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中文摘要 

 
在此研究計畫裡，我們計劃使用流體模式的技

術，來模擬目前INER 所感興趣的噴射式大氣電漿

(APPJ)，或是更複雜的電漿狀態。因為帶電粒子

在鞘層區有很強的漂移效應(drift)，所以我們利用

FMD 將其連續方程離散化，而對於模擬各種流速

或流體所需的N-S equations，則FVM 離散之。所

有離散之耦合非線性方程式，將利用Newton-
Krylov-Schwarz (NKS)方法進行數值解析。而考慮

到APPJ 的幾何結構，在第一階段中我們首先發展

一套程式，用以模擬二維/軸對稱座標系統，之後

將程式延伸至三維座標系統，以處理更真實的操

作條件。所有的模擬程式將在PETSc 的DA 資料

結構下平行化。此後，程式可在任何平行化的機

器上執行，例如: PC clusters。總結來說，在這二

年的計劃裡，我們已完成平行化的NS equaton 及
fluidmodeling equation 的測試，詳細將在下列報

告中描述。 
 

 
關鍵字: 噴射式大氣電漿, 漂移效應, 平行化 
 
Abstract 
 
In the proposed research project, we intend to apply 
the fluid modeling technique to simulate the 
atmospheric pressure plasma jet (APPJ), in which the 
INER is currently interested. Either finite-difference 
or finite-volume method was used to discrietize the 
governing equations. All discretized nonlinear 
equations will be solved using a Newton-Krylov-
Schwarz (NKS) scheme. Considering the flat or 
round APPJ, in which INER is interested, we will 
first develop a simulation code for 2D/axisymmetric 
coordinate system in the first phase and then extend it 
into a 3D version in later phases to deal with more 
realistic operating conditions. All simulation codes 
will be parallelized under the DA framework of 
PETSC. Eventually, they shall be able to run on any 

memory-distributed parallel machines, e.g., PC 
clusters. In summary, in the second year of the 
project we have completed the parallel 
implementation of NS equation and plasma fluid 
modeling equation. Results are presented and 
discussed in the report. 

 
 

Keywords: APPJ, drift, parallel, fluid modeling, NS 
equation 
 
I. INTRODUCTION  

Low-pressure plasmas have found wide 
applications in materials processing and 
others, and have contributed greatly in 
advancing the electronic semiconductor 
industry. The advantages of plasmas in 
materials processing include very efficient 
etching and film deposition. The 
temperature of the wafer can be kept low, 
which is important for electronics 
semiconductor processing. In addition, 
uniform glow discharge can be generated, 
which provides possibility of uniform 
processing for a very large surface.  

However, operations at reduced pressure 
increase the cost dramatically since very 
expensive vacuum equipments have to be 
employed. Atmospheric-pressure plasmas 
overcome these inherited disadvantages of 
low-pressure plasmas and thus have 
attracted tremendous attention in the past 1-
2 decades. On the other hand, several 
applications require the atmospheric or 
continuous in-line processing, which include 
surface modification, surface cleaning, 
sterilization/activation of bacteria cells, 
etching, and thin film deposition, among 
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others. However, research about APPs 
heavily relies on trial-and-error method, 
which is very time-consuming and 
unscientific in essence. Although there were 
several numerical studies available for APP 
in the literature, they often concentrated on 
one-dimensional simulation because of very 
high computational cost. However, more 
realistic numerical studies such as two-
dimensional simulations are often required 
for understanding the plasma physics and 
thus help improving the design at the end. In 
addition, applications often require the use 
of post-discharge (jet) region of the APP, in 
which the fluid motion is very important in 
affecting the distribution of radicals that is 
the most critical issue terms of in application 
viewpoint. These leads to the strong 
motivation of developing efficient 
simulation technique for APPs. 
 
II. NUMBERICAL METHOD 

[i] Neutral Flow Modeling 

a. Governing Equation 

The current implementation attempts 
to solve both for the flow of charged 
particles (which are influenced by the 
presence of electric and magnetic fields) and 
the flow of an uncharged viscous carrier gas. 
The motion of the carrier gas, not influenced 
directly by the presence of electromagnetic 
fields, is given by the Navier-Stokes 
Equations in conservative form in two 
dimension: 
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where µ and η are the first and second 
coefficients of viscosity respectively (related 
by Stoke’s Hypothesis), ρ is the carrier gas 

density, u and v the carrier gas x and y 
components of velocities, E the total energy 
of the gas (per unit mass) and p the gas 
pressure.  
b. Numerical Algorithm 

Spatial Discretization 

The cell-centered scheme is employed 
here then the control volume surface can be 
represented by the cell surfaces and the 
coding structure can be much simplified. 
The transport equations can also be written 
in integral form as: 

d F nd S d
t

ρφ Ω

Ω Γ Ω

∂
Ω + ⋅ Γ = Ω

∂ ∫ ∫ ∫
G Gv  

where Ω  is the domain of interest, Γ  the 
surrounding surface, nG  the unit normal in 
outward direction. The flux function F

