈Q,Q′〉 involved in the range ofΣ′′ the relation (11) can be replaced by

|g(Q−Q′) + P ′Q− PQ′| < |(Q,Q′)|δ. (13)

This yields

Σ′′ �
∑

M≤n≤N

1
q2n+ln

∑
M≤m≤n

∑
deg Q=n
Q monic

∑
deg Q′=m
Q′ monic

B(Q,Q′),
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whereB(Q,Q′) denotes the number of allP, P ′ with P ∈ S∗(Q; Γ(n)) andP ′ ∈ S∗(Q′; Γ(m)) that
satisfy (13). Again note thatB(Q,Q′) ≤ |(Q,Q′)|.

Collecting all bounds so far, we see that the right hand side of (12) can be replaced by∑
M≤n≤N

1
q2n+ln

∑
M≤m≤n

∑
deg Q=n
Q monic

∑
deg Q′=m
Q′ monic

B(Q,Q′) +
∑

M≤n≤N

1
qln

. (14)

Next, we will estimate the first term

Σ0 :=
∑

M≤n≤N

1
q2n+ln

∑
M≤m≤n

∑
deg Q=n
Q monic

∑
deg Q′=m
Q′ monic

B(Q,Q′)

which we will break into three partsΣ′
0,Σ

′′
0,Σ

′′′
0 , where the ranges will be given below. For every part

we will proceed similar as forΣ′ above. More precisely, we will change the order of summation as
follows: as forΣ′ the first two sums will run overQ andD|Q. The final sum will run overQ̄′ with
(Q̄′, Q/D) = 1. Here, we introduce the notationQ′ = DQ̄′ andQ = DQ̄. Using this notation, we can
rewrite (13) to

|g(Q̄− Q̄′) + P ′Q̄− PQ̄′| < |D|−1+δ. (15)

Finally, we need the notationR = g − B/A, where〈A,B〉 is the pair belonging toQ. Now, we will
separately estimate the three partsΣ′

0,Σ
′′
0,Σ

′′′
0 .

As for Σ′
0, the first two sums of this part run over all〈Q,D〉 with D|Q and|A| ≥ |D|δ1 , whereδ1

will be chosen later. The last sum runs overQ̄′ and our goal is to count the number ofQ̄′ such that (15)
has solutions inP, P ′ (whose number will then be bounded by|D|). First, we consider̄Q′ of the form
Q̄′ = C1 + C2, whereC1 is fixed andC2 is an arbitrary polynomial withdegC2 < degA. Plugging
this into (15) and doing some simplifications yields

|gC2 + L+ ḡ| < |D|−1+δ,

whereḡ ∈ L does not depend onC2 ∈ Fq[T ] might depend onC2. From the ultra-metric property of
the norm, we obtain∣∣∣∣BAC2 + L+ ḡ

∣∣∣∣ ≤ max{|gC2 + L+ ḡ|, |RC2|} < max{|D|−1+δ, |RA|}.

Observe that sinceC2 runs through a complete set of residues moduloA and(A,B) = 1, BC2 also
runs through a complete set of residues moduloA. Consequently,∣∣∣∣CA + L̄+ ḡ

∣∣∣∣ < max{|D|−1+δ, |RA|},

where we now have to count the number ofC ’s satisfying this inequality withdegC < degA. Here,
L̄ is another polynomial that might depend onC. However, since the right hand side of the above
inequality is smaller than1, L̄ must be equal to0. Thus,

|C +Aḡ| < max{|A||D|−1+δ, |RA2|} ≤ max{|A||D|−1+δ, 1}

and the number of suchC ’s is clearly bounded by|A||D|−1+δ + 1. Next, observe that the number of
C1’s above is bounded by|Q||DA|−1 + 1. Therefore, the number of̄Q′ such that (15) has a solution in
P, P ′ is bounded by

(|A||D|−1+δ + 1)(|Q||DA|−1 + 1) ≤ |Q||D|−2+δ + |Q||D|−1−δ1 +
√
|Q||D|−1+δ + 1

� |Q||D|−1−δ1 + 1,

11



whereδ1, δ are chosen such thatδ + δ1 ≤ 1/2. Overall, this yields the following bound forΣ′
0

Σ′
0 �

∑
M≤n≤N

1
q2n+ln

∑
deg Q=n
Q monic

∑
D|Q

D monic

(
qn

|D|1+δ1
+ 1
)
|D|

�
∑

M≤n≤N

1
qln

+
∑

M≤n≤N

1
qn+ln

∑
deg D≤n
D monic

1 �
∑

M≤n≤N

1
qln

. (16)

Next, we turn toΣ′′
0 whose first two sums run over all pairs〈Q,D〉 with D|Q, |A| < |D|δ1 , and

|R| ≥ |D|/|QA|. Again, we will estimate the number of solutions of (15) in Q̄′, P, P ′. Therefore, first
observe that (15) can be rewritten as ∣∣∣∣RC +

L

A

∣∣∣∣ < |D|−1+δ (17)

for some polynomialsC andL. If L is fixed, then the number of solutions inC of the above inequality
is bounded by|R|−1|D|−1+δ + 1. On the other hand, we have

|L| ≤ max{|A||D|−1+δ, |RCA| ≤ max{|A||D|−1+δ, |RQA|/|D|}.

So, overall, we obtain for the number ofC ’s such that there existL satisfying (17)

(|R|−1|D|−1+δ + 1)(|A||D|−1+δ + |RQA|/|D|+ 1)

� |QA2||D|−3+2δ + |QA||D|−2+δ +
√
|Q||D|−1 + 1

� |Q||D|−2+δ+δ1 +
√
|Q||D|−1 + 1.

Note that the above number also equals the number ofQ̄′’s such that (14) has solutions inP, P ′. Hence,
Σ′′

0 is bounded as follows

Σ′′
0 �

∑
M≤n≤N

1
q2n+ln

∑
deg Q=n
Q monic

∑
D|Q

D monic

(
qn

|D|2−δ−δ1
+
qn/2

|D|
+ 1

)
|D|

�
∑

M≤n≤N

1
qln

+
∑

M≤n≤N

1
qn/2+ln

∑
deg D≤n
D monic

1
|D|

�
∑

M≤n≤N

1
qln

+
∑

M≤n≤N

n

qn/2+ln
�

∑
M≤n≤N

1
qln

. (18)

So, what is left is to boundΣ′′′
0 . Here, the first two sums run over all pairs〈Q,D〉 with D|Q, |A| <

|D|δ1 , and|R| < |D|/|QA|. Then, (15) together with the ultra-metric property of the norm yields

|Q̄(AP ′ +B)− Q̄′(AP +B)| ≤ max{|R(Q̄− Q̄′)A|, |A||g(Q̄− Q̄′) + P ′Q̄− PQ̄′|} < 1.

Consequently,
Q̄(AP ′ +B) = Q̄′(AP +B).

ThusAP + B ≡ 0 (Q̄) and this impliesdeg Q̄ ≤ Γ(n). The latter in turn yieldsdegD ≥ n − Γ(n).
So, in this case, we obtain the bound

Σ′′′
0 �

∑
M≤n≤N

1
q2n+ln

∑
deg Q=n
Q monic

∑
D|Q,Q monic

deg D≥n−Γ(n)

qn

|D|
|D|

=
∑

M≤n≤N

1
qn+ln

∑
deg Q=n
Q monic

∑
D|Q,Q monic
deg D≤Γ(n)

1 �
∑

M≤n≤N

Γ(n)
qln

. (19)
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Finally, combining (16), (18), and (19) gives the bound

Σ0 �
∑

M≤n≤N

Γ(n)
qln

.

Plugging this into (14) then proves the claimed result.
Now, we can start with the proof of Theorem1.

Proof of Theorem1. First, from Proposition4 together with Lemma2, we obtain∑
n≤N

ξ∗n = Ψ(N) +O
(
(Ψ∗(N))1/2(log Ψ∗(N))3/2+ε

)
, a.s.,

whereε > 0 is an arbitrary constant. Next, observe

Ψ∗(N) =
∑
n≤N

Γ(n)
qln

� Ψ(N) log Ψ(N).

