B'/I fm

R FLA 6%

o S
S B

CELA)

: NSC 98-2220-E-009-013-

© 982087 01l p 2992097 30p
PRz REAFFERL RS ()

DL
R R TN T
AL Ty 4 - iFes@ AR o R g
By y 4 -z A g o sk
Tﬁ_lfr,pmﬂl_,;{,:pé;y_kﬁ ;;;-‘,1»\5{\;

PoE o R 100# 01 % 03P




Table of Contents

TADIE OF CONTENTS ...ttt bbbttt bbb bbb h e e st e b e bt bt bbbt e b e et e e et e b e nbe bt e I
BB B e I
AADSTIACT ...ttt bbb bR bR bR R Rt R e et bbbt bttt ne s I
O 1 oo [3Tox £ o] T T USSP U T TP UPPRRPPP 1
2. Design and Implementation Of SEPTOT ... 2
2.1.  Power Table Association and Power Configuration Setting ...........ccccoovririeiiiiieniieeseeeeeee 4

2.2, ENEIQY ESTIMALION.......oiiiiiiitiiiii ettt bbbt bt ennes 5

2.3, DAtA SEIUCTUIES ...ttt b et b e bt b et e b e e n e nre s 8

3. Case Study: ARMIL IMPCOIE PrOCESSOL .......oiuiiuiitiitiriiateaieeieeseesesse sttt st sse e s bbb bbbt sbe e ane e 10
3.1 EXperimental ENVIFONMENT .......oiiiiiiieie ittt bbb 10

3.2, EXPEriMENtal RESUILS ........oiiiiiiiiieieee et b ettt 10
3.2 1. VS EXPEITMENT. ..ottt bbbttt bbbttt 11

3.2.2. DVS EXPEITMENT ..ottt ettt bbbttt 13

A, CONCIUSIONS. ...ttt bt bbbt h bt h oo b e bt bbb e bt e s et e e et et e bt b e b e e e e s 16
R O BNICES ...ttt bbb bR R R bR R bR R Rt e bbbt b e bt n e s e e e 16
PrOJECE SEIT-ASSESSIMENT. .......eeitiitiitieeet ettt b e bbbt b bt s e e e b e b e bbbt et e e e e e e e 17



% &

TERLFHR G p Ak P AR é* Bhor I B BB B AT A2 § P W g
MR N EMALR B A A o ARG B P O N RS PRS2 1R S L P 22 kg R
oA AL R AT o RPN A P B K i AR Y T I T Ak AL R ST ae g R 6 B2
)3 ekt B4 o o pd ’F'u‘%ﬁ FOR S B g g ot B R 38 o FY A

4?%mi£gm¢¢a?gﬁw?”ﬁﬁdﬁ¥ixﬁﬁ#ﬁﬁﬁﬁ“%ﬁﬁw%iﬁ@u£lﬁ
FIRRES G P o N R AR P R 0 FATIE S Pou o 30k B W ot ek g2 e
BRI A AR R B e -

AP RARRIA ERERAE S Poe o SR E P 2 R SRR AT BRI RS FOR 2
FPoEAPERNDRERS - EUAH R D @S e o S ki B R R 1L
REALprof » % 3 i 42 5% 3t ”f“””"i BER BEMRE A BN T
(Sampling)#ri & egg oh f > M B AR F i B Ao &Y > LR T F B
FHZ S AIFTEREN - ERFIFOKMALNITE 1L SEProf ) TR R FEHHMA A S
B RPER  X T 0 gk Sebfe T SR 38 B4R 5RR 0 P B SEProf (v ARMLL MPCore
FILEE o P A e Linux 2619 R AR EET ST LA ERHERL KRR

Abstract

Multi-core embedded systems and system on chips (SoCs) which achieve a higher performance and a

better cost- and energy-efficiency than single-core embedded systems become more and more popular recently.

Unfortunately, conventional approaches for optimizing performance and energy consumption of multi-core
SoCs rely on fine tuning after the hardware (H/W) and software (S/W) are completely developed. It is very
difficult for system and software engineers to identify potential H/W and S/W performance and power
consumption problems while the system is being developed.

In this project, performance and power consumption profiling and monitoring hardware and software
extensions and tools for multi-core embedded systems and SoCs are proposed. The tools closely work
together with the proposed performance and energy profiling hardware and software components which
provide the performance and power consumption monitoring and profiling of multi-core SoCs, and facilitate
system and software designers to diagnose performance and power consumption problems and bottlenecks
while the system is being developed. In the first year, we propose and realize a hardware-assisted performance
and energy evaluation tool, called REALprof, for a multi-core embedded system. It provides hardware
monitor for runtime programs, and uses these monitor information to estimate the system energy consumption
without introducing extra software sampling overhead. In the second year, since power management has
become common in embedded systems, this project presents a high-level energy profiling tool, called SEProf,
that estimates the energy consumption of an multi-core embedded system running multi-thread software and
an operating system (OS) that supports power management functions. This project implements the proposed
SEProf in Linux 2.6.19 and evaluates its performance on an ARM11 MPCore processor. Experimental results
demonstrate that the proposed tool can provide accurate energy profiling results with a low profiling
overhead.

-



1. Introduction

Energy efficiency has become one of the most important issues in the design of multi-core embedded
systems, especially for battery-operated devices such as mobile phones. To evaluate the energy efficiency of
an embedded system, accurate energy profiling tools are required. Previous studies on the energy profiling of
embedded software adopt measurement-based and model-based approaches. Measurement-based approaches,
such as PowerScope [3], directly measure the power consumption of an embedded system using an
oscilloscope or a digital multi-meter, and profiling software runs on the target system to monitor system
activities. This approach analyzes the energy consumption of the embedded software by combining the
measurement data and software logs. However, the sampling rate of the profiling software restricts the
analysis granularity of a measurement-based tool, and it is expensive to set up a high-resolution measurement
environment. Synchronizing the measurement data on the meter and the system activities on the target is also
a challenge because the metering and profiling software run on different machines.

The other approach to profile the energy consumption of an embedded system is based on power models.
Model-based tools estimate the energy consumption of embedded systems by monitoring the occurrences of
representative events during system execution, along with the energy weights of these events. Researchers
have proposed a number of power models at the architecture level, instruction level, basic block level, and
function level. Wattch [4] adopted an architecture-level power model that was integrated into the
SimpleScalar simulator [21]. Wattch modeled the power consumption of the primary units of an embedded
processor, e.g., functional units and caches, and monitored the number of accesses to these units to estimate
the energy consumption of embedded software [5]. Unlike architecture-level power models, instruction-level
models [6][7][8][9] divide a processor’s instruction set into a number of classes according to the average
power consumption of each instruction execution. These tools can determine the energy consumption
information of a program by accumulating the number of executed instructions for each class. Tan et al.
proposed EMSIM [10][11], based on the instruction-level power model presented in [7] to further support
per-task and function-level energy estimation in an embedded Linux environment.