G
 

consists of the inviscid and the viscous parts: 
φµφρ φ∇−= VF

KG
 

The finite volume formulation of flux 
integral can be evaluated by the summation 
of the flux vectors over each face, 

( )
,i j j

j k i

F nd F
=Γ

⋅ Γ = ∆Γ∑∫
G Gv  

where k(i) is a list of faces of cell i, Fi,j 
represents convection and diffusion fluxes 
through the interface between cell i and j, 

j∆Γ  is the cell-face area. 
The viscous flux for the face e between 

control volumes P and E as shown in Fig. 1 
can be approximated as: 
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That is based on the consideration that 
( )E P e E Pr rφ φ φ− ≈ ∇ ⋅ −
G G  

where φ∇  is interpolated from the neighbor 
cells E and P. 

The inviscid flux is evaluated through 
the values at the upwind cell and a linear 
reconstruction procedure to achieve second 
order accuracy 

    ( )ueueue rr GG
−⋅∇Ψ+= φφφ  

where the subscript u represents the upwind 
cell and eΨ  is a flux limiter used to prevent 
from local extreme introduced by the data 
reconstruction. The flux limiter proposed by 
Barth [21] is employed in this work. 
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Defining ( ) ( )max minmax , , min ,u j u jφ φ φ φ φ φ= = , 
the scalar eΨ  associated with the gradient at 
cell u due to edge e is 
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where 0
eφ  is computed without the limiting 

condition (i.e. eΨ =1). 

 
Fig. 1 Unstructured control volume 

Time Integration 

A general implicit discretized time-
marching scheme for the transport equations 
can be written as: 
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where NB means the neighbor cells of cell P.  
The high order differencing terms and 

cross diffusion terms are treated using 
known quantities and retained in the source 
term and updated explicitly. The ∆-form 
used for time-marching in this work can be 
written as: 

1

n NB

P P m m
m

A A SU
t φ

ρ
φ φ

=

+ ∆ = ∆ +
∆

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

1

NB
n n

m m P
m

S A A
SU

φ

φ

φ φ

θ
=

+ ∆ −
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
 

where θ is a time-marching control 
parameter which needs to specify. θ = 1 and 
θ = 0.5 are for implicit first-order Euler 
time-marching and second-order time-
centered time-marching schemes. The above 
derivation is good for non-reacting flows. 
For general applications, a dual-time sub-

iteration method is now used in UNIC-UNS 
for time-accurate time-marching 
computations. 
 

Pressure-Velocity-Density Coupling 

In an extended SIMPLE [14] family 
pressure-correction algorithm, the pressure 
correction equation for all-speed flow is 
formulated using the perturbed equation of 
state, momentum and continuity equations.  

The simplified formulation can be written 
as: 
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where Du is the pressure-velocity coupling 
coefficient. The following all-speed 
pressure-correction equation is obtained, 
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For the cell-centered scheme, the flux 
integration is conducted along each face and 
its contribution is sent to the two cells on 
either side of the interface. Once the 
integration loop is performed along the face 
index, the discretization of the governing 
equations is completed. First, the 
momentum equation is solved implicitly at 
the predictor step. Once the solution of 
pressure-correction equation is obtained, the 
velocity, pressure and density fields are 
updated. The entire corrector step is 
repeated 2 and 3 times so that the mass 
conservation is enforced. The scalar 
equations such as turbulence transport 
equations, species equations etc. are then 
solved sequentially. Then, the solution 
procedure marches to the next time level for 
transient calculations or global iteration for 
steady-state calculations. Unlike for 
incompressible flow, the pressure-correction 
equation, which contains both convective 
and diffusive terms are essentially transport-
like. 

 
High Order Schemes 

The challenge in constructing an 
effective higher-order scheme is to 
determine an accurate estimate of flux at the 
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cell faces. Barth and Jespersen [22] 
proposed a multi-dimensional linear 
reconstruction approach, which forms the 
basis for the present scheme. In the cell 
reconstruction approach, higher-order 
accuracy is achieved by expanding the cell-
centered solution to each cell face with a 
Taylor series: 

( ) ( ) ( )2, , , ,c c c cq x y z q x y z q r O r= +∇ ⋅∆ + ∆
G G  

where [ ], , , , , , Tq u v w t dk deρ=  
This formulation requires that the 

solution gradient be known at the cell 
centers. Here a scheme proposed in [18] is 
employed to compute the gradients: 

qd qnd
Ω Γ

∇ Ω = Γ∫ ∫
Gv  

The general approach was to: 1) 
coalesce surrounding cell information to the 
vertices or nodes of the candidate cell, then 
2) apply the midpoint-trapezoidal rule to 
evaluate the surface integral of the gradient 
theorem 

1q qnd
Γ

∇ = Γ
Ω ∫

Gv  

over the faces of each cells. Here Ω denotes 
the volume enclosed by the surface Γ.  

