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Improved Electrical Characteristics and Reliability of
MILC Poly-S1 TFTs Using Fluorine-Ion Implantation

Chih-Pang Chang and YewChung Sermon Wu

Abstract—In this letter, fluorine-ion (FT) implantation was
employed to improve the electrical performance of metal-induced
lateral-crystallization (MILC) polycrystalline-silicon thin-film
transistors (poly-Si TFTs). It was found that fluorine ions mini-
mize effectively the trap-state density, leading to superior electri-
cal characteristics such as high field-effect mobility, low threshold
voltage, low subthreshold slope, and high ON/OFF-current ratio.
FT-implanted MILC TFTs also possess high immunity against the
hot-carrier stress and, thereby, exhibit better reliability than that
of typical MILC TFTs. Moreover, the manufacturing processes
are simple (without any additional thermal-annealing step), and
compatible with typical MILC poly-Si TFT fabrication processes.

Index Terms—Fluorine-ion implantation, metal-induced lateral
crystallization (MILC), polycrystalline-silicon thin-film transis-
tors (poly-Si TFTs).

I. INTRODUCTION

OW-TEMPERATURE polycrystalline-silicon thin-film
transistors (poly-Si TFTs) have attracted considerable
interest for their use in active-matrix liquid-crystal displays
because they exhibit good electrical properties and can be
integrated in peripheral circuits on inexpensive glass substrates
[1]. As poly-Si TFTs require glass substrates, intensive studies
have thus been carried out, reducing the crystallization tem-
perature of amorphous silicon (a-Si) films. Ni-metal-induced
lateral crystallization (MILC) is one of these efforts. In MILC,
Ni islands are selectively deposited on top of a-Si films and
allowed to crystallize at a temperature below 600 °C [2], [3].
Unfortunately, the poly-Si grain boundaries trap Ni and
NiSiy precipitates, thus increasing leakage current and shifting
the threshold voltage [4]-[8]. A hydrogen plasma-treatment
process has been utilized to reduce the trap states of poly-Si film
to improve the device performance [9]. However, not only was
it difficult to control hydrogen concentration in the poly-Si film
but the formed Si—H bonds were also not strong enough to avoid
the hot-carrier generation. Fluorine (F)-ion incorporation has
been applied in the manufacturing of many electronic devices
[10], [11]. On poly-Si TFTs implanted with fluorine, the Si-F
bonds can eliminate the trap-state density, thus enhancing the
performance of n-channel TFTs.
In this letter, a new manufacturing method for MILC poly-Si
TFTs using fluorine-ion implantation was proposed. This un-
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complicated and effective method involves implanting fluorine
atoms into poly-Si films, which produces MILC poly-Si TFTs
of high performance and high reliability.

II. EXPERIMENT

A 100-nm-thick undoped («-Si) layer was deposited onto
a 500-nm-thick oxide-coated silicon wafer by low-pressure
chemical-vapor-deposition (LPCVD) system. The photoresist
was patterned to form desired Ni lines, and a 20-A-thick
Ni film was deposited on the a-Si, subsequently annealed at
540 °C for 18 h to form the MILC poly-Si film. To reduce
Ni contamination, the unreacted Ni metal was removed by
chemical etching. The islands of poly-Si regions on the wafers
were defined by reactive-ion etching; fluorine ions were then
implanted into the MILC film. The projection range of fluorine
ions was set at the middle of MILC layer. The dosage of
fluorine ions and ion-accelerating energy was 2 x 10*® cm™2
and 30 KeV, respectively. Next, a 100-nm-thick gate insulator
was deposited by plasma-enhanced CVD. Then a 200-nm-thick
poly-Si film was deposited for gate electrodes by LPCVD.
After defining the gate, self-aligned 40 KeV P ions were
implanted at a dose of 5 x 10'® cm~? to form the source/drain
and gate. The F'-implanted MILC film and the P-implanted
source/drain/gate were then annealed/activated at 600 °C for
24 h. Moreover, the manufacturing processes without any ad-
ditional thermal annealing step and compatible with typical
MILC poly-Si TFT fabrication processes.

III. RESULTS AND DISCUSSIONS

Fig. 1 shows the I p—V{; transfer characteristics for the MILC
poly-Si TFTs, with and without F* implantation. The measured
and extracted key device parameters are summarized in Table I.
The performance of Ft-implanted TFTs was far superior to
that of MILC TFTs. This indicates the trap-state density (INy)
was effectively terminated using F implantation. The trap-
state density was extracted using Levinson’s and Proano’s
method, which can estimate the N; from the slope of the
linear segment of In[/ps/(Vas—Veg)] versus 1/(Vas—Vig)?
at low Vpg and high Vg, where Vip is defined as the gate
voltage that yields the minimum drain—current at Vpg = 0.1
[12], [13]. The trap density of F'-implanted MILC TFTs is
4.24 x 10" cm~2, which is less than that of MILC TFTs
(6.29 x 10'2 ¢cm~2). The reduction in NN, values implies that
those defects have been terminated using F™ implantation.
As a result, the carrier mobility increases. The minimum
OFF-current of the F*-implanted device, however, did not
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Fig. 1. Typical Ips—Vgs transfer characteristics of the MILC poly-Si TFTs,

with and without FT implantation.

