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Abstract- This paper presents analysis, design and simulation of 
velocity loop PDFF controllers and H∞ feedback controller for 
permanent magnetic synchronous motor (PMSM) in the AC servo 
system. PDFF and H∞ control algorithm have its own capability of 
achieving good performance criteria such as dynamic reference 
tracking and load torque disturbance rejection. The PDFF is 
designed and analyzed in the forward loop to provide low 
frequency stiffness and overcome low-frequency disturbances like 
friction. While in the feedback loop, H∞ controller is designed to 
meet system robust stability with the existence of external 
disturbance and model perturbations. The proposed PDFF and 
H∞ controllers are designed based on the transfer function of the 
poly-phase synchronous machine in the synchronous reference 
frame at field orientation control (FOC). The parameter 
variations, load changes, and set-point variations of synchronous 
machine are taking into consideration to study the dynamic 
performance. 
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I. INTRODUCTION 

The PMSM motor servo drive play an important role in 
industrial motion control applications including machine tools, 
factory automation and robotics in the low-to-medium power 
range. Several situations encountered in these applications: 1) 
Plant parameters such as load inertia and friction may vary 
during operation as the payload changes. 2) System bandwidth 
is limited by the presence of a tensional resonance of the 
mechanical system. 3) In AC servo motors, higher torque ripple 
and coupled dynamics with magnetic flux caused the 
nonlinearities in torque response and torque transients. 4) The 
set-point tracking capability in both dynamic and steady-state 
conditions and the load torque disturbance rejection capability 
are varying during applications. Several control techniques [1-7] 
have been developed to overcome these issues. Derived from 
generalized PID controller, the PDFF controller is allowing the 
user to eliminate overshoot and provide much more DC 
stiffness than PI by properly choosing the controller parameters. 
It is also known [8] that PDFF controller is less sensitive to 
plant parameter variations and its disturbance rejection 
characteristics are much better than that of the PI controller. 
Along with PDFF controller, H∞ control theory is one of the 
successful algorithms for robust control problem in PMSM 
drive to provide better tolerance to disturbance and modeling 
uncertainties. In this paper, the H∞ design procedure[4,9,10] is 
proposed and consists three main stages: 1) using weighting 
matrices W1 and W2 to shape the singular values of the nominal 
plant follows the elementary open-loop shaping principles; 2) 
the normalized coprime factor H∞ problem is used to find a 
robust central controller stabilizing this shaped plant, and the 

observer is obtained from the left coprimeness of the central 
controller; 3) the H parameter in the controller is used as a 
tradeoff between robust stability and performance. 

 
II. MATHEMATICAL MODEL OF THE PMSM 

The field orientation of the PMSM is defined as d-axis, and 
q-axis that leads the d-axis 90 electric degrees. In the d-q 
coordinates, the PMSM voltage-current and flux equations are 
shown as follows: 

d d d r qv Ri λ ω λ= + −&  (1) 

q q q r dv Ri λ ω λ= + −&  (2) 

d d d PML iλ λ= +  (3) 

q q qL iλ =  (4) 
Where vd and vq are voltages of the d, q axis; R is the stator 

resistance; id and iq are the d, q axis stator currents; ωr is the 
rotor speed; λd and λq are the d, q axis flux induced by the 
currents of the d, q axis inductance; Ld and Lq are the q, d axis 
inductances with the same value, and λPM the constant mutual 
flux of the permanent magnet.  

  When the stator current vector is oriented perpendicular to 
the rotor magnetic field, the field-oriented control for PMSM 
yields id =0. In the case, the electromagnetic torque is in strict 
positive proportion to iq: 

3
4e PM q T q
PT i K iλ= =  (5) 

where P is the number of poles and KT is the motor torque 
constant. 

The mechanic motion equation is: 

r
e T q d r

dT K i T B J
dt
ωω= = + +  (6) 

where J is the moment of inertia; B is the viscous friction, and 
Td is the torque disturbance such as the load resistance, the 
torque ripple and the resistance caused by nonlinear factors. 

