FRERTIEELE CLEF T 2L

Er CUDA e T 2 VAT FERHIRS K77 0 B
*

S S LR

P F % 5 1 NSC 98-2221-E-009-143-
#oFH R 98#107 01 px99E097 300P
foF ¥ o REEASTRIEE S ()

FEAFEL R

FESEAR ATy A flEm AR 3Ly
gﬁ—l fT{ﬁ"“ 4_,;4\,194;g7_&ﬁ < =
MiriEmy 4z AR T kR
éF—I‘JfTEHW—l_«;}\IIEéIﬁ'_&ﬁ ‘af}"ﬁa
FALAsiEy 4 - EME L | ek
FALTIFE g 4 -Jixess@ L B L EnER
LAy 4 - EmE s g m FR
FAAriEm g 4 -JiEmm A | oL Eh2

oo R R 99 & 127 26 0P

3

Continuous collision detection is widely used in virtual reality applications and physics-
based simulations as well as in robot navigation planning. We developed parallel scheme
for improving continuous collision detection and elementary test processing. We also
employed CUDA for rendering objects on a multi-core platform. We implemented our
system for simulating garments.

Typically a four-stage process is employed for performing collision detection:(1)
construction of the bounding volume hierarchies; (3) updating the bounding volume
hierarchies; (2) traversing pairs of bounding volume hierarchies for culling; and (4)
filtering and the elementary test processing. Much work has been done in the first three
stages of the process for improving the collision detection performance. The last step, the
elementary test processing, has attracted much attention recently. In the elementary test
processing, the potentially colliding triangle pairs are computed for collisions. A
significant amount of time is spent in the elementary test processing in physics based
simulation, such as deformable objects interacting with each other. However, a majority
of the potentially colliding triangle pairs do not collide. These can trigger false-positive
collision events. The situation deteriorates for multiple stacked thin deformable surfaces,
for example, piles of cloth draping over objects. The false positive events could be
eliminated by applying a low cost filter for improving the computation cost in the
elementary test processing, thereby improving the overall performance of collision
detection.

Lastly, we employed CUDA for rendering objects. Users can use our simulation system
to visualize the results.

MRBE8

Continuous collision detection improves the computation of the contact information for
interacting objects in dynamic virtual environments. The computation cost is relatively
high in the phase of the elementary test processing. In virtual environments, such as
crowds in large urban models, there is a large portion of feature pairs that do not collide
but the computation is relatively of high cost. We developed a robust approach for
solving the scalability of the collision detection problem by applying four distinct phases.
Moreover, a parallel collision detection scheme was developed for improving the speed
of collision detection. We also built a system for rendering objects based on CUDA.

< i3t
I. Continuous collision detection

Collision detection is important in the simulation of deformable objects, such as cloth
simulation [Breen et al. 1994; Volino and Magnenat-Thalmann 2000; Bridson et al. 2002;
Baraff and Witkin 2003; Choi and Ko 2005; Govindaraju et al. 2005; Harmon et al. 2008;
Ye 2008; Volino et al. 2009]. A comprehensive survey on collision detection for

deformable objects can be found in [Teschner et al. 2005]. A brute force approach for
collision detection is to perform an elementary test for every two features of triangles.
The run—time complexity is bounded by O(n2), where n is the number of features.
Employing bounding volumes would cull away a large portion of non-colliding triangles,
such as the methods in [Hubbard 1993; Gottschalk et al. 1996; Klosowski et al. 1998; van
den Bergen 1999; Mezger et al. 2003; Smith et al. 1995; van den Bergen 1999]. The
hierarchies of k-DOPs [Klosowski et al. 1998] are widely used because of its high culling
effectiveness.

Continuous collision detection can be used for computing precise contact times for two
objects. Continuous collision detection has been applied in the simulation of rigid bodies
[Redon et al. 2005]. For handling deformable objects, an approach was proposed in [Liu
et al. 1996] for computing the contact time between two triangles by checking the fifteen
feature pairs of these two triangles. Each test for a feature pair involves solving a cubic
equation for the times when the feature pair is coplanar. The shortest distance of the
feature pair is then computed. If the distance is less than or equal to a predefined
threshold, the feature pair collides. Subsequently, this method was adopted in [Provot
1997; Bridson et al. 2002; Wong and Baciu 2005; Hutter and Fuhrmann 2007]. Solving
the cubic equations takes the most amount of time. It is unnecessary to solve the cubic
equations as a large portion of feature pairs are not coplanar over the simulation time
interval. Based on that, Tang et al. [Tang et al. 2010] proposed an approach to filter the
feature pairs that are not coplanar so as to avoid solving the corresponding cubic
equations. They employed a numerical iteration method, Interval Newton, to solve the
cubic equation of the feature pair if the filter test is passed.

