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Let I" denote a distance-regular graph with diameter
D and intersection numbers as > a; = 0. We show that
for each 1 < d < D — 1, if I contains no parallelograms
of lengths up to d + 1 then I' is d-bounded in the sense
of the article [D-bounded distance-regular graphs, Eu-
ropean Journal of Combinatorics(1997)18, 211-229]. By
applying this result we show the nonexistence of distance-
regular graphs with classical parameters (D,b,«,3) =
(D,—2,-2,((=2)P*1 —1)/3) for any D > 4. In the end,
we survey the progress on the classification of distance-
regular graph with classical parameters (D, b, a, 3) and

b< —1.
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ters, parallelogram, D-bounded.
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The D-bounded distance-regular graphs were intro-
duced in 1997[22] by the project investigator. This be-
came an important concept in the classification of classi-
cal distance-regular graphs of negative type in 1999[23].
There are many interesting geometric structures con-
structed from a D-bounded graph that need to be in-
vestigated. They also have applications to pooling de-
signs [7, 5, 6]. Several authors also devote themselves to
the study of -bounded distance-regular graphs as results
shown in [25, 26, 27, 28, 17]. This lures the project inves-

tigator going back to this line of study.
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Let I' = (X, R) be a distance-regular graph with di-
ameter D > 3. Recall that a sequence z, z, y of vertices

of T is geodetic whenever

A(w,2) +9(z,y) = 0(z,y),

where 0 is the distance function of I'. A sequence z, z, y

of vertices of I is weak-geodetic whenever

Oz, 2) +0(2,y) < O(z,y) + L.



Definition 0.1. A subset A C X is weak-geodetically

closed if for any weak-geodetic sequence z, z, y of T,
T, y€ A=z € A.

Weak-geodetically closed subgraphs are called strongly
closed subgraphs in [15]. If a weak-geodetically closed
subgraph A of diameter d is regular then it has valency
aq+cq = by —bg, where ag, cq, bg, by are intersection num-
bers of I'. Furthermore A is distance-regular with inter-
section numbers a;(A) = a;(T") and ¢;(A) = ¢(T) for
1 <4< d |21, Theorem 4.5].

Definition 0.2. T is said to be i-bounded whenever for
all z,y € X with d(z,y) < 14, there is a regular weak-
geodetically closed subgraph of diameter d(z,y) which

contains x and y.

Note that a (D — 1)-bounded distance-regular graph
is clear to be D-bounded. The properties of D-bounded
distance-regular graphs were studied in [22], and these
properties were used in the classification of classical
distance-regular graphs of negative type [23]. Before stat-

ing our main result we make one more definition.

By a parallelogram of length i, we mean a 4-tuple xyzw
consisting of vertices of I' such that d(x,y) = d(z,w) = 1,
O(z,w) =1, and I(zx, z) = I(y,w) = I(y,z) =i — 1. The

following theorem is our main result.

Theorem 0.3. Let T' denote a distance-regular graph
with diameter D > 3, and intersection numbers a; = 0,
as # 0. Fiz an integer 1 < d < D — 1 and suppose that
T' contains no parallelograms of any length up to d + 1.

Then I' is d-bounded.

Theorem 0.3 answers the problem proposed in [21,
p. 299]. Many previous results deal with its complement
case a1 # 0, for examples under an additional assumption

¢y > 1 [21] and under the assumptions as > a1 > ¢cp =1

[16]. More precisely, for the case under the assumptions
as > ay and co = 1, H. Suzuki proves the case d = 2 in
Theorem 0.3 [16]; in particular I' contains a regular weak-
geodetically closed subgraph ) of diameter 2. Since the
Friendship Theorem [24, Theorem 8.6.39] asserts no such
Q in the case a; = ¢ = 1, there must be no such distance-
regular graph I" with as > a; = ¢ = 1 and I' contains
no parallelograms of length 3. Note that the assumption
a1 # 0 implies az # 0 [2, Proposition 5.5.1(i)]. Hence
Theorem 0.3 is also true under the weaker assumptions
by > by and as # 0 (without assuming a; = 0). Our
method in proving Theorem 0.3 also works for the case

b1 > by and as # 0 after a slight modification, but we

decide not to duplicate the previous works.

On the other hand we suppose that I' is d-bounded for
d > 2. Let  C A be two regular weak-geodetically closed
subgraphs of diameters 1,2 respectively. Since 2 and A
have different valency by — b1 and by — by respectively, we
have b; > by. It is also easy to see that I' contains no
parallelograms of any length up to d+1 [21, Lemma 6.5].
With these comments, Theorem 0.3 is the final step in the
following characterization of d-bounded distance-regular

graphs in terms of forbidden parallelograms.

Theorem 0.4. Let T' denote a distance-reqular graph
with diameter D > 3. Suppose the intersection number
as # 0. Fiz an integer 2 < d < D — 1. Then the following

two conditions (i), (ii) are equivalent:
(i) T is d-bounded.

(i) T contains no parallelograms of any length up to d+1

and by > bs. O

Theorem 0.3 is a generalization of [2, Lemma 4.3.13],
[13], and is also proved under an additional assumption
¢ > 1 by A. Hiraki [4]. To prove Theorem 0.3, we need
many previous results of [4]. These will be stated inde-

pendently in Section 2. Some applications of Theorem 0.3



were previously given in [4], [14]. The following is a new

application of Theorem 0.3.

distance-regular
parameters (D, b, «, [3) =
(D, —2,-2,((=2)P*1 —1)/3), where D > 4.