Although architecture-level and instruction-level model approaches can achieve accurate results, they
require a lot of time to collect the necessary information for energy estimation. This is particularly true for
embedded systems running complicated software such as multi-thread programs and multi-tasking operating
systems (OSs). System designers may want to know the power consumption of the embedded system quickly
so that they can adjust power management strategies to achieve better energy efficiency. As a result,
researchers have proposed several high-level energy profiling tools that compromise between the profiling
accuracy and the profiling overhead. High-level tools may estimate the power consumption of an embedded
system at the basic block level [6][12] and function level [13][14]. The power consumption of basic blocks
and functions can be determined by direct power measurement or low level power models. High-level energy
profiling tools run directly on the target platform along with the embedded software, and collect critical
execution information to estimate the power consumption of all running software. Tiwari et al. [6] built a base
energy cost for basic blocks of the target program. The energy consumption of the program can be evaluated
by accumulating the number of times that each basic block is executed multiplied by its base energy cost.
Another basic-block power analysis was proposed in [12]. This approach groups consecutive basic blocks in
the target program together, and derives the energy weight of each group using regression analysis. Qu et al.
[13] presented a function-level power analysis. In this approach, a database, or power data bank, stores the

1



average power and execution times of library functions and basic instructions. This method evaluates the
energy consumption of a program through the number of times that each function is invoked multiplied by its
average power and execution time recorded in the power data bank. Another function-level power analysis
tool proposed in [14] is a software energy estimation tool for heterogeneous dual-core processor. This
function-level power model measures the average power consumption of different digital signal processing
(DSP) algorithms in advance and stores the data in an energy library. The energy consumption of DSP
algorithms can be calculated by multiplying the execution time of each DSP algorithm by its average power in
the energy library.

Unfortunately, these high-level tools do not consider the power management functions usually supported
by modern embedded processors. Embedded processors, and especially those designed for battery-operated
devices, are sensitive to power consumption, and provide sophisticated operating modes, voltages, and
frequencies [1][2][18]. Operating systems (OSs) can use the power management features of the embedded
processors to achieve dynamic power management functions, optimizing the energy efficiency of the
embedded system. Without considering the operating modes, voltages, and frequencies of an embedded
processor and the dynamic power management functions of an OS, software energy profiling results become
inaccurate. As a result, system designers are limited in their ability to evaluate the power management
strategies on the embedded system.

This project presents a high-level energy-profiling tool called SEProf. This tool supports multi-thread
software and OS enabling dynamic power management functions such as different idle mode, suspend mode,
and dynamic voltage and frequency scaling, etc. The proposed tool supports different granularities of energy
profiling on embedded software, allowing designers to control the tradeoff between profiling overhead and
accuracy. The proposed SEProf was implemented in Linux 2.6.19 to evaluate its accuracy and efficiency.
Experimental results show that the average energy estimation error of using SEProf is less than 4%, and the
overhead introduced by SEProf is less than 1%.

The rest of this report is organized as follows. Section 2 descirbes the design and implementation of the
proposed tool, SEProf. Section 3 presents a case study based on an ARM11 MPCore processor and
experimental results. Section 4 provides some conclusions.

2. Design and Implementation of SEProf

Fig. 1 provides an overview of the proposed energy-profiling tool, SEProf. Before profiling embedded
software, SEProf develops a power table database for the target embedded processor in Step @. This power
table database is a collection of power tables that SEProf uses to estimate the power consumption of the
processor, and can be built via measurement-based tools or lower level model-based tools. A power table
records the average power consumption required for the processor to execute a code block. A code block
represents a sequence of instructions, such as a basic block, a function, or a sequence of basic blocks in OS or
applications. The granularity of code blocks that influences the profiling accuracy and the overhead is a
configurable parameter in SEProf. Fine-grain power tables generally achieve better accuracy, but suffer from
greater profiling overhead than coarse-grain power tables. However, experimental results show that for RISC
processors it is possible to derive accurate energy estimation results using the proper design of coarse-grain
power tables.



Since the goal of SEProf is to estimate the energy consumption of a processor enabling power
management functions, a power table can consist of more than one power consumption value. Each value
represents the average power consumption of a code block executed under a specific CPU power
configuration. A CPU power configuration represents a combination of a specific operating power mode,
voltage, and frequency of the processor. Each core in a multi-core processor may have its own power
configuraion. Once the embedded OS activates the dynamic power management functions, it changes CPU
power configuration, and SEProf ensures that the proper power consumption value is used for each processor
core.

After establishing the power table database in Step @, SEProf inserts codes to user-level embedded
software in Step @ according to the desired granularity of code blocks. For example, if a user desires
granularity at the function level, the user must build power tables based on each function. SEProf then inserts
codes in the user-level software to associate the power tables before entering the corresponding functions, and
to disassociate them when leaving these functions. The instrumented codes tell SEProf which power table is
associated with the running code block. The instrumentation in the OS kernel is similar to user-level software,
and the OS kernel code blocks must associate kernel power tables. Therefore, Step @’ in Fig. 1 shows that the
OS kernel is patched. After Step ® and Step @, Step ©® and Step ©’ compile the OS kernel and the
user-level programs. In Step @, SEProf runs the program on the target embedded system, and stores the
estimated energy consumption results in the kernel space. Users can access the results through SEProf
application programming interfaces (APIs) in Step ©.

l O Analyze the ‘ ‘

power consumption
— > ofcode blocks and +———

establish power table

Source codes of

Source codes of
user-level

OS kernel

programs/libraries database
® User-level Associate Associate
programs/libraries *powertables _____ Power table powertables» @’ SEProf kernel
Binary files Kernlfel image > i :
© Compile and link l i © Colin:lpllle and

® Execute OSfuser- |,/ Refer power tables
level programs

© Energy
profiling report

Fig. 1. Overview of SEProf and its operating steps.

3



2.1. Power Table Association and Power Configuration Setting

User-level programs and OS kernel can associate and disassociate power tables through SEProf APIs upon
entering and leaving code blocks. The association and disassociation operations must be coupled. If a power
table is associated, the power table will be used to estimate the average power consumption of the executing
software. On the contrary, if a power table is disassociated, the average power consumption is estimated based
on the power table, which was previously associated. Fig. 2 shows an example of using power tables in
SEProf. Assume that function-level power tables have been built, and the embedded processor supports three
different CPU power configurations. For the ease of illustration, this example omits several detailed
procedures before entering the main () function of the program. In Step @, the CPU operates at the
maximum speed in power configuration 3, and executes kernel codes to fork a thread, called T. SEProf
initiates internal data structures for energy profiling at this stage, and associates the power tables of thread T’s
parent with thread T. In Step @, thread T enters its main function, and SEProf associates thread T with the
power table of main (), Pmain(3). Pmain(3) denotes the CPU power consumption of running the main ()
function under CPU power configuration 3. This power table is used to estimate the power consumption in the
following operations until thread T invokes a system call, say A (), in Step ©. SEProf then associates the
power table of A () and refers to the power table of A () . If the OS detects the CPU is underutilized in Step @,
the OS changes the CPU power configuration from 3 to 1 to reduce energy consumption. SEProf detects this
event, and changes the referred power consumption value from Pa(3) to Pa(1) at this stage. In Step ©, thread
T finishes the system call, and returns to the user space. The power table of A () is disassociated so that the
power table of main () is used again. In Step @, thread T enters a user-level function, say B () . As in Step ©,
the power table of B () and the CPU power configuration 1, i.e. Pg(1), is used. In Step @ and Step ©, the
thread leaves the functions B ()and main (), respectively. When thread T is terminated, SEProf keeps its
energy consumption profile in the kernel space, and users can access the results through SEProf APIs.



PC  Power
1 PA)
; @ Thread is created 2 PA@ lF;r;\;verTable of
‘ 3 PG
i . ® Enter system call () — A®) PC  Power
4 | 1 Pl
3 ! - @ Change CPU voltage and ) B(z)
| § : frequency to power config. 1 Pe(2)
S i i i 3 Pe(3d)
a ‘ . @ Enter B () function
5 P . @ Leave main () function
§ - _! : CPU runs in
© : ' : ~ usermode
o _—_ :.m...‘....-....,.m.‘.‘. CPU runsin
a | Power config; is 3 ; ; ~  kernel mode
time

' @ Leave B () function —

3 ) ' @ Leave system call 2 ()
* @ Enter main () function —

PC  Power
1 Pmain(l) <
2 Pmain(z)

3 Pmain(3) 47

PC: power configuration

Fig. 2. An example of using power tables and power configurations in SEProf.

