行政院國家科學委員會專題研究計畫 期中進度報告

創新異質整合智慧型手機相機模組之研究--子計畫一:微 機電防手振平台之設計、製作與測試(2/3) 期中進度報告(完整版)

計	畫	類	別	:	整合型
計	畫	編	號	:	NSC 98-2220-E-009-015-
執	行	期	間	:	98年08月01日至99年07月31日
執	行	單	位	:	國立交通大學電機與控制工程學系(所)

計畫主持人: 邱俊誠

處理方式:本計畫可公開查詢

中 華 民 國 99年06月04日

行政院國家科學委員會專題研究計畫年度報告

題目: 創新異質整合智慧型手機相機模組之研究子計畫一-微機電防手振平

台之設計、製作與測試

"The design, fabrication and test of MEMS image stabilizer."

計畫編號:NSC 98-2220-E-009-015 執行期限:98年8月1日至99年7月31日 主持人:邱俊誠 參與人員:林君穎、蔡宗穎

一、 中文摘要

本子計書提出一種使用微機電技術製作微 型防手振平台的方法,其主要為利用慣性感測器 來偵測手機相機拍照時瞬間手振所產生的偏移 量,經過控制電路處理後,由驅動電路輸出驅動 電壓給防手振平台的微致動器,使之產生補償位 移以達到防手振的效果。由於微機電元件的製作 方法可與半導體製程結合,故使用微機電技術批 次製作微型防手振平台將可有效降低製作成本 並縮小元件尺寸。本子計畫設計微型防手振平台 的製作方法與光罩佈局,並製作測試元件以驗證 公式推導及模擬結果,進而整合慣性感測器與電 路,以完成符合手機相機規格之微型防手振平 台。在第二年的研究當中已達到在搭載影像感測 器後仍具有25um的大行程補償行距之目標,符合 防手振的需求規格,目前朝向降低驅動電壓至 20V(驅動電流50mA)之目標努力。

關鍵詞:MEMS, Micro actuator, High precision image stabilizer, decouple dual actuators

二、 實驗內容

2.1 靜電式致動平台

為了達到高可控性與低能耗,本子計畫選擇 使用靜電式之微致動器來推動XY 致動平台,靜 電式微致動器是藉著致動器兩端之電壓差產生 的靜電力來推動防振平台。由於電流並沒有直接 流過致動器,故靜電式微致動器的能耗很低,但 由於其單位面積下的致動力較小,因此需要較大 的製作面積以增加靜電式致動器的出力。另因影 像感測晶片的尺寸是固定的,而為了在相同的平 台面積下增加致動器的出力,本子計畫於第二年 重新設計靜電式致動平台,在原本的承載平台下 增加了梳狀致動器,並利用 Layout 設計將載台下 致動器的訊號拉出,如圖一與圖二所示。

圖二、 子計畫一第二年設計之防振平台

為了避免不同軸(方向)的致動器致動時相 互影響造成致動平台非線性的移動與控制上的 困難,故解耦合結構的設計非常重要,由於結構 上的改變,因此必須重新設計解耦合結構以避免 平台致動時產生非線性位移,為了達到解耦合的 效果,我們使用幾種型式之彈性樑來達到解耦合 的效果,如圖三(a)所示。考慮到各個部分間的相 容性,分別使用單獨的懸臂樑與折疊式彈性樑來 達成解耦合的效果,如圖三(b)與(c)所示。

圖三(b)中之彈性樑的軸向與側向的剛性係數如 公式1所示:

$$k_{xdecoupling beam} = \frac{E_d h_d b_d^3}{L_d^3}$$
 公式 1
 $k_{ydecoupling beam} = \frac{E_d h_d b_d}{L_d}$

其中 k_x decoupling beam 與 k_y decoupling beam 分別代表側向與 軸向彈性樑的剛性系數, E_d 為陽氏系數, L_d b_d 與 h_d 則分別為談性樑的長、寬與厚度;這兩個方 向的剛性係數比,可以做為解耦合效果的參考 值,如公式2所示:

圖三(c)中之彈性樑的軸向與側向的剛性係數如 公式3所示:

$$k_{x \text{ folded beam}} = \frac{2E_f h_f b_f}{L_f}$$
公式 3
$$k_{y \text{ folded beam}} = \frac{2E_f h_f b_f^3}{L^3}$$