Theorem 0.5. There is no

graph  with  classical

A consequence of Theorem 0.5 is the following.

Corollary 0.6. Let T' denote a distance-regular graph

F. Mgk anrEmemns

1 Preliminaries

with classical parameters (D,b,a, 3), D > 4 and ¢5 = 1.
Then as = ay and aq # 0.

We prove Theorem 0.3 in Section 3, and prove The-
orem 0.5, Corollary 0.6 in Section 4. We survey the
progress on the classification of distance-regular graph
with classical parameters (D, b, a, ) and b < —1 in Sec-

tion 5.

In this section we review some definitions, basic concepts and some previous results concerning distance-regular

graphs. See Bannai and Ito [1] or Terwilliger [18] for more background information.

Let I'=(X, R) denote a finite undirected, connected graph without loops or multiple edges with vertex set X,

edge set R, distance function 9, and diameter D:=max{d(z,y) | ,y € X}. By a pentagon, we mean a 5-tuple

ujuguzusus consisting of distinct vertices in T' such that d(u;, u;p1) =1 for 1 <i <4 and 9(us,uy) = 1.

For a vertex z € X and an integer 0 < ¢ < D, set I';(x) := {z € X | d(z, 2) = i}. The valency k(z) of a vertex

x € X is the cardinality of I'y(x).

The graph T' is called regular (with valency k) if each vertex in X has valency

k. A graph T is said to be distance-reqular whenever for all integers 0 < h,i,j < D, and all vertices x,y € X with

d(z,y) = h, the number

ho_
bi; =

Ti(2) N T5(y))

is independent of x,y. The constants p?j are known as the intersection numbers of T'.

From now on let I' = (X, R) be a distance-regular graph with diameter D > 3. For two vertices z,y € X, with

d(z,y) =i, set
B(z,y) =
Clz,y) =
Az, y) =
Note that
|B(,y)|
|C(z,y)]

Az, y)l

[i(z) N T (y),
Li(z)NTioa(y),

Ii(z) NTyi(y).

_ i
= DPi1i+1>

i
= D1i-1>

%

= P1i



are independent of x, y. For convenience, set ¢; :=p} ,_; for 1 <i < D, a; :=p} ; for 0 <i < D, b; := p} ;. for
0<¢<D-1andput bp :=0, ¢g :=0, k:=by. Note that k is the valency of I'. It is immediate from the definition
ofp?j that b; #0 for 0 <i < D —1and ¢; # 0 for 1 <i < D. Moreover

k=a;+b;+c; for 0<i<D. (1.1)

A subset Q of X is weak-geodetically closed with respect to a vertex x € Q if
C(y,z) CQ and A(y,z) CQ for all y € Q. (1.2)

Note that 2 is weak-geodetically closed if and only if for any vertex = € €2, 2 is weak-geodetically closed with respect

to x [21, Lemma 2.3]. We list a few results which will be used later in this paper.

Theorem 1.1. ([21, Theorem 4.6]) Let T' be a distance-regular graph with diameter D > 3. Let Q be a regular

subgraph of T' with valency v and set d := min{i | v < ¢; + a;}. Then the following (i), (ii) are equivalent.
(i) Q is weak-geodetically closed with respect to at least one vertex x € Q.
(i) Q is weak-geodetically closed with diameter d.
In this case v = cq + aq. O

Definition 1.2. Fix a vertex € X. A pentagon ujususuaus has shape i1, ia, i3, 14, i5 with respect to x if i; = 0(x, u;)

for 1 <j <5.

Theorem 1.3. ([21, Lemma 6.9],[16, Lemma 4.1]) Let T be a distance-reqular graph with diameter D > 3. Suppose
a1 =0, az # 0 and T' contains no parallelograms of length up to d 4+ 1 for some integer d > 2. Let x be a vertex of
T, and let uyususugus be a pentagon of I' such that O(x,u1) =i —1 and O(x,u3) =i+ 1 for 1 <1i < d. Then the

pentagon uiususzusus has shape i — 1,4,¢ + 1,4 4+ 1,4 with respect to x. O

2 A few lemmas

Throughout this section, let I' = (X, R) denote a distance-regular graph with diameter D > 3, and intersection
numbers a; = 0, ag # 0. Such graphs are also studied in [4, 11, 12, 13, 14]. Note that any two vertices at distance 2
are always contained in a pentagon since as # 0, and two nonconsecutive vertices in a pentagon of I' have distance
2 since a3 = 0. In this section we give a few lemmas which will be used in the next section. These results were
formulated by A. Hiraki in [4] under an additional assumption ¢y > 1, but this assumption is essentially not used in

his proofs. For the completeness, we still provide the proofs.

Lemma 2.1. Fiz an integer 1 < d < D — 1, and suppose I' does not contain parallelograms of length up to d + 1.

Then for any two vertices z,z" € X such that O(x,z) < d and 2’ € A(z,z), we have B(x,z) = B(z,z').



Proof. By symmetry, it suffices to show B(x,z) C B(x,z’). Suppose there exists w € B(x,z) \ B(z,2’). Then
O(w,2') # d(x, z) + 1. Note that d(w, z’) < d(w,z)+d(x,2") = 1+9(x, 2) and (w, ') > I(w, z) —I(z,2') = A(x, z).