2.2. Energy Estimation

Fig. 3 presents a flowchart of the proposed SEProf in calculating the energy consumption of a thread.
When a thread, named T, is created, SEProf initiates the energy profiling data structures for the thread shown
as Event @ in Fig. 3 occurs. The initialization procedure resets Er, the accumulated energy consumption of
thread T. The power configuration of the processor used by thread T, PCr, is set to the current power
configuration of the processor, PC,r. The timer for measuring the execution time (which has not been used to
estimate the energy consumption of thread T), Timerry, is set to zero and paused. The power table stack of
thread T, PTStacky, which holds all associated power tables of thread T, is copied from that of thread T’s
parent, and the latest associated power table of thread T, PTy, is pushed to the stack PTStackr. When thread T
is scheduled (Event @), SEProf checks whether the CPU power configuration has been modified or not by
comparing the thread T’s associated power configuration PCy with the current one PC,. If the power
configuration is the same, SEProf resumes Timert to measure the execution time of thread T. However, if the
OS or other threads change the power configuration, SEProf accumulates the energy consumption of thread T
during the execution period measured by Timert using Er= Et+ Timerr X PT{[PC+], where PT+[PC+] looks
up the average power consumption of the processor operating at power configuration PCy in power table PTr.
After accumulating the energy consumption, SEProf updates the power configuration PC+ to the current one
PCcur, and resets Timery to accumulate the next execution period of thread T.



Four other events also trigger SEProf to accumulate the energy consumption of thread T. The first one is
when thread T changes the CPU power configuration, PC,,, indicated by Event ©. The second one is when
thread T terminates (Event @). The third one is when Er is queried by thread T or other threads (Event ©),
and the last one is when thread T associates or disassociates a power table (Event ®). If thread T associates a
new power table in Event @, the new power table becomes PTy, and it is pushed into PTStackr after
performing the energy estimation procedure. Conversely, if thread T disassociates a power table in Event O,
the disassociating power table is used to estimate the energy consumption, and then popped up from PTStacks.
The power table that appears on the top of the stack after removing the dissociating one becomes PT+. When
thread T is scheduled out, as shown in Event @, SEProf pauses Timery to stop counting the execution time of
thread T.

In summary, SEProf accumulates the energy consumption of a thread when one of the following four
events occurs.

(1) Athread associates or disassociates a power table. When a thread associates or disassociates a power table,
it implies a change in the reference average power consumption of the embedded processor. Therefore,
SEProf must calculate the energy consumption of the accumulated execution time and update the power
table.

(2) The power configuration of the embedded processor is changed. When the CPU power configuration of an
embedded processor changes, the power consumption of the processor also changes. Hence, SEProf must
calculate the energy consumption of the accumulated execution time using the associated power
configuration of the thread.

(3) The total energy consumption of a thread is queried. If a user queries the total energy consumption of a
thread, the energy consumption of the thread must be updated before returning the energy profiling results
to the user.

(4) Athread ends. When a thread terminates, the energy consumption of the thread during the last execution
period is added to the total energy consumption of the thread. This is the last time that SEProf accumulates
the energy consumption of the thread.

Since the OS may execute ISRs that are not a part of thread T when thread T is scheduled, SEProf could
separate the energy consumption of the thread and that of ISRs by pausing Timerr when an interrupt occurs
(Event @), and resuming the timer when CPU returns from an ISR (Event ®). However, the experiments in
this report did not separate these events because the runtime of ISRs is negligible.



1 :
: Variables
Events ! SEProf Actions | '
1 ! E The accumulated energy
1 Initiate energy profiling : T consumption of thread T
: Er =0 ! PT The latest associated
1 PCr  =PCey : v power table of thread T

© Thread T is created Reset and pause Timery

1
1
1
1
1
1
1
1
1
1 | PTStack; : copy from parent
1
1
1
1
1
1
1
1
1

Astack that holds all
PTStack |associated power tables of

thread’s power table stack

PT; = the top element of PTStacky thread T
The associated power

1
1
1
1
1
1
Resume Timery —H 1 |PCy configuration of the
‘ processor used by thread T

True The current power

PCeur configuration of the
processor

The timer for measuring

the execution time (which
Accumulate thread energy, { |Timer; |has not been used to
and update PCy estimate the energy

AccumulateEnergy m consumption of thread T)

PC;y =PCqy 1

Resume Timery :

1

1

® Thread T is scheduled in
or returns froman ISR in the  |+—1»
context of thread T

False

© Thread T changes the power
configuration of the processor

AccumulateEnergy:

@ Thread T terminates _ )
v Accumulate thread energy | ! Er = Er+ Timerr x PT{[PCy]
! AccumulateEnergy Reset Timery

© E; is queried

push/pop the power table in

1
1
Accumulate thread energy, :
1
1
1

|
|
b
b
: |
@ Thread T associates/ L PTStackr, and update PTy
disassociates a power table 1 : AccumulateEnergy
P
b
b
L
|
T

PTStacky : pushes/pops a power

table in PTStacky

@ Thread T is scheduled out PTy = the top element of PTStacky

1

1

1

1

1

or an interrupt occurs while 1
executing thread T _:—l—' Pause Timery —:

1

1

Fig. 3. Energy estimation flowchart of SEProf.

Fig. 4 shows an example of energy estimation using SEProf. When a thread, say T, is created, the data
structures of the thread energy profiling are initiated in Step 1. In Step 2, thread T is scheduled and Timert
starts to accumulate the execution time of the thread. In Step 3, thread T enters code block 1 and associates
with the power table PT;. Since the power table has changed, SEProf calculates the energy consumption of
thread T during the period from Step 2 to Step 3, resets Timerr, pushes PT; into PTStackr, and sets PTt to PT;.
In Step 4, thread T enters code block 2, and associates with the power table PT,. SEProf accumulates the
energy consumption during the period from Step 3 to Step 4, pushes PT, into PTStackr, and sets PTt to PT».
In Step 5, thread T changes the CPU power configuration from 2 to 1. SEProf accumulates the energy
consumption of thread T, and sets PCy to PC;. In Step 6, thread T leaves code block 2, and returns to code
block 1. SEProf accumulates the energy consumption during the period from Step 5 to Step 6, pops PT, from
PTStackr, and sets PTr to the power table of code block 1. In Step 7, thread T is scheduled out so that the
runtime measurement is paused. In Step 8, thread T is scheduled again. SEProf resumes Timery. In Step 9,
thread T enters code block 3. SEProf accumulates the energy consumption during the period from Step 6 to
Step 7 and Step 8 to Step 9. Afterward, SEProf pushes PT3 into PTStackr, and sets PT+ to PT3. Because an
interrupt occurs in Step 10, the execution time measurement is paused until returning from the ISR in Step 11.
Finally, in Step 12, thread T completes the execution of code block 3, and returns to code block 1. SEProf
accumulates the energy consumption during the period from Step 9 to Step 10 and Step 11 to Step 12.

7



1. Initiate energy profiling 4. Enter code block 2 9. Enter code block 3
E;=0 AccumulateEnergy AccumulateEnergy
PC=PC, pushes PT,into PTStack; pushes PT; into PTStack;
Reset and pause Timery PT=PT, PT{=PT,

PTStack;: copy from parent thread’s
power table stack

PT =the top element of PTStack; :| 5. change power config. to 1 ACCUF_nuIateEpergy:
: | AccumulateEnergy i Ey =Er+Timerrx PT7[PCy]
o i| pc.=PC : Reset Timery
i| 2. Schedule in T i
S| | Resume Timery | .
E‘ ‘ ; 7.Schedule out | | 11. ISR returns
2 D p— § Pause Timery ‘; Resume Timery
Sle==== — ; : -
g Power config. ; i X
2 |is2 3 [ \ ) ) —_—
& | — s | |
; 3 ‘ - Time
3. Enter code block 1 ; 8. Schedule in ;
AccumulateEnergy | Resume Timer; 12. Leave code block 3
pushes PT, into PTStacky ; 3 AccumulateEnergy
PT-=PT . : pops PT; from PTStacky
1 6. Leave code block 2 | PT,=PT,

AccumulateEnergy
pops PT, from PTStacky

PT=PT,; 10. An interrupt occurs
Pause Timery

Fig. 4. An example of energy estimation using SEProf.

