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Abstract

Clustering is a process that groups unlabeled data points into clusters. There are a large variety
of clustering methods, but none can generate good clustering results for all types of data and
cluster characteristics. Cluster ensemble is a new trend in recent years. Its approach is to generate
multiple clustering results out of the same data set, and then combine the individual clustering
results to form a consensus partition of the data that is more stable and more representative of the
actual data distribution. As the benefits of cluster ensemble are gradually recognized in recent
years, there are a growing number of applications in various fields.

The overall purpose of this two-year project is to start with evidence-accumulation clustering,
that is, the clustering ensemble methods based on co-association matrices, and investigate
methods that can improve its robustness as well as comparing the performances of crisp and fuzzy
cluster ensembles. First, we combine evidence-accumulation clustering with robust clustering
algorithms to improve its performance in problems that involve noisy data and unknown numbers
of clusters. On the other hand, we also find that fuzzy cluster ensembles, which work more
naturally with robust clustering methods, also exhibit better convergence characteristics



compared to crisp clustering ensembles.

Keywords : cluster ensemble, evidence accumulation, consensus clustering, robust clustering
methods
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Comparing Hard and Fuzzy C-Means for Evidence-Accumulation
Clustering

Tsaipei Wang, Member, IEEE

Abstract—There exist a multitude of fuzzy clustering
algorithms with well understood properties and benefits in
various applications. However, there has been very little
analysis on using fuzzy clustering algorithms to generate the
base clusterings in cluster ensembles. This paper focuses on the
comparison of using hard and fuzzy c-means algorithms in the
well known evidence-accumulation framework of cluster
ensembles. Our new findings include the observations that the
fuzzy c-means requires much fewer base clusterings for the
cluster ensemble to converge, and is more tolerant of outliers in
the data. Some insights are provided regarding the observed
phenomena in our experiments.

1. INTRODUCTION

C LUSTERING is an unsupervised process of
identifying underlying groups or structures in a set of
patterns without the use of class labels. There have been a
large set of clustering algorithms (see [1], [2] for reviews).
Different methods, however, have their limitations in terms of
data characteristics that can be processed and types of clusters
that can be found. As it is unlikely that a good "universal"
clustering method can be found, a recent trend is the use of
cluster ensembles which, generally speaking, represent
methods that combine the information from multiple
clusterings (i.e., partitions of the data into clusters) in order to
obtain a new, and hopefully better, clustering. The basic
assumption of cluster ensemble here is that the combined
clustering is likely to be more robust, more stable, and more
representative of the structures/groupings of the data. This
approach is inspired by classifier ensembles, and is identified
in [3] as one of three major frontiers of clustering techniques
in recent years. Some representative works in this area
include [4]-[10]. Many results in these papers have indicated
improved clustering results compared to the results of single
clustering runs.

Ensemble clustering techniques consist of three main
components:

The method used to obtain the individual clusterings (also
called base clusterings in this paper), including how diversity
(i.e., the differences among them) is introduced. For the
individual clusterings, k-means related methods are most
common, as well as EM. Diversity can be introduced through
random initialization for both methods above, such as in [5]
and [11]. Diversity through the projection to random
subspaces is suitable for high-dimensional data [6]. Different
order of data presentation is a source of diversity for on-line

Tsaipei Wang is with the Department of Computer Science, National
Chiao Tung University, Hsinchu, Taiwan (e-mail: wangts@cs.nctu.edu.tw).

clustering [12]. We can also obtain each base clustering from
a different subset of the data. This is a natural choice when we
want to obtain a combined clustering using data from multiple
sites without first putting them all in one place [13].

The representation that combines the information from
multiple base clusterings. The most common form is a
co-association matrix, where pairwise similarities among the
patterns are derived from the individual clusterings. Other
methods include hypergraphs [4] and bipartite graphs [7]. The
collection of all the prototypes in all the base clusterings is
very compact and especially useful when the data set is very
large [13].

