
行政院國家科學委員會專題研究計畫 成果報告

系統層級之多核心嵌入式系統發展與驗證環境--子計畫
三：多核心嵌入式系統效能與耗能分析監測與改善(2/2)

研究成果報告(完整版)

計 畫 類 別 ：整合型

計 畫 編 號 ： NSC 98-2220-E-009-013-

執 行 期 間 ： 98年 08 月 01 日至 99年 09 月 30 日

執 行 單 位 ：國立交通大學資訊工程學系（所）

計 畫主持人：曹孝櫟

計畫參與人員：碩士班研究生-兼任助理人員：楊弘偉

碩士班研究生-兼任助理人員：張安順

博士班研究生-兼任助理人員：陳建臻

博士班研究生-兼任助理人員：黃承威

報 告 附 件 ：國外研究心得報告

處 理 方 式 ：本計畫可公開查詢

中 華 民 國 100年 01 月 03 日

I

Table of Contents

Table of Contents .. I

摘要.. II

Abstract .. II

1. Introduction .. 1

2. Design and Implementation of SEProf .. 2

2.1. Power Table Association and Power Configuration Setting .. 4

2.2. Energy Estimation .. 5

2.3. Data Structures ... 8

3. Case Study: ARM11 MPCore Processor ... 10

3.1. Experimental Environment .. 10

3.2. Experimental Results ... 10

3.2.1. VFS Experiment... 11

3.2.2. DVS Experiment .. 13

4. Conclusions .. 16

References .. 16

Project Self-Assessment... 17

II

摘要

近年來隨著嵌入式系統晶片功能越益強大，嵌入式系統晶片也漸漸朝向複雜之多核心設計以提升

效能、降低耗能與成本。然而傳統多核心嵌入式系統晶片設計方法及工具多半針對已完成之系統晶片

進行效能與耗能的評估，對於設計初期或設計的過程中所能得到的效能與耗能參數所知有限，也無法

有效的在設計中期或初期，偵測出多核心嵌入式系統晶片可能遭遇的軟硬體效能與耗能問題。因此本

子計畫的主要目的在於設計多核心嵌入式系統晶片之效能與耗能分析與監測軟硬體擴充模組以及工具，

以協助多核心嵌入式系統晶片與軟體設計者，事先掌握多核心嵌入式系統晶片硬體與軟體的效能與耗

能特性，進而在軟、硬體設計層面加以改進。

 本子計畫規劃以兩年時間研究多核心嵌入式系統晶片之效能與耗能分析、監測與提升技術，計畫

第一年我們提出並實作完成了一種以硬體協助且適用於多核心嵌入式系統的效能與耗能評估工具

REALprof，其提供程式執行時期硬體事件的監控，並藉此推算出元件耗能，其可避免軟體取樣

(Sampling)所造成的額外負擔，以便能呈現系統原始的行為與特性。在第二年中，考量耗電管理機制日

益普及，本子計畫實作出一套高階的軟體耗能評估工具 SEProf，它提供多執行緒軟體執行於多核心系

統的耗能評估，並可以依據系統的耗電管理狀態調整耗能評估，目前 SEProf 實作於 ARM11 MPCore

處理器平台上並搭配 Linux 2.6.19，實驗結果顯示此工具能夠提供高精準度且低負擔之耗能評估結果。

Abstract

Multi-core embedded systems and system on chips (SoCs) which achieve a higher performance and a

better cost- and energy-efficiency than single-core embedded systems become more and more popular recently.

Unfortunately, conventional approaches for optimizing performance and energy consumption of multi-core

SoCs rely on fine tuning after the hardware (H/W) and software (S/W) are completely developed. It is very

difficult for system and software engineers to identify potential H/W and S/W performance and power

consumption problems while the system is being developed.

In this project, performance and power consumption profiling and monitoring hardware and software

extensions and tools for multi-core embedded systems and SoCs are proposed. The tools closely work

together with the proposed performance and energy profiling hardware and software components which

provide the performance and power consumption monitoring and profiling of multi-core SoCs, and facilitate

system and software designers to diagnose performance and power consumption problems and bottlenecks

while the system is being developed. In the first year, we propose and realize a hardware-assisted performance

and energy evaluation tool, called REALprof, for a multi-core embedded system. It provides hardware

monitor for runtime programs, and uses these monitor information to estimate the system energy consumption

without introducing extra software sampling overhead. In the second year, since power management has

become common in embedded systems, this project presents a high-level energy profiling tool, called SEProf,

that estimates the energy consumption of an multi-core embedded system running multi-thread software and

an operating system (OS) that supports power management functions. This project implements the proposed

SEProf in Linux 2.6.19 and evaluates its performance on an ARM11 MPCore processor. Experimental results

demonstrate that the proposed tool can provide accurate energy profiling results with a low profiling

overhead.

1

1. Introduction

Energy efficiency has become one of the most important issues in the design of multi-core embedded

systems, especially for battery-operated devices such as mobile phones. To evaluate the energy efficiency of

an embedded system, accurate energy profiling tools are required. Previous studies on the energy profiling of

embedded software adopt measurement-based and model-based approaches. Measurement-based approaches,

such as PowerScope [3], directly measure the power consumption of an embedded system using an

oscilloscope or a digital multi-meter, and profiling software runs on the target system to monitor system

activities. This approach analyzes the energy consumption of the embedded software by combining the

measurement data and software logs. However, the sampling rate of the profiling software restricts the

analysis granularity of a measurement-based tool, and it is expensive to set up a high-resolution measurement

environment. Synchronizing the measurement data on the meter and the system activities on the target is also

a challenge because the metering and profiling software run on different machines.

The other approach to profile the energy consumption of an embedded system is based on power models.

Model-based tools estimate the energy consumption of embedded systems by monitoring the occurrences of

representative events during system execution, along with the energy weights of these events. Researchers

have proposed a number of power models at the architecture level, instruction level, basic block level, and

function level. Wattch [4] adopted an architecture-level power model that was integrated into the

SimpleScalar simulator [21]. Wattch modeled the power consumption of the primary units of an embedded

processor, e.g., functional units and caches, and monitored the number of accesses to these units to estimate

the energy consumption of embedded software [5]. Unlike architecture-level power models, instruction-level

models [6][7][8][9] divide a processor’s instruction set into a number of classes according to the average

power consumption of each instruction execution. These tools can determine the energy consumption

information of a program by accumulating the number of executed instructions for each class. Tan et al.

proposed EMSIM [10][11], based on the instruction-level power model presented in [7] to further support

per-task and function-level energy estimation in an embedded Linux environment.

Although architecture-level and instruction-level model approaches can achieve accurate results, they

require a lot of time to collect the necessary information for energy estimation. This is particularly true for

embedded systems running complicated software such as multi-thread programs and multi-tasking operating

systems (OSs). System designers may want to know the power consumption of the embedded system quickly

so that they can adjust power management strategies to achieve better energy efficiency. As a result,

researchers have proposed several high-level energy profiling tools that compromise between the profiling

accuracy and the profiling overhead. High-level tools may estimate the power consumption of an embedded

system at the basic block level [6][12] and function level [13][14]. The power consumption of basic blocks

and functions can be determined by direct power measurement or low level power models. High-level energy

profiling tools run directly on the target platform along with the embedded software, and collect critical

execution information to estimate the power consumption of all running software. Tiwari et al. [6] built a base

energy cost for basic blocks of the target program. The energy consumption of the program can be evaluated

by accumulating the number of times that each basic block is executed multiplied by its base energy cost.

