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摘要 

近年來隨著嵌入式系統晶片功能越益強大，嵌入式系統晶片也漸漸朝向複雜之多核心設計以提升

效能、降低耗能與成本。然而傳統多核心嵌入式系統晶片設計方法及工具多半針對已完成之系統晶片

進行效能與耗能的評估，對於設計初期或設計的過程中所能得到的效能與耗能參數所知有限，也無法

有效的在設計中期或初期，偵測出多核心嵌入式系統晶片可能遭遇的軟硬體效能與耗能問題。因此本

子計畫的主要目的在於設計多核心嵌入式系統晶片之效能與耗能分析與監測軟硬體擴充模組以及工具，

以協助多核心嵌入式系統晶片與軟體設計者，事先掌握多核心嵌入式系統晶片硬體與軟體的效能與耗

能特性，進而在軟、硬體設計層面加以改進。 

  本子計畫規劃以兩年時間研究多核心嵌入式系統晶片之效能與耗能分析、監測與提升技術，計畫

第一年我們提出並實作完成了一種以硬體協助且適用於多核心嵌入式系統的效能與耗能評估工具 

REALprof，其提供程式執行時期硬體事件的監控，並藉此推算出元件耗能，其可避免軟體取樣 

(Sampling)所造成的額外負擔，以便能呈現系統原始的行為與特性。在第二年中，考量耗電管理機制日

益普及，本子計畫實作出一套高階的軟體耗能評估工具 SEProf，它提供多執行緒軟體執行於多核心系

統的耗能評估，並可以依據系統的耗電管理狀態調整耗能評估，目前 SEProf 實作於 ARM11 MPCore 

處理器平台上並搭配 Linux 2.6.19，實驗結果顯示此工具能夠提供高精準度且低負擔之耗能評估結果。 

 

Abstract 

Multi-core embedded systems and system on chips (SoCs) which achieve a higher performance and a 

better cost- and energy-efficiency than single-core embedded systems become more and more popular recently. 

Unfortunately, conventional approaches for optimizing performance and energy consumption of multi-core 

SoCs rely on fine tuning after the hardware (H/W) and software (S/W) are completely developed. It is very 

difficult for system and software engineers to identify potential H/W and S/W performance and power 

consumption problems while the system is being developed. 

In this project, performance and power consumption profiling and monitoring hardware and software 

extensions and tools for multi-core embedded systems and SoCs are proposed. The tools closely work 

together with the proposed performance and energy profiling hardware and software components which 

provide the performance and power consumption monitoring and profiling of multi-core SoCs, and facilitate 

system and software designers to diagnose performance and power consumption problems and bottlenecks 

while the system is being developed. In the first year, we propose and realize a hardware-assisted performance 

and energy evaluation tool, called REALprof, for a multi-core embedded system. It provides hardware 

monitor for runtime programs, and uses these monitor information to estimate the system energy consumption 

without introducing extra software sampling overhead. In the second year, since power management has 

become common in embedded systems, this project presents a high-level energy profiling tool, called SEProf, 

that estimates the energy consumption of an multi-core embedded system running multi-thread software and 

an operating system (OS) that supports power management functions. This project implements the proposed 

SEProf in Linux 2.6.19 and evaluates its performance on an ARM11 MPCore processor. Experimental results 

demonstrate that the proposed tool can provide accurate energy profiling results with a low profiling 

overhead. 
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1. Introduction 

Energy efficiency has become one of the most important issues in the design of multi-core embedded 

systems, especially for battery-operated devices such as mobile phones. To evaluate the energy efficiency of 

an embedded system, accurate energy profiling tools are required. Previous studies on the energy profiling of 

embedded software adopt measurement-based and model-based approaches. Measurement-based approaches, 

such as PowerScope [3], directly measure the power consumption of an embedded system using an 

oscilloscope or a digital multi-meter, and profiling software runs on the target system to monitor system 

activities. This approach analyzes the energy consumption of the embedded software by combining the 

measurement data and software logs. However, the sampling rate of the profiling software restricts the 

analysis granularity of a measurement-based tool, and it is expensive to set up a high-resolution measurement 

environment. Synchronizing the measurement data on the meter and the system activities on the target is also 

a challenge because the metering and profiling software run on different machines.  

The other approach to profile the energy consumption of an embedded system is based on power models. 

Model-based tools estimate the energy consumption of embedded systems by monitoring the occurrences of 

representative events during system execution, along with the energy weights of these events. Researchers 

have proposed a number of power models at the architecture level, instruction level, basic block level, and 

function level. Wattch [4] adopted an architecture-level power model that was integrated into the 

SimpleScalar simulator [21]. Wattch modeled the power consumption of the primary units of an embedded 

processor, e.g., functional units and caches, and monitored the number of accesses to these units to estimate 

the energy consumption of embedded software [5]. Unlike architecture-level power models, instruction-level 

models [6][7][8][9] divide a processor’s instruction set into a number of classes according to the average 

power consumption of each instruction execution. These tools can determine the energy consumption 

information of a program by accumulating the number of executed instructions for each class. Tan et al. 

proposed EMSIM [10][11], based on the instruction-level power model presented in [7] to further support 

per-task and function-level energy estimation in an embedded Linux environment.  