Hence, the claimed result holds for the sequenceξ∗n.
In order to show that the claimed result holds forξn as well, observe that from Proposition3

P

∑
n≤N

(ξn − ξ∗n) > log Ψ(N)

� (log Ψ(N))−1.

Next, chooseNk to be the minimal positive integer withlog Ψ(Nk) ≥ 2k. Then, the Borel-Cantelli
lemma implies that ∑

n≤Nk

(ξn − ξ∗n) ≤ log Ψ(Nk)

for almost allf andk large enough. Now, letN be a large enough integer withNk ≤ N < Nk+1.
Then, ∑

n≤N

(ξn − ξ∗n) ≤
∑

n≤Nk+1

(ξn − ξ∗n) ≤ log Ψ(Nk+1) � log Ψ(Nk) � log Ψ(N).

Overall, we have shown that for almost allf∑
n≤N

ξn =
∑
n≤N

ξ∗n +O(log Ψ(N)).

Combining with the above result yields the claim.
We note that Theorem2 also follows from the method above with only minor modifications. So,

what is left is the proof of Corollary1.

Proof of Corollary1. For part (i), chooseF such that

F = {C + LD : monic andL ∈ Fq[T ]}.

Then,#Fn = qn/|D| for all n ≥ degD. Consequently,

Ψ(N,F) =
1
|D|

Ψ(N) +O(1).

For part (ii), it suffices to point out that it is well-known (see Chapter 3 in [1]) that the number of
monic, square-free polynomials of degreen ≥ 2 is given byqn − qn−1. Hence,

Ψ(N,F) =
q − 1
q

Ψ(N) +O(1).

From this the result follows.
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4 The ”double-metric” and the other ”single-metric” case

We first turn our attention to the ”double-metric” case. So, in the following, we consider (1) with both
f, g random. As before, we define the set

FQ := {〈f, g〉 ∈ L× L : 〈f, g〉 is a solution of (1) with someP ∈ Fq[T ]},

whereQ is a non-zero polynomial.
As already mentioned in the introduction, this case is much easier than the ”single-metric” case

discussed in the previous sections. The reason for this is the second property of the following lemma
which was proved in [8].

Lemma 5. (i) We have,

(m×m)(FQ) =
1

qn+ln
.

(ii) For Q 6= Q′, we have

(m×m)(FQ ∩ FQ′) = (m×m)(FQ)(m×m)(FQ′).

So, if we define
ξn := #{〈P,Q〉 : 〈P,Q〉 is a solution of (1)},

then we again have
ξn =

∑
deg Q=n
Q monic

1FQ
.

However, the above lemma shows thatξn considered as a sequence of random variables on the product
probability space is pairwise independent. This yields

E

 ∑
M≤n≤N

ξn −
1
qln

2

=
∑

M≤n≤N

Var(ξn) =
∑

M≤n≤N

1
qln

(
1− 1

qn+ln

)
=

∑
M≤n≤N

1
qln

+O(1).

Hence, if we assume that

Ψ(N) :=
∑
n≤N

1
qln

→∞, asN →∞,

then Lemma2 directly applies and yields the following result (whose proof in case the above assump-
tion does not hold is trivial).

Theorem 4. The number of solutions of (1) with 0 ≤ degQ ≤ N satisfies

Ψ(N) +O
(
(Ψ(N))1/2(log Ψ(N))3/2+ε

)
, a.s.,

whereε > 0 is an arbitrary constant.

Note that a.s. here means with respect to the product measurem×m.

Finally, we briefly discuss the other ”single-metric” case where the roles off and g are inter-
changed. Therefore, assume now thatf is fixed andg is random. Here, without proof, we state the
following result: for any sequenceln tending to infinity arbitrarily slowly, there exists anf ∈ L such
that for almost allg the number of solutions of(1) is finite (see P. Sz̈usz [12] for the corresponding re-
sult in the real number case). Consequently, results of a similar type as in the cases above are impossible
in this case.
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A Note on Simultaneous Diophantine Approximation in
Positive Characteristic

Michael Fuchs

Abstract

In a recent paper, Inoue and Nakada proved a 0-1 law and a strong law of large numbers with error
term for the number of coprime solutions of the one-dimensional Diophantine approximation problem
in the field of formal Laurent series over a finite base field. In this note, we generalize their results to
higher dimensions.

1 Introduction
Let Fq be a finite field with q elements and denote by Fq((T−1)) the field of formal Laurent series. For
f ∈ Fq((T−1)) let |f | = qdeg f be the valuation induced by the generalized degree function. Set

L = {f ∈ Fq((T−1)) : |f | < 1}.

Then, with the restriction of | · | to L, L is a compact topological group. Hence, there exists a (unique)
translation-invariant probability measure which will be denoted by m.

We are interested in the Diophantine approximation problem∣∣∣∣f − P

Q

∣∣∣∣ < 1
qn+ln

, degQ = n, Q monic, (P,Q) = 1, (1)

where f ∈ L, P,Q ∈ Fq[T ] with Q 6= 0, and ln is a sequence of non-negative integers (subsequently,
we will use (·, ·) to denote the gcd, whereas 〈·, ·〉 will be used for pairs).

Concerning the number of solutions of (1), Inoue and Nakada [5] proved the following 0-1 law: the
number of solutions is either finite or infinite for almost all f ∈ L, the latter holding if and only if

∞∑
n=0

qn−ln =∞.

Moreover, the method of proof in [5] also gives a quantitative result under one additional assump-
tion on ln: if ln ≥ n, then the number of solutions of (1) with degQ ≤ N is given by(

1− q−1
)

Ψ(N) +O
(

Ψ(N)1/2 (log Ψ(N))3/2+ε
)
,

where ε > 0 is an arbitrary small constant and Ψ(N) :=
∑

n≤N q
n−ln .

Key words: formal Laurent series, simultaneous Diophantine approximation, 0-1 law, strong law of large numbers.
2010 Mathematics Subject Classification: 11J61, 11J83, 11K60.
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The purpose of this note is to prove generalizations of the above two results to multidimensional
Diophantine approximation. Therefore, consider∣∣∣∣fj − Pj

Q

∣∣∣∣ < 1

qn+l
(j)
n

, degQ = n, Q monic, (Pj , Q) = 1, j = 1, . . . , d, (2)

where (f1, . . . , fd) ∈ L× · · · × L, Pj , j = 1, . . . , d,Q ∈ Fq[T ] with Q 6= 0, and l(j)n , j = 1, . . . , d are
sequences of non-negative integers. Moreover, set ln :=

∑d
j=1 l

(j)
n .

Then, the first result above has the following extension to the multidimensional setting.

Theorem 1. The number of solutions of (2) is either finite or infinite for almost all (f1, . . . , fd) ∈
L× · · · × L, the latter holding if and only if

∞∑
n=0

qn−ln =∞. (3)

Moreover, also the second result admits an extension to higher dimensions.

Theorem 2. Assume that ln ≥ n. Then, for almost all (f1, . . . , fd), the number of solutions of (2) with
degQ ≤ N is given by

c0Ψ(N) +O
(

Ψ(N)1/2+ε
)
,

where ε > 0 is an arbitrary small constant, Ψ(N) :=
∑

n≤N q
n−ln , and

c0 :=
∑

Q1 monic

· · ·
∑

Qd monic

µ(Q1)
|Q1|

· · · µ(Qd)
|Qd|

1
|lcm(Q1, . . . , Qd)|

> 0

where µ(·) is the Moebius µ function.

Remark 1. Observe that the error term in the above result for d = 1 is weaker than the corresponding
one in the result of Inoue and Nakada. The reason for this is that our method is completely different
from the approach used by the latter two authors (it is not obvious how to generalize their approach to
higher dimensions).

Notation. We will use [D1, . . . , Dd] to denote the lcm of the polynomials D1, . . . , Dd. All sums will
be over monic polynomials. Logarithms in this paper just take on values ≥ 1, i.e. loga x should
be interpreted as max{loga x, 1}. We will use both Landau’s notation f(x) = O(g(x)) as well as
Vinogradov’s notation f(x) � g(x). Finally, ε will denote an arbitrary small positive number whose
value might change from one appearance to the next.

