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A Simple Spacer Technique to Fabricate Poly-Si
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Abstract—In this letter, polycrystalline-silicon thin-film transis-
tors (poly-Si TFTs) with 50-nm nanowire (NW) channels, which
are fabricated without advanced photolithography by using a side-
wall spacer-formation technique, are proposed for the first time.
Because the polygate electrode is perpendicularly across poly-Si
NW channels to form a trigatelike structure, the proposed poly-Si
NW TFT owns outstanding gate controllability. In summary, a
simple and low-cost scheme is proposed to fabricate high-perfor-
mance poly-Si NW TFT suitable for future display manufacturing
and practical applications.

Index Terms—Nanowire (NW), polycrystalline silicon (poly-Si),
sidewall spacer, thin-film transistors (TFTs), trigatelike structure.

I. INTRODUCTION

POLYCRYSTALLINE-SILICON thin-film transistors
(poly-Si TFTs) have attracted much considerable attention

because they could be integrated with peripheral driving
circuits on a low-cost glass substrate in active-matrix liquid-
crystal displays [1], [2]. In addition, poly-Si TFTs have the
potential to be used in 3-D circuits, including vertically
integrated SRAMs [3] and DRAMs [4]. Recently, a lot of effort
have been given to improve the gate controllability and device
performance by changing device structure of poly-Si TFTs
with complicated steps, such as the gate-overlapped lightly
doped drain TFT [5], the double-gate TFT [6], and the gate-
all-around TFT [7]. Moreover, poly-Si TFTs with nanoscale
feature sizes have also been proposed to reduce the influence
of the grain-boundary defects [8]–[12]. In these studies, the
electrical performance of TFT could be remarkably improved
by decreasing the channel dimensions to be comparable to, or
still smaller than, the grain size. However, the poly-Si TFTs
with narrow-width channels are directly defined by using
costly electron-beam-lithography technology [8]–[10], which
could not be practicable in flat-panel displays. On the other
hand, for the poly-Si TFTs with nanowire (NW) channels and
multiple-gate configuration reported in [11] and [12], the gate-
induced drain-leakage (GIDL) current that resulted from large
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gate-to-drain overlapping area is high and must be addressed
by additional processes. Furthermore, in order to form a trigate
structure with NW channels, the extra top metal gate and
bottom Si-substrate gate accompanied with high-temperature
thermal-oxide and rapid-thermal processing are used [10], [11],
which are difficult to process in liquid-crystal display (LCD)
production line.

In this letter, we proposed a simple spacer technique to
fabricate high-performance poly-Si TFTs. The self-aligned for-
mation of twin poly-Si NWs with 50-nm linewidth is directly
defined to serve as the channel regions without any expensive
photolithography process. All processes are compatible with
modern LCD production line and suitable for system-on-panel
(SOP) applications in the future.

II. DEVICE FABRICATION

The major processes to fabricate the proposed poly-Si NW
TFT by a sidewall spacer-formation technique are depicted in
Fig. 1(a)–(e) shows the device top view. First, a 150-nm-thick
SiNX and a 100-nm-thick tetraethooxysilane (TEOS) SiOX

were consecutively deposited by plasma-enhanced chemical-
vapor-deposition (PECVD) system to serve as the starting
substrate and the dummy oxide layer, respectively. After pat-
terning the dummy oxide stripe [Fig. 1(a)], a 100-nm-thick
amorphous-silicon (α-Si) film was deposited by low-pressure
CVD (LPCVD) [Fig. 1(b)] and, then, anisotropically etched to
form α-Si spacer (namely, α-Si NW) in a self-aligned man-
ner without extra mask or advanced photolithography system
[Fig. 1(c)]. The feature size of the α-Si NWs could be well
controlled by the thickness of α-Si film and the dry-etching
condition. Next, a solid-phase-crystallization annealing was
executed at 600 ◦C for 24 h in N2 ambient to transform the
α-Si into poly-Si. Then, the dummy oxide stripe was removed
by buffered-oxide-etchant solution, and then, the square-coil
poly-Si NW was reserved [Fig. 1(e)].

Afterwards, a 34-nm-thick TEOS gate oxide was deposited
by PECVD system, and a 250-nm-thick phosphorus-doped
poly-Si was then deposited by LPCVD system to serve as
the gate electrode [Fig. 1(d)]. Subsequently, a self-aligned
phosphorus-ion implantation was performed at the dosage and
the ion energy of 5 × 1015 cm−2 and 15 keV, respectively, and
then, the source/drain dopants were activated by an annealing
treatment at 600 ◦C for 12 h in N2 ambient. After deposit-
ing the passivation layer and defining the contact holes, the
500-nm-thick Al electrodes were deposited and then patterned
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Fig. 1. (a)–(d) Cross-sectional views of the major processes to fabricate the poly-Si NW TFT. (e) Schematic top view of the proposed poly-Si NW TFT.