其中 k_x folded beam 與 k_y folded beam 分別代表側向與軸向 彈性樑的剛性系數, E_f 為陽氏系數, L_f , b_f 與 h_f 則 分別為談性樑的長、寬與厚度;兩個方向的剛性 係數比,如公式4所示:

$$K_{F} = \left| \frac{k_{y \text{floded beam}}}{k_{x \text{floded beam}}} \right| = \left(\frac{L_{f}}{b_{f}} \right)^{2} \qquad \qquad \Leftrightarrow \texttt{X 4}$$

由這些公式我們可以得到致動平台之解耦合樑 的總剛性係數,表示如下:

$$k_{xsystem} = 2k_{x-decoupling beam} + 2k_{x-outside folded beam}$$

+ $2k_{x inside folded beam} + 2k_{x-inside assisted folded beam}$
公式 5
 $k_{ysystem} = 2k_{y-decoupling beam} + 2k_{y-outside folded beam}$
+ $2k_{y inside folded beam} + 2k_{y inside generated folded beam}$

而不同軸向的系統剛性係數比則可表示如下:

$$K_{system} = \left| \frac{k_{x,system}}{k_{y,system}} \right| = \frac{2k_{x-decoupling beam} + 2k_{x-outside folded beam} + 2k_{x,inside folded beam} + 2k_{x-inside assisted folded beam}}{2k_{y-decoupling beam} + 2k_{y-outside folded beam} + 2k_{y,inside folded beam} + 2k_{y-inside assisted folded beam}}$$

$$\bigotimes \vec{X} \in \mathbf{C}$$

根據表一所列之規格,我們可以經由模擬與

計算得到不同軸向的系統剛性係數比為 2.12 x 10⁶

圖三、 (a)防振平台之解耦合結構.(b)懸臂樑.

(c)折疊式彈性樑.

表一	、責	靜冒	電式	致:	動平	台	之	設言	十規	.格	與	元	件.	尺	寸	-
----	----	----	----	----	----	---	---	----	----	----	---	---	----	---	---	---

Specification	value
Device size(mm ²)	14×14
Image sensor size(mm ²)	6.36 × 6.64
Structure layer thickness(μm)	120
Gap of finger pair(μm)	10
Number of comb finger pair	1020
Width of the floded spring(μ m)	15
Length of the outside floded spring (μ m)	4000
width of the outside floded spring (μ m)	20
Length of the inside floded spring (μ m)	2280
width of the inside floded spring (μ m)	12
Length of the inside assisted floded spring (μ m)	1200
width of the inside assisted floded spring (μ m)	14
Length of suspended decoupling beams(μ m)	2700
width of suspended decoupling beams(μm)	26

2.2 熱電式致動平台

考慮到靜電式致動器需要較高電壓,使得電 源供應之電力晶片所需被動元件較多,造成尺寸 變大的問題,我們也設計了第二種熱致動式之 XY 致動平台,並嘗試改善熱致動器不可控與反 應速度緩慢的問題;目前已完成初步模擬與光罩 設計,並進行製程的測試與製作,圖四為熱電式 致動平台之光罩示意圖。

圖四、熱電式致動平台致動之光罩圖

關於熱致動式的 XY 平台,我們選擇使用 SOI 的晶元來製作,目前所設計的製作流程如下 圖所示。

圖五、熱電式致動平台致動之製作流程圖

概略說明圖五之製作流程,首先在 Poly-Si 上沉積一層 nitride 以隔絕致動器訊號與感測晶片 訊號,完成電性隔絕後則利用曝光顯影技術定義 出鋁的圖案以做為金屬墊片與訊號線,接著使用 ICP 對 Poly-Si 做第一次蝕刻以填入 SU8 光阻隔 絕致動器部分的熱與電流,在光阻填入與圖案之 曝光顯影完成後再用 ICP 對 Poly-Si 做第二次蝕 刻以定義出主結構,主結構定義完成後打線並使 用 HF 蒸氣來釋放結構,最後一個步驟則是利用 Flip-chip bonder 來接合影像感測晶片與 XY 平 台;熱致動器的部分目前僅完成元件設計與初步 模擬,模擬的內容包括了致動電流、位移與不理 想抬升高度等等。

三、 實驗結果

3.1 靜電式致動平台

為了避免靜電式致動平台各方向的致動器 相互影響造成非線性情況造成控制上的困難,必 須設計解耦合結構來隔絕各組致動器間非致動 方向的位移,圖六為靜電平台解耦合情況之模擬 結果。