2 Proof of Theorem 1
First, note that the necessity of (3) for the number of solutions of (2) being infinite follows from a
standard application of the Borel-Cantelli lemma. Hence, we only have to focus on the sufficiency part.
For this purpose, we use a slight extension of the d-dimensional Duffin-Schaeffer theorem for formal
Laurent series due to Inoue [4].

Theorem 3 (Inoue). Consider∣∣∣∣fj − Pj
Q

∣∣∣∣ < 1

qn+l
(j)
Q

, degQ = n, Q monic, (Pj , Q) = 1, j = 1, . . . , d, (4)
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where (f1, . . . , fd) ∈ L×· · ·×L, Pj , j = 1, . . . , d,Q withQ 6= 0, and l(j)Q , j = 1, . . . , d are sequences
of non-negative integers. Assume that ∑

Q

q−l
(1)
Q −···−l

(j)
Q =∞

and that for infinitely many N∑
degQ≤N

q−l
(1)
Q −···−l

(j)
Q < C

∑
degQ≤N

q−l
(1)
Q −···−l

(j)
Q ϕ(Q)d/|Q|d,

where C is some positive constant. Then, (4) has infinitely many solutions for almost all (f1, . . . , fd) ∈
L× · · · × L.

Remark 2. Note that the result in [4] is just stated for the special case l(1)
Q = . . . = l

(d)
Q . An inspection

of the proof, however, shows that the result continues to hold for different approximation functions in
every coordinate.

Before we can apply this result, we need a technical lemma.

Lemma 1. We have, ∑
degQ=n

ϕ(Q)d = c0q
n(d+1) +O

(
qn(d+ε)

)
,

where c0 is as in Theorem 2 and ϕ(·) is Euler’s totient function.

Proof. Note that

∑
degQ=n

ϕ(Q)d = qnd
∑

degQ=n

∑
D|Q

µ(D)
|D|

d

= qnd
∑

degQ=n

∑
D1|Q

· · ·
∑
Dd|Q

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

= qnd
∑

degD1≤n
· · ·

∑
degDd≤n

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

∑
[D1,...,Dd]|Q,degQ=n

1.

The latter sum becomes

∑
[D1,...,Dd]|Q,degQ=n

1 =

{
qn/|[D1, . . . , Dd]|, if deg[D1, . . . , Dd] ≤ n;
0, otherwise.

Consequently,∑
degQ=n

ϕ(Q)d = qn(d+1)
∑

degD1≤n
· · ·

∑
degDd≤n

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

1
|[D1, . . . , Dd]|

+O

qnd
 ∑

degD≤n

1
|D|

d


= qn(d+1)
∑

degD1≤n
· · ·

∑
degDd≤n

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

1
|[D1, . . . , Dd]|

+O
(
ndqnd

)
. (5)
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Next, observe that∣∣∣ ∑
degD1≤n

· · ·
∑

degDd≤n

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

1
|[D1, . . . , Dd]|

− c0

∣∣∣
≤

∑
degD>n

∑
[D1,...,Dd]=D

1
|D1 · · ·Dd| · |D|

≤
∑

degD>n

ω(D)d

|D|2
,

where ω(D) denotes the number of monic divisors of D. Since ω(D) = O(|D|ε) for arbitrary small
ε > 0 (this is proved as for integers; see page 296 in [1]), we obtain∑

degD>n

ω(D)d

|D|2
�

∞∑
l=n+1

ql(εd−1) � qn(εd−1).

So, we have ∑
degD1≤n

· · ·
∑

degDd≤n

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

1
|[D1, . . . , Dd]|

= c0 +O
(
qn(−1+ε)

)
.

Plugging this into (5) yields the claimed expansion.
What is left to show is that c0 > 0. Therefore, observe that∑

degQ=n

ϕ(Q)d ≥
∑

deg I=n

ϕ(I)d = (qn − 1)d
∑

deg I=n

1� (qn − 1)dqn/n,

where the second and third sum runs over all irreducible polynomials and the last bound is well-known.
Hence, c0 > 0 as claimed.
Remark 3. For d = 1, note that

c0 =
∑
Q

µ(Q)
|Q|2

=
∏
I

(
1− 1
|I|2

)
=

∑
Q

1
|Q|2

−1

= 1− 1
q
.

In this situation even more is known, namely,∑
degQ=n

ϕ(Q) =
(

1− 1
q

)
q2n.

For a proof of the latter claim e.g. see [5].
Now, we can proof our first main result.

Proof of Theorem 1. As already mentioned before, we only have to show that (3) is sufficient for the
number of solutions of (2) being infinity. For this purpose, we just have to check the two conditions in
Inoue’s result. First, note that since l(1)

Q + · · ·+ l
(d)
Q = ldegQ, we have∑

degQ≤N
q−ldeg Q =

∑
n≤N

qn−ln

and∑
degQ≤N

q−ldeg Qϕ(Q)d/|Q|d =
∑
n≤N

q−nd−ln
∑

degQ=n

ϕ(Q)d = c0

∑
n≤N

qn−ln +O

∑
n≤N

qεn−ln

 .

Moreover, by Cauchy’s inequality

∑
n≤N

qεn−ln �

∑
n≤N

qn−ln

1/2

.

Hence, both conditions are satisfied and our result follows from Inoue’s result.
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3 Proof of Theorem 2
We start with a technical lemma.

Lemma 2. We have, ∑
deg(D1),...,deg(Dd)≤n

1
|[D1, . . . , Dd]|

� qnε.

Proof. First note that∑
deg(D1),...,deg(Dd)≤n

1
|[D1, . . . , Dd]|

≤
∑

deg(D1),...,deg(Dd)≤n

1
|[D1, . . . , Dd]|1−ε

≤
∑

deg(D1),...,deg(Dd)≤n

|([D1, . . . , Dd−1], Dd)|1−ε

|[D1, . . . , Dd−1]|1−ε · |Dd|1−ε
.

Next we change the order of summation and obtain∑
deg(D1),...,deg(Dd)≤n

1
|[D1, . . . , Dd]|1−ε

≤
∑

degD≤n

∑
D|[D1,...,Dd−1],degDi≤n

1
|[D1, . . . , Dd−1]|1−ε

∑
D|Dd,degDd≤n

(
|D|
|Dd|

)1−ε

≤
∑

degD≤n

∑
D|[D1,...,Dd−1],degDi≤n

1
|[D1, . . . , Dd−1]|1−ε

∑
degQ≤n

1
|Q|1−ε

� qnε
∑

deg(D1),...,deg(Dd−1)≤n

1
|[D1, . . . , Dd−1]|1−ε

∑
D|[D1,...,Dd−1]

1

= qnε
∑

deg(D1),...,deg(Dd−1)≤n

ω([D1, . . . , Dd−1])
|[D1, . . . , Dd−1]|1−ε

.

Now, as before, we use the estimate ω(D) = O(|D|ε) for all sufficiently small ε. Hence,∑
deg(D1),...,deg(Dd)≤n

1
|[D1, . . . , Dd]|1−ε

� qnε
∑

deg(D1),...,deg(Dd−1)≤n

1
|[D1, . . . , Dd]|1−2ε

.

Iterating this result proves the claim.
Now, we turn to the proof of Theorem 2. For this purpose, we extend an approach due to Harman

(see proof of Theorem 4.4 starting on page 109 in [3]) to higher dimensions.
We first need some notation. Let Γ1(N) = blogq Ψ(N)2c and Γ2(N) = blogq Ψ(N)4c. Moreover,

consider the following approximation problem∣∣∣∣fj − Pj
Q

∣∣∣∣ < 1

qn+l
(j)
n

, degQ = n, Q monic, Dj |(Pj , Q), deg(Pj , Q) ≤ Γ2(N), j = 1, . . . , d, (6)

whereD1, . . . , Dd are fixed monic polynomials. For fixed (f1, . . . , fd) andQ denote by s(Q;D1, . . . , Dd)
the number of solutions of (6).

We gather some properties of s(Q;D1, . . . , Dd) needed below.