The extraction of the final (combined) clustering from the
representation above. Here the applicable methods depend on
the form of the representation. For example, graph
partitioning  algorithms are wused for graph-based
representations. For the co-association matrix, k-means based
methods [14], spectral clustering [15], graph partitioning [4],
and hierarchical agglomeration [5][6] have all been used.

Cluster ensembles based on the evidence-accumulation
clustering (EAC) [5] have attracted a lot of attention recently,
probably because it is easy to understand conceptually and to
implement, and also because it is applicable to problems
where the true number of clusters is unknown. The original
EAC builds a co-association matrix using outcomes of
multiple randomly initialized HCM runs with mostly
over-specified numbers of clusters, and extracts the combined
clustering using hierarchical agglomeration with single or
average linkage. EAC has been extended to clustering
patterns with mixed categorical and numerical features [15].
The stability of EAC with single-linkage is analyzed in [17].
However, one known drawback of EAC, as well as other
methods that use co-association matrices, is the large number
of base clusterings required to achieve reliable results. For
example, experiments in [5] indicate that 50 or more base
clusterings are usually needed to reliably identify the true
number of clusters.

Most cluster ensemble techniques, including the original
EAC, are based on crisp (hard) clusterings, and therefore are
not able to incorporate ambiguities in the data. Some existing
works that do use soft clusterings, such as [6] and [8], do not
actually compare the clustering results using hard or soft base
clusterings. There have also been a few applications of soft
cluster ensembles (ensembles with soft base clusterings),
such as [18] and [19], but these contain no comparison
between corresponding crisp and soft cluster ensembles.
Given the rich research findings arising from the analysis of,
say, hard c-means (HCM) vs. fuzzy c-means (FCM) [16], we
believe that similar analysis for clustering ensembles should



be very beneficial as well. Research works in this direction
have appeared only very recently. Yang, Lv, and Wang [20]
studied co-association matrix based soft cluster ensembles
generated with three different fuzzy similarity measures.
Punera and Ghosh [11] compared the performance of
ensembles of crisp or soft base clusterings obtained using EM;
a crisp clustering is obtained by assigning each pattern to the
most likely cluster in the corresponding soft clustering. The
combination methods tested include Cluster-based Similarity
Partitioning  Algorithm (CSPA) [4], Meta-CLustering
Algorithm (MCLA) [4], and Hybrid Bipartite Graph
Formulation (HBGF) [7]. The evaluation is based on
normalized mutual information (NMI) with the ground-truth
partition. The conclusion in [11] is that using soft clusterings
does improve the correctness of the final clusterings.
Avogadri and Valentini [14] used FCM to generate the base
clusterings; the corresponding hard clusterings are obtained
by either alpha-cut or assigning each pattern to the most likely
cluster. Their results also indicated better accuracy of fuzzy
versus hard base clusterings, but only for a synthetic data set
of 3 well-separated hyperspherical clusters. Both [11] and [14]
study only the cases where the true number of clusters is
known and used as the number of clusters for all the base
clusterings as well as the combined clustering.

In this paper, we focus on the performance comparison of
EAC using either HCM or FCM as the base clustering
generator. These two versions are subsequently denoted as
hEAC and fEAC in this paper. We specifically analyze two
aspects that have not been analyzed in the literature: The
speed of convergence in terms of the number of base
clusterings needed to produce a stable combined clustering,
and how hEAC and fEAC are affected by noise points in the
data. For the remainder in this paper, we start with the
description of both the crisp and soft versions of EAC,
followed by the description of our experiments and results,
and the conclusion.

II. EVIDENCE-ACCUMULATION CLUSTERING

A. Crisp Evidence-Accumulation Clustering

Our description here follows the algorithm in [5]. Assume
that the set X={x;, x,, ..., x,,} contains n patterns (data points).
Let P ={C;, C5, ..., C;} be a crisp clustering (partition) of X.
Here k is the number of clusters in P, and the clusters, C,,
C, ..., Cy, are disjoint non-empty subsets of X, and the union
of all the clusters in P is the same as X. For a data set X it is
possible to obtain many different P. Let a cluster ensemble
consists of N clusterings of X: P;, P,, ..., Py. As we allow
each individual clustering to have a different number of
clusters, we use k, to represent the number of clusters in P,
(1=g=<N).