Another basic-block power analysis was proposed in [12]. This approach groups consecutive basic blocks in

the target program together, and derives the energy weight of each group using regression analysis. Qu et al.

[13] presented a function-level power analysis. In this approach, a database, or power data bank, stores the

2

average power and execution times of library functions and basic instructions. This method evaluates the

energy consumption of a program through the number of times that each function is invoked multiplied by its

average power and execution time recorded in the power data bank. Another function-level power analysis

tool proposed in [14] is a software energy estimation tool for heterogeneous dual-core processor. This

function-level power model measures the average power consumption of different digital signal processing

(DSP) algorithms in advance and stores the data in an energy library. The energy consumption of DSP

algorithms can be calculated by multiplying the execution time of each DSP algorithm by its average power in

the energy library.

Unfortunately, these high-level tools do not consider the power management functions usually supported

by modern embedded processors. Embedded processors, and especially those designed for battery-operated

devices, are sensitive to power consumption, and provide sophisticated operating modes, voltages, and

frequencies [1][2][18]. Operating systems (OSs) can use the power management features of the embedded

processors to achieve dynamic power management functions, optimizing the energy efficiency of the

embedded system. Without considering the operating modes, voltages, and frequencies of an embedded

processor and the dynamic power management functions of an OS, software energy profiling results become

inaccurate. As a result, system designers are limited in their ability to evaluate the power management

strategies on the embedded system.

This project presents a high-level energy-profiling tool called SEProf. This tool supports multi-thread

software and OS enabling dynamic power management functions such as different idle mode, suspend mode,

and dynamic voltage and frequency scaling, etc. The proposed tool supports different granularities of energy

profiling on embedded software, allowing designers to control the tradeoff between profiling overhead and

accuracy. The proposed SEProf was implemented in Linux 2.6.19 to evaluate its accuracy and efficiency.

Experimental results show that the average energy estimation error of using SEProf is less than 4%, and the

overhead introduced by SEProf is less than 1%.

The rest of this report is organized as follows. Section 2 descirbes the design and implementation of the

proposed tool, SEProf. Section 3 presents a case study based on an ARM11 MPCore processor and

experimental results. Section 4 provides some conclusions.

2. Design and Implementation of SEProf

Fig. 1 provides an overview of the proposed energy-profiling tool, SEProf. Before profiling embedded

software, SEProf develops a power table database for the target embedded processor in Step . This power

table database is a collection of power tables that SEProf uses to estimate the power consumption of the

processor, and can be built via measurement-based tools or lower level model-based tools. A power table

records the average power consumption required for the processor to execute a code block. A code block

represents a sequence of instructions, such as a basic block, a function, or a sequence of basic blocks in OS or

applications. The granularity of code blocks that influences the profiling accuracy and the overhead is a

configurable parameter in SEProf. Fine-grain power tables generally achieve better accuracy, but suffer from

greater profiling overhead than coarse-grain power tables. However, experimental results show that for RISC

processors it is possible to derive accurate energy estimation results using the proper design of coarse-grain

power tables.

3

 Since the goal of SEProf is to estimate the energy consumption of a processor enabling power

management functions, a power table can consist of more than one power consumption value. Each value

represents the average power consumption of a code block executed under a specific CPU power

configuration. A CPU power configuration represents a combination of a specific operating power mode,

voltage, and frequency of the processor. Each core in a multi-core processor may have its own power

configuraion. Once the embedded OS activates the dynamic power management functions, it changes CPU

power configuration, and SEProf ensures that the proper power consumption value is used for each processor

core.

After establishing the power table database in Step , SEProf inserts codes to user-level embedded

software in Step  according to the desired granularity of code blocks. For example, if a user desires

granularity at the function level, the user must build power tables based on each function. SEProf then inserts

codes in the user-level software to associate the power tables before entering the corresponding functions, and

to disassociate them when leaving these functions. The instrumented codes tell SEProf which power table is

associated with the running code block. The instrumentation in the OS kernel is similar to user-level software,

and the OS kernel code blocks must associate kernel power tables. Therefore, Step ’ in Fig. 1 shows that the

OS kernel is patched. After Step  and Step ’, Step  and Step ’ compile the OS kernel and the

user-level programs. In Step , SEProf runs the program on the target embedded system, and stores the

estimated energy consumption results in the kernel space. Users can access the results through SEProf

application programming interfaces (APIs) in Step .

Fig. 1. Overview of SEProf and its operating steps.

Analyze the

power consumption

of code blocks and

establish power table

database

Power table

database

 User-level

programs/libraries

instrument using

SEProf APIs

’ SEProf kernel

patch

Associate

power tables

Associate

power tables

Source codes of

user-level

programs/libraries

Source codes of

OS kernel

 Compile and link
’ Compile and

link

 Execute OS/user-

level programs

Binary files Kernel image

 Energy

profiling report

Refer power tables

4

2.1. Power Table Association and Power Configuration Setting

User-level programs and OS kernel can associate and disassociate power tables through SEProf APIs upon

entering and leaving code blocks. The association and disassociation operations must be coupled. If a power

table is associated, the power table will be used to estimate the average power consumption of the executing

software. On the contrary, if a power table is disassociated, the average power consumption is estimated based

on the power table, which was previously associated. Fig. 2 shows an example of using power tables in

SEProf. Assume that function-level power tables have been built, and the embedded processor supports three

different CPU power configurations. For the ease of illustration, this example omits several detailed

procedures before entering the main() function of the program. In Step , the CPU operates at the

maximum speed in power configuration 3, and executes kernel codes to fork a thread, called T. SEProf

initiates internal data structures for energy profiling at this stage, and associates the power tables of thread T’s

parent with thread T. In Step , thread T enters its main function, and SEProf associates thread T with the

power table of main(), Pmain(3). Pmain(3) denotes the CPU power consumption of running the main()

function under CPU power configuration 3. This power table is used to estimate the power consumption in the

following operations until thread T invokes a system call, say A(), in Step . SEProf then associates the

power table of A()and refers to the power table of A(). If the OS detects the CPU is underutilized in Step ,

the OS changes the CPU power configuration from 3 to 1 to reduce energy consumption. SEProf detects this

event, and changes the referred power consumption value from PA(3) to PA(1) at this stage. In Step , thread

T finishes the system call, and returns to the user space. The power table of A() is disassociated so that the

power table of main()is used again. In Step , thread T enters a user-level function, say B(). As in Step ,

the power table of B() and the CPU power configuration 1, i.e. PB(1), is used. In Step  and Step , the

thread leaves the functions B()and main(), respectively. When thread T is terminated, SEProf keeps its

energy consumption profile in the kernel space, and users can access the results through SEProf APIs.

5

Fig. 2. An example of using power tables and power configurations in SEProf.

2.2. Energy Estimation

Fig. 3 presents a flowchart of the proposed SEProf in calculating the energy consumption of a thread.