Lemma 3. We have,

E

 ∑
M1<n≤M2

∑
degQ=n,[D1,...,Dd]|Q

s(Q;D1, . . . , Dd)

� 1
|D1 · · ·Dd| · |[D1, . . . , Dd]|

∑
M1<n≤M2

qn−ln
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and

E

( ∑
M1<n≤M2

∑
degQ=n, [D1,...,Dd]|Q

(
s(Q;D1, . . . , Dd)−

1
|D1 · · ·Dd|

· 1
qln

))2

� Γ2(N)
|D1 · · ·Dd| · |[D1, . . . , Dd]|

∑
M1<n≤M2

qn−ln

for all M1 ≤M2.

Proof. Both properties are easy extensions of the corresponding properties from the case d = 1 (see
Proposition 3 and Proposition 4 in [2]). For the reader’s convenience, we recall the proof of the first
property.

Therefore, observe that s(Q;D1, . . . , Dd) ≤ s∗(Q;D1, . . . , Dd) where the latter denotes the num-
ber of solutions of (6) with the upper bound on the gcd removed. Of course, s∗(Q;D1, . . . , Dd) = 0 if
[D1, . . . , Dd] - Q.

Now, for [D1, . . . , Dd]|Q, note that s∗(Q;D1, . . . , Dd) = 1A (1A denotes an indicator random
variable) with

A =
⋃

Pj |Dj ,degPj<n,1≤j≤d

B
(
P1/Q; q−n−l

(1)
n

)
× · · · ×B

(
Pd/Q; q−n−l

(d)
n

)
,

where B(f ; q−n) denotes the open ball with center f and radius q−n and the above union is disjoint.
Since

(m× · · · ×m)
(
B
(
P1/Q; q−n−l

(1)
n

)
× · · · ×B

(
Pd/Q; q−n−l

(d)
n

))
= q−dn−ln

and consequently

m(A) =
1

|D1 · · ·Dd|
q−ln ,

the result follows from elementary properties of the mean.
Next, we prove the following proposition for the number of solutions of (6).

Proposition 1. For almost all (f1, . . . , fd), the number of solutions of (6) with degQ ≤ N is given by

1
|D1 · · ·Dd| · |[D1, . . . , Dd]|

Ψ(N) + E(N ;D1, . . . , Dd),

where the second term satisfies∑
deg(D1),...,deg(Dd)≤Γ1(N)

E(N ;D1, . . . , Dd) = O
(

Ψ(N)1/2+ε
)

with ε > 0 an arbitrary small constant.

Proof. First note that it suffices to prove our claim for the case where Ψ(N) → ∞ as N → ∞ (other-
wise, the result is an easy consequence of the Borel-Cantelli lemma). Next, denote by Nk the largest
integer with Ψ(Nk) < k. It is easy to see that we only have to prove the result for the subsequence Nk.

We are going to need some notation. First, put

k =
l∑

j=0

aj2j , al 6= 0, aj ∈ {0, 1} ∀j.
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Define the following set

S(k) =

(i,m) : ai = 1, m =
l∑

j=i+1

aj2j−i

 .

Moreover, denote by

ut = ut(i,m) = max
{
n ∈ N : Ψ(n) < (m+ t)2i

}
,

where t ∈ {0, 1}. Finally, with the notation of Lemma 3, we put

E(i,m;D1, . . . , Dd) =
∑

u0<n≤u1

∑
degQ=n, [D1,...,Dd]|Q

(
s(Q;D1, . . . , Dd)−

1
|D1 · · ·Dd|

· 1
qln

)
.

Then, we obviously have

E(Nk;D1, . . . , Dd) =
∑

(i,m)∈S(k)

E(i,m;D1, . . . , Dd).

Now, set

E(l) :=
∑

deg(D1),...,deg(Dd)≤Γ1(N
2l+1 )

|D1 · · ·Dd|
∑

0≤i≤l, m<2l−i+1

E(i,m;D1, . . . , Dd)2.

Then, with the estimate from Lemma 3

EE(i,m;D1, . . . , Dd)2 � Γ2(N2l+1)
|D1 · · ·Dd| · |[D1, . . . , Dd]|

∑
u0<n≤u1

qn−ln ,

we obtain
E(l)� 2ll2

∑
deg(D1),...,deg(Dd)≤Γ1(N

2l+1 )

1
|[D1, . . . , Dd]|

� 2l(1+ε̄),

where the last step follows from Lemma 2 and ε̄ will be chosen below. This in turn implies that

P
(
E(l) ≥ 2l(1+ε)

)
� 1

2l(ε−ε̄)
,

where we choose ε̄ < ε. Hence, the Borel-Cantelli lemma yields that

E(l) < 2l(1+ε), a.s.

for l large enough.
Finally consider∑
deg(D1),...,deg(Dd)≤Γ1(Nk)

E(Nk;D1, . . . , Dd)

≤

 ∑
deg(D1),...,deg(Dd)≤Γ1(Nk)

1
|D1 · · ·Dd|

∑
(i,m)∈S(k)

1

1/2

· (E(r))1/2

� 2l(1/2+ε)ld+1 � 2l(1/2+ε).

From this the assertion follows.
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Now, we can prove our second main result.

Proof of Theorem 2. As in the proof of the proposition, we can assume w.l.o.g. that Ψ(N) → ∞ as
N →∞. Then, we again choose Nk as the largest integer with Ψ(Nk) < k. As before, it is easy to see
that it is suffices to prove our claim for the sequence Nk.

Next, we introduce the notation S(Nk;D1, . . . , Dd) for the number of solutions of (6) with degQ ≤
Nk (here, (f1, . . . , fd) is fixed). Then, by an inclusion-exclusion argument, the number of solutions of
(2) with degQ ≤ Nk is given by∑

deg(D1),...,deg(Dd)≤Γ2(Nk)

µ(D1) · · ·µ(Dd)S(Nk;D1, . . . , Dd),

where µ(·) denotes the Moebius function. We split the sum into two parts A and B according to
whether there is an Di with degDi > Γ1(Nk) or not, respectively.

First, we will consider A. Note that

E|A| ≤
∑

deg(D1),...,deg(Dd)≤Γ2(Nk)
degDi>Γ1(Nk) for some i

ES(Nk;D1, . . . , Dd)

� Ψ(Nk)
∑

deg(D1),...,deg(Dd)≤Γ2(Nk)
degDi>Γ1(Nk) for some i

1
|D1 · · ·Dd|

· 1
|[D1, . . . , Dd]|

� Ψ(Nk)

 ∑
degD1>Γ1(Nk)

1
|D1|2

 ·
 ∑

degD2≤Γ2(Nk)

1
|D2|

 · · ·
 ∑

degDd≤Γ2(Nk)

1
|Dd|


� (log Ψ(Nk))d−1

Ψ(Nk)
,

where we have used Lemma 3. Consequently,

P (|A| > (log Ψ(Nk))d+1)� 1
Ψ(Nk)(log Ψ(Nk))2

� 1
k(log k)2

.

Hence, the Borel-Cantelli lemma implies that for almost all (f1, . . . , fd),

A = O((log Ψ(Nk))d+1).

So, in view of our claimed result, the main contribution will come from B. Here, we can use the
above proposition and obtain

B = Ψ(Nk)
∑

deg(D1),...,deg(Dd)≤Γ1(Nk)

µ(D1) · · ·µ(Dd)
|D1 · · ·Dd| · |[D1, . . . , Dd]|

+O
(

Ψ(Nk)1/2+ε
)
.

Now, as in the proof of Lemma 1∑
deg(D1),...,deg(Dd)≤Γ1(Nk)

µ(D1) · · ·µ(Dd)
|D1 · · ·Dd| · |[D1, . . . , Dd]|

= c0 + Ψ(Nk)ε−2.

Combining all the estimates proves the claimed result.
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Michael Fuchs

This is a short report concerning participation in international conferences
within my national science counsel project NSC 98-2115-M-009-009.

I participated in the 21st International Meeting on Probabilistic, Combinato-
rial and Asymptotic Methods for the Analysis of Algorithms which took place in
Vienna, Austria from June 28th to July 2nd, 2010. This was the first joint meeting
of previously two different conference and seminar series on ”Mathematics and
Computer Science” and ”Analysis of Algorithms”. It will be held every year and
is the major conference in the area of analysis of algorithms which is currently my
main field of interest.