A nxn co-association matrix, $“ = [s,], is computed for
each clustering P,. To determine its elements, let c,-(q)
represent the cluster index of x; in P,. Then s,-j(‘” is given by
the following formula:

1, (@) _ (@)
s,»(jq) = i c‘] ) (1)
0, otherwise.

For the cluster ensemble, the overall co-association matrix,

denoted as §” = [s;], is simply the average of all the S
» 1
sp=— 2 @)

Y N 1<g<N

The co-association matrix is a similarity matrix that can
then be fed into various algorithms for relational data
clustering. Hierarchical agglomeration with single or average
linkage is the method of choice in EAC because it does not
require a pre-specified number of clusters. Such algorithms
generate a hierarchy of clusterings. When the number of
clusters is unknown, the maximum-lifetime criterion is used
to select a clustering from the hierarchy. We use &, to
represent the number of clusters in this selected clustering.

B. Soft Evidence-Accumulation Clustering

Similar to [11], here the term "soft" refers only to the base
clusterings in an ensemble, meaning that these individual
clusterings are soft. However, the combined clustering may
still be crisp. This is the case in this paper as we follow the
method in [5] and use hierarchical agglomeration to generate
the combined clustering.

A soft clustering is represented by a partition (or
membership) matrix U = [u,;], where u, is the membership of
x; in the /™ cluster. For a probabilistic clustering, the
membership matrix satisfies the condition

k
Vi, D u;=1. 3)
t=1

Here k is the number of clusters. Such a clustering can be
obtained with EM, which is the method used in [6] and [11],
or FCM, which is the method used in [14] and in this paper.
A straightforward extension of (1) for computing
co-association matrix from a membership matrix is [6]

k
9q

si(iQ) — Z”t(iq)”;(/q) , (4)
t=1

or when put in matrix form,

§@ _ @ (U(q>)T . 5)
The superscripts (¢) in U? and u,? indicate that the
memberships are for the g™ clustering within the ensemble.
This form of aggregating the memberships is just the
algebraic product form of t-norms in fuzzy set theory. It is
used in [6] and [14], and is the method used in our
experiments. Other forms of t-norms can also be used. An
example is the minimum, as used in [13]:

kq
s =Y minful”, u{] . (6)
t=1

Once we have obtained the co-association matrix, the
process of extracting the combined clustering is the same as
the original (crisp) EAC.

III. EXPERIMENT SETUP
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Figure 1. The 6 synthetic data sets used in our experiments. From left to right: spherical-touching (S1); spherical-separated (S2); spherical-unbalanced
(S3); cigar (S4); half rings (S5); 3 rings (S6). Different colors represent the ground-truth cluster labels.

For each cluster ensemble, the co-association matrix is
derived from N clusterings. The values of N range from 2 to
50. Each clustering is generated with a HCM or FCM run,
with the number of clusters £ in each run randomly selected
from an interval [k, ke ]. The actual values of &,,;,, and k...
are data-set dependent. However, we use a large range (at
least a factor of three) to ensure that the results are not too
sensitive to the choice of an optimal k. The HCM or FCM
runs are initialized using a randomly selected subset of the
data points as the initial prototypes. We use a fuzzification
factor of 1.5 for the FCM runs. The experimental results in
this paper are averaged over 20 ensembles.

The quality of the final clustering is evaluated by matching
the final clustering with the ground-truth cluster labels of the
patterns. For this purpose we use the Hungarian algorithm to
find the optimal assignment (the one that results in the largest
number of correctly labeled patterns) between the two sets of
cluster labels. We then use the ratio of correctly labeled
patterns using this optimal assignment as the clustering
accuracy measure.