2.3. Data Structures

Seprof maintains three primary data structures in kernel space to support thread-based energy estimation
of embedded processors enabling power management functions, as Fig. 5 shows. The following section
describes these data structures:

(1) User-level program power table database. A user-level program power table database consists of the power
tables of the program that are used by all threads running the same program/library. All user-level power
table databases are copied into the kernel space when a thread starts running, and are referenced through
indexes.

(2) A kernel power table database. A kernel power table database contains all kernel-level power tables. It is
built in the OS kernel and shared among all threads on the system.

(3) A per-thread SEProf data structure in the kernel space. This data structure holds the latest associated
power table, a timer variable, a power table stack, an associated power configuration, and an accumulated
energy consumption of the thread.

Fig. 5 shows how SEProf maintains the power table stack. When a thread enters a new code block where a
power table is associated, it pushes the associated power table into its power table stack. On the other hand,
when the thread leaves the code block where the power table is disassociated, the power table is popped out
from the stack. Fig. 5 shows that when the thread enters code block i, j, and k, the power tables of the three
code blocks are linked in the power table stack.



Power table associations Power table disassociations

Current Position
Codeblock ° i i k ! ] ] '
Thread )
User Space L Execution order
Kemel Space i
Task KSEProf per-thread\ ‘
data structure
structure The latest associated
power table (PT)

Runtime for energy
estimation (Timer)

Accumulated thread
Energy (E) 4 v v
Power Table Stack | Power_ e Powe( < POwer
(PTStack) Tablei Tablej Tablek
Associated power
configuration (PC) Per-user program

power table database
Power table database  —

SEProf global

data structure Kernel
Kernel power table |~ ~ POWer table
database database
4

Fig. 5. Data structures maintained by SEProf



3. Case Study: ARM11 MPCore Processor

To verify the design of SEPorf and evaluate its accuracy, SEProf was implemented in Linux on an ARM11
MPCore processor [15]. Section 3.1 and 3.2 describe the experimental environment and results .

3.1. Experimental Environment

The experimental platform was a Core Tile, CT11MPCore [16], with an ARM11 MPCore test chip stacked
on the top of a RealView Emulation Baseboard [17]. This platform provided both voltage and frequency
scaling functions and hardware support for measuring the voltage and current consumed by the processor.
This platform made it possible to build a power table database and verify the estimation error easily. The
voltage level of the ARM11 MPCore processor could be changed by writing values to a digital to analog
converter (DAC) on the CT11MPCore, and the voltage and current of the processor were measured and
monitored in runtime by accessing analog to digital converter (ADC) registers. The default voltage supplied to
the ARM11 MPCore processor was 1.2 V, with an adjustment range of +0.25V. The clock rate of the
processor could also be changed by configuring the phase-locked loop (PLL) on the CT11MPCore. In these
experiments, the DAC and PLL were used to scale the voltage and the frequency of the ARM11 MPCore
processor, respectively, and the ADC was used to measure the processor’s power consumption.A 24 MHz
clock on the Emulation Baseboard was used for time measurement. The time resolution is 41.7 ns.

SEProf was integrated into Linux kernel 2.6.19 with a modified OProfile [19] to build power table
databases. OProfile is a system-wide profiler for Linux systems that uses statistical sampling. OProfile can be
used to profile Linux kernels, shared libraries, and applications. Originally, OProfile samples the context and
program counter (PC) value of the running task on each sampling interrupt, but the experiments extended it to
sample the power consumption of the processor as well. The sampling rate of OProfile was set to 1 kHz,
assuming that a power sample could represent the average power consumption during a sampling period.

Four testing programs were used throughout the experiment. The first three were CG, FT, and IS
applications from the OpenMP Implementation of NAS Parallel Benchmarks (NPB) (Version 3.3) [20]. CG
computes an approximation to the smallest eigenvalue of a matrix using a conjugate gradient method. FT
performs the time integration of a three-dimensional partial differential equation using the Fast Fourier
Transform. IS sorts integers using the bucket sort. The last testing program, FileRW, is an I/O intensive
application written by the authors. It is a simple application that writes and reads a 30MB file through a
network file system (NFS).

3.2. Experimental Results

This report includes two separate experiments because the ARM11 MPCore cannot dynamically change
the frequency of the processor. The first one is a voltage and frequency scaling (VFS) experiment, and the
second one is a dynamic voltage scaling (DVS) experiment. In the VFS experiment, both the voltage and the
frequency of the ARM11 MPCore processor were scaled at the beginning of the experiment and remained the
same throughout the experiment. In the DVS experiment, the voltage of the ARM11 MPCore processor was
scaled dynamically and periodically.

10



3.2.1. VFS Experiment

The VFS experiment selected five power configurations for the ARM11 MPCore processor, and
configured the processor to operate under one of five power configurations during the experiment. As Table 1
shows, each power configuration represents a combination of voltage and frequency levels for the processor.
In the power analysis stage, only one MP11 CPU was active during the experiment to map the measured
power consumption back to the embedded software. The remaining three CPUs were not initialized. After
analyzing the power consumption of the embedded software using the patched OProfile, the seven power
table databases shown in

Table 2 were built for six applications and the Linux kernel. Each power table database contained only one
power table, and each power table consisted of five average power consumptions. The power table of each
application was associated with SEProf at the beginning of the application, and disassociated at the end. All
six applications shared the same kernel power table, vmlinux. In this setup, the kernel power table is
associated when a thread calls a system call, and disassociated when the thread returns from the system call. It
is also associated with threads that have no dedicate power table databases.

Table 3 depicts the energy estimation results of the testing programs generated by SEProf. The energy and
time spent on executing application itself and calling system calls were separated to better examine the
accuracy of the power estimation results. Table 3 shows that, in many cases, the average power consumption
of the application was slightly lower than that of the average power consumption in

Table 2. This is because the parent threads of the testing programs have no dedicated power table
databases, so they associate with the kernel power table, vmlinux, which has the lowest average power. When
the threads running the testing programs are forked, they associate with the kernel power table copied from
their parent threads until they associate with their own power tables.

Table 1. Power configurations of the ARM11 MPCore processor used in the VFS experiment.

Power Configuration|Voltage (V)|Frequency (MHz)
1 0.95 140
2 1.01 168
3 1.08 196
4 1.14 224
5 1.2 252

Table 2. Power tables used in the VFS experiment.

Power Average Power (mW)
Configuration | busybox cg.W ft. W is.W FileRW oprofiled vmlinux
1 260 249 258 246 246 264 236
2 352 335 349 334 330 359 320
3 460 438 458 438 431 470 419
4 589 559 586 560 565 602 537
5 738 696 731 701 692 753 668

11



Table 3. Energy estimation results of the testing programs generated by SEProf.