I gave a talk on July 1st, 2010 based on my conference paper entitled ”The
Variance of Partial Match Retrievals in k-dimensional Bucket Digital Trees” (at-
tached to this report). This paper was accepted after the usual scientific peer re-
view process and is about to be published in one of the forthcoming issues of the
journal Discrete Mathematics and Theoretical Computer Science Proceedings.

My paper was concerned with digital trees, which was a popular topic at the
conference with overall four papers dedicated to it. The others were written by
Svante Janson (Uppsala University), Philippe Flajolet (INRIA Rocquencourt) and
Stephan Wagner (Stellenbosch University), all experts in the field. Their papers
and talks gave me further input for possible future research directions.
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The variance for partial match retrievals in
k-dimensional bucket digital trees

Michael Fuchs
Department of Applied Mathematics, National Chiao Tung University, Hsinchu, 300, Taiwan
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The variance of partial match queries in k-dimensional tries was investigated in a couple of papers in the mid-nineties,
the resulting analysis being long and complicated. In this paper, we are going to re-derive these results with a much
easier approach. Moreover, our approach works for k-dimensional PATRICIA tries, k-dimensional digital search
trees and bucket versions as well.

Keywords: k-dimensional digital trees, partial match retrieval, variance, JS-admissibility, Mellin transform

1 Introduction and Results
Data structures for storing and retrieving multidimensional data are of vital importance in several areas of
computer science such as design of data base systems and graphics algorithms. One possible class of such
data structures was introduced in [10] and is based on digital data, i.e., data which is composed of infinite
0-1 strings. We assume throughout this work that every bit in these strings is generated independently and
with the same probability (symmetric Bernoulli model).

We will first describe the above data structure in more details. Therefore, assume that we have given a
set of multidimensional data. Then, we apply a “ regular shuffling” procedure to transform the multidi-
mensional data into one-dimensional data. Finally, this data is stored in a digital tree. To be more precise,
let R1, . . . , Rn denote k-dimensional records, i.e.,

Ri,1 =
(
R

[1]
i,1, R

[2]
i,1, R

[3]
i,1, . . .

)
,

...

Ri,k =
(
R

[1]
i,k, R

[2]
i,k, R

[3]
i,k, . . .

)
.

After shuffling, we obtain the one-dimensional string R̃i

R̃i =
(
R

[1]
i,1, . . . , R

[1]
i,k, R

[2]
i,1, . . . , R

[2]
i,k, R

[3]
i,1, . . . , R

[3]
i,k, . . .

)
.

Then, R̃1, . . . , R̃n are used to construct a digital tree.

1365–8050 c© 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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As digital trees, we use the three standard types (see [8]). First, for the k-dimensional trie the underlying
digital tree is the trie data structure. For the readers convenience, we recall how a trie is constructed: if
we only have one record, then we place it into the root which is considered an external node; if we have
more than one record, then the root becomes an (empty) internal node and the records are either directed
to the left or to right subtree according to whether their first bit is 0 or 1; finally, the subtrees are build
recursively by the same procedure, where the first bits are removed; see Figure 1 for an example.

D2

D4

D1 D3

0 1

1

0 1

0 1

D2

D4

D1 D3

0 1

0 1

0 1

D1

D3 D2

D4

0 1

1

Fig. 1: A 2-dimensional trie, PATRICIA trie and digital search tree built from the data

data D1 D2 D3 D4

Ri,1 0010 · · · 1001 · · · 0001 · · · 0111 · · ·
Ri,2 1000 · · · 1010 · · · 1101 · · · 1011 · · ·

A variant of k-dimensional tries are k-dimensional PATRICIA tries, where the shuffled data is stored in
a PATRICIA trie. Recall that a PATRICIA trie is constructed as a trie only multiple one-way branching
is suppressed; again see Figure 1 for an example. This yields a more balanced tree improving the overall
performance of tries.

A final type is given by the k-dimensional digital search tree which is based on the digital search tree
data structure. Recall that a digital search tree is constructed as follows: the first record is placed in the
root; all other records are directed to the left or right subtree according to whether their first bit is 0 or 1;
finally, the subtrees are constructed by the same principle again with the first bits removed; see Figure 1
for an example. So, in contrast to tries and PATRICIA tries, no distinction between internal and external
nodes is necessary for digital search trees.

Note that all trees introduced above have the common feature that nodes only hold at most one record.
If we allow nodes to hold up to b ≥ 1 records, then the resulting trees are called k-dimensional bucket
digital trees.

In this paper, we will study the cost of partial match retrievals in k-dimensional bucket digital trees.
Here, a partial match query will ask for the retrieval of all records matching certain criteria. Formally, a
partial match query is a k-dimensional vector R = (R1, . . . , Rk) with some of its coordinates a string of
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0-1 bits and others unspecified. For instance, for k = 2, we might have

R1 = (?, ?, ?, ?, . . .) ,
R2 = (0, 1, 1, 0, . . .) ,

Then, a shuffled record R̃ is produced as before. For the above example this yields

R̃ = (?, 0, ?, 1, ?, 1, ?, 0, . . .) .

The partial match query asks now for the retrieval of all data in the tree with R̃ being used as search query.
Here, 0 or 1 in R̃ means either going to the left or right subtree of the current node, whereas ? means
that we have to proceed with our search in both subtrees. The cost of such a partial match query will be
measured by the number of nodes visited (where we only consider internal nodes for tries and PATRICIA
tries); so for the query R̃ above, we have a cost of 2 for the trie and Patricia trie of Figure 1 and a cost of
3 for the digital search tree.

Before going on, we will fix some notation which we are going to use throughout the work. First,
it should be clear that under our random model, the cost of a partial match query only depends on the
partial match pattern q which is a k-tuple of symbols from {S, ?}, where the i-th coordinate is S if Ri is
specified and ? otherwise, We will fix such a q throughout this work and denote the number of ? entries
in q by u, where we assume that 0 < u < k. Furthermore, we will consider cyclic shifts of the entries
of q by one position to the left which will be denoted by q′; more generally, q(l) will denote the cyclic
shift of the entries of q by l position to the left. Also, we will associate to a partial match pattern q an
infinite sequence (δ1, δ2, δ3, . . .) with δi = 1 if qi mod k = S and δi = 2 otherwise. Finally, we denote
the random variable describing the cost of the partial match query by Xq,n for all three types of bucket
digital trees of size n and bucket size b ≥ 1 (for the sake of simplicity, we suppress the index b).

In this paper, we will be concerned with stochastic properties of Xq,n. Therefore, let us recall what is
known about this random variable. First, the mean value of Xq,n for k-dimensional tries was investigated
in [2] where the authors proved that

E(Xq,n) ∼ nu/kP1(log2 n
1/k)

with P1(z) a one-periodic function whose Fourier expansion was given in [2] as well (for a comparison
of this result with other data structure for multidimensional search see [8] and [10]). Similar results were
subsequently proved in [6] for k-dimensional bucket digital tries, k-dimensional PATRICIA tries, and k-
dimensional digital search trees, too. As for the variance, it was conjectured in [7] that for k-dimensional
tries

Var(Xq,n) ∼ nu/kP2(log2 n
1/k) (1)

with P2(z) a one-periodic function. The authors proved this conjecture for k = 2 in [7]. The general case
was then settled in [11]. Note that this result implies that Xq,n/E(Xq,n) converges to 1 in probability.
Hence, the distribution of Xq,n is concentrated around its mean.

As for the method of proof of (1), the authors of [7] applied the analytic approach from [2] to derive
asymptotic expansions of mean and second moment. Then, they used these expansions to compute the
variance, where they had to cope with highly non-trivial cancellations. Here, their proof crucially rested
on an identity of Ramanujan which only works in the case k = 2 and does not seem to have an analogue
for k > 2. In [11], a new and mainly elementary approach was devised to settle the general case.
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In this paper, we will re-derive the above result with a more simpler approach. Our approach will be
analytic and use some standard tools from the analysis of algorithms (the same approach was already used
in other contexts; see [4],[5],[12]). The crucial difference to the approach from [7] is that we incorpo-
rate the cancellations at a much earlier stage, making the resulting analysis more easier. Moreover, our
approach will work for k-dimensional bucket tries as well.