This implies O(w, 2') = d(x, z) and wxz'z forms a parallelogram of length d(z, z) 4+ 1, a contradiction. O

Lemma 2.2. Fiz integers 1 < i < d < D — 1, and suppose I" does not contain parallelograms of any length up to

Proof. Let ujususugsus be a pentagon of shape i,14, 4, 7,7+ 1 with respect to x. We derive a contradiction by induction
on i. The case ¢ = 1 is impossible otherwise ujxuqus is a parallelogram of length 2. Suppose i > 2. Note that
B(z,u1) = B(x,us) = B(z,u3) = B(x,u4) by Lemma 2.1. We shall prove C(z,u1) = C(z,us) = C(z,u3) = C(z,uq).
First we prove C(x,u1) = C(x,us). It suffices to show C(x,us) C C(x,uy) since both sets have the same size ¢;. To the
contrary suppose there exists v € C(z, uz2) —C(z,u1). Note that v € A(z,u1) as B(z,u1) = B(x,ug). Then B(uy,x) =
B(u1,v) by Lemma 2.1 and hence (v, us) = i+1 since us € B(uy,x). Now ugujusugus has shapei—1,4,i+1,i+1,
with respect to v by Theorem 1.3, a contradiction since v € B(z,u4). This proves C(z,u2) C C(x,u1) as desired.
By symmetry, C(z,us3) = C(x,u4). It remains to show C(z,uz) C C(x,uq). To the contrary suppose there exists
u € C(z,u2) — C(x,us). Note that v € A(z,us) as B(x,uz) = B(z,us4). Then B(ug,x) = B(ug,u) by Lemma 2.1
and hence O(u,uz) =i+ 1 since us € B(ug,x). Hence ugujususus has shape ¢ — 1,4, + 1,7 + 1,¢ with respect to u
by Theorem 1.3, a contradiction since u & B(x,u4). Pick a vertex v € C(x,uy) = C(z,uz) = C(x,uz) = C(x,uyq).
Then ujusuzuqus is a pentagon of shape ¢ — 1,7 — 1,7 — 1,4 — 1,7 with respect to v, a contradiction to the inductive

hypothesis. O

Proposition 2.3. Fix integers 1 <i < d < D — 1, and suppose I' does not contain parallelograms of any length up
tod+ 1. Let x be a vertex and ujusuzusus be a pentagon of shape i,i — 1,i,¢ — 1,7 or of shape i, — 1,4,9 — 1,4 — 1

with respect to x for 1 <i <d. Then B(x,u1) = B(x,us).

Proof. It suffices to show B(x,u3) C B(z,u;) since both sets have the same size b;. Pick u € B(x,us). Then
O(u,uz) =i+ 1, O(u,uqs) = i and 9(u,usz) = i. Note that (u,u;) # i — 1, otherwise by Theorem 1.3, the pentagon
ujugususus has shape i — 1,4,4+ 1,7+ 1,4 with respect to u, a contradiction. Suppose d(u,u1) = i for this moment.
by Lemma 2.2. Then 0(z,u5) = ¢ by construction. Now usujzu is a parallelogram of length i + 1, a contradiction.

Hence J(u,u1) =14+ 1 or equivalently u € B(x,u1). This proves B(x,us) C B(x,u1) as desired. O

Lemma 2.4. Fiz integers 1 < i < d < D — 1, and suppose I' does not contain parallelograms of any length up to

d+ 1. Let x be a vertex. Then there is no pentagon of shape i,1,4,1+ 1,7+ 1 with respect to x for 1 <i <d.

Proof. Suppose that ususuqusu; is a pentagon of shape 4,4, ,i+1,i+1 with respect to . We derive a contradiction by
induction on ¢. The case i = 1 is impossible otherwise uszusuy is a parallelogram of length 2. Suppose ¢ > 2. Pick v €
C(z,us) and note that d(v,u1) = i by construction. In particular v € B(x,us) and B(z,us) = B(z,u3) = B(x,u4)
by Lemma 2.1, so v € C(x,uq) U A(z,uq). In fact v € C(x,uy); otherwise 9(v,uq) = i, (v, u5) = @ by Theorem 1.3,

and then zvuqus is a parallelogram of length i 4 1, a contradiction. We also have 9(v, us) = i by construction. Note



that d(v,usz) = i; otherwise (v, u3) =i — 1 and usuzususu; is a pentagon of shape i — 1,7 — 1,4 — 1,4, 4 with respect
to v, a contradiction to inductive hypothesis. Now as x = v in Proposition 2.3, we have B(v,u1) = B(v,u3), a

contradiction since z € B(v,u1) — B(v, u3). O

3 Proof of Theorem 0.3

Let T' = (X, R) denote a distance-regular graph with intersection numbers a; = 0, as # 0 and diameter D > 3. Fix
an integer 1 < d < D — 1. Suppose I' contains no parallelograms of length up to d+ 1. We shall prove I is d-bounded

in this section. We first give a definition.

Definition 3.1. For any vertex x € X and any subset IT C X, define [z,1I] to be the set
{v € X | there exists 3 € II, such that the sequence z, v,y is geodetic }.
For any z,y € X with d(z,y) = d, set
I,y :={y € Ta(z) | B(z,y) = B(z,y')} (3.1)

and

Az, y) = [z, IIy)]. (3.2)
We shall prove that for any vertices z,y € X with d(z,y) = d the following statement B, holds.
(Bgq) A(z,y) is regular weak-geodetically closed with valency agq + c4.
By referring to Theorem 1.1, (By) is equivalent to the following statements (W) and (Rg).
(Wy) A(z,y) is weak-geodetically closed with respect to x, and
(R4) the subgraph induced on A(x,y) is regular with valency ag + ¢4

for any vertices x,y € X with d(z,y) = d.