An assignment scheme was proposed in [Wong and Baciu 2006] for assigning features to
adjacent triangles. Each edge and vertex in the mesh is assigned to one of their adjacent
triangle in a randomized manner. Their method significantly reduces the number of
duplicate tests for feature pairs. The idea was adapted in [Hutter and Fuhrmann 2007;
Curtis et al. 2008; Tang et al. 2009a].

High-level culling technologies have been proposed for reducing the computation cost in
self-collision detection. Volino et al. [Volino and Magnenat-Thalmann 1994] proposed a
method for partitioning surfaces into low-curvatured regions. There would be no self-
collisions for the regions with low curvature. Originally, the method was adopted in
discrete collision detection. The idea was extended in [Provot 1997; Wong and Baciu
2005; Tang et al. 2009a] for continuous collision detection. Collision detection can be
performed at interactive rate for complex deformable objects by employing parallel
computation techniques. An approach was proposed in [Kim et al. 2009] for treating
inter-collisions and self-collisions as inter-CD tasks. Independent inter-CD tasks are
assigned to different threads for performing parallel update and traversal of bounding
volume hierarchies on a multi-core platform with graphics processing units. In [Tang et al.
2009b], a parallel collision detection method was developed for storing the front nodes
temporarily as the start nodes for the traversal of bounding volume hierarchies at each
frame.

II. Parallel collision detection
B T [PPSR AP R (TR - S R E T - Kim
et al. [12] H15 “inter-CD task™ > }H TR 2 AR Jmter CD task 7137?7 [f‘ AR

=% > ZERYBVH traversal bElé@ﬂa U5 (™ o Tang et al. [21]d53E itﬂrjp JEI.?TP [22] -
fitli “front node” T &~ ¥ it BVH traversal EJE[;‘! EFF e YIS LA
elementary test FUEA ©

III. CUDA for rendering objects

Popov et al. [14] presented an algorithm of the SAH-based kd-tree on GPUs by
increasing the coherence of memory accesses during construction of the kd-tree
signi_cantly. Later on, Zhou et al. [21] presented a real time algorithm to construct kd-
tree on GPUs. It constructs tree nodes completely in breadth first search order by
exploiting the large scale parallelism of GPUs. For bounding volume hierarchies,
Lauterbach et al. [10] presented a hybrid algorithm to construct SAH-based hierarchies
on GPUs.

By ik
I. Continuous collision detection

We developed a robust approach for solving the scalability of the collision detection
problem by applying four distinct phases. First, k-DOPs are used for culling non-
proximal triangles. Second, the feature assignment scheme is used for minimizing the
number of potentially colliding feature pairs. Third, an intrinsic filter is employed for
filtering non-coplanar feature pairs. Forth, we use a direct method for computing the
contact time that is more efficient than the numerical Interval Newton method. We have
implemented our system and have compared its performance with the most recently
developed approaches.

II. Parallel collision detection

25 PR e l'h'E’z“E%‘F[LJ%ﬁ “ [l k iy k-DOPs e e SRR
AT (e PO S R “F' ﬁﬁflﬁiboundmg volume #f [> FHZ
%&@ﬁﬁﬂﬂ@%W’ﬁﬁﬂﬁﬁjwﬁwoﬂﬁw FRlg L
FIT T PR o A p g 8RBT AT SRFRELES P R I
(Y k-DOPs -