Several synthetic data sets are generated for the testing
purpose. These data sets (shown in Fig. 1) are
two-dimensional for easy visualization. In each plot, the
underlying cluster labels used to generated the individual
clusters are represented by separate colors. The
"spherical-touching" and the "spherical-separated" data sets
both have five spherical clusters with 100 points each. The
"spherical-unbalanced" data sets have four touching spherical
clusters of different sizes ranging from 45 to 105 points. The
other three data sets are designed to be similar to those in [5].
The "cigar" data set has 4 clusters, two elongated and two
compact, with 50 points each. The "half-rings" data set has
two unbalanced half rings with 100 and 300 points,
respectively. The "3-rings" data set has three concentric
circles of 50, 200, and 200 points, respectively, from inside
out. We also use S1 to S6 to refer to these 6 synthetic data
sets.

In addition to the synthetic data sets, several real-world
data sets from the UCI Machine Learning Repository [21] are
also used in this paper:

- Iris: This well-known data set has 150 patterns with 4
features each, and 3 classes that represent iris families;

- Wisconsin Breast Cancer: 683 patterns with 9 features
each, and two classes that represent benign and malignant
diagnoses;

- Pen-Based Recognition of Handwritten Digits
(Pen-digits): from the 10992 patterns with 16 features each,
we only use the first 100 patterns in each of the 10 classes.

Table I gives a summary of the data sets, including the

intervals [kin, ko] used. Here L is the data dimensionality
(number of features) and & is the "natural” (ground-truth)
number of clusters, taken as the number of classes for the real
data sets, and as the number of clusters used for generating a
synthetic data set.

IV. RESULTS AND DISCUSSION

In this section we try to compare the performance of hREAC
and fEAC for identifying the correct clusters when the
clusters. Both single-linkage (SL) and average-linkage (AL)
methods are used for cluster merging. For each ensemble, the
final clustering is selected according to the
maximum-lifetime criterion. In Fig. 2 we plot k; the number
of clusters in the final clustering versus N, averaged over 20
ensembles. Results for both AL and SL are shown. In Fig. 2(e)
and 2(f), the AL results are not visible because the numbers of
clusters are more than 12. In addition, in order to validate the
final clusterings, we also plot the clustering accuracy in Fig. 3.
This is because just having the correct number of clusters (i.e.,
with k; equal to k") does not necessarily imply a correct
clustering.

From Fig. 2 and Fig. 3, we can see that the best performer
in each case, in terms of both accurate clustering results and
fast convergence, is either fEAC-AL (for data sets S1-S3) or
fEAC-SL (for data sets S4-S6). fEAC-SL is better for S4-S6,
which contain well separated non-spherical clusters, and
fEAC-AL is better for the touching clusters in S1 and S3. In
all these cases, this best performer (fEAC-AL or fEAC-SL) is
better than its crisp counterpart for N<I0 and always
converges to its optimal accuracy with smaller N. Fig. 4 is
similar to Fig. 3 except that for each data set, we select the
combined clusterings with the number of clusters equal to & .
Other than generally better clustering accuracy compared to
Fig. 3, which is no surprise, we can also clearly see faster
convergence of the best-performing fEAC version relative to

TABLE
Summary of Data Sets

Data Set Num. Patterns| Num. Features | k* [Kmins Kkmax]
Spherical-touching 500 2 5 [3,12]
Spherical-separated 500 2 5 [3,12]
Spherical-unbalanced 300 2 4 [3,12]
Cigar 200 2 4| [5,20]
Half rings 400 2 2 | [20,80]
3 rings 450 2 3 | [20,80]
Iris 150 4 3 [2,10]
Breast cancer 683 9 2 [2,10]
Pen-digits 1000 16 10| [10,50]
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Figure 2. The number of clusters in the final clustering vs. the number of clusterings in each ensemble. (a)-(f) are plots for the
synthetic data set S1-S6, respectively. The value of k" is also indicated in each plot.
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Figure 3. The clustering accuracy vs. the number of clusterings in each ensemble. The number of clusters in the final clustering is
selected using the maximum-lifetime criterion. (a)-(f) are plots for the synthetic data set S1-S6, respectively.

its hEAC counterpart.