We prove (Wy) and (Rg) by induction on d. Since a; = 0, there is no edges in I';(x) for any vertex x € X.
If d = 1 in Definition 3.1, then II,, = {y}, and consequently A(z,y) = {x,y} is an edge; in particular A(zx,y) is
regular with valency 1 = a1 4+ ¢; and is weak-geodetically closed with respect to x since a; = 0. This proves (R;)
and (W1). We now assume d > 2. By inductive hypothesis (W;), (R;) and (B;) are assumed throughout this section

for 1 <4 <d— 1. The following proposition proves the statement (W;).

Proposition 3.2. For any vertices x,y € X with O(x,y) = d and for any vertex z € A(x,y)NTy(x), where 1 < i <d,
we have the following (i), (ii).

(i) A(z,z) C A(z,y).

(ii) For any vertex w € I';(x) NTa(z) with B(z,w) = B(x, z), we have w € Az, y).



In particular (Wy) holds.

Proof. We prove (i), (ii) by induction on d—i. The case i = d follows from the construction of A(x,y) in Definition 3.1
and by Lemma 2.1. Suppose ¢ < d.

To prove (i) we note that if ¢ = 1 then A(z,z) is an empty set, clearly contained in A(z,y). Hence we suppose
2 <4 < d in this case. We pick a vertex v € A(z,z) and show v € A(z,y). Pick v € A(x,y) NTip1(z) NT1(2).
Note that (i), (ii) hold if we use u to replace z by inductive hypothesis. Let uususvz be a pentagon of T' for some
ug, ug € X. Note that uugusvz can not have shape ¢+ 1,4, — 1,4,4, shape i + 1,7+ 2,7+ 1,¢,¢ by Theorem 1.3, can
not have shape ¢ + 1,4,4,7,% by Lemma 2.2, and can not have shape ¢ + 1,7 + 1,4,4,¢ by Lemma 2.4 with respect
to x. Hence uusugvz has shape i + 1,¢+ 1,7+ 1,4,% or ¢ + 1,4,7 + 1,4,7 with respect to x. In the first case we have
ug € A(u,x), ug € A(usg,x), and this implies uz,us € A(z,y) by the inductive hypothesis of (i), and v € A(z,y)
by construction. In the latter case we have B(z,u) = B(x,us) by Lemma 2.3, and consequently us € A(xz,y) by

inductive hypothesis of (ii), v € A(z,y) by construction.

To prove (ii) let zvoywv4vs be a pentagon for some vy, vy, v5 € X. Note that A(z, 2) is a regular weak-geodetically
closed subgraph of diameter i by (B;), and A(z, z) = A(x,w) by construction in Definition 3.1 and since B(z,w) =
B(z,2); in particular ve,vy,vs € A(x,2) and vo,vg,v5 &€ Tip1(x). If vg € A(z,x) then vo,w € A(z,y) by (i) that
we just proved. Hence we assume zvowvgavs has shape i,i — 1,4,a,b with respect to z for integers a,b € {i — 1,i}.
Pick v € A(z,y) NTiy1(x) NT1(2). Let vozuysys be a pentagon for some ys,ys € X. Then vozuysys has shape
i —1,4,i 4+ 1,7 + 1,7 with respect to by Theorem 1.3. Let voyswswsw be a pentagon for some ws,wy € X. If
wy € A(w,z) U C(w,x) then wy € A(x,w) = A(x, z) and this forces y4 € A(z, 2) as va, wy € A(x, z) and by (B;).
By the same reason we have y3 € A(x,2) as z,y4 € A(x,z). We have a contradiction since A(z, z) has diameter ¢
and 9(z,y3) =i+ 1 > i = diam A(z,z). Hence 9(z,wy) = i + 1 and voyswswsw has shape i — 1,4, + 1,4 + 1,4
with respect to 2 by Theorem 1.3 as shown in Figure 1. Note that B(x,u) = B(z,y3) and B(x,ws) = B(z,wy)
by Lemma 2.1. If B(z,y3) = B(x,ws) then by (i) and the inductive hypothesis of (ii) we have ys,ws,ws € A(z,y)
in the order, and w € A(z,y) by the construction in (3.2) to complete the proof. Suppose B(z,ys) # B(x,ws) in
the remaining. Let y4yspspsws be a pentagon for some ps,py € X. By Lemma 2.1, Lemma 2.3 and Theorem 1.3,
the pentagon y4yspspsws has shape 7,7 + 1,7 4+ 2,4 + 2,7 + 1 with respect to x. Now we have three pentagons and
their shapes with respect to x as shown in Figure 1. Note that B(z,ys) # B(z,z), otherwise A(z,y4) = A(x, 2)
and y3 € A(z, z), a contradiction as before. Pick p € B(x,y4) — B(z,2). Then 9(p,ys) =1+ 1 and 9(p,z) =i —1
or i. Suppose for this moment 9(p,z) = i — 1. Then zuysysvs is a pentagon of shape i — 1,4,4 + 1,7 + 1,7 with
respect to p by Theorem 1.3. Note that d(p,p3) = i + 2, otherwise 9(p,p3) = i + 1 and xpysps is a parallelogram
of length i + 2 < d + 1, a contradiction. Now by applying Lemma 2.2, Lemma 2.4, we have d(p,ws) = i + 2 and
consequently voyswswaw is a pentagon of shape 4,7+ 1,7+ 2,7 + 2,7 + 1 with respect to p by Theorem 1.3. That is
p € B(x,w), a contradiction to B(z, z) = B(x,w). By symmetry, we also have 9(p, w) # i — 1. We suppose in the
last case O(p,z) = d(p,w) =i. As p € A(x, z), we have B(z,z) = B(z,p) by Lemma 2.1, in particular (p,u) =i+ 1.
By symmetry, d(p,wy) =i+ 1. As p € B(x,u) = B(z,ys), we have 9(p,ys) =i or i + 1. We shall prove 9(p,ys) = 1,
and by symmetry 9(p,ws) = i. Suppose to the contrary we have d(p,ys) = ¢ + 1. As p3s € B(ys,z) = B(ys,p),