圖六、靜電式致動平台致動之解耦效果

由圖可知在位移30um的情況下,非致動方向 位移僅有0.55um,故可確保各組致動器間之解耦 合效果;為了得到致動器致動情況之線性度及電 壓位移關係,在製做平台的同時,本團隊也同時 進行測試元件的製做與測試,圖七與圖八為測試 元件之測試結果與製作之SEM圖。

圖七、測試元件電壓與位移之靜態量測

圖八、靜電式致動平台測試製程之SEM圖

由測試結果可發現靜電式致動器之線性度 能夠符合本計畫的要求,其缺點為致動電壓較 高,要達到預設的25um位移需要大於60V的電壓 值;在製程測試的部分,可發現有底切與側蝕等 等問題,目前的實驗結果為蝕刻50um時會造成 2um的側蝕,因此製程參數仍然需要調整。

3.2 熱電式致動平台

圖九主要表示兩種熱致動器的設計,分別為 加上限制樑與不加限制樑:

(c)

圖九、供給50ma時(a)有加限制樑結構之Y軸致動位移. (b)有加限制樑結構之Z軸的致動位移.(c)未加限制樑結構 之Y軸致動位移.(d)未限制樑結構之Z軸的致動位移.

由模擬結果可知,這兩種設計在供給50mA 左右的致動電流時均可達到30um左右的位移,且 在Z軸的方向僅產生小於1um的抬升,然而有加限 制樑的結構因為熱傳導與漏電流的關係,會使限 制樑產生不必要的熱膨脹造成致動距離變小,因 此不加限制樑的設計較符合計畫的需求,而製 程、訊號及熱隔絕等可能會產生的問題則需要再 做更進一步的測試。

3.3 手振訊號測試

為了感測手振訊號,本子計畫選擇使用淺草 機研的三軸加速度計以感測震動,實體圖與量測 圖如圖十所示。

圖十、實驗使用之加速度計與量測示意圖

所量測到之訊號先從示波器擷取時域之手 振訊號,接著使用電腦軟體Matlab對其做FFT處 理,而為了過濾高頻的雜訊,我們同時也使用了 低通濾波器晶片以濾掉頻率高於50Hz的雜訊,所 得到的時域與經過FFT轉換的頻域訊號如圖十與 圖十一所示。

圖十、X軸手振訊號,上下分別為時域與頻域訊號

圖十一、Y軸手振訊號,上下分別為時域與頻域訊號

由量測結果可知,人類手振訊號的頻率約在 15Hz以下,與本計畫一開始估算的10~20Hz差距 並不大。

四、 未來工作

目前的元件設計由模擬結果來看是可行 的,但為了降低元件尺寸與驅動電壓,本團隊除 了進行靜電式致動平台的開發與降低驅動電壓 外,也會加速進行熱致動器平台的開發與製作, 同時在製程方面的測試結果顯示所設計的製作 流程可以達到元件需要,但仍有許多製程參數需 要調校與測試,因此本團隊的未來工作主要為: 1.完成靜電試平台製作。 2. 熱致動式平台製作 與開發。 3. 製程參數之調整與優化。4. 致動器

之建模。 5. 控制策略之研究、模擬與測試。

五、 參考文獻

- [1] D. H. Yeom, N. J. Park, and S. Y. Jung "Digital Controller of Novel Voice Coil Motor Actuator for Optical Image Stabilizer," *International Conference on Control, Automation and Systems 2007*, pp. 2201-2206, Oct. 2007.
- [2] Koichi Sato, Shigeki Ishizuka, Akira Nikami, and Mitsuru Sato, "Control Technique for Optical Image Stabilizer System," *IEEE Transactions on Consumer Electronics*, Vol. 39, No. 3, pp. 461-466, Aug. 1993.
- [3] Yasuhiro Okamoto and Ryuichi Yoshida,
 "Development of Linear Actuators Using Piezoelectric Elements," *Electronics and Communications in Japan*, Part 3, Vol. 81, No. 11, pp. 11-17, 1998.
- [4] Guan-Rong Chen, Yeou-Min Yeh, Sheng-Jyh Wang, and Huang-Cheng Chiang, "A Novel Structure for Digital Image Stabilizer," *The* 2000 IEEE Asia-Pacific Conference on Circuits and Systems, pp. 101-104, Dec. 2000.
- [5] Mohamed A, Elsimar H and Ismail M 2003,
 "Analysis, and optimization of a CMOS vertical thermal actuator," Proc. Symp. *Design, Test, Integration and Packaging of MEMS/MOEMS*, pp 214–7