It is possible to further simplify the 
method for triangle (2D) or tetrahedron (3D) 
cells such that need not be evaluated 
explicitly. The simplification stems from the 
useful geometrical invariant features of 
triangle and tetrahedron. These features are 
illustrated for an arbitrary tetrahedral cell in 
Fig. 2 Note that a line extending from a cell-
vertex through the cell-centroid will always 
intersect the centroid of the opposing face. 
Furthermore, the distance from the cell-
vertex to the cell centroid is always three 
fourths of that from the vertex to the 
opposing face (For a triangle, the 
comparable ration of distance is two-thirds). 
By using these invariants along with the fact 
that Δr is the distance between them, the 
above equation can be evaluated as: 
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Thus q(x,y,z) can be approximated for 
tetrahedral cells by the simple formula: 

( )1,2,3 1 2 3 4
1

3
1
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where as illustrated in Fig. 2, the subscripts 
n1, n2 and n3 denote the nodes comprising 
face f1,2,3 of cell c and n4 corresponds to 
the opposite node. This modified scheme is 
analytically equivalent to that in [18] and 
results in a factor of two reductions in 
computational time of the flow solver.  

The nodal quantities qn are determined 
in the manner described in [18]. 
Accordingly, estimates of the solution are 
determined at each node by a weighted 
average of the surrounding cell-centered 
solution quantities. It is assumed in the 
nodal averaging procedure that the known 
values of the solution are concentrated at the 
cell centers, and that the contribution to a 
node from the surrounding cells is inversely 
proportional to the distance from each cell 
centroid to the node: 

,
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where 

( ) ( ) ( )
1 22 2 2

, , ,i c i n c i n c i nr x x y y z z= − + − + −⎡ ⎤
⎣ ⎦  

 
Fig. 2 Reconstruction stencil for tetrahedral 
cell-centered scheme 
 

Until recently, the sole approach for the 
reconstruction was a pseudo-Laplacian 
averaging scheme presented in [17]. This 
scheme offers the advantage of second-order 
accuracy in reconstructing data from 
surrounding cells to a node. However, there 
is a need to artificially ‘clip’ the weighting 
factors between 0 and 2 [6] to avert a 
violation of the positivity principle, which is 
necessary for solution stability. This 
artificial ‘clipping’ process does, 
unfortunately, compromise the formal 
second-order accuracy of the scheme to 
some extent. Recent experience of applying 
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the pseudo-Lapacian scheme to Navier-
Stokes computations has surfaced some 
anomalous behavior, which needs further 
investigation. Meanwhile, for the present 
work, we are temporarily reverting to the 
inverse-distance averaging of qn, which 
represents only acceptable accuracy, but will 
never violate the principle of positivity. 

 
Pressure Damping 

Following the concept of Rhie and 
Chow [4] developed for structured grid 
method to avoid the even-odd decoupling of 
velocity and pressure fields, a pressure 
damping term can also introduced for 
unstructured grid method when evaluating 
the interface mass flux. This form is written 
as: 

p p r rE p E pU U Du pe ee e r r r rE p E p

− −
= − ⋅ −∇ ⋅

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
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where eU , ep∇  and eDu  are interpolated 
from the neighboring cells E and P, 
respectively. The last term on the right hand 
side is a higher order pressure damping term 
projected in the direction PE

JJJG
 . 

 
Boundary Conditions 

Several different types of boundaries 
may be encountered in flow calculations, 
such as inflow, outflow, impermeable wall 
and symmetry. In the case of viscous 
incompressible flows, the following 
boundary conditions usually apply: 

 The velocities and temperature are 
prescribed at the inlet; 

 Zero normal gradient for the parallel 
velocity component and for all scalar 
quantities, and zero normal velocity 
component are specified at symmetry 
planes or axes; 

 No-slip condition and prescribed 
temperature or heat flux are specified 
at the walls; 

 Zero (or constant non-zero) gradient 
of all variables is specified at the 
outlet. 

In the case of compressible flows, some 
new boundary conditions may apply: 

 Prescribed total conditions (pressure, 
temperature) and flow direction at 
inflow; 

 Prescribed static pressure at outflow; 
 Supersonic outflow. 

Some of these boundary conditions are 
straightforward to implement the detailed 
implementation is described in [32]. 

In order to facilitate the variations of inlet 
operating conditions in rocket engine 
applications, an inlet data mapping tool is 
developed. This inlet data-mapping tool 
accepts multiple patches of surface data. 
Each individual surface data patch is a 
structured grid that contains flow field data 
such as velocity, pressure, temperature, 
turbulence quantities and species 
concentrations, etc.  

At start up, the UNIC code reads input 
data file and restart flow field data, then it 
will check the existence of the inlet 
boundary condition file, bcdata.dat. If inlet 
data is obtained from the inlet boundary 
condition file, data mapping procedure is 
then performed to incorporate the new inlet 
conditions. 