d(p, p3) = i+2. Applying Lemma 2.2, Lemma 2.4 to the pentagon wsysyspsps and considering its shape with respect
to p, we find 9(p,ws) # i + 1, and applying Theorem 1.3 to find d(p, ws) # i. Now 9(p,ws) = i + 2 and prwsws
is a parallelogram of length i + 2 < d + 1, a contradiction. We conclude that y,y3p3psws is a pentagon of shape
i+1,4,a,i+ 1,7 or of shape i 4+ 1,4,4 + 1, b, with respect to p for a,b € {i,7 + 1} by Lemma 1.3, Lemma 2.2, and
this implies € B(p,ps) = B(p,y4) in the first case or x € B(p,ps3) = B(p,y4) in the latter case by Proposition 2.3,

a contradiction since x € C(p, ya).

A(x,y) is clear to be weak-geodetically closed with respect to = by (1.2) and (i). O

distance to x

o ... i—1 ) 141 142
W4q
w
w3 D4
Ya
R s Ya
ps3
z
p U

Figure 1. Three pentagons in the proof of Proposition 3.2(ii).

The following proposition proves (Rg) and hence completes the proof of Theorem 0.3.
Proposition 3.3. For any vertices x,y € X with 0(x,y) = d, Ax,y) is reqular with valency aq + cq.

Proof. Set A = A(x,y). Clearly from the construction and Proposition 3.2, |T'1(y") N A| = aq + ¢4 for any 3’ € II,,,.
First we show |I'1(2) N A| = a4 + ¢4. Note that y € ANTy(z) by construction of A. For any z € C(z,y) U A(z,y),

O(z,2) +0(z,y) <O(z,y) + 1.

This implies z € A since A is weak-geodetically closed with respect to x by Proposition 3.2. Hence C(z,y)UA(z,y) C
A. Suppose B(z,y)NA # (. Chooset € B(z,y)NA. Then there exists y’ € II,, such that ¢t € C(z,y’), a contradiction
to B(z,y) = B(x,y'). Hence B(z,y) NA =0 and I'1 (z) N A = C(z,y) U A(z, y). This proves |I'1(z) NA| = aq + cq.



Since each vertex in A appears in a sequence of vertices © = xg, z1, ..., Tq in A, where 0(x, z;) = j, O(zj_1,z;) =1

for 1 <j <d, and x4 € Il,,, it suffices to show
T'1(z;) N Al =aq +cq (3.3)
for 1 <i<d-—1. For each integer 1 < i < d, we show
Ty (zio1) \ Al < [Dy(zi) \ A (3.4)

by the 2-way counting of the number of the pairs (z,s) for z € 'y (x;—1) \ A, s € T'1(z;) \ A and I(z,s) = 2. For a
fixed s € 'y (z;) \ A, we have d(x,s) =i+ 1 and d(x;_1,s) = 2 since A is weak-geodetically closed with respect to z

by Proposition 3.2. Hence z € A(z;_1,s). The number of such pairs (2, s) is at most |T'1(z;) \ Alas.

On the other hand, we show this number is |T'; (x;—1)\ Alas exactly. Fix an z € 'y (x;—1)\ A. Note that 9(z, z) =i
by Proposition 3.2, and 9(z;,z) = 2 since a; = 0. Pick any s € A(x;,z). We shall prove s € A. Suppose to the
contrary s € A in the below arguments and choose any w € C(s, z). Note that d(z,s) < ¢, otherwise 9(z,s) =i+ 1
and the pentagon x; jx;swz has shape ¢ — 1,4,7 + 1,7 + 1,4 with respect to & by Theorem 1.3 to force z € A by
Proposition 3.2(i) and construction of A, a contradiction. Similarly d(z,w) < i. If s € A(z;,z), w € A(s,z) and
z € A(w, z), then z € A by Proposition 3.2(i), a contradiction. Applying Proposition 2.3 in the remaining cases we

have B(x,z) = B(x,z;) and then z € A by Proposition 3.2(ii), a contradiction.

From the above counting, we have
IT1(@iz1) \ Alag < [T1(2i) \ Alaz (3.5)
for 1 < i < d. Eliminating as from (3.5), we find (3.4) or equivalently
Ty (zi—1) NA| > |Ty(z;) N A (3.6)

for 1 <4 < d. We have known previously |I'1(zg) NA| = |T'1(xq) NA| = agq + ¢4. Hence (3.3) follows from (3.6).