Although architecture-level and instruction-level model approaches can achieve accurate results, they 

require a lot of time to collect the necessary information for energy estimation. This is particularly true for 

embedded systems running complicated software such as multi-thread programs and multi-tasking operating 

systems (OSs). System designers may want to know the power consumption of the embedded system quickly 

so that they can adjust power management strategies to achieve better energy efficiency. As a result, 

researchers have proposed several high-level energy profiling tools that compromise between the profiling 

accuracy and the profiling overhead. High-level tools may estimate the power consumption of an embedded 

system at the basic block level [6][12] and function level [13][14]. The power consumption of basic blocks 

and functions can be determined by direct power measurement or low level power models. High-level energy 

profiling tools run directly on the target platform along with the embedded software, and collect critical 

execution information to estimate the power consumption of all running software. Tiwari et al. [6] built a base 

energy cost for basic blocks of the target program. The energy consumption of the program can be evaluated 

by accumulating the number of times that each basic block is executed multiplied by its base energy cost. 

Another basic-block power analysis was proposed in [12]. This approach groups consecutive basic blocks in 

the target program together, and derives the energy weight of each group using regression analysis. Qu et al. 

[13] presented a function-level power analysis. In this approach, a database, or power data bank, stores the 
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average power and execution times of library functions and basic instructions. This method evaluates the 

energy consumption of a program through the number of times that each function is invoked multiplied by its 

average power and execution time recorded in the power data bank. Another function-level power analysis 

tool proposed in [14] is a software energy estimation tool for heterogeneous dual-core processor. This 

function-level power model measures the average power consumption of different digital signal processing 

(DSP) algorithms in advance and stores the data in an energy library. The energy consumption of DSP 

algorithms can be calculated by multiplying the execution time of each DSP algorithm by its average power in 

the energy library.  

Unfortunately, these high-level tools do not consider the power management functions usually supported 

by modern embedded processors. Embedded processors, and especially those designed for battery-operated 

devices, are sensitive to power consumption, and provide sophisticated operating modes, voltages, and 

frequencies [1][2][18]. Operating systems (OSs) can use the power management features of the embedded 

processors to achieve dynamic power management functions, optimizing the energy efficiency of the 

embedded system. Without considering the operating modes, voltages, and frequencies of an embedded 

processor and the dynamic power management functions of an OS, software energy profiling results become 

inaccurate. As a result, system designers are limited in their ability to evaluate the power management 

strategies on the embedded system.  

This project presents a high-level energy-profiling tool called SEProf. This tool supports multi-thread 

software and OS enabling dynamic power management functions such as different idle mode, suspend mode, 

and dynamic voltage and frequency scaling, etc. The proposed tool supports different granularities of energy 

profiling on embedded software, allowing designers to control the tradeoff between profiling overhead and 

accuracy. The proposed SEProf was implemented in Linux 2.6.19 to evaluate its accuracy and efficiency. 

Experimental results show that the average energy estimation error of using SEProf is less than 4%, and the 

overhead introduced by SEProf is less than 1%.  

The rest of this report is organized as follows. Section 2 descirbes the design and implementation of the 

proposed tool, SEProf. Section 3 presents a case study based on an ARM11 MPCore processor and 

experimental results. Section 4 provides some conclusions.  

 

2. Design and Implementation of SEProf 

Fig. 1 provides an overview of the proposed energy-profiling tool, SEProf. Before profiling embedded 

software, SEProf develops a power table database for the target embedded processor in Step . This power 

table database is a collection of power tables that SEProf uses to estimate the power consumption of the 

processor, and can be built via measurement-based tools or lower level model-based tools. A power table 

records the average power consumption required for the processor to execute a code block. A code block 

represents a sequence of instructions, such as a basic block, a function, or a sequence of basic blocks in OS or 

applications. The granularity of code blocks that influences the profiling accuracy and the overhead is a 

configurable parameter in SEProf. Fine-grain power tables generally achieve better accuracy, but suffer from 

greater profiling overhead than coarse-grain power tables. However, experimental results show that for RISC 

processors it is possible to derive accurate energy estimation results using the proper design of coarse-grain 

power tables. 
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 Since the goal of SEProf is to estimate the energy consumption of a processor enabling power 

management functions, a power table can consist of more than one power consumption value. Each value 

represents the average power consumption of a code block executed under a specific CPU power 

configuration. A CPU power configuration represents a combination of a specific operating power mode, 

voltage, and frequency of the processor. Each core in a multi-core processor may have its own power 

configuraion. Once the embedded OS activates the dynamic power management functions, it changes CPU 

power configuration, and SEProf ensures that the proper power consumption value is used for each processor 

core.  