B P k-DOPs v — e 5 [55 “F”izﬁ' > I3 PR TR A U [
%I%ﬁ?‘i o FE LY E UF“F'J'“F—'}?W E17 PCTPs)ﬁB @1 PL S T £15) PCTPArray
fY— A /]JHI o TR T | %iij%" ’ ﬁqijﬁi Ngot I#E'Jﬁ“r‘?f ka EERET A Ted
KLt » 57BISHED nidle o 1 [i— ['ﬁﬁuﬁqf i BVH traversal T [,
IS Y PCTPs %] PCTPArray fl1 > 5 [Fﬁiﬁﬂ» Kb ttra S RIBVE - SR
& R R SR cora 81 POTIR o 5 -

Static Task Scheduling. T‘iiﬁﬂﬁ%’?‘¢ s 28 I’Fﬁ;{gj’j\ B{af}f £ A 11?$ﬁ$3ﬁiﬁl$;ﬁfllFlfj
HPEGETH o BV 0 e O (SR (R0 2 AP0 BVH traversal o UHiERLTE ”EJ
bounding volume ’:/lFEI iﬂ“‘ DO o HBEIET S FY AR EI@;HEL ColEl[EARS e
SIS ﬁ;{ﬁj’lﬂﬂi~ ET +ﬁ@ﬂ £, PCTPs I'J 91 » W&l FJED}H}*& Z[p PCTPs > 55 fidl
Fﬁiﬂ P = R T LR ET -

Dynamic Task Scheduling. B > & Bavpu 3k > B JE‘E ?\ FJEJFJEH}{J{FE_'\ EREZ R
RO b T[S0 PCTPs 5+ FEEBIBET - ST SHrosh i
FJEJFJEI' » FPECE S fi‘j W= (RS AEPV L R LF |7 2O E XY - ?Lﬁﬁng » IS
l;fcli‘ tira g@; f’EiJ?C D J%@\@f&ﬂﬁ@%ﬂ_ﬁ?%ﬁ%ﬁﬁ HESEFE S R Y PCTPs &% 0 7}
oAt O S50 TRL > BlEBL RIS -

By o Ry AR 25 PSR PCTPs 8855 — [l s [pUff &0 o T tea 05
BVH traversal [UsFd (1> — ENGERE 3@ MR > [0 BURERIIE mge [tae 5T
- Rkt TSR RO & 25 PRI @ALI R 0 - AR
BRI - 2SR e b o S VI -

III.CUDA for rendering objects

We adopted multithreading techniques and streaming SIMD extensions (SSE) for ray
packets. A dynamic loading balancing scheme is employed for multiple threads on a CPU.
On the other hand, we perform ray tracing on a GPU with CUDA. Then we assign tasks
to the CPU and the GPU as evenly as possible for load balancing.

B4 23
We have built out system and tested for performance.

I. Continuous collision detection

We implemented our algorithm and performed experiments. All the experiments were
performed on an Intel(R) 2.66 GHz quadcore CPUs with 4GB main memory and one
thread was used. The computation was all carried out in double precision floating point
for solving the cubic equations. The type of bounding volume was k-DOPs. We had
implemented 6-, 10-, 14-, 16-,18- and 26-DOPs. For the update and traversal of bounding
volume hierarchies, we implemented them based on Intel SSE instruction set. The
shortest distance between the features is computed for the times t in an ascending order
[Hutter and Fuhrmann 2007]. On average we found that the performance for using 14-
DOPs, 16-DOPs and 18-DOPs were the best. We compared our algorithm to I-Newton
(implemented in [Kim et al. 2009]) and NPF (non-penetration filter in [Tang et al. 2010])
The type of bounding volume was 16-DOP in all methods. Moreover, we employed our
proposed feature assignment scheme for avoiding duplicate elementary tests. We
recorded the simulation data (such as positions of vertices) and the same set of data was
then employed for each method. In this way, all methods would have to process the same
amount of potentially colliding triangle pairs.

Table 1. Speedup factors for the elementary test processing: Comparison to I-Newton

and NPF.