4 Classical parameters

Let I' = (X, R) denote a distance-regular graph with diameter D > 3. I is said to have classical parameters (D, b, «, )

whenever the intersection numbers of I' satisfy

m<1+a[i11D for 0<i< D, (4.1)

= E D)) wosien

m =14+b+b% - b (4.3)

Ci

where

10



Applying (1.1) with (4.1), (4.2), we have

for 1 <i<D.

Suppose I" has classical parameters (D, b, o, 3) and D > 3. Then b is an integer, b # 0 and b # —1 [2, p. 195]. To

apply Theorem 0.4 we need the following lemma.

Lemma 4.1. ([19, Theorem 2.12], [21, Lemma 7.53(ii)]) Let T' denote a distance-regular graph with classical param-
eters (D,b,a, 3), b < —1 and D > 3. Then I' contains no parallelograms of any length. O

More general version of Lemma 4.1 can be found in [20, 11, 12].
Theorem 4.2. (/22, Theorem 4.2]) Let T denote a distance-reqular graph with classical parameters (D, b, «, 3) and

b < —1. Suppose that T' is D-bounded with D > 4. Then

14060

B:al—b'

(4.6)

Proof of Theorem 0.5. Let I denote a distance-regular graph with classical parameters (D, b, o, 3) = (D, -2, —2, ((—=2)P+
1)/3), where D > 4. Then I" contains no parallelograms of any length by Lemma 4.1. By (4.1), (4.4), we have co = 1
and ag = 2 > 0 = a;. Hence T is D-bounded by Theorem 0.4 and since by > by. By (4.6), 3 = ((—2)P*! - 2)/3), a

contradiction. O

We quote a few previous results in the study of distance-regular graphs with classical parameters and cs = 1 for

later use.

Lemma 4.3. ([22, Corollary 6.3]) There is no distance-regular graph T’ with classical parameters (D, b, a, 3), D > 4,

co =1 and ay > a; > 1. O

Lemma 4.4. ([14, Theorem 2.2]) Let T' denote a distance-regular graph with classical parameters (D,b,a, 3) and
D > 3. Assume the intersection numbers a; = 0, ag # 0, and co = 1. Then (b, a, 3) = (=2, -2, ((—2)P*! - 1)/3). O

Lemma 4.5. ([19, Theorem 2.11], [21, Lemma 7.5(ii)]) Let T' denote a distance-reqular graph with classical param-
eters (D,b,a, ) and D > 3. Suppose I' contains no parallelograms of length 2. Then T' contains no parallelograms of
any length. O

Proof of Corollary 0.6. Since co = 1, I contains no parallelograms of length 2 and then contains no parallelogram
of any length by Lemma 4.5. By Lemma 4.3, Lemma 4.4, Theorem 0.5, only the case aa > a3 = 1 and the case

as = aj remain. The first case is impossible by Friendship Theorem as mentioned in the introduction. For the

11



latter case, we have « = —b/(1 + b) since ¢co = 1 and by (4.1). Applying this to (4.5) we find the impossibility of

a2:a1:0.

We close this section by proposing the following conjecture.
Conjecture 4.6. There is no distance-reqular graph T' with classical parameters (D,b,a, 3), D > 4, and co = 1.
There is a mistake in [2, Proposition 6.1.2] which proves the above conjecture. This mistake is corrected in [3].

Remark 4.7. (See [2, p. 194]) The Triality graph 3D, 2(q) is a distance-regular graph with classical parameters
(3,—¢,q/(1 —q),¢* + q), co = 1 and a; = az = ¢ — 1. Hence the assumption D > 4 in Conjecture 4.6 is necessary.
Note that the Triality graph Dy 2(q) is not 3-bounded by Theorem 0.4 since by = bs.

5 Classical parameters with b < —1

Let I' = (X, R) denote a distance-regular graph with classical parameters (D, b, a, 3), b < —1 and D > 3. We survey
the progress on the classification of such I' in this section. Two main classes of such examples are the dual polar
graphs 2A;p_1(—b) and the Hermitian forms graphs Her_,(D) as listed in [2, Tabel 6.1]. A.A. Ivanov and S.V.
Shpectorov show that if I' has the same intersection numbers as the dual polar graph 2A;p_1(—b) then T is the
dual polar graph 2Asp_1(—b) [8]. They also show that if I' does not contain parallelograms of length 2 and has the
same intersection numbers as the Hermitian forms graph Her_;(D) then I' is the Hermitian forms graph Her_,(D)
[9, 10]. P. Terwilliger shows that in fact I" does not contains parallelograms of any length [19] as also stated in
Lemma 4.1. According to different assumptions on the intersection numbers of I', the D-bounded property of I' are
proved by different authors as stated in the introduction. Putting all these results together, if I" has intersection

numbers b; > by and as # 0 then I' is D-bounded as also stated in Theorem 0.4.

We assume by > by and ao # 0 in I" thereinafter. The third author shows that if D > 4 then

1+ 0P

f=ag—y

(5.1)

in [22] as also stated in (4.6), and use this to conclude in [23] that if I" is not the dual polar graph 2Asp_1(—b) and

not the Hermitian forms graph Her_,(D) then
a=(b-1)/2, B=—(1+b")/2, (5.2)
where —b is a power of an odd prime.