After establishing the power table database in Step , SEProf inserts codes to user-level embedded 

software in Step  according to the desired granularity of code blocks. For example, if a user desires 

granularity at the function level, the user must build power tables based on each function. SEProf then inserts 

codes in the user-level software to associate the power tables before entering the corresponding functions, and 

to disassociate them when leaving these functions. The instrumented codes tell SEProf which power table is 

associated with the running code block. The instrumentation in the OS kernel is similar to user-level software, 

and the OS kernel code blocks must associate kernel power tables. Therefore, Step ’ in Fig. 1 shows that the 

OS kernel is patched. After Step  and Step ’, Step  and Step ’ compile the OS kernel and the 

user-level programs. In Step , SEProf runs the program on the target embedded system, and stores the 

estimated energy consumption results in the kernel space. Users can access the results through SEProf 

application programming interfaces (APIs) in Step .  

 

 

Fig. 1. Overview of SEProf and its operating steps. 
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2.1. Power Table Association and Power Configuration Setting 

User-level programs and OS kernel can associate and disassociate power tables through SEProf APIs upon 

entering and leaving code blocks. The association and disassociation operations must be coupled. If a power 

table is associated, the power table will be used to estimate the average power consumption of the executing 

software. On the contrary, if a power table is disassociated, the average power consumption is estimated based 

on the power table, which was previously associated. Fig. 2 shows an example of using power tables in 

SEProf. Assume that function-level power tables have been built, and the embedded processor supports three 

different CPU power configurations. For the ease of illustration, this example omits several detailed 

procedures before entering the main() function of the program. In Step , the CPU operates at the 

maximum speed in power configuration 3, and executes kernel codes to fork a thread, called T. SEProf 

initiates internal data structures for energy profiling at this stage, and associates the power tables of thread T’s 

parent with thread T. In Step , thread T enters its main function, and SEProf associates thread T with the 

power table of main(), Pmain(3). Pmain(3) denotes the CPU power consumption of running the main() 

function under CPU power configuration 3. This power table is used to estimate the power consumption in the 

following operations until thread T invokes a system call, say A(), in Step . SEProf then associates the 

power table of A()and refers to the power table of A(). If the OS detects the CPU is underutilized in Step , 

the OS changes the CPU power configuration from 3 to 1 to reduce energy consumption. SEProf detects this 

event, and changes the referred power consumption value from PA(3) to PA(1) at this stage. In Step , thread 

T finishes the system call, and returns to the user space. The power table of A() is disassociated so that the 

power table of main()is used again. In Step , thread T enters a user-level function, say B(). As in Step , 

the power table of B() and the CPU power configuration 1, i.e. PB(1), is used. In Step  and Step , the 

thread leaves the functions B()and main(), respectively. When thread T is terminated, SEProf keeps its 

energy consumption profile in the kernel space, and users can access the results through SEProf APIs. 
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Fig. 2. An example of using power tables and power configurations in SEProf. 

 

2.2. Energy Estimation 

Fig. 3 presents a flowchart of the proposed SEProf in calculating the energy consumption of a thread. 

When a thread, named T, is created, SEProf initiates the energy profiling data structures for the thread shown 

as Event  in Fig. 3 occurs. The initialization procedure resets ET, the accumulated energy consumption of 

thread T. The power configuration of the processor used by thread T, PCT, is set to the current power 

configuration of the processor, PCcur. The timer for measuring the execution time (which has not been used to 
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parent, and the latest associated power table of thread T, PTT, is pushed to the stack PTStackT. When thread T 
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configuration is the same, SEProf resumes TimerT to measure the execution time of thread T. However, if the 

OS or other threads change the power configuration, SEProf accumulates the energy consumption of thread T 

during the execution period measured by TimerT using ET = ET + TimerT  PTT[PCT], where PTT[PCT] looks 

up the average power consumption of the processor operating at power configuration PCT in power table PTT. 

After accumulating the energy consumption, SEProf updates the power configuration PCT to the current one 

PCcur, and resets TimerT to accumulate the next execution period of thread T. 
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Four other events also trigger SEProf to accumulate the energy consumption of thread T. The first one is 

when thread T changes the CPU power configuration, PCcur, indicated by Event . The second one is when 

thread T terminates (Event ). The third one is when ET is queried by thread T or other threads (Event ), 

and the last one is when thread T associates or disassociates a power table (Event ). If thread T associates a 

new power table in Event , the new power table becomes PTT, and it is pushed into PTStackT after 

performing the energy estimation procedure. Conversely, if thread T disassociates a power table in Event , 

the disassociating power table is used to estimate the energy consumption, and then popped up from PTStackT. 

The power table that appears on the top of the stack after removing the dissociating one becomes PTT. When 

thread T is scheduled out, as shown in Event , SEProf pauses TimerT to stop counting the execution time of 

thread T. 

In summary, SEProf accumulates the energy consumption of a thread when one of the following four 

events occurs. 

(1) A thread associates or disassociates a power table. When a thread associates or disassociates a power table, 

it implies a change in the reference average power consumption of the embedded processor. Therefore, 

SEProf must calculate the energy consumption of the accumulated execution time and update the power 

table. 