When a thread, named T, is created, SEProf initiates the energy profiling data structures for the thread shown

as Event  in Fig. 3 occurs. The initialization procedure resets ET, the accumulated energy consumption of

thread T. The power configuration of the processor used by thread T, PCT, is set to the current power

configuration of the processor, PCcur. The timer for measuring the execution time (which has not been used to

estimate the energy consumption of thread T), TimerT, is set to zero and paused. The power table stack of

thread T, PTStackT, which holds all associated power tables of thread T, is copied from that of thread T’s

parent, and the latest associated power table of thread T, PTT, is pushed to the stack PTStackT. When thread T

is scheduled (Event ), SEProf checks whether the CPU power configuration has been modified or not by

comparing the thread T’s associated power configuration PCT with the current one PCcur. If the power

configuration is the same, SEProf resumes TimerT to measure the execution time of thread T. However, if the

OS or other threads change the power configuration, SEProf accumulates the energy consumption of thread T

during the execution period measured by TimerT using ET = ET + TimerT  PTT[PCT], where PTT[PCT] looks

up the average power consumption of the processor operating at power configuration PCT in power table PTT.

After accumulating the energy consumption, SEProf updates the power configuration PCT to the current one

PCcur, and resets TimerT to accumulate the next execution period of thread T.

P
o

w
er

 c
o

n
su

m
p

ti
o

n

time

 Enter main() function

 Enter system call A()

 Change CPU voltage and

frequency to power config. 1

 Leave system call A()

 Enter B() function

PC: power configuration

Power Table of

A()

PC Power

1 PA(1)

2 PA(2)

3 PA(3)

Power Table of

B()

PC Power

1 PB(1)

2 PB(2)

3 PB(3)

 Leave B() function

CPU runs in

user mode

CPU runs in

kernel mode

Power Table of

main()

PC Power

1 Pmain(1)

2 Pmain(2)

3 Pmain(3)

 Leave main() function

 Thread is created

Power config. is 3

6

Four other events also trigger SEProf to accumulate the energy consumption of thread T. The first one is

when thread T changes the CPU power configuration, PCcur, indicated by Event . The second one is when

thread T terminates (Event ). The third one is when ET is queried by thread T or other threads (Event ),

and the last one is when thread T associates or disassociates a power table (Event ). If thread T associates a

new power table in Event , the new power table becomes PTT, and it is pushed into PTStackT after

performing the energy estimation procedure. Conversely, if thread T disassociates a power table in Event ,

the disassociating power table is used to estimate the energy consumption, and then popped up from PTStackT.

The power table that appears on the top of the stack after removing the dissociating one becomes PTT. When

thread T is scheduled out, as shown in Event , SEProf pauses TimerT to stop counting the execution time of

thread T.

In summary, SEProf accumulates the energy consumption of a thread when one of the following four

events occurs.

(1) A thread associates or disassociates a power table. When a thread associates or disassociates a power table,

it implies a change in the reference average power consumption of the embedded processor. Therefore,

SEProf must calculate the energy consumption of the accumulated execution time and update the power

table.

(2) The power configuration of the embedded processor is changed. When the CPU power configuration of an

embedded processor changes, the power consumption of the processor also changes. Hence, SEProf must

calculate the energy consumption of the accumulated execution time using the associated power

configuration of the thread.

(3) The total energy consumption of a thread is queried. If a user queries the total energy consumption of a

thread, the energy consumption of the thread must be updated before returning the energy profiling results

to the user.

(4) A thread ends. When a thread terminates, the energy consumption of the thread during the last execution

period is added to the total energy consumption of the thread. This is the last time that SEProf accumulates

the energy consumption of the thread.

Since the OS may execute ISRs that are not a part of thread T when thread T is scheduled, SEProf could

separate the energy consumption of the thread and that of ISRs by pausing TimerT when an interrupt occurs

(Event ), and resuming the timer when CPU returns from an ISR (Event ). However, the experiments in

this report did not separate these events because the runtime of ISRs is negligible.

7

Fig. 3. Energy estimation flowchart of SEProf.

Fig. 4 shows an example of energy estimation using SEProf. When a thread, say T, is created, the data

structures of the thread energy profiling are initiated in Step 1. In Step 2, thread T is scheduled and TimerT

starts to accumulate the execution time of the thread. In Step 3, thread T enters code block 1 and associates

with the power table PT1. Since the power table has changed, SEProf calculates the energy consumption of

thread T during the period from Step 2 to Step 3, resets TimerT, pushes PT1 into PTStackT, and sets PTT to PT1.

In Step 4, thread T enters code block 2, and associates with the power table PT2. SEProf accumulates the

energy consumption during the period from Step 3 to Step 4, pushes PT2 into PTStackT, and sets PTT to PT2.

In Step 5, thread T changes the CPU power configuration from 2 to 1. SEProf accumulates the energy

consumption of thread T, and sets PCT to PC1. In Step 6, thread T leaves code block 2, and returns to code

block 1. SEProf accumulates the energy consumption during the period from Step 5 to Step 6, pops PT2 from

PTStackT, and sets PTT to the power table of code block 1. In Step 7, thread T is scheduled out so that the

runtime measurement is paused. In Step 8, thread T is scheduled again. SEProf resumes TimerT. In Step 9,

thread T enters code block 3. SEProf accumulates the energy consumption during the period from Step 6 to

Step 7 and Step 8 to Step 9. Afterward, SEProf pushes PT3 into PTStackT, and sets PTT to PT3. Because an

interrupt occurs in Step 10, the execution time measurement is paused until returning from the ISR in Step 11.

Finally, in Step 12, thread T completes the execution of code block 3, and returns to code block 1. SEProf

accumulates the energy consumption during the period from Step 9 to Step 10 and Step 11 to Step 12.

SEProf ActionsEvents

Pause TimerT

 Thread T is scheduled out

or an interrupt occurs while

executing thread T

 Thread T terminates

 ET is queried

PCT = PCcur

 Thread T is scheduled in

or returns from an ISR in the

context of thread T

Resume TimerT

False

 Thread T is created

Initiate energy profiling

ET = 0

PCT = PCcur

Reset and pause TimerT

PTStackT : copy from parent

thread’s power table stack

PTT = the top element of PTStackT

Action End

True

 Thread T changes the power

configuration of the processor

Variables

ET

The accumulated energy

consumption of thread T

PTT

The latest associated

power table of thread T

PTStackT

A stack that holds all

associated power tables of

thread T

PCT

The associated power

configuration of the

processor used by thread T

PCcur

The current power

configuration of the

processor

TimerT

The timer for measuring

the execution time (which

has not been used to

estimate the energy

consumption of thread T)

 Thread T associates/

disassociates a power table

Accumulate thread energy,

and update PCT

AccumulateEnergy

PCT = PCcur

Resume TimerT

Accumulate thread energy,

push/pop the power table in

PTStackT, and update PTT

AccumulateEnergy

PTStackT : pushes/pops a power

table in PTStackT

PTT = the top element of PTStackT

Accumulate thread energy

AccumulateEnergy

AccumulateEnergy:

ET = ET + TimerT  PTT[PCT]

Reset TimerT

8

Fig. 4. An example of energy estimation using SEProf.

2.3. Data Structures

Seprof maintains three primary data structures in kernel space to support thread-based energy estimation

of embedded processors enabling power management functions, as Fig. 5 shows. The following section

describes these data structures:

(1) User-level program power table database. A user-level program power table database consists of the power

tables of the program that are used by all threads running the same program/library. All user-level power

table databases are copied into the kernel space when a thread starts running, and are referenced through

indexes.

(2) A kernel power table database. A kernel power table database contains all kernel-level power tables. It is

built in the OS kernel and shared among all threads on the system.

(3) A per-thread SEProf data structure in the kernel space. This data structure holds the latest associated

power table, a timer variable, a power table stack, an associated power configuration, and an accumulated

energy consumption of the thread.