 
Linear Matrix Solver 

The discretized finite-volume equations 
can be represented by a set of linear algebra 
equations, which are non-symmetric matrix 
system with arbitrary scarcity patterns. Due 
to the diagonal dominant for the matrixes of 
the transport equations, they can converge 
even through the classical iterative methods. 
However, the coefficient matrix for the 
pressure-correction equation may be ill 
conditioned and the classical iterative 
methods may break down or converge 
slowly. Because satisfaction of the 
continuity equation is of crucial importance 
to guarantee the overall convergence, most 
of the computing time in fluid flow 
calculation is spent on solving the pressure-
correction equation by which the continuity-
satisfying flow field is enforced. Therefore 
the preconditioned Bi-CGSTAB [15] and 
GMRES [20] matrix solvers are used to 
efficiently solve, respectively, transports 
equation and pressure-correction equation. 

 
Parallelization 
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Compared with a structured grid 
approach, the unstructured grid algorithm is 
more memory and CPU intensive because 
“links” between nodes, faces, cells, needs to 
be established explicitly, and many efficient 
solution methods developed for structured 
grids such as approximate factorization, line 
relaxation, SIS, etc. cannot be used for 
unstructured methods. 

As a result, numerical simulation of 
three-dimensional flow fields remains very 
expensive even with today’s high-speed 
computers. As it is becoming more and 
more difficult to increase the speed and 
storage of conventional supercomputers, a 
parallel architecture wherein many 
processors are put together to work on the 
same problem seems to be the only 
alternative. In theory, the power of parallel 
computing is unlimited. It is reasonable to 
claim that parallel computing can provide 
the ultimate throughput for large-scale 
scientific and engineering applications. It 
has been demonstrated that performance 
that rivals or even surpasses supercomputers 
can be achieved on parallel computers. 
c. Flowchart 

 
Fig. 3 Flowchart of the Navier-Stokes 
Modeling 
 
[ii] Fluid Modeling 
a. Governing Equation 

The continuity equation for ionized 
species and electrons are: 
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where np and ne are the number density of 
ion species p and electrons e respectively, k 

is the number of ion species, rp is the 
number of reaction channels that involve the 
creation and destroy of ion species p, and  Γ 
is the particle flux. The electric field E is 
calculated from the potential field ψ which 
is in turn calculated from Poisson’s equation: 

2 1
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and 
E ψ= −∇  

where ε is the permittivity and can vary 
depending on the material (and therefore 
location in the simulation). The source terms 
in each of the charged particle continuity 
equations depends highly on the electron 
energy density which is governed by the 
equation: 

( )
1

                     3
c

e

S

i

e
i i e B m e g

n

t
e E

m
S n k v T T

M

ε

ε

ε
=

∂

∂
+ ∇ ⋅Γ = − Γ ⋅

− + −∑

G G G G

 

( )55
2 2ne e

e B e
B e B e

e m

n k T
k T k T

m v
Γ Γ= − ∇
G G

 

where nε (=3/2nekBTe) is the electron energy 
density, Te is the electron temperature, εi is 
the energy loss for the ith inelastic electron 
collision, kb is Boltzmann’s constant, νm is 
the momentum exchange collision frequency 
between electron (mass me) and background 
neutral (mass M), and Tg is the background 
gas temperature.  
 
b. Numerical Algorithm 

Scharfetter-Gummel Scheme 

The Scharfetter-Gummel Scheme 
provides an optimum way to descretize the 
drift-diffusion equation for particle transport. 
For an one-dimensional example, here 
defines the grid points i and i + 1, and the 
flux between the grids Γi+1/2. The drift-
diffusion equation of positive charged 
particle can be written as 

1 1 1
, , ,

2 2 2

p
p

p i p i p i

n
D n

x x
φ

µ
+ + +

∂ ∂
Γ = − −

∂ ∂
 

The drift velocity 1
,

2
p i x

φ
µ

+

∂

∂
is correlated to 

the density np through the self-consistent 
description of fluid modeling. We can 
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change the valuable from position to 
potential by chain rule, 

1 1
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2 2
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, which here assume that the 
x
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 is 

independent of potential, 
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+
+

Γ
∂

+ = −
∂∂
∂

 

The solution of the first-order different 
equation is 

( )

1
,

2

1
,

2

1
,

2

1
,

2

p i

p i
D p i

p

p i

n Ce
D

x

µ

φ

φ
φ

+

+

−
+

+

Γ

= −
∂
∂

 

By applying the boundary condition 
( )i i in n φ=  and ( )1 1 1i i in n φ+ + += , the constant 

C and flux , 1/ 2p i+Γ  can be found, 

1 1
, ,

2 2
1

1 1
, ,

2 2

1

p i p i

i i

p i p i

i i

D D

n n
C

e e

µ µ

φ φ
+ +

+

+ +

+

− −

−
=

−

 

( ) ( )[ ]
1

,
2

1 1
,

2

p i

i i
p i

D
n B X n B X

x

+

+
+

Γ = − − −
∆

 

, where ( ), 1/ 2
1

, 1/ 2

p i
i i

p i

X
D
µ

φ φ+
+

+

= − , and B is 

Bernoulli function, 

( )
1x

XB x
e

=
−

 

For electron, in the same way we can 
write the flux equation, 

( )

( )

1 e
e e B e

e e

e B e e
B e e

e e e

qn
n k T E

m v m v

n k T qn
k T n E

m v m v m v

Γ = − ∇ −

= − ∇ − ∇ −

G

G
 

The first-order differential equation and 
its solution are 

( )B eB e
e e e

e e e

k Tk T q
n E n

m v m v m v
∇

∇ + + = −Γ
⎛ ⎞
⎜ ⎟
⎝ ⎠

G
 

( )B e e
e e

B eB e B e

e

k T q
n E n

k Tk T k T
m v

∇ Γ
∇ + + = −

⎛ ⎞
⎜ ⎟
⎝ ⎠

G
 

We can change the variable from position to 
potential and find the solution of density in 
function of potential. 