- [6] Popa D O, Byoung H K, Wen J T, Stephanou H
 E, Skidmore G and Geisberger A 2003
 Dynamic modeling and input shaping of
 thermal bimorph MEMS actuators Proc. IEEE
 Int. Conf. on Robotics and Automation vol 1 pp 1470–5
- [7] Tuantranont A and Bright V M 2002
 Micromachined thermal multimorph actuators fabricated by multi-users MEMS process Proc.
 IEEE Int. Conf. on Industrial Technology (IEEE ICIT '02) vol 2 pp 941–4
- [8] Chowdhury S, Ahmadi M, Jullien G A and Miller W C 2000 A modular MEMS electromagnetic actuator for use in a hearing instrument Proc. 43rd IEEE Midwest Symp. On Circuits and Systems vol 1 pp 240–3
- [9] Ji C H, Kim Y K and Choi B K 2000 Design and fabrication of electromagnetic micromirror with bulk silicon mirror plate and aluminum spring Proc. IEEE/LEOS Optical MEMS pp 97–8
- [10] Park J Y, Yee Y J, Nam H J and Bu J U 2001 Micromachined RF MEMS tunable capacitors using piezoelectric actuators Proc. IEEE Microwave Symp. Digest vol 3 pp 2111–4
- [11] Haddab Y, Chaillet N and Bourjault A 2000 A microgripper using smart piezoelectric actuators Proc. IEEE Int. Conf. on Intelligent Robots and Systems (IEEE/RSJ IROS) vol 1 pp 659–64
- [12] Hung E S and Senturia S D 1999 Extending the travel range of analog-tuned electrostatic actuators J. Microelectromech. Syst. 8 497–505
- [13] Mu X H, Kahrizi M and Landsberger L 2003 Design & fabrication of out-of-plane electrostatic actuators for optical application Proc. IEEE Canadian Conf. on Electrical and Computer Engineering (IEEE CCECE) vol 1 pp 133–6
- [14]J C Chiou and Y J Lin, "A novel large displacement electrostatic actuator: pre-stress comb-drive actuator," *Journal of*

Micromechanics and Microengineering, Vol. 15, pp. 1641–1648 June 2005

- [15]. W. C. Tang, T.-C. H. Nguyen, R. T. Howe,
 "Laterally Driven Polysilicon Resonant Microstructures," Proc. 1989 IEEE Micro Electro Mechanical Systems, pp. 53-59, Feb 1989
- [16]. Said Emre Alper and Tavfun Akin, "A Single-Crystal Silicon Symmetrical and Decoupled Gyroscope on Insulating Substrate," *Journal of <u>Microelectromechanical</u> <u>Systems</u>, Vol. 14, pp. 707- 717 Aug. 2005.*
- [17].LiuFang Zhang, "Mechanics of Materials, "Design Principle of Suspension of MEMS Gyroscope"
 - , WUHAN University of Technology Publishing Inc., pp.4-205, 2002.
- [18].Qin Shi, Shourong Wang*, Anping Qiu, Yishen Xu and Xunsheng Ji," Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 18 - 21, 2006.
- [19] David Sachs, Steven Nasiri, Daniel Goehl, InvenSense, Inc," Image Stabilization Technology Overview", <u>www.InvenSense.com,3150A</u> Coronado Drive, Santa Clara, CA 95054(408) 988-7339
- [20].Reza Abdolvand , Farrokh Ayazi,"An advanced reactive ion etching process for very high aspect-ratio sub-micron wide trenches in silicon", *Sensors and Actuators A 144*, p.p.109–116, January 5, 2008.
- [21]. J K Luo, A J Flewitt1, S M Spearing, N A Fleck and W I Milne, "Three types of planar structure microspring electro-thermal actuators with insulating beam constraints" J. Micromech. Microeng. 15 (2005) 1527–1535
- [22]. Michael J. Sinclair, "A High Force Low Area MEMS Thermal Actuator" Inter Society Conference on Thermal Phenomena, 2000

[23]. Eniko T. Enikov, *Member, ASME*, Shantanu S. Kedar, and Kalin V. Lazarov, "Analytical Model for Analysis and Design of V-Shaped Thermal Microactuators" JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 14, NO. 4, AUGUST 2005