Fig. 5 shows how SEProf maintains the power table stack. When a thread enters a new code block where a

power table is associated, it pushes the associated power table into its power table stack. On the other hand,

when the thread leaves the code block where the power table is disassociated, the power table is popped out

from the stack. Fig. 5 shows that when the thread enters code block i, j, and k, the power tables of the three

code blocks are linked in the power table stack.

P
o

w
er

 C
o

n
su

m
p

ti
o

n

Time
3. Enter code block 1

AccumulateEnergy

pushes PT1 into PTStackT

PTT=PT1

5. Change power config. to 1

AccumulateEnergy

PCT=PC1

9. Enter code block 3

AccumulateEnergy

pushes PT3 into PTStackT

PTT=PT3

Power config.

is 2

7. Schedule out

Pause TimerT

~ ~ ~ ~

12. Leave code block 3

AccumulateEnergy

pops PT3 from PTStackT

PTT=PT1

8. Schedule in

Resume TimerT

4. Enter code block 2

AccumulateEnergy

pushes PT2 into PTStackT

PTT=PT2

1. Initiate energy profiling

ET=0

PCT=PC2

Reset and pause TimerT

PTStackT: copy from parent thread’s

power table stack

PTT =the top element of PTStackT

11. ISR returns

Resume TimerT

6. Leave code block 2

AccumulateEnergy

pops PT2 from PTStackT

PTT=PT1 10. An interrupt occurs

Pause TimerT

AccumulateEnergy:

ET = ET + TimerT  PTT[PCT]

Reset TimerT

2. Schedule in

Resume TimerT

9

Fig. 5. Data structures maintained by SEProf

Per-user program

power table database

SEProf per-thread

data structure

Power table associations

Thread
User Space

Kernel Space

Task

structure

Power

Table i

Power

Table j

Power

Table k

The latest associated

power table (PT)

Code block i j k

SEProf global

data structure

Kernel power table

database

Runtime for energy

estimation (Timer)

Accumulated thread

Energy (E)

Power Table Stack

(PTStack)

Associated power

configuration (PC)

Power table database

Power table disassociations

Kernel

power table

database

Current Position

Execution order

10

3. Case Study: ARM11 MPCore Processor

To verify the design of SEPorf and evaluate its accuracy, SEProf was implemented in Linux on an ARM11

MPCore processor [15]. Section 3.1 and 3.2 describe the experimental environment and results .

3.1. Experimental Environment

The experimental platform was a Core Tile, CT11MPCore [16], with an ARM11 MPCore test chip stacked

on the top of a RealView Emulation Baseboard [17]. This platform provided both voltage and frequency

scaling functions and hardware support for measuring the voltage and current consumed by the processor.

This platform made it possible to build a power table database and verify the estimation error easily. The

voltage level of the ARM11 MPCore processor could be changed by writing values to a digital to analog

converter (DAC) on the CT11MPCore, and the voltage and current of the processor were measured and

monitored in runtime by accessing analog to digital converter (ADC) registers. The default voltage supplied to

the ARM11 MPCore processor was 1.2 V, with an adjustment range of ±0.25V. The clock rate of the

processor could also be changed by configuring the phase-locked loop (PLL) on the CT11MPCore. In these

experiments, the DAC and PLL were used to scale the voltage and the frequency of the ARM11 MPCore

processor, respectively, and the ADC was used to measure the processor’s power consumption.A 24 MHz

clock on the Emulation Baseboard was used for time measurement. The time resolution is 41.7 ns.

SEProf was integrated into Linux kernel 2.6.19 with a modified OProfile [19] to build power table

databases. OProfile is a system-wide profiler for Linux systems that uses statistical sampling. OProfile can be

used to profile Linux kernels, shared libraries, and applications. Originally, OProfile samples the context and

program counter (PC) value of the running task on each sampling interrupt, but the experiments extended it to

sample the power consumption of the processor as well. The sampling rate of OProfile was set to 1 kHz,

assuming that a power sample could represent the average power consumption during a sampling period.

Four testing programs were used throughout the experiment. The first three were CG, FT, and IS

applications from the OpenMP Implementation of NAS Parallel Benchmarks (NPB) (Version 3.3) [20]. CG

computes an approximation to the smallest eigenvalue of a matrix using a conjugate gradient method. FT

performs the time integration of a three-dimensional partial differential equation using the Fast Fourier

Transform. IS sorts integers using the bucket sort. The last testing program, FileRW, is an I/O intensive

application written by the authors. It is a simple application that writes and reads a 30MB file through a

network file system (NFS).

3.2. Experimental Results

This report includes two separate experiments because the ARM11 MPCore cannot dynamically change

the frequency of the processor. The first one is a voltage and frequency scaling (VFS) experiment, and the

second one is a dynamic voltage scaling (DVS) experiment. In the VFS experiment, both the voltage and the

frequency of the ARM11 MPCore processor were scaled at the beginning of the experiment and remained the

same throughout the experiment. In the DVS experiment, the voltage of the ARM11 MPCore processor was

scaled dynamically and periodically.

11

3.2.1. VFS Experiment

The VFS experiment selected five power configurations for the ARM11 MPCore processor, and

configured the processor to operate under one of five power configurations during the experiment. As Table 1

shows, each power configuration represents a combination of voltage and frequency levels for the processor.

In the power analysis stage, only one MP11 CPU was active during the experiment to map the measured

power consumption back to the embedded software. The remaining three CPUs were not initialized. After

analyzing the power consumption of the embedded software using the patched OProfile, the seven power

table databases shown in

Table 2 were built for six applications and the Linux kernel. Each power table database contained only one

power table, and each power table consisted of five average power consumptions. The power table of each

application was associated with SEProf at the beginning of the application, and disassociated at the end. All

six applications shared the same kernel power table, vmlinux. In this setup, the kernel power table is

associated when a thread calls a system call, and disassociated when the thread returns from the system call. It

is also associated with threads that have no dedicate power table databases.

Table 3 depicts the energy estimation results of the testing programs generated by SEProf. The energy and

time spent on executing application itself and calling system calls were separated to better examine the

accuracy of the power estimation results. Table 3 shows that, in many cases, the average power consumption

of the application was slightly lower than that of the average power consumption in

Table 2. This is because the parent threads of the testing programs have no dedicated power table

databases, so they associate with the kernel power table, vmlinux, which has the lowest average power. When

the threads running the testing programs are forked, they associate with the kernel power table copied from

their parent threads until they associate with their own power tables.

Table 1. Power configurations of the ARM11 MPCore processor used in the VFS experiment.

Table 2. Power tables used in the VFS experiment.

Power Configuration Voltage (V) Frequency (MHz)

1 0.95 140

2 1.01 168

3 1.08 196

4 1.14 224

5 1.2 252

Power

Configuration

Average Power (mW)

busybox cg.W ft.W is.W FileRW oprofiled vmlinux

1 260 249 258 246 246 264 236

2 352 335 349 334 330 359 320

3 460 438 458 438 431 470 419

4 589 559 586 560 565 602 537

5 738 696 731 701 692 753 668

12

Table 3. Energy estimation results of the testing programs generated by SEProf.