N-dey Inter-collision 1.44x 1.68x
Self-collision
Cloth-ball Inter-collision 1.39x 1.30x
Self-collision 1.37x 1.29x
Inter-collision 1.44x 1.32x
Garments
Self-collision 1.89x 1.69x
Dragons Inter-collision 1.30x 1.23x
Self-collision 1.32x 1.24x
Cloth-torus Inter-collision 1.38x 1.28x
Self-collision 1.25x 1.23x
3 Inter-collision 1.43x 1.34x
Bunnies
Self-collision 1.39x 1.27x

II. Parallel collision detection
APLEHT LN A BT LRI RS R 2 0 LB k-DOPs Ldeim

A B I RFE R A d o AP REFRECA D A AEEAR 9 k-DOPs st o
Lk BT B R ARk IR o ;‘%‘s’ F SR e o EH SR £ 0 k-DOPs &k
VT He ke FT Ak b oentiE > RS o AMB G R - o B S
4B Graph 1.
i#* (Cloth-ball pF -t AH R Famrh » L ARk o k-D0Ps 357 217 2, 9X >
2.05X> 2.8X: 2.5X-» 2.8X2.7X 4= 2.6X e4cig » vt 4= StaticTaskSchedul ing
FOFE- T o Seid i 6-DOPs B AR o P A EMAS b o 6-DOPs +
PG Fodchd Lo @ * N-body ¥ EFeteig »~ %5 1.8X 1.8X> 1.9X>
2.0X> 2.0X> 2.0X v 2.2X - %i2F self-collision == ™ » 46-DOPs 7 X
fbeid F BA1EAR R o EERE T B 02 6-DOPs B ik o

Graph 1.

1 U
W

m;

Computation Time (Dynamic Task Scheduling)
——— e | a5-dops -
26-dops ex
18-dops
16-dops
e W——' 14-dops
i 10-dops
S S o =64 G-dops _ﬁﬁ_—!—,‘ N . =128
0 002 0.04 0.06 0.08 0.1 o 0.02 0.04 0.06 0.08 0.1
= a6-dops ===
26-dops
e ——— 1s-dops AT N
el L INTER
14-dops i
il SELF
! 10-dops .
e I —) |n-!256 Ll I — nw=51ﬂ
o 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
f————————————— | 45-dops=
26-dops
18-dops
16-dops
= 14-dops
10-dops a
n =64 | &-dops ! . =128
0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12
46-dops
26-dops
1B-cops [e——
26 dope = BVHUDP
1A-dOPS (e—— e INTER |
10-dops =
|n w=256] e-dops . =s12|
0 0.02 0.04 0.06 0LO8 0.1 0.12 0 0.02 0.04 006 0.08 0.1 0.12

Time(Sec)

III. CUDA for rendering objects

We performed CPU ray tracing on Intel(R) Core(TM)2 Quad CPU Q9400 @ 2.66GHZ
2.67 GHz, 3.25GB RAM platform.There are four cores on the CPU, so we employed four
threads to get better efficiency. For GPU ray tracing, CUDA process runs on NVIDIA
Quadro FX 4600 graphics card that 1.0 compute capability is supported. The overall
performance, however, could be improved up to around 50%.

References:
I. Continuous collision detection and II. Parallel collision detection

1.

2.

10.

11.

12.

13.

BARAFF, D., AND WITKIN, A. 2003. Untangling cloth. ACM Transactions on
Graphics 22, 3, 862-870.

BREEN, D., HOUSE, D., AND WOZNY, M. 1994. Predicting the drape of
woven cloth using interacting particles. In Computer Graphics Proceedings, ACM
SIGGRAPH, 365-372.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust treatment of
collisions, contact and friction for cloth animation. ACM Transactions on
Graphics 21, 3, 594-603.

CHOI, K., AND KO, H. 2005. Stable but responsive cloth. In ACM SIGGRAPH
2005 Courses, ACM, 1.

CURTIS, S., TAMSTORF, R., AND MANOCHA, D. 2008. Fast collision
detection for deformable models using representative triangles. In Proceedings of
the Symposium on Interactive 3DGraphics and Games, 61-69.

GOTTSCHALK, S., LIN, M., AND MANOCHA, D. 1996. OBBTree: A
hierarchical structure for rapid interference detection. In Computer Graphics
Proceedings, ACM SIGGRAPH, 171-180.

GOVINDARAIJU, N., KNOTT, D., JAIN, N., KABUL, 1., TAMSTOREF, R.,
GAYLE, R., LIN, M., AND MANOCHA, D. 2005. Interactive collision detection
between deformable models using chromatic decomposition. ACM Transactions
on Graphics 24, 3, 991-999.