(2) The power configuration of the embedded processor is changed. When the CPU power configuration of an 

embedded processor changes, the power consumption of the processor also changes. Hence, SEProf must 

calculate the energy consumption of the accumulated execution time using the associated power 

configuration of the thread.  

(3) The total energy consumption of a thread is queried. If a user queries the total energy consumption of a 

thread, the energy consumption of the thread must be updated before returning the energy profiling results 

to the user. 

(4) A thread ends. When a thread terminates, the energy consumption of the thread during the last execution 

period is added to the total energy consumption of the thread. This is the last time that SEProf accumulates 

the energy consumption of the thread. 

Since the OS may execute ISRs that are not a part of thread T when thread T is scheduled, SEProf could 

separate the energy consumption of the thread and that of ISRs by pausing TimerT when an interrupt occurs 

(Event ), and resuming the timer when CPU returns from an ISR (Event ). However, the experiments in 

this report did not separate these events because the runtime of ISRs is negligible. 
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Fig. 3. Energy estimation flowchart of SEProf. 
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Fig. 4. An example of energy estimation using SEProf. 
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Fig. 5. Data structures maintained by SEProf 
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3. Case Study: ARM11 MPCore Processor 

To verify the design of SEPorf and evaluate its accuracy, SEProf was implemented in Linux on an ARM11 

MPCore processor [15]. Section 3.1 and 3.2 describe the experimental environment and results . 

 

3.1. Experimental Environment 

The experimental platform was a Core Tile, CT11MPCore [16], with an ARM11 MPCore test chip stacked 

on the top of a RealView Emulation Baseboard [17]. This platform provided both voltage and frequency 

scaling functions and hardware support for measuring the voltage and current consumed by the processor. 

This platform made it possible to build a power table database and verify the estimation error easily. The 

voltage level of the ARM11 MPCore processor could be changed by writing values to a digital to analog 

converter (DAC) on the CT11MPCore, and the voltage and current of the processor were measured and 

monitored in runtime by accessing analog to digital converter (ADC) registers. The default voltage supplied to 

the ARM11 MPCore processor was 1.2 V, with an adjustment range of ±0.25V. The clock rate of the 

processor could also be changed by configuring the phase-locked loop (PLL) on the CT11MPCore. In these 

experiments, the DAC and PLL were used to scale the voltage and the frequency of the ARM11 MPCore 

processor, respectively, and the ADC was used to measure the processor’s power consumption.A 24 MHz 

clock on the Emulation Baseboard was used for time measurement. The time resolution is 41.7 ns. 

SEProf was integrated into Linux kernel 2.6.19 with a modified OProfile [19] to build power table 

databases. OProfile is a system-wide profiler for Linux systems that uses statistical sampling. OProfile can be 

used to profile Linux kernels, shared libraries, and applications. Originally, OProfile samples the context and 

program counter (PC) value of the running task on each sampling interrupt, but the experiments extended it to 

sample the power consumption of the processor as well. The sampling rate of OProfile was set to 1 kHz, 

assuming that a power sample could represent the average power consumption during a sampling period.  

Four testing programs were used throughout the experiment. The first three were CG, FT, and IS 

applications from the OpenMP Implementation of NAS Parallel Benchmarks (NPB) (Version 3.3) [20]. CG 

computes an approximation to the smallest eigenvalue of a matrix using a conjugate gradient method. FT 

performs the time integration of a three-dimensional partial differential equation using the Fast Fourier 

Transform. IS sorts integers using the bucket sort. The last testing program, FileRW, is an I/O intensive 

application written by the authors. It is a simple application that writes and reads a 30MB file through a 

network file system (NFS). 

 

3.2. Experimental Results 

This report includes two separate experiments because the ARM11 MPCore cannot dynamically change 

the frequency of the processor. The first one is a voltage and frequency scaling (VFS) experiment, and the 

second one is a dynamic voltage scaling (DVS) experiment. In the VFS experiment, both the voltage and the 

frequency of the ARM11 MPCore processor were scaled at the beginning of the experiment and remained the 

same throughout the experiment. In the DVS experiment, the voltage of the ARM11 MPCore processor was 

scaled dynamically and periodically.  
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3.2.1. VFS Experiment 

The VFS experiment selected five power configurations for the ARM11 MPCore processor, and 

configured the processor to operate under one of five power configurations during the experiment. As Table 1 

shows, each power configuration represents a combination of voltage and frequency levels for the processor. 

In the power analysis stage, only one MP11 CPU was active during the experiment to map the measured 

power consumption back to the embedded software. The remaining three CPUs were not initialized. After 

analyzing the power consumption of the embedded software using the patched OProfile, the seven power 

table databases shown in  

Table 2 were built for six applications and the Linux kernel. Each power table database contained only one 

power table, and each power table consisted of five average power consumptions. The power table of each 

application was associated with SEProf at the beginning of the application, and disassociated at the end. All 

six applications shared the same kernel power table, vmlinux. In this setup, the kernel power table is 

associated when a thread calls a system call, and disassociated when the thread returns from the system call. It 

is also associated with threads that have no dedicate power table databases. 