Table 4 verifies the accuracy of the power estimation results for VFS experiments. OProfile was modified

to sample the measured power of the ARM11 MPCore and compare it with the estimated power provided by

SEProf for each sampling interrupt. Table 4 shows the mean absolute power estimation error of the four

testing programs and an overall period. The overall period began when the init process executed command

scripts for system startup, and ended when all testing programs terminated. It represents the execution of

Linux kernel and applications including the testing programs and the other programs without dedicated power

databases. These results show that the power estimation error using SEProf was quite low. In most cases, the

average estimation error was less than 2% and the standard deviation of the estimation error was less than 2%.

Power

Configuration
Application Name

Average Power

(mW)

Energy Decompositions

Application System Call/Kernel

Average Power (mW) Average Power (mW)

1

cg.W 249 249 236

ft.W 258 258 236

is.W 246 246 236

FileRW 236 237 236

2

cg.W 335 335 320

ft.W 349 349 320

is.W 334 334 320

FileRW 320 321 320

3

cg.W 438 438 419

ft.W 458 458 419

is.W 438 438 419

FileRW 419 421 419

4

cg.W 559 559 537

ft.W 586 586 537

is.W 560 560 537

FileRW 537 540 537

5

cg.W 696 696 668

ft.W 731 731 668

is.W 701 701 668

FileRW 668 672 668

13

Table 4. Power estimation error in the VFS experiment.

3.2.2. DVS Experiment

As in the VFS experiment, the DVS experiment selected five power configurations for the ARM11

MPCore processor, and activated only one MP11 CPU. However, the clock frequency of the processor

operating at each power configuration was the same as in Table 5, and the voltage of the processor varied at

runtime. Seven power tables were built for the applications and the Linux kernel, respectively, as Table 6

shows.

Table 5. Power configurations of the ARM11 MPCore processor used in the DVS experiment.

Power

Configuration

Application Name /

Overall

Number of Samples

(1ms/sample)

Average Absolute

Estimation Error
Standard Deviation

1

cg.W 227,437 0.54% 1.10%

ft.W 70,929 1.17% 1.42%

is.W 34,767 0.82% 0.74%

FileRW 16,935 1.96% 1.40%

Overall 392,000 0.87% 1.38%

2

cg.W 203,952 0.50% 1.13%

ft.W 61,413 1.30% 1.52%

is.W 30,003 0.75% 0.72%

FileRW 15,836 1.91% 1.40%

Overall 346,787 0.87% 1.46%

3

cg.W 188,774 0.51% 1.10%

ft.W 54,521 1.55% 1.63%

is.W 26,756 0.75% 0.68%

FileRW 14,838 1.67% 1.35%

Overall 315,333 0.92% 1.48%

4

cg.W 176,394 0.50% 1.05%

ft.W 49,043 1.70% 1.76%

is.W 24,308 0.79% 0.61%

FileRW 14,004 1.60% 1.18%

Overall 291,048 0.95% 1.52%

5

cg.W 167,235 0.59% 0.95%

ft.W 43,609 1.68% 1.66%

is.W 22,380 0.78% 0.67%

FileRW 13,467 1.35% 1.10%

Overall 272,056 0.99% 1.47%

Power Configuration Voltage (V) Frequency (MHz)

1 0.95 140

2 1.01 140

3 1.08 140

4 1.14 140

5 1.2 140

14

Table 6. Power tables used in the DVS experiment.

In the DVS experiment, the voltage of the processor was periodically scaled at three different time

intervals: 100 ms, 1 s, and 10 s. The power configuration of the processor was increased by one at each time

interval. If the power configuration of the processor reached five, it was set to one in the next time interval.

Fig. 6 shows an example of DVS and its power consumption. In this example, two lines show the measured

and the estimated power consumption during the execution of the IS application. Because the DVS interval

was set to 100 ms in this example, the power consumption of the processor varied every 100 ms. Fig. 6 shows

that the estimated power consumption was very close to the measured one. The estimated power consumption

occasionally drops, but the measured one does not. This is because that the thread that executed the IS

application was scheduled out during that period, and another thread which associated with a different power

table was scheduled in. If the newly scheduled thread had a lower average power consumption, then a drop

appears in the figure. Since the measured power consumption read from the ADC is updated every 5 ms, the

drop of the real power consumption cannot be detected if the newly scheduled thread is scheduled out within

the ADC update period.

Fig. 6. The measured and the estimated power consumption during the execution of is.W.

200000

250000

300000

350000

400000

450000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

P
o

w
e
r
 (

u
W

)

Time (ms)

Measured Power

200000

250000

300000

350000

400000

450000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

P
o

w
e
r
 (

u
W

)

Time (ms)

Estimated Power

Power

Configuration

Average Power (uW)

busybox cg.W ft.W is.W FileRW oprofiled vmlinux

1 260 249 258 246 246 264 236

2 298 284 295 282 282 302 271

3 339 322 336 321 330 344 309

4 382 362 378 363 370 388 349

5 427 403 422 406 408 432 389

15

Table 7 presents the power estimation error in the DVS experiment. The average absolute estimation error

and the standard deviation of the error increased as the DVS interval decreased. This is because the power

consumption of the processor does not change immediately after a new value is written to the DAC, and the

power consumption of the processor after changing voltages is unable to be read from the ADC immediately.

Fig. 7 illustrates this using seven power samples taken from the ADC during the period that the voltage level

of the processor is scaling. The arrow in Fig. 7 indicates the time that the new voltage level is written to the

DAC. SEProf updates the power configuration of the processor at this point, but the power consumption of the

processor does not change immediately. Instead, it becomes stable, and can be read form ADC 10 ms later.

Consequently, the power consumption difference between the measured values and the estimated values

during this period increases the average estimation error and the standard deviation of the error.

Table 7. Power estimation error in DVS experiment.

Fig. 7. Power samples during DVS.

The last experiment measured the performance overhead introduced by SEProf in the DVS experiment.

For all cases, SEProf introduced less than 1% overhead over an unmodified Linux kernel, even when the DVS

interval was 100 ms.

340,000

350,000

360,000

370,000

380,000

390,000

400,000

0 5,000 10,000 15,000 20,000 25,000 30,000

P
o

w
e
r
 (

u
W

)

Time (us)

DVS Interval
Application Name /

Overall

Number of Samples

(1ms/sample)

Average Absolute

Estimation Error
Standard Deviation

100 ms

cg.W 227,888 2.47% 4.12%

ft.W 71,085 2.48% 4.40%

is.W 34,674 2.26% 4.41%

FileRW 16,743 3.23% 4.36%

Overall 394,869 2.59% 4.30%

1 s

cg.W 228,028 0.90% 1.73%

ft.W 70,887 1.30% 1.87%

is.W 34,688 1.01% 1.48%

FileRW 17,027 2.04% 2.07%

Overall 393,616 1.15% 1.90%

10 s

cg.W 228,118 0.70% 1.17%

ft.W 70,943 1.21% 1.40%

is.W 34,986 0.81% 0.93%

FileRW 16,767 1.67% 1.13%

Overall 393,227 0.97% 1.38%

16

4. Conclusions

This project proposes and implements a high-level energy profiling tool called SEProf. SEProf estimates

the energy consumption of each thread by maintaining a power table stack for each thread and tracking the

power configurations of embedded processors in runtime. This makes SEProf suitable for energy estimation

on multi-core embedded systems with power management functions. The experiments in this report

implemented SEProf in Linux kernel 2.6.19, and conducted a number of experiments on an ARM11 MPCore

processor. VFS results show that the average power estimation error using SEProf was within 2% and the

standard deviation of the estimation error was within 2%. DVS results indicate that the average power

estimation error was within 4%, and the standard deviation of the estimation error was within 5% when the

DVS interval was 100 ms. The performance overhead introduced by SEProf in DVS experiment was less than

1%.