. HARMON, D., VOUGA, E., TAMSTORF, R., AND GRINSPUN, E. 2008.

Robust treatment of simultaneous collisions. In Computer Graphics Proceedings,
ACM SIGGRAPH, 23.

HUBBARD, P. 1993. Interactive collision detection. In Proceedings of IEEE
Symposium on Research Frontiers in Virtual Reality, 24-31.

HUTTER, M., AND FUHRMANN, A. 2007. Optimized continuous collision
detection for deformable triangle meshes. Proceedings of WSCG, 25-32.

KIM, D., AND YOON, S., 2009. OpenCCD: Continuous collision detection API,
used in HPCCD. http://sglab.kaist.ac.kr/OpenCCD.

KIM, D., HEO, J., HUH, J., KIM, J., AND YOON, S. 2009. HPCCD: Hybrid
parallel continuous collision detection using CPUs and GPUs. Computer
Graphics Forum 28,7, 1791-1800.

KLOSOWSK], J., HELD, M., MITCHELL, J., SOWIZRAL, H., AND ZIKAN, K.
1998. Efficient collision detection using bounding volume hierarchies of k-DOPs.
IEEE Transactions on Visualization and Computer Graphics 4, 1, 21-36.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

LIU, J., KO, M., AND CHANG, R. 1996. Collision avoidance in cloth animation.
Visual Computer 12, 5, 234-243.

MEZGER, J., KIMMERLE, S., AND ETZMUSS, O. 2003. Hierarchical
techniques in collision detection for cloth animation. Journal of WSCG 11, 2,
322-329.

PROVOT, X. 1997. Collision and Self-collision Handling in Cloth Model
Dedicated to Design Garments. In Graphics Interface, 177-189.

REDON, S., LIN, M., MANOCHA, D., AND KIM, Y. 2005. Fast continuous
collision detection for articulated models. Journal of Computing and Information
Science in Engineering 5, 126.

SMITH, A., KITAMURA, Y., TAKEMURA, H., AND KISHINO, F. 1995. A
simple and efficient method for accurate collision detection among deformable
polyhedral objects in arbitrary motion. In Proceedings of the Virtual Reality
Annual International Symposium, 136—145.

TANG, M., AND MANOCHA, D., 2010. Non-penetration filters, source code
used in Fast Continuous Collision Detection using Deforming Non-Penetration
Filters. http://gamma.cs.unc.edu/DNF/DNF-code.cpp.

TANG, M., CURTIS, S., YOON, S., AND MANOCHA, D. 2009. ICCD:
Interactive continuous collision detection between deformable models using
connectivity-based Culling. IEEE Transactions on Visualization and Computer
Graphics 15, 4, 544-557.

TANG, M., MANOCHA, D., AND TONG, R. 2009. Multi-core collision
detection between deformable models. In SIAM/ACM Joint Conference on
Geometric and Physical Modeling, 355-360.

TANG, M., MANOCHA, D., AND TONG, R. 2010. Fast continuous collision
detection using deforming non-penetration filters. In Computer Graphics
Proceedings, ACM SIGGRAPH, 7-13.

TESCHNER, M., KIMMERLE, S., HEIDELBERGER, B., ZACHMANN, G.,
RAGHUPATHI, L., FUHRMANN, A., CANI, M., FAURE, F., MAGNENAT-
THALMANN, N., STRASSER, W., ET AL. 2005. Collision detection for
deformable objects. In Computer Graphics Forum, 61-81.

VAN DEN BERGEN, G. 1999. Efficient collision detection of complex
deformable models using AABB trees. Journal of Graphics, GPU, and Game
tools 2,4, 1-14.

VOLINO, P., AND MAGNENAT-THALMANN, N. 1994. Efficient self-
collision detection on smoothly discretized surface animations using geometrical
shape regularity. In Computer GraphicsForum, 155-166.

VOLINO, P., AND MAGNENAT-THALMANN, N. 2000. Implementing fast
cloth simulation with collision response. In Computer Graphics International, vol.
7(1), 94.

VOLINO, P., MAGNENAT-THALMANN, N., AND FAURE, F. 2009. A simple
approach to nonlinear tensile stiffness for accurate cloth simulation. ACM
Transactions on Graphics 28, 4, 105.