Fig. 2. (a) Cross-sectional TEM micrograph of the test structure of the
proposed poly-Si TFT having a couple of NW channels with a 300-nm distance.
(b) Fractional enlarging plot in (a).

[Fig. 1(e)]. Finally, a NH3 plasma treatment was performed at
300 ◦C for 1 h to improve the device performance.

III. RESULTS AND DISCUSSION

Fig. 2(a) shows the cross-sectional transmission-electron-
microscopy (TEM) micrographs of the test structure of the
proposed poly-Si TFT with NW channels. Here, such test
structure with a small dimension of 300-nm distance is used
to make the illustration clearer. The fractional enlarging plot
of poly-Si NW channel is shown in Fig. 2(b). Because the
polygate pattern is perpendicularly across poly-Si NW, a couple
of active channels would be formed after removing the dummy
oxide stripe in the proposed poly-Si NW TFT. From the cross-
sectional TEM micrograph, the vertical sidewall thickness
(TSi) and horizontal width (WSi) are approximately 50 nm.
The aspect ratio TSi/WSi of the active channel in the
poly-Si NW TFT (approximately equals to one) is larger than

Fig. 3. Typical transfer characteristics of the proposed poly-Si NW TFT, with
and without NH3 plasma treatment for 1 h. The inset table is the electrical
characteristics comparison of the poly-Si NW TFT, with and without NH3

plasma treatment for 1 h.

that in the traditional planar TFT (much smaller than one).
Such high aspect ratio means that the gate electrode forms
in a trigatelike structure with well electrostatic controllability
on channel potential due to sidewall and corner contribution
effects [13], [14].

Typical transfer characteristics (IDS−VGS) of poly-Si NW
TFTs, with and without NH3 plasma treatment, are compared
and shown in Fig. 3. The effective channel width of the
poly-Si NW TFTs is defined as twice the horizontal width
(2 × WSi) of 100 nm parallel on the starting substrate, which
is the same definition in other reports on TFT field [8]–[10].
The ON/OFF current (ION/IOFF) ratio is the ratio of the max-
imum ON-state current to the minimum OFF-state current at
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VDS = 0.5 V. The threshold voltage (VTH) is defined as the
gate voltage required to achieve a normalized drain current of
IDS = (W/L) × 100 nA at VDS = 0.5 V. After NH3 plasma
passivation for 1 h, the threshold voltage is scaled down from
2.2 to 0.3 V, the field-effective mobility (µFE) can be improved
from 46.7 to 63.5 cm2/V · s, the subthreshold swing is also
decreased from 570 to 170 mV/dec, and the ON/OFF current
ratio could be increased one order of magnitude. In addition,
the GIDL current could be suppressed near half order of mag-
nitude at VDS = 3 V and VGS = −4 V. All of these devices’
parameters are summarized in the inset of Fig. 3.

Besides excellent gate controllability due to 3-D trigate
feature, the effect of grain boundaries in poly-Si NW film
also plays an important role. As the poly-Si TFTs are scaled
down, the number of grain boundaries is decreased to dominate
on the VTH decreasing [15], [16]. Therefore, in the poly-Si
NW channel, the fewer grain boundaries make lower VTH for
ploy-Si TFT, which obtains higher driving current under the
same operational condition. On the other hand, according to the
poly-Si model [17], the effective mobility (µFE) could be
given as

µEF =
1

1 + (µG/µGB)[nLGB/L] exp[qVb/kT ]
(1)

where µFE is the effective field-effect mobility, LGB is the av-
erage grain-boundary length, n = L/LG is the average grain-
boundary number, and LG is the average intragrain length.
If the active channel is shrunk down to nanoscale dimension,
the n value would be decreased to improved µFE [15], [17].
Finally, fewer grain boundaries in poly-Si NW channel also
make effectively passivated deep-states by NH3 plasma treat-
ment. Therefore, the high-performance poly-Si NW TFT with
NH3 plasma treatment could be achieved by utilizing a simple
spacer-formation technology and suitable for LCD practical
manufacturing.

IV. CONCLUSION

We have introduced a simple, low-cost, and self-aligned
spacer technique to fabricate the poly-Si TFTs with NW chan-
nels in this letter. The 50-nm NW channel could be easily real-
ized by anisotropically etched without extra mask or advanced
photolithography system. The proposed poly-Si NW TFT has
excellent gate controllability due to the trigatelike structure
with the sidewall and corner contribution effects. Besides, the
fewer grain boundaries in poly-Si NW channel also improve
the electrical characteristics of TFT, even including the effec-
tively passivated deep-states by plasma treatment. Therefore,
the proposed poly-Si NW TFT is highly suitable for realizing
SOP applications.
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