Before explaining our approach in more details, we are going to state our result. Therefore, we need
some notation. Set

h̃q(z) = 2δ1eb(z)e−zL̃q′(z/2) + eb(z)e−z − eb(z)2e−2z,

where eb(z) = 1 + z + z2/2! + · · ·+ zb/b! and L̃q(z) = exp{−z}
∑
n≥0 E(Xq,n)zn/n!.

Theorem 1 The cost of a partial match query with u non-specified coordinates in a k-dimensional trie of
size n satisfies

Var(Xq,n) = nu/kP2(log2 n
1/k) +O(n2u/k−1)

with one-periodic function

P2(z) =
∞∑

r=−∞
cre

2πirz

and Fourier coefficients

cr =
1
kL

k−1∑
l=0

δ1 · · · δl2−ωrl

∫ ∞
0

z−ωr−1h̃q(l)(z)dz,

where ωr = u/k + 2πir/(kL) and L = log 2.

With slightly more work, the Fourier coefficients can be further simplified.

Corollary 1 The Fourier coefficient in the above theorem can be expressed as

cr =
Γ(−ωr)
kL

(
δ(2−ωr )

(−ωr + b

b

)
− 2ωr

b∑
j1,j2=0

(
j1 + j2
j1

)(
−ωr + j1 + j2

j1 + j2

)
2−j1−j2


−
∑
l≥b+1

(
−l + b

b

)(
−ωr + l + b

b

)(
ωr
l

)
21−lσ(2−ωr , 2−l))

1− 2−lk+u

)
, (2)

where

δ(z) =
k−1∑
j=0

δ1 · · · δjzj , σ(z1, z2) =
k−1∑

j1,j2=0

δ1 · · · δj1+j2+1z
j1
1 z

j2
2 .

For instance, for k = 2, s = 1, and q = (?, S), the value of c0 becomes

(1 +
√

2)
√
π

2 ln 2

7
√

2
8
− 1− 4

√
2
∑
l≥2

(
1/2
l

)
(l − 1)(l + 1/2)2−l

1− 2−l+1/2

 ≈ 2.09184 · · · ,
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where the last approximation was computed with Maple. This value coincides with the one given in [7].
Note that the expression given in the latter paper is slightly different; we leave it as an exercise to the
reader to show that they are the same.

Next, our approach can also be straightforwardly applied to k-dimensional bucket PATRICIA tries.
Here, we have the same result as above only h̃q(z) replaced by

h̃q(z) =2δ1(eb(z)e−z − δ1eb(z/2)e−z + (δ1 − 1)e−z/2)L̃q′(z/2)

+ eb(z)e−z − δ1eb(z/2)e−z + δ1e
−z/2 − (eb(z)e−z − δ1eb(z/2)e−z + δ1e

−z/2)2.

Also, a similar explicit expression for the Fourier coefficients as in Corollary 1 can be given. Since, the
resulting formula is more messy we do not give details.

Finally, k-dimensional bucket digital search trees are slightly more involved. Here, we will use a
variant of the above approach which was introduced in [3]. In order to state our result, we again need
some notation. Therefore, set

Q(s) =
∏
j≥1

(
1− s

2j
)
, Ql =

l∏
j=1

(
1− 2−j

)
and

h̃q(z) =

 b∑
j=0

(
b

j

)
L̃(j)
q (z)

2

−
b∑
j=0

(
b

j

)(
L̃q(z)2

)(j)

.

Theorem 2 The cost of a partial match query with u non-specified coordinates in a k-dimensional digital
search tree of size n satisfies

Var(Xq,n) = nu/kP2(log2 n
1/k) +O(n2u/k−1)

with one-periodic function

P2(z) =
∞∑

r=−∞
cre

2πirz

and Fourier coefficients

cr =
1

kLΓ(1 + ωr)

k−1∑
l=0

δ1 · · · δl2−ωrl

∫ ∞
0

sωr

Q(−2s)b

(∫ ∞
0

e−zsh̃q(l)(z)dz + p(s)
)

ds, (3)

where

p(s) =
(1 + s)b−1 + (−1)b

s+ 2
.

Moreover, the Fourier coefficients can be further simplified here, too. We will state the result for b = 1.
Therefore, set

ϕ(ω;x) =

{
π(xω − 1)/(sin(πω)(x− 1)) if x 6= 1;
πω/ sin(πω), if x = 1.

Then, we have the following corollary.
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Corollary 2 If the bucket size equals one, then the Fourier coefficient in the above theorem can be ex-
pressed as

cr =
1

kLQ(1)Γ(1 + ωr)

k−1∑
l=0

δ1 · · · δl2−ωrl

∑
j1,j2,j3≥0

(−1)j1 δ̄q(l),j2 δ̄q(l),j32−(j1
2 )+(1−ωr)j1

2j2+j3Qj1Qj2Qj3
ϕ(ωr; 2j1−j2 + 2j1−j3),

where

δ̄q,j =
∑
l≥0

(−1)l2−(l+1
2 )

Ql

l+j∏
h=1

δh.

We conclude the introduction by giving a short sketch of the paper. In the next section, we will treat
k-dimensional bucket tries. Then, in Section 3, we will briefly discuss k-dimensional bucket PATRICIA
tries. Finally, in Section 5, we will prove the results for k-dimensional bucket digital search trees.

2 k-dimensional Bucket Tries
Note that from the definition of k-dimensional bucket tries, we have

Xq,n
d=

{
Xq′,In +X∗q′,n−In

+ 1, if q = (?, . . .);
Xq′,In + 1, if q = (S, . . .),

(n ≥ b+ 1),

where In = Binom(n, 1/2), (X∗n) is an independent copy of (Xn) with Xn
d= X∗n, and Xq,0 = Xq,1 =

· · · = Xq,b = 0.
From this recurrence we will proceed as follows. First, we are going to apply the poissonization-

depoissonization procedure from [5]. This will allow us to entirely focus on the Poisson model. Next,
we will define a poissonized variance which is not really a variance, but asymptotically behaves like one
(this idea was probably first used in [4]). This will be the crucial step leading to a much more simplified
derivation. The remaining analysis is then carried out by using Mellin transform, a standard tool from the
analysis of algorithm (for an excellent introduction see [1]).

Poissonization. Let P̃q(z, y) denote the Poisson generating function of E(exp{Xq,ny}), i.e.,

P̃q(z, y) = e−z
∑
n≥0

E(eXny)
zn

n!
.

Then, we obtain from the above distributional recurrence

P̃q(z, y) = eyP̃q′(z/2, y)δ1 + eb(z)e−z(1− ey).

Next, by taking first and second derivatives with respect to y and setting y = 0, we obtain the following
functional equation for the Poisson generating function of the mean (denoted by L̃q(z))

L̃q(z) = δ1L̃q′(z/2) + 1− eb(z)e−z



Partial match retrievals in digital trees 7

and for the Poisson generating function of the second moment (denoted by M̃q(z))

M̃q(z) =

{
2M̃q′(z/2) + 4L̃q′(z/2) + 2L̃q′(z/2)2 + 1− eb(z)e−z, if q = (?, . . .);
M̃q′(z/2) + 2L̃q′(z/2) + 1− eb(z)e−z, if q = (S, . . .).

Going from these Poisson generating functions back to the original quantity is done via the depois-
sonization tools from [5]. We will use here the language from [3], where we coined the term Jacquet-
Szpankowski admissibility (or JS-admissibility for short). Recall that f̃(z) is called JS-admissible if the
following two conditions hold (where here and throughout this work, ε will denote a small constant whose
value might change from one appearance to the next).

(I) There exists an α ∈ R such that uniformly for | arg(z)| ≤ ε

f̃(z) = O (|z|α) .

(O) We have, uniformly for ε ≤ | arg(z)| ≤ π,

f(z) := ez f̃(z) = O
(
e(1−ε)|z|

)
.

The importance of this notation is due to the following proposition which is proved by a standard appli-
cation of the saddle point method (see [5] for many more such results).

Proposition 1 Let f̃(z) be the Poisson generating function of fn. If f̃(z) is JS-admissibility, then

fn =
∑

0≤j<2l

f̃ (j)(n)
j!

τj(n) +O(nα−l)

with τj(n) = n![zn](z − n)jez

In our context, JS-admissible is easily checked via the following result.