References

[1] K. Choi, R. Soma, and M. Pedram, "Fine-Grained Dynamic Voltage and Frequency Scaling for Precise

Energy and Performance Tradeoff Based on the Ratio of Off-Chip Access to On-Chip Computation

Times," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, NO.

1, January 2005.

[2] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi, "An Analysis of Efficient Multi-Core

Global Power Management Policies: Maximizing Performance for a Given Power Budget, " the 39th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2006.

[3] J. Flinn and M. Satyanarayanan, "PowerScope: A Tool for Profiling the Energy Usage of Mobile

Applications," in Proceedings of the Second IEEE Workshop on Mobile Computer Systems and

Applications (WMCSA), 1999.

[4] D. Brooks, V. Tiwari, and M. Martonosi, "Wattch: A Framework for Architectural-Level Power Analysis

and Optimizations," 27th International Symposium on Computer Architecture (ISCA-27), June 2000.

[5] M. Monchiero, R. Canal, and A. Gonzalez, "Power/Performance/Thermal Design-Space Exploration for

Multicore Architectures," IEEE Transactions on Parallel and Distributed Systems, Vol. 19, No. 5, May

2008.

[6] V. Tiwari, S. Malik, and A. Wolfe, "Power analysis of embedded software: A first step towards software

power minimization," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 2, Issue 4,

pp. 437-445, Dec. 1994.

[7] A. Sinha and A. P. Chandrakasan, "Jouletrack - a web based tool for software energy profiling," in

Proceedings of the Design Automation Conference (DAC), 2001.

[8] H. Blume, D. Becker, L. Rotenberg, M. Botteck, J. Brakensiek, and T.G. Noll, "Hybrid functional- and

instruction-level power modeling for embedded and heterogeneous processor architectures," Journal of

Systems Architecture, Vol. 53, Issue 10, pp. 689–702, 2007.

[9] H. Blume, J.v. Livonius, L. Rotenberg, T.G. Noll, H. Bothe, and J. Brakensiek, "Performance and Power

Analysis of Parallelized Implementations on an MPCore Multiprocessor Platform," International

Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (IC-SAMOS),

2007.

17

[10] T. K. Tan, A. Raghunathan, and N. K. Jha, "EMSIM: An energy simulation framework for an embedded

operating system," in Proceedings of IEEE International Symposium on Circuit & Systems, pages

464–467, May 2002.

[11] T. K. Tan, A. Raghunathan, and N. K. Jha, "A simulation framework for energy consumption analysis of

OS-driven embedded applications," IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 22(9) 1284-1294, Sept. 2003.

[12] T. K. Tan, A. Raghunathan, G. Lakshminarayana, and N. K. Jha. "High-level software energy

macro-modeling," in Proceedings of Design Automation Conference, June 2001.

[13] G. Qu, N. Kawabe, K. Usami, and M. Potkonjak, “Function-level power estimation methodology for

microprocessors,”in Proceedings of Design Automation Conference (DAC), pp. 810–813, 2000.

[14] C.-H. Hsu, J.-J. Chen, and S.-L. Tsao, "Evaluation and Modeling of Power Consumption of a

Heterogeneous Dual-Core Processor," in the 13th International Conference on Parallel and Distributed

Systems (ICPADS), Hsinchu, Taiwan, Dec. 2007.

[15] "ARM11 MPCore Processor Revision r1p0 Technical Reference Manual," ARM, Feb. 2008.

[16] "Core Tile for ARM11 MPCore HBI-0146 User Guide," ARM, September 2006.

[17] "RealView™ Emulation Baseboard HBI-0140 Rev D User Guide," ARM, Oct. 2007.

[18] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen, "Single-ISA Heterogeneous

Multi-Core Architectures: The Potential for Processor Power Reduction," in Proceedings of the 36th

International Symposium on Microarchitecture (MICRO), Dec. 2003.

[19] J. Levon, "OProfile Internals," http://oprofile.sourceforge.net/doc/internals/index.html, 2003.

[20] H. Jin, M. Frumkin, and J. Yan, "The OpenMP Implementation of NAS Parallel Benchmarks and Its

Performance," NAS Technical Report NAS-99-011, NASA Ames Research Center, Oct. 1999.

[21] D. Burger and T. M. Austin, "The SimpleScalar Tool Set," Version 2.0, Computer Architecture News, pp.

13-25, Jun. 1997.

[22] REALProf, http://of.openfoundry.org/projects/1399

[23] Jian-Jhen Chen, Shiao-Li Tsao, and Meng-Ru Lin, “A High-Level Software Energy Profiling Tool for

Embedded Processors,” The Third Asia Pacific Embedded Systems Education and Research Conference,

Singapore, Dec 2009.

[24] Jian-Jhen Chen, Shiao-Li Tsao, and Meng-Ru Lin, “SEProf: A High-Level Software Energy Profiling

Tool for an Embedded System with Dynamic Power Management Functions,” in preparation, 2009.

[25] Jyun-Wei Lin and Shiao-Li Tsao, “Hardware-Assisted Performance/Energy Evaluation Tool for

Multi-core Embedded System,” in preparation, 2009.

Project Self-Assessment

We have released the beta version of the REALProf tool on Open Foundry [22]. Also, we have one

conference paper which has been accepted [23] and two journal papers [24][25] which are under preparation

based on the results of this project.

國科會補助專題研究計畫項下赴國外(或大陸地區)出差或

研習心得報告

日期：2010 年 12 月 31 日

一、 國外(大陸)研究過程

本計畫產出之嵌入式軟體耗電評估工具以及相關研究成果受瑞士聯邦理

工大學資訊工程系 Prof. Juerg Gutknecht 與其研究團隊負責人 Dr. Dennis

Majoe的高度肯定，因此邀約於 8/12至 9/30訪問蘇黎世瑞士聯邦理工大學(由

對方負擔住宿費用)，進行計畫合作之討論，與實質合作之系統整合設計研

究，此外亦進行未來的研究合作提案，預計將本計畫之研發成果應用於該研

究團隊之歐盟 FP7 研究計畫 OPTIMI (http://www.optimiproject.eu/)之穿戴式

感應器裝置之上，用以評估該穿戴式感應器裝置之軟體耗電行為並透過本計

畫工具加以改善。

二、 研究成果

 The project I mainly involved during this visit is the embedded multi-core

system project in Prof. Jürg Gutknecht's group. The project goals are to propose and

develop system programming models and languages for data streaming applications

based on reconfigurable embedded multi-core systems. Prof. Jürg Gutknecht and his

group proposed a language called System Oberon to facilitate designers in developing

embedded systems including hardware and software. Designers first describe their

systems using System Oberon language, System Oberon compiler can generate

計畫編

號

NSC 98-2220-E-009-013

計畫名

稱

系統層級之多核心嵌入式系統發展與驗證環境--子計畫三：多核

心嵌入式系統效能與耗能分析監測與改善(2/2)

出國人

員姓名
曹孝櫟

服務機

構及職

稱

交通大學資訊工程系副教授

出國時

間

99 年 8 月 12 日

至

99 年 9 月 30 日

出國地

點

瑞士蘇黎世

efficient multi-core hardware for running the application, and multi-thread software

running on top of the multi-core processor. The hardware descriptions and

configurations generated by System Oberon compiler are further processed by the

hardware synthesis tool, e.g. Xilinx ISE. The hardware synthesis tool can generate the

hardware on an FPGA board. Figure 1 shows the design flow of System Oberon and

FPGA-based embedded multi-core system. Electrocardiography (ECG) was used as

an example to verify the concept and design flow of System Oberon.