Table 3 depicts the energy estimation results of the testing programs generated by SEProf. The energy and 

time spent on executing application itself and calling system calls were separated to better examine the 

accuracy of the power estimation results. Table 3 shows that, in many cases, the average power consumption 

of the application was slightly lower than that of the average power consumption in  

Table 2. This is because the parent threads of the testing programs have no dedicated power table 

databases, so they associate with the kernel power table, vmlinux, which has the lowest average power. When 

the threads running the testing programs are forked, they associate with the kernel power table copied from 

their parent threads until they associate with their own power tables.  

 

Table 1. Power configurations of the ARM11 MPCore processor used in the VFS experiment. 

 

 

 

 

 

 

Table 2. Power tables used in the VFS experiment. 

 

Power Configuration Voltage (V) Frequency (MHz) 

1 0.95 140 

2 1.01 168 

3 1.08 196 

4 1.14 224 

5 1.2 252 

Power 

Configuration 

Average Power (mW) 

busybox cg.W ft.W is.W FileRW oprofiled vmlinux 

1 260 249 258 246 246 264 236 

2 352 335 349 334 330 359 320 

3 460 438 458 438 431 470 419 

4 589 559 586 560 565 602 537 

5 738 696 731 701 692 753 668 
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Table 3. Energy estimation results of the testing programs generated by SEProf. 

 

Table 4 verifies the accuracy of the power estimation results for VFS experiments. OProfile was modified 

to sample the measured power of the ARM11 MPCore and compare it with the estimated power provided by 

SEProf for each sampling interrupt. Table 4 shows the mean absolute power estimation error of the four 

testing programs and an overall period. The overall period began when the init process executed command 

scripts for system startup, and ended when all testing programs terminated. It represents the execution of 

Linux kernel and applications including the testing programs and the other programs without dedicated power 

databases. These results show that the power estimation error using SEProf was quite low. In most cases, the 

average estimation error was less than 2% and the standard deviation of the estimation error was less than 2%. 

 

Power 

Configuration 
Application Name 

Average Power 

(mW) 

Energy Decompositions 

Application System Call/Kernel 

Average Power (mW) Average Power (mW) 

1 

cg.W 249 249 236 

ft.W 258 258 236 

is.W 246 246 236 

FileRW 236 237 236 

2 

cg.W 335 335 320 

ft.W 349 349 320 

is.W 334 334 320 

FileRW 320 321 320 

3 

cg.W 438 438 419 

ft.W 458 458 419 

is.W 438 438 419 

FileRW 419 421 419 

4 

cg.W 559 559 537 

ft.W 586 586 537 

is.W 560 560 537 

FileRW 537 540 537 

5 

cg.W 696 696 668 

ft.W 731 731 668 

is.W 701 701 668 

FileRW 668 672 668 
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Table 4. Power estimation error in the VFS experiment. 

 

3.2.2. DVS Experiment 

As in the VFS experiment, the DVS experiment selected five power configurations for the ARM11 

MPCore processor, and activated only one MP11 CPU. However, the clock frequency of the processor 

operating at each power configuration was the same as in Table 5, and the voltage of the processor varied at 

runtime. Seven power tables were built for the applications and the Linux kernel, respectively, as Table 6 

shows. 

 

Table 5. Power configurations of the ARM11 MPCore processor used in the DVS experiment. 

 

 

 

 

 

 

Power 

Configuration 

Application Name / 

Overall 

Number of Samples 

(1ms/sample) 

Average Absolute 

Estimation Error 
Standard Deviation 

1 

cg.W 227,437 0.54% 1.10% 

ft.W 70,929 1.17% 1.42% 

is.W 34,767 0.82% 0.74% 

FileRW 16,935 1.96% 1.40% 

Overall 392,000 0.87% 1.38% 

2 

cg.W 203,952 0.50% 1.13% 

ft.W 61,413 1.30% 1.52% 

is.W 30,003 0.75% 0.72% 

FileRW 15,836 1.91% 1.40% 

Overall 346,787 0.87% 1.46% 

3 

cg.W 188,774 0.51% 1.10% 

ft.W 54,521 1.55% 1.63% 

is.W 26,756 0.75% 0.68% 

FileRW 14,838 1.67% 1.35% 

Overall 315,333 0.92% 1.48% 

4 

cg.W 176,394 0.50% 1.05% 

ft.W 49,043 1.70% 1.76% 

is.W 24,308 0.79% 0.61% 

FileRW 14,004 1.60% 1.18% 

Overall 291,048 0.95% 1.52% 

5 

cg.W 167,235 0.59% 0.95% 

ft.W 43,609 1.68% 1.66% 

is.W 22,380 0.78% 0.67% 

FileRW 13,467 1.35% 1.10% 

Overall 272,056 0.99% 1.47% 

Power Configuration Voltage (V) Frequency (MHz) 

1 0.95 140 

2 1.01 140 

3 1.08 140 

4 1.14 140 

5 1.2 140 
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Table 6. Power tables used in the DVS experiment. 