Power . Average Power - I_Energy Decompositions
Configuration Application Name (MW) Application System Call/Kernel
Average Power (mW) Average Power (mW)
cg.W 249 249 236
1 ft. W 258 258 236
is.W 246 246 236
FileRW 236 237 236
cg.W 335 335 320
5 ft. W 349 349 320
is.W 334 334 320
FileRW 320 321 320
cg.W 438 438 419
3 ft. W 458 458 419
is.W 438 438 419
FileRW 419 421 419
cg.W 559 559 537
4 ft.W 586 586 537
is.W 560 560 537
FileRW 537 540 537
cg.W 696 696 668
5 ft. W 731 731 668
is.W 701 701 668
FileRW 668 672 668

Table 4 verifies the accuracy of the power estimation results for VFS experiments. OProfile was modified
to sample the measured power of the ARM11 MPCore and compare it with the estimated power provided by
SEProf for each sampling interrupt. Table 4 shows the mean absolute power estimation error of the four
testing programs and an overall period. The overall period began when the init process executed command
scripts for system startup, and ended when all testing programs terminated. It represents the execution of
Linux kernel and applications including the testing programs and the other programs without dedicated power
databases. These results show that the power estimation error using SEProf was quite low. In most cases, the
average estimation error was less than 2% and the standard deviation of the estimation error was less than 2%.

12




Table 4. Power estimation error in the VFS experiment.

Power

Application Name /

Number of Samples

Average Absolute

Standard Deviation

Configuration Overall (Ims/sample) Estimation Error
cg.W 227,437 0.54% 1.10%
ft. W 70,929 1.17% 1.42%
1 is.W 34,767 0.82% 0.74%
FileRW 16,935 1.96% 1.40%
Overall 392,000 0.87% 1.38%
cg.W 203,952 0.50% 1.13%
ft. W 61,413 1.30% 1.52%
2 is.W 30,003 0.75% 0.72%
FileRW 15,836 1.91% 1.40%
Overall 346,787 0.87% 1.46%
cg.W 188,774 0.51% 1.10%
ft. W 54,521 1.55% 1.63%
3 is.W 26,756 0.75% 0.68%
FileRW 14,838 1.67% 1.35%
Overall 315,333 0.92% 1.48%
cg.W 176,394 0.50% 1.05%
ft.W 49,043 1.70% 1.76%
4 is.W 24,308 0.79% 0.61%
FileRW 14,004 1.60% 1.18%
Overall 291,048 0.95% 1.52%
cg.W 167,235 0.59% 0.95%
ft.W 43,609 1.68% 1.66%
5 is.W 22,380 0.78% 0.67%
FileRW 13,467 1.35% 1.10%
Overall 272,056 0.99% 1.47%

3.2.2. DVS Experiment

As in the VFS experiment, the DVS experiment selected five power configurations for the ARM11
MPCore processor, and activated only one MP11 CPU. However, the clock frequency of the processor
operating at each power configuration was the same as in Table 5, and the voltage of the processor varied at
runtime. Seven power tables were built for the applications and the Linux kernel, respectively, as Table 6

shows.

Table 5. Power configurations of the ARM11 MPCore processor used in the DVS experiment.

Power Configuration|Voltage (V)|Frequency (MHZz)
1 0.95 140
2 1.01 140
3 1.08 140
4 1.14 140
5 1.2 140

13



Table 6. Power tables used in the DVS experiment.

Power Average Power (UW)
Configuration | busybox cg.W ft. W is.W FileRW oprofiled vmlinux
1 260 249 258 246 246 264 236
2 298 284 295 282 282 302 271
3 339 322 336 321 330 344 309
4 382 362 378 363 370 388 349
5 427 403 422 406 408 432 389

In the DVS experiment, the voltage of the processor was periodically scaled at three different time
intervals: 100 ms, 1 s, and 10 s. The power configuration of the processor was increased by one at each time
interval. If the power configuration of the processor reached five, it was set to one in the next time interval.
Fig. 6 shows an example of DVS and its power consumption. In this example, two lines show the measured
and the estimated power consumption during the execution of the IS application. Because the DVS interval
was set to 100 ms in this example, the power consumption of the processor varied every 100 ms. Fig. 6 shows
that the estimated power consumption was very close to the measured one. The estimated power consumption
occasionally drops, but the measured one does not. This is because that the thread that executed the IS
application was scheduled out during that period, and another thread which associated with a different power
table was scheduled in. If the newly scheduled thread had a lower average power consumption, then a drop
appears in the figure. Since the measured power consumption read from the ADC is updated every 5 ms, the
drop of the real power consumption cannot be detected if the newly scheduled thread is scheduled out within
the ADC update period.

450000

NP 0 A B
v L LA L A ]
B o

200000

Power (uwW)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

Time (ms)

=== Measured Power
450000

O 0 O O P PR
o L L A P L L LR L
BRI 8 o o o ol

200000

Power (uW)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

Time (ms)

== Estimated Power

Fig. 6. The measured and the estimated power consumption during the execution of is.W.

14




Table 7 presents the power estimation error in the DVS experiment. The average absolute estimation error
and the standard deviation of the error increased as the DVS interval decreased. This is because the power
consumption of the processor does not change immediately after a new value is written to the DAC, and the
power consumption of the processor after changing voltages is unable to be read from the ADC immediately.
Fig. 7 illustrates this using seven power samples taken from the ADC during the period that the voltage level
of the processor is scaling. The arrow in Fig. 7 indicates the time that the new voltage level is written to the
DAC. SEProf updates the power configuration of the processor at this point, but the power consumption of the
processor does not change immediately. Instead, it becomes stable, and can be read form ADC 10 ms later.
Consequently, the power consumption difference between the measured values and the estimated values
during this period increases the average estimation error and the standard deviation of the error.

Table 7. Power estimation error in DVS experiment.

DVS Interval Application Name / | Number of Samples Ave_rage_Absqute Standard Deviation
Overall (Ims/sample) Estimation Error
cg.W 227,888 2.47% 4.12%
ft.W 71,085 2.48% 4.40%
100 ms is.W 34,674 2.26% 4.41%
FileRW 16,743 3.23% 4.36%
Overall 394,869 2.59% 4.30%
cg.W 228,028 0.90% 1.73%
ft.W 70,887 1.30% 1.87%
1s is.W 34,688 1.01% 1.48%
FileRW 17,027 2.04% 2.07%
Overall 393,616 1.15% 1.90%
cg.W 228,118 0.70% 1.17%
ft W 70,943 1.21% 1.40%
10s is.W 34,986 0.81% 0.93%
FileRW 16,767 1.67% 1.13%
Overall 393,227 0.97% 1.38%
400,000
4 L 4
390,000 ®
380,000
:
% 370,000 ry
* 360,000
350,000 l
L 2 o
340,000
0 5,000 10,000 15,000 20,000 25,000 30,000
Time (us)

Fig. 7. Power samples during DVS.

The last experiment measured the performance overhead introduced by SEProf in the DVS experiment.
For all cases, SEProf introduced less than 1% overhead over an unmodified Linux kernel, even when the DVS
interval was 100 ms.

15




4. Conclusions

This project proposes and implements a high-level energy profiling tool called SEProf. SEProf estimates
the energy consumption of each thread by maintaining a power table stack for each thread and tracking the
power configurations of embedded processors in runtime. This makes SEProf suitable for energy estimation
on multi-core embedded systems with power management functions. The experiments in this report
implemented SEProf in Linux kernel 2.6.19, and conducted a number of experiments on an ARM11 MPCore
processor. VFS results show that the average power estimation error using SEProf was within 2% and the
standard deviation of the estimation error was within 2%. DVS results indicate that the average power
estimation error was within 4%, and the standard deviation of the estimation error was within 5% when the
DVS interval was 100 ms. The performance overhead introduced by SEProf in DVS experiment was less than
1%.

References

[1] K. Choi, R. Soma, and M. Pedram, "Fine-Grained Dynamic Voltage and Frequency Scaling for Precise
Energy and Performance Tradeoff Based on the Ratio of Off-Chip Access to On-Chip Computation
Times," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, NO.
1, January 2005.