Figure 1. System Oberon and its design flow for FPGA-based embedded multi-core

(Figure source: Lisa Liu and Oleksii Morozov, “A Process-Oriented Streaming System

Design Paradigm for FPGA,” submitted for publication).

The power consumption is an important issue for an embedded multi-core system.

One of the benefits for using System Oberon is because the compiler can produce

efficient hardware for running the application program. For example, the

interconnection bus between CPU cores, and shared memory buffer between CPU

cores are optimized by System Oberon. However, current System Oberon can

generate the hardware without power management functions, and the CPU cores

always operate at the maximal speed. In the multi-core system, CPU cores execute

processes in parallel and sometime they communicate with each other for

coordinating the tasks and data. Without precisely managing the tasks on each CPU

core, the communication between CPU cores, the operating speeds and voltages of

CPU cores, the CPU cores may consume extra power during the execution. Figure 2

(a) illustrates an example that the system wastes power if all CPU cores operate at the

maximal and the same speed. Therefore, during this visit, I worked with Prof. Jürg

Gutknecht and his group to improve the energy efficiency of the system generated by

System Oberon language. In the enhanced System Oberon, designers could specify

the power consumption requirements when they develop their systems. The compiler

can generate the necessary hardware to optimize the energy efficiency of the

embedded multi-core system. For example, the designer provides the energy

requirement information in System Oberon program. Then, the compiler generates the

hardware with power management functions, and software utilizing these hardware

power management features to minimize the power consumption of the system.

Figure 2 (b) gives an example.

(a) (b)

Figure 2. Reducing power consumption of an embedded multi-core system through

hardware and software power management functions.

time

CPU1

CPU2

CPU3

CPU4

CPU5

Tasks Power consumption

2ms

CPU1

CPU2

CPU3

CPU4

CPU5

Different voltages/clock rates/power modes/power domains/types of processors

Figure 3. Low-power hardware extension based on System Oberon.

Figure 3 and Figure 4 illustrate our proposed low-power enhancements based on

System Oberon. Figure 3 shows that a designer can specify the performance or energy

requirement of the systems in System Oberon language. After the designer provides

the information, System Oberon compiler generates the necessary low-power

hardware and/or additional power management hardware into the hardware platform.

For example, in Figure 3, the designer added the low-power attribute in the system

description. The compiler automatically integrates the power management hardware

components into the original hardware designs. Then, the designer is able to use

power management functions when they develop their energy-aware applications

based on System Oberon. Figure 4 gives an example that designer can use power

management functions such as sleep and idle in their programs. Moreover, the

busy-waiting functions are automatically translated to the sleep-wakeup version

which consumes much less power when the designer specifies the low-power attribute

in the System Oberon program.

Low power attributes and performance/power requirements

P
o

w
e

r

m
a

n
a

g
e
r

clk

clk gclk

clken

FIFOFIFO

T
h
ro

u
g

h
 o

u
tb

u
s
/r

e
g

is
te

r

FIFO/IO status

BUFGCE

Figure 4. Low-power software extension based on System Oberon.

During the three-month visit, we not only enhanced System Oberon to support

energy-aware program development, but also prototyped the proposed concepts in

System Oberon language, System Oberon compiler, and the CPU hardware called

TRM (Tiny Register Machine). We used the ECG application to verify our designs

and compare the performance in terms of energy consumption before and after

applying our proposed energy-aware features. To evaluate the power consumption, we

established a power consumption evaluation platform shown in Figure 5. We used the

platform to measure and evaluate the power consumption of the ECG multi-core

embedded system. Figure 6 shows the experimental results. Compared with the

full-connected multi-core embedded system, the system generated by System Oberon

significantly reduces the power consumption because the unnecessary interconnection

bus and buffer are avoided. The ECG multi-core embedded system generated by our

energy-aware System Oberon can further reduce 45% power consumption.

BEGIN

LOOP

y := a+b;

RS232.SendInteger(y);

RS232.SendEnd;

SYSTEM.PUT(ledAdr, y);

RECEIVE(in, a, PMConfig);

END;

END TestTRM2.

resettimer(PMConfig .T)

REPEAT UNTIL checkreceive(in, a) Or timerexpire()

IF timerexpire() THEN

stoptimer()

Idle

END

RECEIVE(in, a);

BEGIN

LOOP

y := a+b;

RS232.SendInteger(y);

RS232.SendEnd;

SYSTEM.PUT(ledAdr, y);

IDLE;

RECEIVE(in, a);

END;

END TestTRM2.

Low power attributes and performance/power requirements

Low power attributes and performance/power requirements

Figure 5. Architecture and demonstration of the power consumption evaluation

platform.

Figure 6. Performance evaluation of the proposed low-power improvement.

The system level design environment is very important to embedded system

development. System Oberon provides a convenient language for designers to

describe their system architecture, hardware configurations, software functions and

procedures. System Oberon compiler can produce efficient hardware and software for

the application. Our low-power and power management enhancement based on

System Oberon further provide language level support for designers to specify their

energy and performance requirements. Therefore, the development of energy-aware

Power
supply

ML505 board

Agilent
U1253B

DC power connector

+O)-

- + -+

AC power

PC
IR-USB

Low power version

ECG: process 500 samples per second

0.54502

XPower simulation

Estimated results based on physical measurement

45%

system and software become possible based on System Oberon design flow. Our

prototype and preliminary experimental results demonstrate that the proposed

enhancement can significantly reduce the power consumption of the ECG application

by 45%.

The colleagues in Prof. Jürg Gutknecht’s group are further improving the system

and collecting more experimental results. We are working together in preparing a joint

research paper which will be submitted to a conference or journal.

三、 建議與後續合作

Figure 7. Prof. Jürg Gutknecht, his group and me.

This is a very successful visit. My research on energy-aware computing is a

system-wide research topic, and requires the knowledge and support across a wide

spectrum of computer systems. Due to limit research resources I had in Taiwan, I

usually have to focus on a specific point in a system and fail to evaluate the design

from a system perspective. Also, I usually have to consider the design and evaluation

of the proposed ideas and technologies into separated hardware and software

platforms. On the other hand, Prof. Jürg Gutknecht and his group have built entire

embedded multi-core systems including hardware, system software, and application

software by themselves. Therefore, we could be able to research our low-power

designs from a system point of view, and realize and evaluate hardware and software

designs in the real system. I do learn a lot from cooperating with Prof. Jürg Gutknecht

and his group members.

Prof. Jürg Gutknecht and his group have worked on programming languages,

compilers, run-time systems, operating systems, and hardware designs for years, and

have outstanding achievements. They want to consider power consumption issues in

their research and therefore invite me for a visit. Power consumption is regarded as a

critical problem of information and communication technology (ICT) infrastructure in

the next decade. Reducing the electrical needs of computer systems becomes the most

important task for computer scientists and engineers, and has recently attracted

considerable interest in both academia and industry. During this visit, I also do bring

new ideas, give talks, and share my experiences and research results in reducing the

power consumption of computer systems to the group. We not only jointly proposed

the new low-power ideas for the existing projects, but also prototyped and evaluated

the proposed systems in a real environment. The experimental results demonstrate we

could significantly reduce the power consumption of the systems. Moreover, I help

the group to establish the power consumption evaluation platform so that they can

continue the low-power research and development after I am back to Taiwan.