WONG, W., AND BACIU, G. 2005. Dynamic interaction between deformable
surfaces and non-smooth objects. IEEE Transactions on Visualization and
Computer Graphics 11, 3, 329-340.

29.

30.

WONG, S., AND BACIU, G. 2006. A randomized marking scheme for
continuous collision detection in simulation of deformable surfaces. In
Proceedings of ACM Int’l Conf. on Virtual Reality Continuum and lIts

Applications, 181-188.

YE, J. 2008. Simulating inextensible cloth using impulses. In Computer Graphics
Forum, vol. 27(7), 1901-1907.

[1l. CUDA for rendering objects

10.

11.

12.

13.

14.

15.

. T. Aila and S. Laine. Understanding the efficiency of ray traversal on GPUs. In

Proceedings of High Performance Graphics, pages 145-149, 2009.
A. Appel. Some techniques for shading machine renderings of solids. In
Proceedings of the Eastern Joint Computer Conference, pages 37-45, 1968.

. C. Benthin. Realtime Ray Tracing on Current CPU Architectures. PhD thesis,

2006.

M. Ernst, C. Vogelgsang, and G. Greiner. Stack implementation on programmable
graphics hardware. In Proceedings of the Vision, Modeling, and

Visualization Conference 2004, Stanford, California, USA, November 16-18,
2004, pages 255-262, 2004.

T. Foley and J. Sugerman. KD-tree acceleration structures for a GPU raytracer. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, page 22, 2005.

D. Fussell and K. Subramanian. Fast ray tracing using kd trees. 1988.

J. Goldsmith and J. Salmon. Automatic creation of object hierarchies for ray
tracing. IEEE Computer Graphics and Applications, 7(5):14-20, 1987.

V. Havran. Heuristic Ray Shooting Algorithms. Phd thesis, Department of
Computer Science and Engineering, Faculty of Electrical Engineering, Czech
Technical University in Prague, 2000.

D. Horn, J. Sugerman, M. Houston, and P. Hanrahan. Interactive kd tree GPU
raytracing. In Proceedings of the 2007 symposium on Interactive 3D graphics and
games, page 174, 2007.

C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. Fast BVH
construction on GPUs. In Computer Graphics Forum, pages 375-384, 2009.

T. M oller and B. Trumbore. Fast, minimum storage ray/triangle intersection. In
ACM SIGGRAPH 2005 Courses, page 7, 2005.

C. NVIDIA. Compute Uni_ed Device Architecture, Programming Guide, version
2.1, 2008.

R. Overbeck, R. Ramamoorthi, and W. Mark. Large ray packets for real-time
Whitted ray tracing. In IEEE/EG Symp. on Interactive Ray Tracing, 2008.

S. Popov, J. G unther, H. Seidel, and P. Slusallek. Experiences with streaming
construction of SAH KD-trees. In Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing, pages 89-94, 2006.

16.

17.

18.

19.

20.

21.

22.

23.

S. Popov, J. G unther, H. Seidel, and P. Slusallek. Stackless kd-tree traversal for
high performance GPU ray tracing. In Computer Graphics Forum, volume 26,
pages 415-424, 2007.

T. Purcell, I. Buck, W. Mark, and P. Hanrahan. Ray tracing on Programmable
graphics hardware. In ACM SIGGRAPH 2005 Courses, page 268, 2005.

A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray tracing algorithm. ACM
TOG, 24(3):1176-1185, 2005.

S. Rubin and T. Whitted. A 3-dimensional representation for fast rendering of
complex scenes. In Proceedings of the 7th annual conference on Computer
graphics and interactive techniques, page 116, 1980.

I. Wald, S. Boulos, and P. Shirley. Ray tracing deformable scenes using dynamic
bounding volume hierarchies. ACM TOG, 26(1), 2007.

I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive rendering with
coherent ray tracing. In Computer Graphics Forum, pages 153-165, 2001.

K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time kd-tree construction on
graphics hardware. In ACM SIGGRAPH Asia 2008 papers, page 126, 2008.

M. Zlatu_ska and V. Havran. Ray Tracing on a GPU with CUDA: Comparative
Study of Three Algorithms. 2010.

Fig. 1 Snapshots of experiments for collision detection.