 

In the DVS experiment, the voltage of the processor was periodically scaled at three different time 

intervals: 100 ms, 1 s, and 10 s. The power configuration of the processor was increased by one at each time 

interval. If the power configuration of the processor reached five, it was set to one in the next time interval. 

Fig. 6 shows an example of DVS and its power consumption. In this example, two lines show the measured 

and the estimated power consumption during the execution of the IS application. Because the DVS interval 

was set to 100 ms in this example, the power consumption of the processor varied every 100 ms. Fig. 6 shows 

that the estimated power consumption was very close to the measured one. The estimated power consumption 

occasionally drops, but the measured one does not. This is because that the thread that executed the IS 

application was scheduled out during that period, and another thread which associated with a different power 

table was scheduled in. If the newly scheduled thread had a lower average power consumption, then a drop 

appears in the figure. Since the measured power consumption read from the ADC is updated every 5 ms, the 

drop of the real power consumption cannot be detected if the newly scheduled thread is scheduled out within 

the ADC update period. 

 

 

Fig. 6. The measured and the estimated power consumption during the execution of is.W. 
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Power 

Configuration 

Average Power (uW) 

busybox cg.W ft.W is.W FileRW oprofiled vmlinux 

1 260 249 258 246 246 264 236 

2 298 284 295 282 282 302 271 

3 339 322 336 321 330 344 309 

4 382 362 378 363 370 388 349 

5 427 403 422 406 408 432 389 



15 

 

Table 7 presents the power estimation error in the DVS experiment. The average absolute estimation error 

and the standard deviation of the error increased as the DVS interval decreased. This is because the power 

consumption of the processor does not change immediately after a new value is written to the DAC, and the 

power consumption of the processor after changing voltages is unable to be read from the ADC immediately. 

Fig. 7 illustrates this using seven power samples taken from the ADC during the period that the voltage level 

of the processor is scaling. The arrow in Fig. 7 indicates the time that the new voltage level is written to the 

DAC. SEProf updates the power configuration of the processor at this point, but the power consumption of the 

processor does not change immediately. Instead, it becomes stable, and can be read form ADC 10 ms later. 

Consequently, the power consumption difference between the measured values and the estimated values 

during this period increases the average estimation error and the standard deviation of the error. 

 

Table 7. Power estimation error in DVS experiment. 

 

 
Fig. 7. Power samples during DVS. 

 

The last experiment measured the performance overhead introduced by SEProf in the DVS experiment. 

For all cases, SEProf introduced less than 1% overhead over an unmodified Linux kernel, even when the DVS 

interval was 100 ms.  
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Application Name / 

Overall 

Number of Samples 

(1ms/sample) 

Average Absolute 

Estimation Error 
Standard Deviation 

100 ms 

cg.W 227,888 2.47% 4.12% 

ft.W 71,085 2.48% 4.40% 

is.W 34,674 2.26% 4.41% 

FileRW 16,743 3.23% 4.36% 

Overall 394,869 2.59% 4.30% 

1 s 

cg.W 228,028 0.90% 1.73% 

ft.W 70,887 1.30% 1.87% 

is.W 34,688 1.01% 1.48% 

FileRW 17,027 2.04% 2.07% 

Overall 393,616 1.15% 1.90% 

10 s 

cg.W 228,118 0.70% 1.17% 

ft.W 70,943 1.21% 1.40% 

is.W 34,986 0.81% 0.93% 

FileRW 16,767 1.67% 1.13% 

Overall 393,227 0.97% 1.38% 
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4. Conclusions 

This project proposes and implements a high-level energy profiling tool called SEProf. SEProf estimates 

the energy consumption of each thread by maintaining a power table stack for each thread and tracking the 

power configurations of embedded processors in runtime. This makes SEProf suitable for energy estimation 

on multi-core embedded systems with power management functions. The experiments in this report 

implemented SEProf in Linux kernel 2.6.19, and conducted a number of experiments on an ARM11 MPCore 

processor. VFS results show that the average power estimation error using SEProf was within 2% and the 

standard deviation of the estimation error was within 2%. DVS results indicate that the average power 

estimation error was within 4%, and the standard deviation of the estimation error was within 5% when the 

DVS interval was 100 ms. The performance overhead introduced by SEProf in DVS experiment was less than 

1%.  
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Project Self-Assessment 

We have released the beta version of the REALProf tool on Open Foundry [22]. Also, we have one 

conference paper which has been accepted [23] and two journal papers [24][25] which are under preparation 

based on the results of this project. 
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本計畫產出之嵌入式軟體耗電評估工具以及相關研究成果受瑞士聯邦理

工大學資訊工程系 Prof. Juerg Gutknecht 與其研究團隊負責人 Dr. Dennis 
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二、 研究成果 