I was invited to join the annual retreat of Prof. Jürg Gutknecht's group in Sept. 24

to Sept. 25, 2010. During the meetings, we all agree that we had very successful

cooperation and had fruitful research results in this visit. This visit has mutual benefits

to both of our groups. We also concluded we should continue our cooperation and

further extend the cooperation between two groups. Research cooperation has been

arranged and they are currently on-going. They are:

(1) FP7 project cooperation: Prof. Jürg Gutknecht has involved in an FP7 project,

called Online Predictive Tools for Intervention in Mental Illness (OPTIMI). His group

is to build a wearable device for monitoring patients’ physiology data. The wearable

device is now operated by batteries but will be operated by harvested energy sources

such as solar energy, thermal energy, kinetic energy, etc. The power consumption

issue is one of the most challenging issues for the device design. My team has worked

on power management middleware and run-time support for energy-aware software

which is a critical software component for the FP7 OPTIMI project. Therefore, Prof.

Jürg Gutknecht and FP7 OPTIMI project coordinator invited me to join the project so

that we could contribute our power management middleware to the project. (see

below letters of intention)

Figure 8. Letters of intention for joining FP7 OPTIMI project.

Based on the discussion, I then proposed a project under join research projects

agreement between Switzerland/SNSF and Taiwan /NSC scientific cooperation. The

project is just approved and granted by National Science Council in Taiwan. Based on

this joint project, we will continue our cooperation effort and further extend our

cooperation in area of power management framework for wearable devices and

energy scavenging sensors.

(2) New FP7 project on green datacenters: Prof. Jürg Gutknecht invited me to

visit Microsoft Research Cambridge in UK in Sept. 28, 2010. During the visit, we

had an intensive discussion on the area of power management issues in datacenters,

and found a very good synergy between Prof. Jürg Gutknecht's group in ETH

Zurich, Microsoft Research Cambridge and my group in National Chiao Tung

University in Taiwan. We thus decided to work on a new proposal under FP7. The

draft project title is SPREAD: Scalable Predictably Robust Energy Aware

Datacenter. The overall objective is to define, develop and evaluate and model a

scalable methodology for the on-going deployment of energy aware datacenters.

We are currently preparing the proposal and plan to submit the proposal next year.

國科會補助計畫衍生研發成果推廣資料表
日期:2011/01/03

國科會補助計畫

計畫名稱: 子計畫三：多核心嵌入式系統效能與耗能分析監測與改善(2/2)

計畫主持人: 曹孝櫟

計畫編號: 98-2220-E-009-013- 學門領域: 晶片科技計畫--整合型學術研究
計畫

無研發成果推廣資料

98年度專題研究計畫研究成果彙整表

計畫主持人：曹孝櫟 計畫編號：98-2220-E-009-013-

計畫名稱：系統層級之多核心嵌入式系統發展與驗證環境--子計畫三：多核心嵌入式系統效能與耗能

分析監測與改善(2/2)

量化

成果項目 實際已達成

數（被接受

或已發表）

預期總達成
數(含實際
已達成數)

本計畫實

際貢獻百
分比

單位

備註（質化說明：如

數 個 計 畫 共 同 成
果、成果列為該期
刊之封面故事 ...
等）

期刊論文 0 0 50%

研究報告/技術報告 0 0 50%

研討會論文 0 0 50%

篇

論文著作

專書 0 0 100%

申請中件數 0 0 100%
專利

已獲得件數 0 0 100%
件

件數 0 0 100% 件
技術移轉

權利金 0 0 100% 千元

碩士生 2 2 100%

博士生 2 2 100%

博士後研究員 0 0 100%

國內

參與計畫人力

（本國籍）

專任助理 0 0 100%

人次

期刊論文 2 2 50%

1. Shiao-Li Tsao and
Chung-Huei
Huang, ＇A Survey of
Energy Efficient MAC
Protocols for IEEE
802.11 WLAN, ＇
accepted, Computer
Communications,
2010. (SCI, EI)

2. Shiao-Li Tsao,

You-Lin Chen, and
Chia-Hsiang
Chang, ＇Evaluation
of Scan and
Association Process
for Real-Time
Communication in
Mobile WiMAX,＇
accepted by IEEE
Transactions on
Wireless
Communications,
2010. (SCI, EI)

國外 論文著作

研究報告/技術報告 0 0 100%

篇

研討會論文 1 1 50%

1. Shiao-Li Tsao and

Shih-Yung
Lee, ＇Evaluating
the Energy
Efficiency of TCP
Transmission over a
WiMAX Network,＇
IEEE International
Conference on
Computer
Communication
Networks (ICCCN
2010), 2010

專書 0 0 100% 章/本

申請中件數 0 0 100%
專利

已獲得件數 0 0 100%
件

件數 0 0 100% 件
技術移轉

權利金 0 0 100% 千元

碩士生 0 0 100%

博士生 0 0 100%

博士後研究員 0 0 100%

參與計畫人力

（外國籍）

專任助理 0 0 100%

人次

其他成果

(無法以量化表達之

成果如辦理學術活
動、獲得獎項、重要
國際合作、研究成果
國際影響力及其他協
助產業技術發展之具
體效益事項等，請以
文字敘述填列。)

無

 成果項目 量化 名稱或內容性質簡述

測驗工具(含質性與量性) 0

課程/模組 0

電腦及網路系統或工具 0

教材 0

舉辦之活動/競賽 0

研討會/工作坊 0

電子報、網站 0

科
教
處
計
畫
加
填
項
目 計畫成果推廣之參與（閱聽）人數 0

國科會補助專題研究計畫成果報告自評表

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）、是否適

合在學術期刊發表或申請專利、主要發現或其他有關價值等，作一綜合評估。

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估

■達成目標

□未達成目標（請說明，以 100字為限）

□實驗失敗

□因故實驗中斷

□其他原因

說明：

2. 研究成果在學術期刊發表或申請專利等情形：

論文：■已發表 □未發表之文稿 □撰寫中 □無

專利：□已獲得 □申請中 ■無

技轉：□已技轉 □洽談中 ■無

其他：（以 100字為限）

3. 請依學術成就、技術創新、社會影響等方面，評估研究成果之學術或應用價
值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）（以

500字為限）

在本計畫中，我們提出並實作完成了一系列嵌入式多核心系統之耗電評估工具，包含

SEProf 一個以耗電模型設計之軟體耗電評估工具，另一個工具為 REALProf:是一種以硬體

協助且適用於多核心嵌入式系統的效能與耗能評估工具。所提之工具提供程式執行時期硬

體事件的監控，並藉此推算出元件耗能，其可避免軟體取樣(Sampling)所造成的額外負

擔，以便能呈現系統原始的行為與特性。實驗結果顯示，所提之方法可於 100 MHz 的四核

心(LEON 3)仿真環境下進行，精度可達微秒以下，其兼具快速、精細且真實的特性將有助

於複雜多核心嵌入式系統設計時期之細部評估與分析。此方面的研究成果已經透過 Open

Foundry 釋出本計畫之成果供學術界與業界使用，同時相關研究成果，已有多篇論文之發

表與投稿。