( )
a

x
e

bn Ce
a

φ
φ

φ
−
∂
∂= +  

, where C is a constant, as well as a and b 
are defined as 

( )B e

B e B e

k T qa E
k T k T

∇
= +

G
 

e

B e

e

b k T
m v

Γ
= −  

For a given boundary at i+1 and i, we can 
know the constant C and the flux eΓ , 

1

1
i i

i i
a a

n nC
e eφ φ+

+
′ ′− −

−
=

−
 

( ) ( ), 1/ 2 1
1 B e

e i i i
e

k T B X n B X n
x m v+ +Γ = − − −⎡ ⎤⎣ ⎦∆

 

, where ( )1i iX a φ φ+′= −  and aa

x
φ

′ =
∂
∂

 

( ) ( ), 1/ 2
, 1/ 2 1

e i
e i i i

D
n B X n B X

x
+

+ +Γ = − − −⎡ ⎤⎣ ⎦∆
 

 
Nondimensionization 

Here let n0 denote the background gas 
density, and potential, length, time, and 
velocity scaling are list as following: 

0 0B

e
k T
φ φφ

φ
′ = = , 

0

p
p

u
u

u
′ = , 

0

e
e

uu
u

′ =  

, where 0u  is 
1/ 2

0
0

B

p

k Tu
m

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

The normalized energy density is 

,0
0 0B

nn
n k T

ε
ε =  

, and the normalized energy 

0B

e
k T

ε ε′ =  

, which the ε  is in unit eV. 
xx
λ

′ =  

, where the character length is 
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0

1

pn
λ

σ
=  

, and the cross-section of Argon ion is 
19 28.0 10

Ar
mσ +

−= × . The character time 
scale is 

0ut t
λ

′ =  

The dimensionless diffusivity and 
permittivity are 

0

DD
uλ

′ = , 0pm u
e

µ µ
λ

′ =  

The ion momentum with drift-diffusion 
approximation and S-G scheme can be 
scaled 

( ) ( )[ ]0 , 1/ 2
, 1/ 2 0 1 0

p i
p i i i

u D
n n B X n n B X

x

λ

λ
+

+ +

′
′ ′Γ = − − −

′∆
 

( ) ( )[ ], 1/ 2
, 1/ 2 1

p i
p i i i

D
n B X n B X

x
+

+ +

′
′ ′ ′Γ = − − −

′∆
 

, also electron flux 

( ) ( )[ ], 1/ 2
, 1/ 2 1

e i
e i i i

D
n B X n B X

x
+

+ +

′
′ ′ ′Γ = − − −

′∆
 

The scaling of continuity equation can be 
written as 

,0 0 0 0
0 0 , ,

1e p
e p e p

nn u n un u S
tλ λ λ
′∂

′ ′ ′+ ∇ ⋅ Γ =
′∂

 

,
, ,

e p
e p e p

n
S

t
′∂

′ ′ ′+∇ ⋅Γ =
′∂

 

The energy equation 

0 0
0 0 0 0 0 0 0

1
B B B

u n un k T n k T u n k T S
t
ε

ε ελ λ λ
′∂ ′ ′ ′+ ∇ ⋅ Γ =
′∂

 
n S
t
ε

ε ε

′∂ ′ ′ ′+∇ ⋅Γ =
′∂

 

, where the normalized energy source term is 

e eS S E
eε
ε ′′ ′= − −Γ  

The scaling of Poisson’s equation, 
2 0

02
0

1 1B
s s

s

k T q n n
e

φ
λ ε

′ ′∇ = − ∑  

( )
2 2

2 0

0
s

sB e

e n sign n
k T

λφ
ε

′ ′ ′∇ = − ∑  

( )2 1
s

s

sign nφ
ε

′ ′ ′∇ = −
′∑  

, where 

2
0
2 2

0

o pu m
e n

ε
ε

λ
′ =  

 
Finite Difference Descritization 

In this report, we descritize the fluid 
modeling equations through the use of finite 
difference method. Since continuity 
equations for different species are similar, 
here only presents the discretization for the 
equation. By employing the backward Euler 
scheme for time integration and the 
Sharfetter-Gummel scheme for representing 
the particle flux and after tedious algebraic 
rearrangement, the resulting discretized 
equation on a typical grid point (m, n) can 
be written as, 