  The project I mainly involved during this visit is the embedded multi-core 

system project in Prof. Jürg Gutknecht's group. The project goals are to propose and 

develop system programming models and languages for data streaming applications 

based on reconfigurable embedded multi-core systems. Prof. Jürg Gutknecht and his 

group proposed a language called System Oberon to facilitate designers in developing 

embedded systems including hardware and software. Designers first describe their 

systems using System Oberon language, System Oberon compiler can generate 
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efficient multi-core hardware for running the application, and multi-thread software 

running on top of the multi-core processor. The hardware descriptions and 

configurations generated by System Oberon compiler are further processed by the 

hardware synthesis tool, e.g. Xilinx ISE. The hardware synthesis tool can generate the 

hardware on an FPGA board. Figure 1 shows the design flow of System Oberon and 

FPGA-based embedded multi-core system. Electrocardiography (ECG) was used as 

an example to verify the concept and design flow of System Oberon. 

 

Figure 1. System Oberon and its design flow for FPGA-based embedded multi-core 

(Figure source: Lisa Liu and Oleksii Morozov, “A Process-Oriented Streaming System 

Design Paradigm for FPGA,” submitted for publication). 

The power consumption is an important issue for an embedded multi-core system. 

One of the benefits for using System Oberon is because the compiler can produce 

efficient hardware for running the application program. For example, the 

interconnection bus between CPU cores, and shared memory buffer between CPU 

cores are optimized by System Oberon. However, current System Oberon can 

generate the hardware without power management functions, and the CPU cores 

always operate at the maximal speed. In the multi-core system, CPU cores execute 

processes in parallel and sometime they communicate with each other for 

coordinating the tasks and data. Without precisely managing the tasks on each CPU 

core, the communication between CPU cores, the operating speeds and voltages of 

CPU cores, the CPU cores may consume extra power during the execution. Figure 2 

(a) illustrates an example that the system wastes power if all CPU cores operate at the 

maximal and the same speed. Therefore, during this visit, I worked with Prof. Jürg 



Gutknecht and his group to improve the energy efficiency of the system generated by 

System Oberon language. In the enhanced System Oberon, designers could specify 

the power consumption requirements when they develop their systems. The compiler 

can generate the necessary hardware to optimize the energy efficiency of the 

embedded multi-core system. For example, the designer provides the energy 

requirement information in System Oberon program. Then, the compiler generates the 

hardware with power management functions, and software utilizing these hardware 

power management features to minimize the power consumption of the system. 

Figure 2 (b) gives an example.  

 

  

(a)       (b) 

Figure 2. Reducing power consumption of an embedded multi-core system through 

hardware and software power management functions. 
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Figure 3. Low-power hardware extension based on System Oberon. 

Figure 3 and Figure 4 illustrate our proposed low-power enhancements based on 

System Oberon. Figure 3 shows that a designer can specify the performance or energy 

requirement of the systems in System Oberon language. After the designer provides 

the information, System Oberon compiler generates the necessary low-power 

hardware and/or additional power management hardware into the hardware platform. 

For example, in Figure 3, the designer added the low-power attribute in the system 

description. The compiler automatically integrates the power management hardware 

components into the original hardware designs. Then, the designer is able to use 

power management functions when they develop their energy-aware applications 

based on System Oberon. Figure 4 gives an example that designer can use power 

management functions such as sleep and idle in their programs. Moreover, the 

busy-waiting functions are automatically translated to the sleep-wakeup version 

which consumes much less power when the designer specifies the low-power attribute 

in the System Oberon program. 
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Figure 4. Low-power software extension based on System Oberon. 

During the three-month visit, we not only enhanced System Oberon to support 

energy-aware program development, but also prototyped the proposed concepts in 

System Oberon language, System Oberon compiler, and the CPU hardware called 

TRM (Tiny Register Machine). We used the ECG application to verify our designs 

and compare the performance in terms of energy consumption before and after 

applying our proposed energy-aware features. To evaluate the power consumption, we 

established a power consumption evaluation platform shown in Figure 5. We used the 

platform to measure and evaluate the power consumption of the ECG multi-core 

embedded system. Figure 6 shows the experimental results. Compared with the 

full-connected multi-core embedded system, the system generated by System Oberon 

significantly reduces the power consumption because the unnecessary interconnection 

bus and buffer are avoided. The ECG multi-core embedded system generated by our 

energy-aware System Oberon can further reduce 45% power consumption.  

 

BEGIN

LOOP

y := a+b;

RS232.SendInteger(y);

RS232.SendEnd;

SYSTEM.PUT(ledAdr, y);

RECEIVE(in, a, PMConfig);

END;

END TestTRM2.

resettimer(PMConfig .T)

REPEAT UNTIL checkreceive(in, a) Or timerexpire()

IF timerexpire() THEN

stoptimer()

Idle

END

RECEIVE(in, a);

BEGIN

LOOP

y := a+b;

RS232.SendInteger(y);

RS232.SendEnd;

SYSTEM.PUT(ledAdr, y);

IDLE;

RECEIVE(in, a);

END;

END TestTRM2.
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Figure 5. Architecture and demonstration of the power consumption evaluation 

platform. 