There are some results of I' in the assumption D > 3, a; = 0 and ag # 0. For example in [14], the second author

and the third author show that co < 2, and in the case ¢y = 1, it must be
(b,a, B) = (=2, -2, ((=2)"*' —1)/3). (5.3)

12



Note that if D > 4, (5.3) does not hold by (5.2). This is essentially the proof of Theorem 0.5. Hence we have the

following conjecture about the case D = 3.
Conjecture 5.1. There is no distance-regular graphs with classical parameters (D, b, o, 3) = (3, -2, —2,5).

Also in [4] A. Hiraki assume that D > 3, a; =0, ag # 0, ¢a > 1 and show that I" is either the Hermitian forms
graph Hers(D) or «, [ satisfy (5.2) with b = —3. Hence the following conjecture is the first step to study the

unknown case of (5.2).

Conjecture 5.2. There is no distance-reqular graph with classical parameters (D,b, a, ) = (3,—3,—-2,13).
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Definition
An incidence structure (P, B) is called d-disjunct if any block in B is not
covered by the union of d other blocks.

Assume P ={1,2,...,v}, B={B1,Ba,...,Bp} and M is be the
incidence matrix of (P, B), i.e.

B 1, fGBj;
m-{o 28

forl1<i<vand0<j<hb.

The incidence matrix M of a d-disjunct incidence structure can be used in
non-adaptive group testing programming, in which v << b is preferred.
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@ Let M be a v x b incidence matrix of an incidence structure and set
F» = {0,1}. Define the output function oy : F? — F} by

om(P):=MxP= ] M,
Pi=1

where % is the matrix product by using Boolean sum to replace
addition.

@ If the incidence structure is d-disjunct, then oy | F2(< d) is known
to be injective, where F2b(§ d) is the set of binary vectors of length b
and Hamming weight at most d.

© This means that for each element u in the image of oy on F2(< d),
we know which P € F? to have oy (P) = v.

@ In application, P is interpreted as the unknown infected subset
{J | Pj =1} of a given set of b items, and u is interpreted as the
sequence of test results. Then the injective property of oy implies
that the infected subset can be determined from the sequence of test
results if the number of infected items is known in advance to be at

most d.
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Example

The following 4 x 6 binary matrix is used to detect the infected item in
{1,2,3,4,5,6}, if the infected item is known to be at most one in advance
(but do not know which one):

Tests/Items | 1 2 3 4 5 6 om((0,0,1,0,0,0)7)
one | 111000 — 1
Two | 100110 — 0
Three | 01 0101 — 0
Four | 001011 — 1

If there are two infected items, the above 4 x 6 matrix does not work for
detecting them. For example, both the infected sets {3,4} and {1,6} have
the same output (1,1,1, l)T. So it is impossible to recover the infected set
from the output (1,1,1,1)7.
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Relation to t-design

Definition

An incidence structure (P, B) is called a t-(v, k, ) design if
Q |[Pl=v,
@ |B| =k for and B € B, and
© any t-subset of P is contained in exactly A blocks in B5.

Remark

@ A 2-(v, k,1) design is (k — 1)-disjunct since a block has k points and
it intersects another block in at most one point, so k — 1 other blocks

can cover at most k — 1 points of a block, leaving at least one point
uncovered.

@ If any point is incidence in at least two blocks, then any block in a
d-disjunct matrix has size at least d + 1.

© A d-disjunct incidence structure is called a pooling design.

v
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First result

Theorem

Let (P, B) be a d-disjunct pooling design with constant block size d + 1,
and define v =|P| and b = |B|. Then b < max{v(v—1)/d(d+1),v—d}.
Moreover if v —d < v(v —1)/d(d + 1), then the above upper bound of b
is reached if and only if (P,B) is a 2-(v,d + 1, 1) design.

The v x b incidence matrix

v (%)

satisfies the equality b = v — d, where /I, is the b x b identity matrix and
Jg is the d x d all 1's matrix.
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The following example gives the equality in previous theorem for d = g — 1.

Example

(2 —(g?,q,1) design) Let g be a prime power. The affine plane Fg over
Fq4 has g? points and g + g lines. Of course any line has g points and any
two lines intersect at at most 1 point. Hence the points-lines incidence
matrix is v X b d-disjunct with with constant weight w, where v = q2,
b=g?>+qgand w=q=d+ 1 satisfy

b=q*+qg=v(v—1)/d(d +1).

v

The first g which is not a prime power is when ¢ = 6 = d + 1. In this case
the equality does not hold by the Bruck-Ryser-Chowla Theorem. Then
there is no 5-disjunct pooling design with 36 points, 42 blocks and
constant bock size 6. We will construct a 5-disjunct pooling design with
36 points, 37 blocks and constant block size 6.

%% X (Dep. of A. Math., NCTU, Taiwan) | Pooling designs with constant block weight July 12, 2010 7/21



ALGEBRAIC AND GEOME I RIC COMBINATORICS CONFERENCE 2010

Forward difference property

© Let g be a prime power and m > g be an integer.

Q Let F,:={0,a% al,...,a972} denote the finite field of g elements,
where a is a generator of the cyclic multiplication group
Fy = Fq —{0}.

© Let m > g be an integer. Let Z,,, :={0,1,..., m— 1} be the addition
group of integers modulo m. We use the order of integers to order the
elements in Z,, e.g. 0 < 1.

© Asubset T C Zp, x Fq is said to have the forward difference distinct
property in Zpm X Fq if the forward difference set

FDr :={(,y) = (1,x) | (i,x), (U, y) € T with i < j}

consists of W

elements.
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The Set ,, T,
Let »Tq C Zpy X Fg be defined by

mTq=1(i,a) | i€ Zm0<i<qg-—1}.