, , , ,
, ,

, 1/ 2, , 1/ 2, , , 1/ 2 , , 1/ 2
, ,

1

t t t
m n m n t t

m n
m

t t t t t t t t
m n m n m n m n t t

m n
im n

n n
t x

S
x y

α α
α

α
α α α α

α

γ+∆
+∆

+∆ +∆ +∆ +∆
+ − + − +∆

=

−
+ Γ

∆

Γ − Γ Γ −Γ
+ + =

∆ ∆
∑

 
, where α can be electrons, ion, and 
uncharged species, xm is the distance from 
original point to grid point m, mx∆  and my∆  
are the step length at grid (m, n), γ is a factor 
using to deal with the coordinate system, for 
cylindrical coordinate is 1 and for Cartesian 
coordinate is 0, αΓ  are the flux defined 
between grids which can be expressed in 
Scharfetter-Gummel form as,  

( )( )
( )( )

1/ 2
, 1/ 2

1/ 2

, 1 1/ 2

, 1/ 2

m
m

m

m m

m m

D
x

n B sign q X

n B sign q X
α

α α

α α

+
+

+

+ +

+

Γ = −
∆

⎡ −⎣
⎤− − ⎦

( )( )
( )( )

1/ 2
, 1/ 2

1/ 2

, 1 1/ 2

, 1/ 2

n
n

n

n n

n n

D
x

n B sign q X

n B sign q X
α

α α

α α

+
+

+

+ +

+

Γ = −
∆

⎡ −⎣
⎤− − ⎦

 

, where X is a non-dimensional variable 
define as, 

( )

( )

1/ 2
1/ 2 1

1/ 2

1/ 2
1/ 2 1

1/ 2

m
m m m

m

n
n n n

n

X
D

X
D

µ
φ φ

µ
φ φ

+
+ +

+

+
+ +

+

= −

= −
 

, and B is the Bernoulli function which is 
defined as, 

( )
1x

xB x
e

=
−
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The electron energy equation is descritized 
as 

( )

, , , , , , , ,
, ,

, 1/ 2, , 1/ 2, , , 1/ 2 , , 1/ 2

, , , , , , ,
1

3
2

3
i

t t t t t t
e m n e m n e m n e m n t t

e m n
m

t t t t t t t t
e m n e m n e m n e m n

m n

S
t t t t t t t te
e m n m n i m n e B m e m n g

i

n T n T
t x

x y

m
E S n k v T T

M

ε

ε

γ

ε

+∆ +∆
+∆

+∆ +∆ +∆ +∆
+ − + −

+∆ +∆ +∆ +∆

=

−
+ Γ

∆

Γ −Γ Γ −Γ
+ +

∆ ∆

= −Γ ⋅ − − −∑
GG

 
, where Te and iε  are in unit of eV, mν  is the 
electron collision frequency, and the 
descretized form energy fluxes εΓ  are 
expressed as, 

, ,

, 1/ 2,

, 1,, 1/ 2, , 1/ 2,
, 1/ 2, , 1/ 2,

5 5
2 2

e m n

m n

e m ne m n e m n
e m n e m n

e m m

T Tn T
T

m v x

ε +

++ +
+ +

Γ =

−
Γ −

∆
 

, ,

, , 1/ 2

, , 1, , 1/ 2 , , 1/ 2
, , 1/ 2 , , 1/ 2

5 5
2 2

e m n

m n

e m ne m n e m n
e m n e m n

e m n

T Tn T
T

m v y

ε +

++ +
+ +

Γ =

−
Γ −

∆
 

Finally, the Poisson’s equation is discretized 
as 

( )

( ) ( )( )

( ) ( )( )

1

1/ 2 1 1/ 2 12

1/ 2 1 1/ 2 12

2
1

1

t t t tm
m m

m m

t t t t t t t t
m m m m m m

m

t t t t t t t t
n n n n n n

n

x x

x

y

γε φ φ

ε φ φ ε φ φ

ε φ φ ε φ φ

+∆ +∆
+

+∆ +∆ +∆ +∆
+ + − −

+∆ +∆ +∆ +∆
+ + − −

−
∆

+ − − −
∆

+ − − −
∆

 
Parallel Newton-Krylov-Swartz Algorithm 

In this study, the parallel fully coupled 
Newton-Krylov-Swartz(NKS) algorithm [11] 
to solve the large sparse system of nonlinear 
discretized equations, which are derived in 
the previous section, has applied. All the 
functions for each dependent variables are 
form a global functional vector. Jacobian 
matrix is then computed based on this global 
vector. Nevertheless, this treatment results 
in a fully implicit scheme, which allows 
much larger time step as compared to semi-
implicit or explicit scheme. Another 
advantage of solving the coupled equations 
directly, rather than solving the equations 
one by one or some heuristic way of 