TABLE 1
DEVICE CHARACTERISTICS OF THE MILC PoLY-Si TFTs,
WITH AND WITHOUT FT IMPLANTATION

T Tt Without With
CIRGLA m F* implantation F*implantation
Field-effect mobility (cm2/ V5) 30 945
Subthreshold slope 5.9 (V/ dec) 19 109
Threshold voltage Voppy \) 9.1 59
ON/OFF cwrrent ratio IynTpp 372 x106 991 x 106
Trap-state density Ny (112m2) 6.29 424

change much. Similar performances and defects have been
previously reported in other poly-Si TFTs that were passivated
by the FT implantation [14]-[16].

In MILC poly-Si, there are two kinds of defects related to
trap-state density: 1) Ni-related defects and 2) grain-boundary
defects. Most of Ni-related defects were located at poly-Si/
buffer-oxide interface and grain boundaries, which trap Ni
and NiSi, precipitates [4]-[8]. Ni-related defects would de-
grade electric performance because the trap states introduced
dangling and strain bonds. Secondary-ion mass spectroscopy
(SIMS) was used to study the distribution of Ni and F. Fig. 2
shows the depth profile of the F*-implanted MILC poly-Si/
buffer-oxide structure after thermal annealing at 600 °C for
24 h. High-Ni and high-F contents are both present at the MILC
poly-Si/buffer-oxide interface. This observation suggested that
Fions have diffused to the interface/boundaries to terminate Ni-
related trap states and lead to improve electrical characteristics.

On the other hand, the trap states in the grain boundaries will
also increase the leakage current. Use of F atoms to fluorinate
poly-Si films can improve performance and reliability of poly-
Si TFTs [16]. This is because F atoms can terminate dangling
bonds and replace weak bonds in the grain boundaries and
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Fig. 2. SIMS depth profile of nickel and fluorine in the structure of MILC

poly-Si channel/buffer-oxide.
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Fig. 3. Threshold-voltage variation versus stress time for the MILC poly-Si
TFTs, with and without F* implantation.

SiO4/poly-Si interface and, thus, reduce the trap states in the
poly-Si channel. As a result, the carrier mobility increases due
to the decrease in the boundary scattering by passivation-of-
boundaries defects. However, the minimum OFF-currents were
nearly unchanged [14]-[16].

The other important issue of poly-Si TFTs is their reliability,
which was examined under hot-carrier stress. As shown in
Figs. 3 and 4, the threshold voltage and the ON-current of
TFTs were degraded, because dangling bonds are created due
to the trapping of electrons at weak Si-Si and Si—-H bonds
[17], [18]. Compared with those of typical MILC TFTs, the
threshold voltage and ON-current degradations of F*-implanted
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Fig. 4. ON-current degradation versus stress time for the MILC poly-Si TFTs,
with and without F* implantation.

MILC TFTs are greatly improved by the implantation process.
FT-implanted MILC TFTs also possess high immunity against
the hot-carrier stress and, thereby, exhibit lower AVry and
Alon/Ion than that of typical MILC TFTs. In other words,
weaker Si—H and Si-Si bonds were replaced by stronger Si—F
bonds, which could not be broken under hot-carrier stress, thus
leading to improved electrical reliability.

Electrical properties of the F™-implanted MILC TFTs with
heavy implantation dosages (2 x 10'* and 2 x 10'® cm™2)
were also studied in this letter. It is found that the electrical
characteristics of MILC TFT are degraded as the implantation
dosage increases. When the dosage reached 2 x 10'® cm~2,
the device performance was very poor. This is because,
when the implantation dosages are higher than Si solid solu-
bility, the trap-state density and fluorine clusters increased with
the dosage [19].

IV. CONCLUSION

An investigation of the effects of F*-implantation process
on the electrical characteristics and reliability of MILC
poly-Si TFTs has led to the development of a simple effective
process for improving the TFT electrical properties. Results
show that, compared with typical MILC TFTs, F™-implanted
TFTs exhibit higher field-effect mobility, superior subthreshold
slope, lower threshold voltage, higher ON/OFF-current ratio,
and lower trap-state density (N;). It was also found that F-
implantation process can greatly alleviate the threshold voltage
and the ON-current degradations under hot-carrier stress. F-
implanted MILC TFTs possess high immunity against the hot-
carrier stress and, thereby, exhibit lower AV and Alon/Ion
than that of typical MILC TFTs. This is because the weaker
Si—H and Si-Si bonds were replaced by stronger Si—F bonds,
which could not be broken under hot-carrier stress, thus leading
to improved electrical reliability.
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