Figure 2. Rendering results.

Bl g A e R

A EE A SR TR

+
T~
P :2010/12/26

R g4

v el ErCDAL S PO T S bR AT ARG R AT 0 R 2R

PRI FaE
4 % 98-2221-E-009-143- AT 2SR

B A SR TR

WEREHFTTHEFT S EFREL

g3

L

33 S5 0 98-2221-E-009-143-

PELFEY CDA LI T S Ve (T AR IR AT W R 2R

N

g Pl B b
&5 B FREeLS gyt s [FERF (g |5 R F 2k
B (B (B(FFES | A ISR I
pegg) | 2 ST i S
F)
B 0 0 100%
e PiEBREL |0 0 100% a
¥ E T
i g2 9 9 100%
P 0 0 100%
o ik 0 0 100% .
s BT R 0 0 100%
Ar ¢ ¥ 0 0 100% s
B
#1 4 0 0 100% + =
4 0 0 100%
gprih A4 s 0 0 100% o
(AEHA) ELuEih |0 0 100% -
4iEpm 0 0 100%
#p) < 0 0 100%
o x| 0 100% =
th< Fiv
it g 1 1 100%
L1 0 0 100% Y
%11 v ‘;i—ﬂ % ¥ 0 0 100% "
AT 0 0 100%
BN (,l\
" i 0 0 100% “
HoAS
#1 4 0 0 100% S
A 0 0 100%
gzt g A4 (Eaa 0 0 100%
A =
(hEE) [BLeETE |0 0 100% '
L iEmm 0 0 100%

H A%
(miz gz
5 hoyE B s d S
HREE S ERREE
V=g g NP LB T
SR R D B
Vicne S TSN | 2
EE G F A

}ljo)

g

’i X538 P

frebs

—

#R%EL S(7 FRredn)

/e

Re|grga epe A1 8

21

Fi

B ye s IR

T e

3
1
4e
g |FiHE/ iy
i
p

PEASHAEZ 2 (BR) Ak

OO O OO O o (o

FA g LEE T4+ 52 p 24

= 1
kS Avﬁa»ﬁ

R FERFENCARR CESFH IR SN R R
¢+$%%ﬁ%;i%\$%\§%é ﬁ%%av“ﬁ)<i@i
J?z\—\‘\g‘ i"g?'f N I-QJ?IFLE\' i EL’L‘ .

B (T- LR

2
X Wik

ap %\L

™

=

CHRELN R RV R GRAE G SN BRI F A
W= P
A3 0 (G - 2100 F 5 10)
[]9 5% % px
mES PR
(J# © & 7]
R
2. F L AR LB S 1%
wm W FA JAgdza~f HER? &
%,fl [£® []Y 3 %3—:‘ B
T D i (esis WA
w1 (12100 3 5 2)

?‘%fﬁsﬁzﬁm\ BARIAT AL E BEE 2 6 0 R L SR F A
E(ffRaAadaFrtiiz L i HE PPN E- ﬂ}% Bz ¥ et) (1

500—}7%“?’\)

Ay S E® CUDA & d e T 0 (7T (7385 s o -

§/fﬁ::¢\'ijb

Afpmy R 2 Fme He s EERN, ¥Vob- B TR -

Ak e 2@ r CDA AffPeT S PEFLTEFEL S G Gy e
PAHTRIAT

SN

. tivaT i P HEkiEs

‘}\l frsj'ft :"l _llihﬁa ’\‘Ay\ﬁo’l I‘E_‘{:. 2 ** :u)'it@w ’ l,(}éi__flj—i - iﬂ?’k’? S I

:\\
Il
S
poas)
&Y
=
=

2. & CUDA fr ¥ ¥ F 234 b ray tracer

e A (A ;f!/‘#,u@ww«fr ;M@W » TR HLHT FFE - gt CUDA $k s
PHEGEFTFEY > 2 ray §AAZZ b R fFIFRL o0 TR AF
PR E K

#* ?%: B
e T L PR EL o CUDA Bt it 59
TR R FERLIEEE 0 A% AT R RPN ALY
0 T A BB R R SR F TS B kil 0 Y T L T

R o R D e R0 Jia 4 R W DL TEres o fhir g enie s 5§ S

%