coupling, is that it can have better time 
accuracy with appreciable time-step size, 
and much better parallel performance since 
the grain size is much larger. In this method, 
an inexact Newton method is used to solve 
the coupled nonlinear discretized equations 
at each time step. The resulting Jacobian 
system computed by using finite difference 
for the Newton corrections are solved with a 
preconditioned Krylov subspace type 
method, relying directly only on iterative 
operations. The Krylov method requires 
preconditioning for achieving acceptable 
convergence speed of inner interactions. A 
good preconditioner saves time and memory 
by allowing fewer iterations in the Krylov 
loop and smaller storage for the Krylov 
subspace. In this study, we have utilized a 
parallel additive Schwarz(AZ) type 
preconditioner with an inexact or exact 
solver such as incomplete LU(ILU) or LU 
factorizations in each subdomain. It was 
shown that this AS preconditioner can 
greatly reduce the runtime required for inner 
iterations in an inexact Newton method [3]. 
This results from that the smaller subdomain 
blocks maintain better cache residency and 
shorter convergence time for an approximate 
solver. In addition, either scheme was used 
to solve the preconditioned matrix equation 
at each time step. By combining the AS 
preconditioner with Krylov type subspace 
method BiCG-STAB(or BCGS) [12] or 
GMRES [19] in the present study within an 
inexact Newton method leads to a coherent 
fully parallel solver: Newton-Krylov-
Schwarz(NKS) algorithm [16].  

In practical implementation, we 
employed the PETSc package [9], which 
features distributed data structure –index 
sets, vectors, and matrices – as functional 
objects. Iterative linear and nonlinear solvers 
are combined modularly, recursively, and 
extensively through a uniform application 
programmer interface. In addition, the 
Jacobian system within the inexact Newton 
method can be computed automatically by 
the finite-difference scheme within the 
PETSc framework or by the user 
himself/herself. Portability is achieved 
through MPI, which is a stander in message 
passing among processors nowadays, 
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although the details are not requires in 
practical coding. All the codes were 
programmed in C/C++. 
 
III. RESULTS AND DISCUSSIONS 
[i] Neutral Flow Modeling 

The driven flow in a square cavity is 
used as the model problem. Solutions are 
obtained for configurations with meshes 
consisting of as many as 129 x 129 points.  

The streamline contours for the cavity 
flow configurations with Re increasing from 
100 to 5000 are shown in Fig. 4. As is well 
known, the center of primary vortex is offset 
toward s the top right corner at Re =100. It 
moves towards the geometric center of the 
cavity with increasing Re.  

Compare these results with Ghia(1982, 
Fig 5. left), we can verify our Navier-Stokes 
Model is valid. 

   
Fig. 4a Streamline pattern of Re=100 

   
Fig. 4b Streamline pattern of Re=400 

   
Fig. 4c Streamline pattern of Re=1000 

   
Fig. 4d Streamline pattern of Re=3200 

   
Fig. 4e Streamline pattern of Re=5000 

 
[ii] Fluid Modeling 

The results shown in the following 
are adapted from the simulation of an argon 
gas flowing through two parallel electrode 
with gap distance of 1 mm and length of 50 
mm (Fig. 5), in which the discharged is 
maintained by a RF power source (f=13.56 
MHz) with amplitude of 300 Volt. The 
simulation domain includes the post-
discharge (jet) region, which is important in 
APPJ applications. The potential field, 
predicted electron and ion number density 
and general flow features are in general 
agreement between the two solvers.  

 

 
Fig. 5 Details of the simulation performed 

by the FDM (top) and FVM (bottom) 
showing the distant target body (lower). 

 
In addition, simulation conditions 

included: 6 unknowns (Φ, Te, ne, nAr, nAr+, 
nmetastable, nresonance) in each grid point, 100 
time steps in each RF cycle, 10-4 of relative 
convergence for the Newton iteration, 10-5 
of relative convergence for the KSP matrix 
solver. Mobility and diffusivity of argon 
ions was taken to be 0.14 m2V-1s-1 and 4*10-

3 m2s-1, respectively [13]. In parallel 
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computing, an ASM preconditioner using 
only one overlapping layer with LU as the 
subdomain solver was employed. A 
relatively simple plasma chemistry was 
considered as summarized in Table 1. 

 
Table 1. Argon plasma chemistry. 

 
 

a. Parallel Performance Testing 

Fig. 6 illustrates the parallel 
performance related results as a function of 
the number of processors. Fig. 6a shows that 
the parallel speedup for the cases using 
GMRES as the KSP solve and LU as the 
subdomain solver in the preconditioner 
generally perform better than the cases using 
Bi-CGStab (or BCGS) and LU. In addition, 
the parallel speedup of the cases using 
BCGS as the KSP solve levels off as the 
number of processors exceeds 96, while that 
of the cases using GMRES still increases up 
to 128 processors. Interestingly, ~195% of 
parallel efficiency for the case of LU-
GMRES is observed at 128 processors. As 
shown in Fig. 6b, the absolute runtime per 
time step using LU-BCGS is generally 
larger than that using ILU-BCGS as the 
number of processors is less than or equal 32. 
However, the absolute run times per time 
step of the LU-BCGS case becomes slightly 
smaller than that of the ILU-BCGS case as 
the number of processor exceeds 32. This is 
reasonable since LU solve is more efficient 
if the grain size is small enough (larger 
number of processors for the same problem 
size). Most importantly, the runtime per time 
step using BCGS is generally much smaller 
than (4-5 times) that using GMRES. Based 
on the present study, we estimate that it will 
take 15,000 seconds (~4 hours) to simulate 
for 1,000 RF cycles with 32 processors. Of 
course, this can be further reduced, should 
higher order temporal scheme and 
programming optimization are employed. In 