For a more quantitative comparison regarding the
dependence of the performance on N, let us now consider the
value of N needed for the clustering accuracy to reach 95% of
its maximum value in each case. For the 12 cases here (6 data
sets with combined clustering selection based on maximum
lifetime or known k"), the median N needed is 2 for the fuzzy
versions and 11 for the corresponding crisp versions. It is
evident then that fEAC converges much faster than hEAC

with respect to N. Similar observation can be made for &,

when the maximum lifetime criterion is used. This is a clear
indication that FCM is an attractive option for generating the
base clusterings when the total number of base clusterings is
constrained by, say, available system resource.

Fig. 5 displays the clustering performance (k;and accuracy
when using the maximum lifetime criterion, and accuracy
when selecting the combined clustering with k~ clusters)
versus N for the three real data sets. The overall best
performer is clearly fEAC-AL, although hEAC-AL is better
for the Pen-digits data set when using the maximum lifetime
criterion. More importantly, faster convergence versus N for
fEAC compared to hEAC is still evident here.

Overall, fEAC is better than hEAC when N is very small,
and the main reason is because fEAC has much faster
convergence. On the other hand, the performance of fEAC
and hEAC for larger N is comparable for most cases. In order
to provide insight to these observations, we show in Fig. 6 the
co-association matrices of using hEAC (left column) and
fEAC (right column) with three different N. The data set is
half rings. We can see that while the co-association matrix
becomes progressively fuzzier for hEAC as N increases, the
co-association matrix for fEAC does not change much. The
most significant difference here is between the co-association
matrices between hEAC and fEAC at N=1. With only a single
clustering, the co-association matrix is very crisp for hREAC
but quite fuzzy already for fEAC. This directly results from
the fact that with a clustering, HCM clusters are disjoint and
FCM clusters overlap with one another. When N is large, the
co-association matrices for hEAC and fEAC are more similar,
as the "fuzziness" here is more of the result of averaging over
many clusterings. Therefore, we can infer that the
overlapping between FCM clusters has an effect of
"fuzzifying" the co-association matrix similar to averaging
over several clusterings. The faster convergence of fEAC is
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then the result of similarly fuzzy co-association matrices at
different M.
In addition to convergence speed, we are also interested in

analyzing how the clustering performance is affected by noise.

For this purpose, we add 40 randomly distributed noise points
to each of the 6 synthetic data sets and re-do the experiments.
It is expected that clustering accuracy will be degraded for the
corresponding noiseless and noisy data sets. We are instead
more interested in seeing how the performances of hEAC and
fEAC are degraded differently. The plots for this purpose are
in Fig. 7. Here the horizontal and vertical axes represent the
clustering accuracy difference between fEAC and hEAC for
noiseless and noisy data sets, respectively. Each point
corresponds to a combination of data set, SL/AL, N, and the

two modes of combined clustering selection (maximum
lifetime and pre-specified number of clusters). The majority
of the points are above the diagonal, meaning that the
degradation for fEAC due to the added noise points is less
than that for hEAC. There, we can conclude that fEAC is
more tolerant of noise than hEAC, even for large N values
when both have converged for noiseless data.

V. CONCLUSIONS

In summary, we have presented in this paper experimental
comparison between HCM and FCM as the base clustering
generator for EAC. We find that the most notable difference
is that evidence-accumulation based cluster ensembles based
on FCM converge much faster than those based on HCM, and



fEAC has much higher accuracy compared with hEAC when
the numbers of clusterings are low. We believe this enhances
the usefulness of EAC because it provides a possible solution
to the original drawback of EAC that a large number of
clusterings is required for convergence. We also provide the
insight into this observation by directly comparing the
co-association matrices of hEAC and fEAC for different
numbers of base clusterings. In addition, our experiments also
show that fEAC is more tolerant of noise than hEAC.

There are still many research problems related to soft
cluster ensembles that can be pursued. A more
comprehensive study (such as one by varying the
fuzzification factor) can lead to a more clear understanding of
the phenomena associated with fuzzy cluster ensembles.
Another direction is the use of non-probabilistic partitions
(such as those obtained with possibilistic c-means [22] and its
derivatives) as the base clusterings in the ensemble. Overall,
we believe that the combination of fuzzy approaches and
cluster ensembles will be of great values in future research
and applications.
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