[2] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi, "An Analysis of Efficient Multi-Core
Global Power Management Policies: Maximizing Performance for a Given Power Budget, " the 39th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2006.

[3] J. Flinn and M. Satyanarayanan, "PowerScope: A Tool for Profiling the Energy Usage of Mobile
Applications,” in Proceedings of the Second IEEE Workshop on Mobile Computer Systems and
Applications (WMCSA), 1999.

[4] D. Brooks, V. Tiwari, and M. Martonosi, "Wattch: A Framework for Architectural-Level Power Analysis
and Optimizations," 27th International Symposium on Computer Architecture (ISCA-27), June 2000.

[5] M. Monchiero, R. Canal, and A. Gonzalez, "Power/Performance/Thermal Design-Space Exploration for
Multicore Architectures,” IEEE Transactions on Parallel and Distributed Systems, Vol. 19, No. 5, May
2008.

[6] V. Tiwari, S. Malik, and A. Wolfe, "Power analysis of embedded software: A first step towards software
power minimization,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 2, Issue 4,
pp. 437-445, Dec. 1994.

[7] A. Sinha and A. P. Chandrakasan, "Jouletrack - a web based tool for software energy profiling,” in
Proceedings of the Design Automation Conference (DAC), 2001.

[8] H. Blume, D. Becker, L. Rotenberg, M. Botteck, J. Brakensiek, and T.G. Noll, "Hybrid functional- and
instruction-level power modeling for embedded and heterogeneous processor architectures,” Journal of
Systems Architecture, Vol. 53, Issue 10, pp. 689702, 2007.

[9] H. Blume, J.v. Livonius, L. Rotenberg, T.G. Noll, H. Bothe, and J. Brakensiek, "Performance and Power
Analysis of Parallelized Implementations on an MPCore Multiprocessor Platform,” International
Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (IC-SAMOQOS),
2007.

16



[10] T. K. Tan, A. Raghunathan, and N. K. Jha, "EMSIM: An energy simulation framework for an embedded
operating system,” in Proceedings of IEEE International Symposium on Circuit & Systems, pages
464-467, May 2002.
[11] T. K. Tan, A. Raghunathan, and N. K. Jha, "A simulation framework for energy consumption analysis of
OS-driven embedded applications,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 22(9) 1284-1294, Sept. 2003.
[12] T. K. Tan, A. Raghunathan, G. Lakshminarayana, and N. K. Jha. "High-level software energy
macro-modeling,” in Proceedings of Design Automation Conference, June 2001.
[13] G. Qu, N. Kawabe, K. Usami, and M. Potkonjak, “Function-level power estimation methodology for
microprocessors,”’in Proceedings of Design Automation Conference (DAC), pp. 810-813, 2000.
[14] C.-H. Hsu, J.-J. Chen, and S.-L. Tsao, "Evaluation and Modeling of Power Consumption of a
Heterogeneous Dual-Core Processor,” in the 13th International Conference on Parallel and Distributed
Systems (ICPADS), Hsinchu, Taiwan, Dec. 2007.
[15] "ARM11 MPCore Processor Revision r1p0 Technical Reference Manual," ARM, Feb. 2008.
[16] "Core Tile for ARM11 MPCore HBI-0146 User Guide," ARM, September 2006.
[17] "RealView™ Emulation Baseboard HBI-0140 Rev D User Guide,"” ARM, Oct. 2007.
[18] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen, "Single-ISA Heterogeneous
Multi-Core Architectures: The Potential for Processor Power Reduction,” in Proceedings of the 36th
International Symposium on Microarchitecture (MICRO), Dec. 2003.
[19] J. Levon, "OProfile Internals,” http://oprofile.sourceforge.net/doc/internals/index.html, 2003.
[20] H. Jin, M. Frumkin, and J. Yan, "The OpenMP Implementation of NAS Parallel Benchmarks and Its
Performance,” NAS Technical Report NAS-99-011, NASA Ames Research Center, Oct. 1999.
[21] D. Burger and T. M. Austin, "The SimpleScalar Tool Set," Version 2.0, Computer Architecture News, pp.
13-25, Jun. 1997.
[22] REALProf, http://of.openfoundry.org/projects/1399
[23] Jian-Jhen Chen, Shiao-Li Tsao, and Meng-Ru Lin, “A High-Level Software Energy Profiling Tool for
Embedded Processors,” The Third Asia Pacific Embedded Systems Education and Research Conference,
Singapore, Dec 2009.

[24] Jian-Jhen Chen, Shiao-Li Tsao, and Meng-Ru Lin, “SEProf: A High-Level Software Energy Profiling
Tool for an Embedded System with Dynamic Power Management Functions,” in preparation, 2009.

[25] Jyun-Wei Lin and Shiao-Li Tsao, “Hardware-Assisted Performance/Energy Evaluation Tool for
Multi-core Embedded System,” in preparation, 2009.

Project Self-Assessment

We have released the beta version of the REALProf tool on Open Foundry [22]. Also, we have one
conference paper which has been accepted [23] and two journal papers [24][25] which are under preparation
based on the results of this project.

17



R EHHEEFA T TARG (R A ES R)NLA
By EgEL

pap2010# 127" 31 p

Bl NSC 98-2220-E-009-013
%)&LJ
R GBI B P o AR R R RERE R P
H o 3R Buaa B2 A 4T R e (2/2)
- szuﬁ&% A FFa Ak Bl AR
3 txpe 2 B
Rt i )
#
B 0 1 3%
- 99 # 8% 12 p . AR
=
4 z
99 # 91 30 p *

-~ B (AP ER

AVFIANZ G S ERETITRL LA AARA Y A S X LA
1< FFa 4z s Prof. Juerg Gutknecht 22 # 7= 3 B § # + Dr. Dennis
Majoe sh% B ¥ T F 3 8/12 1 930 P R AK R g L B < B (d
HEPBAREY) RFPEE T UG BT E L R ERPE
;‘L" » b7 ]»vT‘gﬁ.%\j\mﬁjﬂ & ,F#%Q s 1*‘».1.;;_,_#»_1.% Eﬂ'?—?g\,%)”%’;{- +«zr,p
7 B 2w B FP7 #3334 OPTIMI (http://www.optimiproject.eu/)2. 3 g 5t

REEXEZ P P NFRZTLANMEEFT AL L FNEART T2 2B E
31 E4eecd oo

N L

The project I mainly involved during this visit is the embedded multi-core
system project in Prof. Jirg Gutknecht's group. The project goals are to propose and
develop system programming models and languages for data streaming applications
based on reconfigurable embedded multi-core systems. Prof. Jirg Gutknecht and his
group proposed a language called System Oberon to facilitate designers in developing
embedded systems including hardware and software. Designers first describe their
systems using System Oberon language, System Oberon compiler can generate



efficient multi-core hardware for running the application, and multi-thread software
running on top of the multi-core processor. The hardware descriptions and
configurations generated by System Oberon compiler are further processed by the
hardware synthesis tool, e.g. Xilinx ISE. The hardware synthesis tool can generate the
hardware on an FPGA board. Figure 1 shows the design flow of System Oberon and
FPGA-based embedded multi-core system. Electrocardiography (ECG) was used as
an example to verify the concept and design flow of System Oberon.

Dafined by
— EcgProcessing Mod

Runtime library

Defined by

System-Oberon
Application ECG wavelom EcgAurhythmia.Mod
analysis and Dafinad by
/ template matching YgDﬁchc.dc.Mcd
process 1

System-Oberon
Compiler A
rhythmia
Signal input Multichannel HRV dclc}m.én
and e detection [~ '
" nalysis disease
P logic

Target many-core ( ( ECG wavaform

Seript files . Definad by

processor - analysis and

(Verilog Code) (make tel ram bmm) [Eﬂn\cij md template matching EcgHRV.Mod
/ s process 8 Output

—
ardware libran
{aic)

Sensor

Memery images
(mem files;

Kilinx ISE

m

,Ik

Dits

Virtex-5LXE0T FPGA
Kilinx MLSDS board

Figure 1. System Oberon and its design flow for FPGA-based embedded multi-core
(Figure source: Lisa Liu and Oleksii Morozov, “A Process-Oriented Streaming System
Design Paradigm for FPGA, ” submitted for publication).