brief summary, combination of LU with 
BCGS performs the best in terms of absolute 
runtime, although the corresponding 
speedup may not be the best. This 
observation has to be taken with care, since 
we have observed that KSP solve using 
GMRES is generally more robust than that 
using BCGS. More clever strategy in 
combining both kinds of KSP solve requires 
further investigation. In addition, more test 
using larger problem size are definitely 
required to further investigate its effect on 
the parallel performance of the fluid 
modeling code developed in the present 
study. 

 

 
Fig. 6 Parallel performance of the parallel 
fluid modeling code for 2D argon parallel 

plate CCP. 
 

b. Argon Atmospheric-Pressure Plasma 

Fig. 7 shows the potential and electron 
temperature distribution of argon APP 
between two parallel electrode plates at 
different phases.  

Fig. 8a shows the electron and Ar ion 
number density distribution of argon APP 
which the power electrode voltage just starts 
to rise.  

Fig. 8b shows the electron and Ar ion 
number density distribution of argon APP 
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which the voltage reaches 150V at the 
powered electrode. 

Fig. 8c shows the electron and Ar ion 
number density distribution of argon APP 
which the voltage reaches the positive peak 
value of 300V at the powered electrode.  

Fig. 8d shows the electron and Ar ion 
number density distribution of argon APP 
which the voltage reduces from the positive 
peak value down to 150V at the powered 
electrode.  

During the rapid fall of powered voltage 
from peak value to 0V, the electrons are 
accumulated on the dielectric surface near 
the powered electrode.  

Fig. 8e shows the electron and Ar ion 
number density distribution of argon APP 
which the voltage reduces from 150V down 
to 0V at the powered electrode. 

Fig. 8f shows the electron and Ar ion 
number density distribution of argon APP 
which the voltage reduces from 0V down to 
-150V at the powered electrode. 

Fig. 8g shows the electron and Ar ion 
number density distribution of argon APP 
which the voltage reaches the negative peak 
value of -300V at the powered electrode. 

Fig. 8h shows the electron and Ar ion 
number density distribution of argon APP 
which the voltage increases from negative 
peak value to -150V at the powered 
electrode. 
 

a)  

b)  

c)  

d)  

e)  

f)  

g)  

h)  
Fig. 7  Potential(left) and Electron 
Temperature(right) distribution of argon 
APP between two parallel electrode plates at 
phases of a) 0, b) π/4, c)π/2, d) 3π/2, e) 2
π, f) 5π/2, g) 3π, h) 7π/2. 

a)  

b)  

c)  
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d)  

e)  

f)  

g)  

h)  
Fig. 8 Electron(left) and Ar ion(right) 
number density distribution of argon APP 
between two parallel electrode phases of a) 
0, b) π/4, c)π/2, d) 3π/2, e) 2π, f) 5π/2, 

g) 3π, h) 7π/2. 
 

Fig. 9a shows the Ar metastable and 
resonan number density distribution of 
argon APP which the power electrode 
voltage just starts to rise.  

Fig. 9b shows the Ar metastable and 
resonan number density distribution of 
argon APP which the voltage reaches 150V 
at the powered electrode. 

Fig. 9c shows the Ar metastable and 
resonan number density distribution of 
argon APP which the voltage reaches the 
positive peak value of 300V at the powered 
electrode.  

Fig. 9d shows the Ar metastable and 
resonan number density distribution of 
argon APP which the voltage reduces from 

the positive peak value down to 150V at the 
powered electrode.  

Fig. 9e shows the Ar metastable and 
resonan number density distribution of 
argon APP which the voltage reduces from 
150V down to 0V at the powered electrode. 

Fig. 9f shows the Ar metastable and 
resonan number density distribution of 
argon APP which the voltage reduces from 
0V down to -150V at the powered electrode. 

Fig. 9g shows the Ar metastable and 
resonan number density distribution of 
argon APP which the voltage reaches the 
negative peak value of -300V at the powered 
electrode. 
Fig. 9h shows the Ar metastable and resonan 
number density distribution of argon APP 
which the voltage increases from negative 
peak value to -150V at the powered 
electrode. 

a)  

b)  

c)  

d)  

e)  
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f)  

g)  

h)  
Fig. 9 Argon metastable and resonan 
number density distribution of argon APP 
between two parallel electrode plates of a) 0, 
b) π/4, c)π/2, d) 3π/2, e) 2π, f) 5π/2, g) 

3π, h) 7π/2.. 
 
IV. CONCLUSIONS AND FUTURE 
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