012 g—1 m—1
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The Set 5T5

Forg=5, a=2,

575 = {(07 1)7 (1a 2)7 (27 4)’ (3’ 3)’ (47 1)}

and

FD; 1, ={

Since |FD,1,| = 10, the set 5 Ts has the forward difference distinct

property in Zs X Fs.
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m T4 has the forward difference distinct property

Lemma
The set ,, T4 has the forward difference distinct property in Zpm x Tq.

Proof.
Given any pair (c,d) € Zn X Fq, solve the equations

(C’ d) = (1731) - (i7 ai)

for 0 <i<j<qg-—1. Notethat 1 <c < qg—1 to have a solution. If
c=qg—1thenj=qg—1andi=0.If c #g—1 then

a'=d/(ad7" —1)=d/(a® — 1) and j = c + i. In each case the pair
(i,a"), (j, &) is unique determined by the element (c,d) € Z, x Fy. O
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Difference Property

A subset T C Zpy, X Fq is said to have the difference distinct property in
Zm % Fq if the difference set D := —FD7 U FD7 consists of |T|(|T| — 1)
elements.

Since , T4 intersects a vertical line in at most one point, we find
(0,x) & D, 1, for any x € F.
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Non-example (m = g = 5)

We have seen

FD5T5 :{

Hence

Since |D,1,| = 16 # 20, the set 5 Ts does not have the difference distinct
property in Zs X Fs.

July 12, 2010
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Example (m —1 =g =05)

FDsT5 ={

Hence considering as the negative in Zg X Fs5, we have

~FD,7, ={ (5,4
(4,2
(3,3
(2,0

,(5,3),(5,1),(5,2)
,(4,4),(4,3)
,(3,1)

}.

~— ~— — —

Since |D, ;| = 20 now, the set ¢ T5 has the difference distinct property in

Z@ X F5.
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2q—1 I q has the difference distinct property

Lemma
For m > 2q — 1, the set , T4 has the difference distinct property in
Lm x Tg.

Proof.

We have |FD, 1,| = | — FD,1,| = q(q — 1)/2. The first coordinate of an
element in FD, 7, runs from 1 to g — 1, and the first coordinate of an
element in —FD, 7, from m+1—q to m—1. The assumption

m > 2q — 1 implies —FD, _, 7, N FD, 71, = 0. O

v
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2q—3 I q has the difference distinct property

Lemma
The set ,, T4 has the difference distinct property for m = 2q — 3.

Proof.

We have |FD7,, .| = | = FD7,,,| = 9(q — 1)/2. Let (c,d) € FDr,, .
fm=2g—3,thenl1 <c<g—1and g—2< —c<2g—4. Thus the
repetition of differences occurs only when c =g —2 or c = g — 1. Note
that d=0iffc=qg—1,and —d =0 iff —c =q — 2. For c = q — 2,
suppose (c’,d") € —FD, 1, and (c’, d") = (c,d). Then we have ¢’ = g — 2
and d’ = 0. Hence d = 0, a contradiction. Similarly for c = g — 1, we
have d =0 but (g —1,0) ¢ —FDr,, .
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2q—4 I q has the difference distinct property

Lemma
The set ,, T4 has the difference distinct property for m = 2q — 4.

Proof.

Let (c,d) € FDr,, . Since m =2q — 4, we have 1 < c < g—1and

g — 3 < —c < 2qg — 5. Thus the repetition of differences occurs only when
c=qg—3,g—2org—1. Notethat d =0iff c=qg — 1, and —d = 0 iff
—c=q—3.Forc=qg—1or c=q— 3, similar process as the above

m = 2q — 3 case can be applied to get contradictions. For ¢ = g — 2,

—c = q — 2. Thus a repetition implies that there are

(g —2,d1),(qg —2,d2) € FD7,,, such that d; = —d>. Note that the only
two elements of FDr,, . with the first coordinate g —2 are (q — 2, 2972 1)
and (q —2,a97! — a), where a is the generator chosen for Fg. So we have
2972 — 1= —(a9"! — a) and this implies a = —1, also a contradiction. [

v
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Lines with any two intersecting in at most a point

Proposition

Suppose that , Tq C Zm % Fq has the difference distinct property in
Zm X Fq. Set B={u+m Tq | u€Zm x Fg}. Then [LNL'| <1 for any
distinct L, L' € B.

Proof.
Routine. L

© Note that there are mq lines and mq points in Z,, X F,, and a line
has g = | T| points with g different first coordinates.

@ Apparently more lines can be added to B still having the conclusion of
the above proposition, for example, adding vertical lines to B.

© We will add m more points to P, add m+ 1 lines to B, and add one
more point to each original line in B.
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A picture for the finial result

00 oo
392
a° /‘
%%
012 - g—1gq m-—1

Lines in Z,, X (Fq U {o0})
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Second and final result

Theorem

There exists a g-disjunct pooling design (P, B) with |P| = m(q + 1),

|B| = m(q + 1) + 1 and constant block weight q + 1, where q is a prime
power, and m is an integer at least three satisfying m = 2q — 4,
m=2qg—3orm>2q—1.

By choosing ¢ =5 and m = 2q — 4 = 6, there exists a 5-disjunct pooling
design with 36 points, 37 blocks and constant block size 6.
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The end

Thank you for your attention.
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