Proposition 2 Assume that we have

f̃q(l)(z) = δl+1f̃q(l+1)(z/2) + g̃q(l)(z), (0 ≤ l < k),

where all involved functions are entire. Moreover, assume that g̃q(l)(z) is JS-admissible for 0 ≤ l < k.
Then, f̃q(l)(z) is JS-admissible for 0 ≤ l < k.

Proof: We only show how to prove (I). Therefore, we start by iterating the recurrence. This yields

f̃q(z) = 2uf̃q(z/2k) +
k−1∑
l=0

δ1 · · · δlg̃q(l)(z/2l).

Now set
B̃q(r) := max

|z|=r,| arg(z)|≤ε
|f̃q(z)|.
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Then, by the assumptions, we obtain

B̃q(r) ≤ 2uB̃z(r/2k) +O (rα) .

Next, we define K̃q(r) by
K̃q(r) = 2uK̃q(r/2k) +O (rα) .

Then, B̃q(r) ≤ K̃q(r). Moreover, we immediately obtain by iteration

K̃q(r) =


rα, if α > u/k;
ru/k log r, if α = u/k;
ru/k, if α < u/k.

This proves our claim. 2

Using this result together with the closure properties from [3] proves that both L̃q(z) and M̃q(z) are
JS-addmissible. Also, note that we have

L̃q(z) = O
(
|z|u/k

)
, M̃q(z) = O

(
|z|2u/k

)
(4)

uniformly as |z| → ∞ and | arg(z)| ≤ ε.
Next, we define the poissonized variance as

Ṽq(z) = M̃q(z)− L̃q(z)2.

Then, by a straightforward computation

Ṽq(z) = δ1Ṽq′(z/2) + h̃q(z),

where h̃q(z) was defined in the introduction.
Note that Ṽq(z) is not the Poisson generating function of a variance but only mimicks the defintion of

the variance. However, it behaves asymptotically like the variance as proved in the following proposition
(see also Theorem 6 in [5]).

Proposition 3 As n→∞,

Var(Xq,n) = Ṽq(n) +O
(
n2u/k−1

)
.

Proof: From Proposition 2 and (4), we have

Var(Xq,n) = E(X2
q,n)− (E(Xq,n))2

= M̃q(n) +O
(
n2u/k−1

)
−
(
L̃q(n) +O

(
nu/k−1

))2

= Ṽq(n) +O
(
n2u/k−1

)
.

This proves the claim. 2
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Asymptotic Expansion of L̃q(z). We will first look at the mean value (in the Poisson model) which
is needed in the proof of Corollary 1. Therefore, by using iteration as in the proof of Proposition 2, we
obtain

L̃q(z) = 2uL̃q(z/2k) +
k−1∑
l=0

δ1 · · · δlg̃q(l)(z/2l),

where g̃q(l)(z) = 1− eb(z)e−z . Our goal is to derive an asymptotic expansion of L̃q(z). A standard tool
for that purpose is the Mellin transform which we are going to apply next.

First, we have to clarify existence of the Mellin transform of L̃q(z). Therefore, note that by (4) and
the trivial bound L̃q(z) = O

(
zb+1

)
as z → 0. Hence, the Mellin transform of L̃q(z) exists in the strip

〈−b− 1,−u/k〉. Applying Mellin transform to the above functional equation then yields

M [L̃q(z);ω] =
−Γ(w)

1− 2ωk+u

(
w + b

b

) k−1∑
l=0

δ1 · · · δl2ωl, <(ω) ∈ 〈−b− 1,−u/k〉. (5)

Moreover, by inverse Mellin transform and shifting the line of integration to the right (see the converse
mapping theorem in [1]), we have

L̃q(z) ∼ zu/kP1(log2 z
1/k), (z →∞), (6)

where

P1(z) =
∞∑

r=−∞
cre

2πirz, cr =
−Γ(−ωr)

kL

(
−ωr + b

b

) k−1∑
l=0

δ1 · · · δl2−ωrl.

Note that due to the fast decay of (5) along vertical lines, (6) more generally holds uniformly for |z| → ∞
and | arg(z)| ≤ π/2− ε.

Asymptotic Expansion of Ṽq(n). Here, we proceed as for the mean. First, by using iteration as above
and applying Mellin transform to the resulting functional equation, we have

M [Ṽq(z);ω] =
1

1− 2ωk+u

k−1∑
l=0

δ1 · · · δl2ωlM [h̃q(l)(z);ω], <(ω) ∈ 〈−b− 1,−u/k〉.

Now, from (4), we have that as z →∞

h̃q(l)(z) = O(z−β)

for any β > 0 and 0 ≤ l < k. Obviously, h̃(l)
q (z) = O(zb+1) as z → 0 for 0 ≤ l < k. Hence, the Mellin

transform of h̃q(l)(z) exists in the strip 〈−b − 1,∞〉. Our claimed result follows from this by inverse
Mellin transform and shifting the line of integration to the right.

Simplification of the Fourier Coefficients. The main task is the evaluation of∫ ∞
0

z−ωr−1
(

2δl+1eb(z)e−zL̃q(l+1)(z/2) + eb(z)e−z − eb(z)2e−2z
)

dz.
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Therefore, we concentrate on ∫ ∞
0

z−ωr−1eb(z)e−zL̃q(l+1)(z/2)dz,

the remaining parts being easy. Note that due to (5), we have

M [L̃q(l+1)(z/2);σ] =
−2σΓ(σ)
1− 2σk+u

(
σ + b

b

)
δq(l+1)(2σ),

where

δq(l+1)(z) =
k−1∑
j=0

δl+2 · · · δl+j+1z
j .

Now, by inverse Mellin transform∫ ∞
0

z−ωr−1eb(z)e−zL̃q(l+1)(z/2)dz

=
∫

(−b)

−2σΓ(σ)
1− 2σk+u

(
σ + b

b

)
δq(l+1)(2σ)

∫ ∞
0

z−ωr−σ−1eb(z)e−zdzdσ

=
∫

(−b)

(
σ + b

b

)(
−ωr − σ + b

b

)
−2σΓ(σ)Γ(−ωr − σ)

1− 2σk+u
δq(l+1)(2σ)dσ,

where the outer integral is along the line <(σ) = −b. Finally, by shifting the line of integration to the left
and collecting residues, we obtain the absolute convergent series∫ ∞

0

z−ωr−1eb(z)e−zL̃q(l+1)(z/2)dz

= −Γ(−ωr)
∑
l≥b+1

(
−l + b

b

)(
−ωr + l + b

b

)(
ωr
l

)
2−lδq(l+1)(2−l)

1− 2−lk+u
.

Collecting everything and standard computation yields the claimed result.

3 k-dimensional Bucket PATRICIA Tries
Here, from the definition of Patricia tries, we have for q = (?, . . .)

Xq,n =

{
Xq′,In

+X∗q′,n−In
, if In ∈ {0, n},

Xq′,In
+X∗q′,n−In

+ 1, otherwise,
(n ≥ b+ 1)

and for q = (S, . . .)

Xq,n =

{
Xq′,In

, if In = n,

Xq′,In
+ 1, otherwise,

(n ≥ b+ 1),

where notation and initial conditions are as in the previous section.
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From this we then obtain for the Poisson generating function of the mean (with notation as before)

L̃q(z) = δ1L̃q′(z/2) + 1 + g̃q(z)

where
g̃q(z) = −eb(z)e−z + δ1eb(z/2)e−z − δ1e−z/2,

and the Poisson generating function of the second moment

M̃q(z) =

{
2M̃q′(z/2) + 2L̃q′(z/2)2 + 4(1− e−z/2)L̃q′(z/2) + 1 + g̃q(z), if q = (?, . . .);
M̃q′(z/2) + 2(1− e−z/2)L̃q′(z/2) + 1 + g̃q(z), if q = (S, . . .).

Moreover, we have for the poissonized variance

Ṽq(z) = δqṼq′(z/2) + h̃q(z),

where h̃q(z) was defined in the introduction. The remaining analysis now proceeds from these functional
equational equations as in the previous section.