The power consumption is an important issue for an embedded multi-core system.
One of the benefits for using System Oberon is because the compiler can produce
efficient hardware for running the application program. For example, the
interconnection bus between CPU cores, and shared memory buffer between CPU
cores are optimized by System Oberon. However, current System Oberon can
generate the hardware without power management functions, and the CPU cores
always operate at the maximal speed. In the multi-core system, CPU cores execute
processes in parallel and sometime they communicate with each other for
coordinating the tasks and data. Without precisely managing the tasks on each CPU
core, the communication between CPU cores, the operating speeds and voltages of
CPU cores, the CPU cores may consume extra power during the execution. Figure 2
(@) illustrates an example that the system wastes power if all CPU cores operate at the
maximal and the same speed. Therefore, during this visit, | worked with Prof. Jiirg



Gutknecht and his group to improve the energy efficiency of the system generated by
System Oberon language. In the enhanced System Oberon, designers could specify
the power consumption requirements when they develop their systems. The compiler
can generate the necessary hardware to optimize the energy efficiency of the
embedded multi-core system. For example, the designer provides the energy
requirement information in System Oberon program. Then, the compiler generates the
hardware with power management functions, and software utilizing these hardware
power management features to minimize the power consumption of the system.
Figure 2 (b) gives an example.

2ms

; *

cpuL Different voltages/clock rates/power modes/power domains/types of processors
-o N WA
§ —_ cpu3
CPU4 . . . ‘ pd
v v cPu4

cPUS . .
time CcPUS
Power consumption

(@) (b)

Figure 2. Reducing power consumption of an embedded multi-core system through
hardware and software power management functions.



Low power attributes and performance/power requirements

Adder= ACTOR (inl,in2: STREAM {IN} OF INTEGER; result: STREAM {OUT} OF INTEGER)
VAR summandl, summand?: INTEGER;
BEGIN
LOOP
RECEIVE (inl, summandl);
RECEIVE (in2, summandZ2);
SEND (result, summandl+ summand2)

END ndder;

FIFO  FIFO

BUFGCE _ _
clk gclk  Lin] in2
— >

FIFO/IO statu clken (Adder) l—

| result |

Through outbus/register

Figure 3. Low-power hardware extension based on System Oberon.

Figure 3 and Figure 4 illustrate our proposed low-power enhancements based on
System Oberon. Figure 3 shows that a designer can specify the performance or energy
requirement of the systems in System Oberon language. After the designer provides
the information, System Oberon compiler generates the necessary low-power
hardware and/or additional power management hardware into the hardware platform.
For example, in Figure 3, the designer added the low-power attribute in the system
description. The compiler automatically integrates the power management hardware
components into the original hardware designs. Then, the designer is able to use
power management functions when they develop their energy-aware applications
based on System Oberon. Figure 4 gives an example that designer can use power
management functions such as sleep and idle in their programs. Moreover, the
busy-waiting functions are automatically translated to the sleep-wakeup version
which consumes much less power when the designer specifies the low-power attribute
in the System Oberon program.



BEg'(')\‘P Low power attributes and performance/power requirements

y = a+b;
RS232.SendInteger(y);
RS232.SendEnd;
SYSTEM.PUT(ledAdr, y);
IDLE;
RECEIVE(in, a);
END;
END TestTRM2.

BEGIN Low power attributes and performance/power requirements

LOOP resettimer(PMConfig .T)
y = a+b; REPEAT UNTIL checkreceive(in, a) Or timerexpire()
RS232.Sendinteger(y); IF timerexpire() THEN

RS232.SendEnd; stoptimer()
SYSTEM.PUT(ledAdr, y); / Idle

RECEIVE(in, a, PMConfig);
END: ~N END

END TestTRM2. RECEIVE(in, a);

Figure 4. Low-power software extension based on System Oberon.

During the three-month visit, we not only enhanced System Oberon to support
energy-aware program development, but also prototyped the proposed concepts in
System Oberon language, System Oberon compiler, and the CPU hardware called
TRM (Tiny Register Machine). We used the ECG application to verify our designs
and compare the performance in terms of energy consumption before and after
applying our proposed energy-aware features. To evaluate the power consumption, we
established a power consumption evaluation platform shown in Figure 5. We used the
platform to measure and evaluate the power consumption of the ECG multi-core
embedded system. Figure 6 shows the experimental results. Compared with the
full-connected multi-core embedded system, the system generated by System Oberon
significantly reduces the power consumption because the unnecessary interconnection
bus and buffer are avoided. The ECG multi-core embedded system generated by our
energy-aware System Oberon can further reduce 45% power consumption.



—

DC connector §

AC power

| ML505 board |

DC power connector

Figure 5. Architecture and demonstration of the power consumption evaluation
platform.

ECG: process 500 samples per second

Processor Quiescent power Dynamic Total power
name (W) power (W) (W)

[ TRMI2 | 3.43823 [ 058988 | 402810 |
‘ System- ‘ 0.49742 0.48060 ‘ 0.97802 ‘
Oberon
45% §

Low power version  0.54502

‘ XPower simulation

‘ Estimated results based on physical measurement

Figure 6. Performance evaluation of the proposed low-power improvement.

The system level design environment is very important to embedded system
development. System Oberon provides a convenient language for designers to
describe their system architecture, hardware configurations, software functions and
procedures. System Oberon compiler can produce efficient hardware and software for
the application. Our low-power and power management enhancement based on
System Oberon further provide language level support for designers to specify their
energy and performance requirements. Therefore, the development of energy-aware



system and software become possible based on System Oberon design flow. Our
prototype and preliminary experimental results demonstrate that the proposed
enhancement can significantly reduce the power consumption of the ECG application
by 45%.

The colleagues in Prof. Jirg Gutknecht’s group are further improving the system
and collecting more experimental results. We are working together in preparing a joint
research paper which will be submitted to a conference or journal.

Figure 7. Prof. Jurg Gutknecht, his group and me.

This is a very successful visit. My research on energy-aware computing is a
system-wide research topic, and requires the knowledge and support across a wide
spectrum of computer systems. Due to limit research resources | had in Taiwan, |
usually have to focus on a specific point in a system and fail to evaluate the design
from a system perspective. Also, | usually have to consider the design and evaluation
of the proposed ideas and technologies into separated hardware and software
platforms. On the other hand, Prof. Jirg Gutknecht and his group have built entire
embedded multi-core systems including hardware, system software, and application
software by themselves. Therefore, we could be able to research our low-power
designs from a system point of view, and realize and evaluate hardware and software
designs in the real system. | do learn a lot from cooperating with Prof. Jirg Gutknecht
and his group members.