  

Figure 6. Performance evaluation of the proposed low-power improvement. 

The system level design environment is very important to embedded system 

development. System Oberon provides a convenient language for designers to 

describe their system architecture, hardware configurations, software functions and 

procedures. System Oberon compiler can produce efficient hardware and software for 

the application. Our low-power and power management enhancement based on 

System Oberon further provide language level support for designers to specify their 

energy and performance requirements. Therefore, the development of energy-aware 
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system and software become possible based on System Oberon design flow. Our 

prototype and preliminary experimental results demonstrate that the proposed 

enhancement can significantly reduce the power consumption of the ECG application 

by 45%.  

The colleagues in Prof. Jürg Gutknecht’s group are further improving the system 

and collecting more experimental results. We are working together in preparing a joint 

research paper which will be submitted to a conference or journal.  

三、 建議與後續合作 

 

Figure 7. Prof. Jürg Gutknecht, his group and me. 

This is a very successful visit. My research on energy-aware computing is a 

system-wide research topic, and requires the knowledge and support across a wide 

spectrum of computer systems. Due to limit research resources I had in Taiwan, I 

usually have to focus on a specific point in a system and fail to evaluate the design 

from a system perspective. Also, I usually have to consider the design and evaluation 

of the proposed ideas and technologies into separated hardware and software 

platforms. On the other hand, Prof. Jürg Gutknecht and his group have built entire 

embedded multi-core systems including hardware, system software, and application 

software by themselves. Therefore, we could be able to research our low-power 

designs from a system point of view, and realize and evaluate hardware and software 

designs in the real system. I do learn a lot from cooperating with Prof. Jürg Gutknecht 

and his group members.  

Prof. Jürg Gutknecht and his group have worked on programming languages, 

compilers, run-time systems, operating systems, and hardware designs for years, and 

have outstanding achievements. They want to consider power consumption issues in 

their research and therefore invite me for a visit. Power consumption is regarded as a 

critical problem of information and communication technology (ICT) infrastructure in 

the next decade. Reducing the electrical needs of computer systems becomes the most 

important task for computer scientists and engineers, and has recently attracted 



considerable interest in both academia and industry. During this visit, I also do bring 

new ideas, give talks, and share my experiences and research results in reducing the 

power consumption of computer systems to the group. We not only jointly proposed 

the new low-power ideas for the existing projects, but also prototyped and evaluated 

the proposed systems in a real environment. The experimental results demonstrate we 

could significantly reduce the power consumption of the systems. Moreover, I help 

the group to establish the power consumption evaluation platform so that they can 

continue the low-power research and development after I am back to Taiwan.  

I was invited to join the annual retreat of Prof. Jürg Gutknecht's group in Sept. 24 

to Sept. 25, 2010. During the meetings, we all agree that we had very successful 

cooperation and had fruitful research results in this visit. This visit has mutual benefits 

to both of our groups. We also concluded we should continue our cooperation and 

further extend the cooperation between two groups. Research cooperation has been 

arranged and they are currently on-going. They are:   

(1) FP7 project cooperation: Prof. Jürg Gutknecht has involved in an FP7 project, 

called Online Predictive Tools for Intervention in Mental Illness (OPTIMI). His group 

is to build a wearable device for monitoring patients’ physiology data. The wearable 

device is now operated by batteries but will be operated by harvested energy sources 

such as solar energy, thermal energy, kinetic energy, etc. The power consumption 

issue is one of the most challenging issues for the device design. My team has worked 

on power management middleware and run-time support for energy-aware software 

which is a critical software component for the FP7 OPTIMI project. Therefore, Prof. 

Jürg Gutknecht and FP7 OPTIMI project coordinator invited me to join the project so 

that we could contribute our power management middleware to the project. (see 

below letters of intention) 



  

Figure 8. Letters of intention for joining FP7 OPTIMI project. 

Based on the discussion, I then proposed a project under join research projects 

agreement between Switzerland/SNSF and Taiwan /NSC scientific cooperation. The 

project is just approved and granted by National Science Council in Taiwan. Based on 

this joint project, we will continue our cooperation effort and further extend our 

cooperation in area of power management framework for wearable devices and 

energy scavenging sensors.  

(2) New FP7 project on green datacenters: Prof. Jürg Gutknecht invited me to 

visit Microsoft Research Cambridge in UK in Sept. 28, 2010. During the visit, we 

had an intensive discussion on the area of power management issues in datacenters, 

and found a very good synergy between Prof. Jürg Gutknecht's group in ETH 

Zurich, Microsoft Research Cambridge and my group in National Chiao Tung 

University in Taiwan. We thus decided to work on a new proposal under FP7. The 

draft project title is SPREAD: Scalable Predictably Robust Energy Aware 

Datacenter. The overall objective is to define, develop and evaluate and model a 

scalable methodology for the on-going deployment of energy aware datacenters. 

We are currently preparing the proposal and plan to submit the proposal next year. 
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