4 k-dimensional Bucket Digital Search Trees
Again, we start from a distributional recurrence for Xq,n which for the current situation reads as follows

Xq,n+b
d=

{
Xq′,In

+X∗q′,n−In
+ 1, if q = (?, . . .);

Xq′,In
+ 1, if q = (S, . . .),

(n ≥ 0),

where the notation is as before and initial conditions are given byXq,0 = 0 andXq,1 = · · · = Xq,b−1 = 1.
From here, we can in principle proceed as before. However, we will see that the equation satisfied by

the Poisson generating function is more complicated. More precisely, we have to cope with a differential-
functional equation compared with the functional equation from the trie case. Here, we will first use
Laplace transform to get rid of the differential operator. Then, after suitable normalization, we will be
able to proceed as before. This combined use of Laplace and Mellin transform was introduced in [3] and
we direct the interested reader to that paper for more details concerning technicalities.

Poissonization. We again define

P̃q(z, y) = e−z
∑
n≥0

E(eXq,ny)
zn

n!
.

Then,
b∑
j=0

(
b

j

)
P̃q(z, y) = eyP̃q′(z/2, y)δ1 .

Taking derivatives yields for the Poisson generating function of mean and second moment (denoted as
before)

b∑
j=0

(
b

j

)
L̃(j)
q (z) = δ1L̃q′(z/2) + 1 (7)
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and
b∑
j=0

(
b

j

)
M̃ (j)
q (z) =

{
2M̃q′(z/2) + 4L̃q′(z/2) + 2L̃q′(z/2)2 + 1, if q = (?, . . .);
M̃q′(z/2) + 2L̃q′(z/2) + 1, if q = (S, . . .).

The first step is again to show that L̃q(z) and M̃q(z) are JS-admissible. Therefore, we need the follow-
ing result which is proved by a reduction to the trie case (see [3] for similar results).

Proposition 4 Assume that we have

b∑
j=0

(
b

j

)
f̃

(j)

q(l)(z) = δl+1f̃q(l+1)(z/2) + g̃q(l)(z), (0 ≤ l < k),

where all involved functions are entire and 0 at z = 0. Moreover, assume that g̃q(l)(z) is JS-admissible
for 0 ≤ l < k. Then, f̃q(l)(z) is JS-admissible for 0 ≤ l < k.

From this it then follows as in the trie case that L̃q(z) and M̃q(z) are JS-admissible.
Next, we consider the poissonized variance Ṽq(z) = M̃q(z) − L̃q(z)2. An easy computation proves

that
b∑
j=0

(
b

j

)
Ṽ (j)(z) = δ1Ṽq′(z/2) + h̃q(z),

where h̃q(z) was defined in the introduction. Then, from the JS-admissibility of L̃q(z) and M̃q(z), we
obtain as for tries the following result.

Proposition 5 As n→∞,
Var(Xq,n) = Ṽq(n) +O

(
n2u/k−1

)
.

Asymptotic Expansion of L̃q(z). Again, we first consider the mean value. Note that due to the differ-
ential operator it is not possible to iterate (7). Therefore, we first have to get rid of the differential operator
which is achieved by applying Laplace transform. This yields

(s+ 1)bL [L̃q(z); s] = 2δ1L [L̃q′(z); 2s] + (s+ 1)b−1/s. (8)

Next, we normalize with Q(s) from the introduction. Therefore, set L̄q(s) = L [L̃q(z); s]/Q(−s)b and
Ḡ(s) = (s+ 1)b−1/(Q(−2s)bs). Then,

L̄q(s) = 2δ1L̄q′(2s) + Ḡ(s).

Now, we can iterate and obtain

L̄q(s) = 2k+uL̄q(2ks) +
k−1∑
l=0

2lδ1 · · · δlḠ(2ls).

Observe that this is a similar functional equation as in the trie case. Hence, we can proceed as before.
Thus, we again apply Mellin transform. First, note that the Mellin transform of L̄q(s) exists in a non-
trivial strip. Moreover, due to the rapid growth of Q(s) at infinity (see [3]), the Mellin transform of Ḡ(s)
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exists in the strip 〈1,∞〉. Applying Mellin transform yields

M [L̄q(s);ω] =
M [Ḡ(s);ω]
1− 2k−ωk+u

k−1∑
l=0

δ1 · · · δl2l−ωl, <(ω) ∈ 〈1 + u/k,∞〉.

Next, by inverse Mellin transform and shifting the line of integration to the left, we obtain

L̄q(z) ∼
∞∑

r=−∞
crs
−1−u/k−2πir/(kL), (s→ 0).

Since, Q(−s)b = 1 + O(|s|) as s → 0, the same asymptotic expansion holds for L [L̃q(z); s] as well.
Finally, by formal inverse Laplace transform (see [3] for technical details justifying this step), we have

L̃q(z) ∼ zu/kP1(log2 z
1/k), (z →∞),

where P1 is a computable, 1-periodic function. A more careful analysis shows that the above asymptotic
expansion holds uniformly for |z| → ∞ and | arg(z)| ≤ π/2− ε.

Asymptotic Expansion of Ṽq(z). Here, we proceed as above and obtain

V̄q(s) = 2k+uV̄q(2ks) +
k−1∑
l=0

δ1 · · · δl2lH̄q(l)(2ls),

where V̄q(s) = L [Ṽq(z); s]/Q(−s)b and H̄q(l)(s) = (L [h̃q(l)(z); s] + p(s))/Q(−2s)b with

p(s) =
(1 + s)b−1 + (−1)b

s+ 2
.

Now, observe that

h̃q(z) =

{
O(z2u/k−2), if z →∞;
O(1), if z → 0+,

where the first bound follows from the bound of the previous paragraph (which we are allowed to dif-
ferentiate due to Ritt’s theorem; see [9]) and the second bound is trivial. This together with the growth
properties of Q(s) then in turn yields

H̄q(s) =

{
O(1/s), if s→∞;
O(s−β), if s→ 0+,

where β > 0 is an arbitrary constant. Consequently, the Mellin transform of H̄q exists in the strip 〈1,∞〉.
The remaining proof of Theorem 2 proceeds then as in the previous paragraph.
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Simplification of the Fourier Coefficients for b = 1. First, by iteration of (8),

L [L̃q(z); s] =
1
s

∑
j≥0

δ∗q,j
(s+ 1) · · · (2js+ 1)

,

where δ∗q,j =
∏j
l=1 δl. Next, by partial fraction expansion,

L [L̃q(z); s] =
1
s

∑
j≥0

j∑
l=0

(−1)j−l2−(j−l+1
2 )δ∗q,j

(2ls+ 1)QlQj−l
=

1
s

∑
l≥0

δ̄∗q,l
(2ls+ 1)Ql

,

where

δ̄q,l =
∑
j≥0

(−1)j2−(j+1
2 )

Qj
δq,j+l.

Consequently, by inverse Laplace transform

L̃q(z) =
∑
l≥0

δ̄q,l
Ql

(1− e−z/2
l

).

This implies

L̃′q(z) =
∑
l≥0

δ̄q,l
2lQl

e−z/2
l

, L̃′q(z)
2 =

∑
l,h≥0

δ̄q,lδ̄q,h
2l+hQlQh

e−z/2
l−z/2h

.

Plugging this into (3) (note that for b = 1, we have h̃q(z) = L̃′q(z)
2) and using

1
Q(−2s)

=
1

Q(1)

∑
j≥0

(−1)j2−(j
2)

Qj(s+ 2−j)

together with some standard computations proves the claim.

5 Conclusion
In this paper, we gave a new and simpler approach to the variance of partial match queries in k-dimensional
bucket digital trees. Our method used standard tools from the analysis of algorithm such as poissonization-
depoissonization and Mellin transform. The main simplification comes from the poissonized variance
which incorporates cancellations at a much earlier stage compared to previous derivations.

Our approach allowed us to derive asymptotic expansions of the variance in k-dimensional bucket tries,
k-dimensional bucket PATRICIA tries and k-dimensional bucket digital search trees. In all cases, the
variance is asymptotic to nu/kP (log2 n

1/k) where P is a 1-periodic function. Since the mean has the
same order, our results show that the cost of partial match retrievals is concentrated around the mean.

We conclude by pointing out that even though we only derived the main term in the asymptotic expan-
sions, our approach can be straightforwardly applied to derive longer asymptotic expansions, too.
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