Prof. Jirg Gutknecht and his group have worked on programming languages,
compilers, run-time systems, operating systems, and hardware designs for years, and
have outstanding achievements. They want to consider power consumption issues in
their research and therefore invite me for a visit. Power consumption is regarded as a
critical problem of information and communication technology (ICT) infrastructure in
the next decade. Reducing the electrical needs of computer systems becomes the most
important task for computer scientists and engineers, and has recently attracted



considerable interest in both academia and industry. During this visit, | also do bring
new ideas, give talks, and share my experiences and research results in reducing the
power consumption of computer systems to the group. We not only jointly proposed
the new low-power ideas for the existing projects, but also prototyped and evaluated
the proposed systems in a real environment. The experimental results demonstrate we
could significantly reduce the power consumption of the systems. Moreover, | help
the group to establish the power consumption evaluation platform so that they can
continue the low-power research and development after | am back to Taiwan.

| was invited to join the annual retreat of Prof. Jirg Gutknecht's group in Sept. 24
to Sept. 25, 2010. During the meetings, we all agree that we had very successful
cooperation and had fruitful research results in this visit. This visit has mutual benefits
to both of our groups. We also concluded we should continue our cooperation and
further extend the cooperation between two groups. Research cooperation has been
arranged and they are currently on-going. They are:

(1) FP7 project cooperation: Prof. Jirg Gutknecht has involved in an FP7 project,
called Online Predictive Tools for Intervention in Mental Iliness (OPTIMI). His group
is to build a wearable device for monitoring patients’ physiology data. The wearable
device is now operated by batteries but will be operated by harvested energy sources
such as solar energy, thermal energy, kinetic energy, etc. The power consumption
issue is one of the most challenging issues for the device design. My team has worked
on power management middleware and run-time support for energy-aware software
which is a critical software component for the FP7 OPTIMI project. Therefore, Prof.
Jurg Gutknecht and FP7 OPTIMI project coordinator invited me to join the project so
that we could contribute our power management middleware to the project. (see
below letters of intention)



firen the strong interest of the Native System Croup, of the Department of
atthe ETH Zurich, in collabarating with you snd your team at Chiao Tung

e of the foci of our gro
languages and compilers ta supy

ngthis cellaboration please da nct hesitate to cantact
slready discussed in depth the ressarch possivilities

Figure 8. Letters of intention for joining FP7 OPTIMI project.

Based on the discussion, | then proposed a project under join research projects
agreement between Switzerland/SNSF and Taiwan /NSC scientific cooperation. The
project is just approved and granted by National Science Council in Taiwan. Based on
this joint project, we will continue our cooperation effort and further extend our
cooperation in area of power management framework for wearable devices and
energy scavenging sensors.

(2) New FP7 project on green datacenters: Prof. Jirg Gutknecht invited me to
visit Microsoft Research Cambridge in UK in Sept. 28, 2010. During the visit, we
had an intensive discussion on the area of power management issues in datacenters,
and found a very good synergy between Prof. Jurg Gutknecht's group in ETH
Zurich, Microsoft Research Cambridge and my group in National Chiao Tung
University in Taiwan. We thus decided to work on a new proposal under FP7. The
draft project title is SPREAD: Scalable Predictably Robust Energy Aware
Datacenter. The overall objective is to define, develop and evaluate and model a
scalable methodology for the on-going deployment of energy aware datacenters.
We are currently preparing the proposal and plan to submit the proposal next year.



RAL gt pmd g SR T4

p#:2011/01/03

SER T

PE A e Ez s

SOk BLai AL R A T R Rl e £ (2/2)

PERASFA O FH

3 F % 98-2220-E-009-013-

%

AR 3

EEE SRR T

23




BERLIITT AT S 4EE
FEASFL L E 34 %% ¢ 98-2220-E-009-013-
E f’ﬁ‘ Pk ‘j“ﬁ] B2 gﬁ‘uﬁ'ﬁ)‘ AR EARERE S E 2 ’:\»q;\ Yk XLy BT 4L
LA R (2/2)
£ (R L 4
213 @ ﬁid&?’i*}lﬁa\
L% TEp FReEL | ph g iF mj i R N Qu%ﬂ,q—t =y )
‘ B (s 3{(3?"‘% m/’i}ffﬂ - T 2. 4t @ é.:j:@w .
fega) | SEHE) 4
RO 0 0 50%
o e PRI |0 0 50% =
gﬁq? -‘g 3
Fit e~ 0 0 50%
N 0 0 100%
o %i-é £ 0
41 #c 0 0 100% "
C EE 0 0 100%
B i i 0 0 100% :
ForAs
£ 0 0 100% + =
A4 2 2 100%
a4 L4 E 4 2 2 100% L
(A% ELumiE |0 0 100% -
Lizebam 0 0 100%
1. Shiao-Li Tsao and
Chung-Huel1
Huang, * A Survey of
Energy Efficient MAC
Protocols for IEEE
802.11  WLAN,
accepted, Computer
Communications,
2010. (SCI, EI)
2. Shiao-Li Tsao,
You-Lin Chen, and
B e FE (AR 2 2 50% f |Chia-Hsiang
Chang, ’ Evaluation
of Scan and
Association Process
for Real-Time
Communication in
Mobile WiMAX,’
accepted by IEEE
Transactions on
Wireless
Communications,
2010. (SCI, ED)
Fr AR HarEL |0 0 100%




1. Shiao-Li Tsao and
Shih-Yung
Lee, ’ Evaluating
the Energy
Efficiency of TCP
Transmission over a
it g 1 1 50% WiMAX  Network,
IEEE International
Conference on
Computer
Communication
Networks (ICCCN
2010), 2010
%3z 0 0 100% 3 /A
o4 i g 0 0 100% "
© JEE i 0 0 100%
i #c 0 0 100% i+
FoAs &
#1 £ 0 0 100% + =
AL A 0 0 100%
FpiztF L4 L4 0 0 100% L
TEMA) [BLesErR |0 0 100% N
Lizpsre 0 0 100%
Hu A5
(i B 22
2 do R B S
B EE A R
RS e BT R
SLT I PR
B A EHEEE 2B
WregdamsE o
v FAGEE T )
[ £ %70 g AL P F R
BR%LE(F e gy 0
F|Ae/fie 0
%?ﬂﬁ%&}&ﬁl& 0
; ¥t 0
s |B7E2 EH LR 0
g |Fte/a1 vy 0
BT 0
Plpsssppe gy (RE) 8 |0







DSk EUAR R Yok ik TRk S s

?ﬁpimﬁﬁﬁféwﬁﬁ&\ééEﬁpﬁ%m»pfﬁ%iéﬁé@%@
& ¢ i—‘it’\'%”ﬂrl)‘%ﬁ—»,&ﬁ S E B

EpPrE-HFRLT ) LTF
H# g %

—_

B (
ELga LAY A AR F R 0 (F- AR

Gt P E

1. "F TN FERFFNSER ~FSFFH P FEFIRIT- FEFD
W=
I+ p 4% (G - 2 100 F 5 72)

()% 5 4 #e

(7 e 2 @ 47

4 # & 7]

=22 Fl;; .

2. P =k gl g LAY R AIE A
we Medd Orsd2<f OERY i
_g;«fu s EE []Y 3 %sl—:* B
EES LA D ﬁﬁ[}mﬂ’lﬂ
He (12100 % % 2)

. kBT R HITAIRT AL G B FE S G R
QTR S SRR N N
500 % % *2)

@i&éa,ﬂwﬁmi%ﬁg$3_3m$ P A2 ETERIE 0 ¢ 3
SEProf — B m 42§ -3k 3 2 B T3=F 1 2> ¥ - B1 2 5 REALProf: & - f& 4 4%

%#Eﬁ?*ﬁfmy%*ﬁﬁﬁﬁﬁ?%ﬁﬁﬁlﬁowﬁ7d1ﬁ%ﬁ§ﬁﬁﬁﬁﬁ
%iﬁﬁif’xﬁ» B ARG BT A P-4k (Sampling) #Tig & hgE b
o A ERE SRR SR F R % BT o S22 T 2 100 WHz o
S (LEON3) B ERBE TR HATEMAMT » AL L P ~ w2 L9 i e
FAFRE S P o S AR L R AT o 02 G gy F % ¢ 58 Open
Foundry 1 23 42 2 % BB AL LR » FRERRFAT 2% 2 F 5 5% 2%
R BPAR -