 
III. DESIGN OF THE CONTROL SYSTEM 

A. Control Scheme 
The proposed control scheme is presented in Fig. 1 where 

the nominal plant is G(s) = 1/(Js+B); K(s) is the velocity 
feedback controller designed by the loop shaping design 
procedure (LSDP) and the algebraic method, and the velocity 
lop controller is a PDFF controller. K(s) is used for attenuating 
the disturbance Td, and plant uncertainty, and the PDFF 
controller is used as velocity loop adjuster to improve the 
low-frequency stiffness. 
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Fig. 1 Control scheme 

 
B. Velocity Feedback Controller 

In this paper, a continuous time control design approach 
based on H∞-optimization control design is performed for a 
model of the PMSM system as seen from the digital computer 
control design approach. Consequently, performance is 
specified at the controller disturbance instants. 

Minimum phase W1 and W2 are proper stable, real rational 
function denoted by RH∞.The left and right coprime 
factorizations of W1GW2 are 1

S SM N−% %  and 1
S SN M − , 

respectively. Moreover, a doubly coprime factorization exists 
as follows: 

r r S l S l r r

S S S l S l S S

X Y M Y M Y X Y
I

N M N X N X N M
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦% % % %

(7) 
where ,SN  ,SM  ,SN%  ,SM%  Xr, Yr, Xl, and Yl are over RH∞. 
Then, the velocity controller K(s) is defined as follows: 

1 2( ) ( ) ( ) ( )vK s W s K s W s=  (8) 

Where 1 1 1( ) [ ] [ ]v r l r lK s X H Y N Y H Y M− − −= + −% %  and H is a 
unit over RH∞. With K(s) of (8), the velocity feedback loop is 
internally stable. Moreover, Xr and Yr of Kv(s) in (8) play the 
similar role as central controller although H in Kv(s) cannot be 
0. According to this property, Xr and Yr can be designed using 
the LSDP and H will be used to reject step and sinusoidal 
disturbance, as follows. 
 
C. Design of Velocity Controller Using the LSDP and the Algebraic Method 

The first stage in the LSDP uses a pre-matrix W1 and/or a 
post-matrix W2 to shape the singular values of the nominal 
plant G as a desired open-loop shape GS = W2GW1. Constant or 
dynamic W1 and W2 are selected such that GS has no hidden 
modes. Constant weighting matrices can improve the 
performance at low frequencies and increases the crossover 
frequency. Moreover, the dynamic W1 or W2 is used as the 
integral action with the phase-advance term for rejecting the 
input and output step disturbances. W1 or W2 is selected as the 
diagonal matrix and each principal element is (s+φ)/s where 
φ >0 is lower than the crossover frequency. The integral action 
improves the performance at low frequencies, and the 
phase-advance term s+φ avoids the slope of the open-loop 
shaping at the crossover frequency more than -2, and adjusts 
the robustness in the feedback system. If φ is closer to the 
imaginary axis, the robustness is larger. The stage is the same 

as the velocity controller herein. 
 [11-14] advocate an expression of coprime factor 

uncertainty in terms of additive stable perturbations to coprime 
factors of the nominal plant. Such a class of perturbations has 
advantages over additive or multiplicative unstructured 
uncertainty model. For example, the number of unstable zeros 
and poles may change as the plant is perturbed. The perturbed 
plant [See Fig. 2.] is written 

1( ) ( )S N S MG N M −
Δ = + Δ ⋅ + Δ  (9) 

where the pair (MS, NS) is a normalized right coprime 
factorization of GS, and ΔM and ΔN are stable, unknown transfer 
functions representing the uncertainty and satisfying 

N

M

ε
∞

Δ⎡ ⎤
<⎢ ⎥Δ⎣ ⎦

, where ( 0)ε >  presents the stability margin. 

In the second stage of the LSDP, the robust stabilization H∞  
problem is applied to the normalized right coprime 
factorization of GS, and obtains a robust controller K∞ 
satisfying  

 
Fig. 2  Right coprime factor robust stabilization problem 

 

[ ]1 1 1( )S SM I K G K I ε− − −
∞ ∞ ∞

+ ≤   (10) 

 
Suppose the shaped plant of GS has the minimal realization 

(A, B, C, D). A central controller satisfying (10) is obtained as 
follows [15]: 

2 1 2 1( ) ( ) ( )T T T T

T T

A BF W ZC C DF W ZC
K

B X D
γ γ− −

∞

⎡ ⎤+ + + −
= ⎢ ⎥
⎣ ⎦

 (11) 
where 1( )T TF S D C B X−= − + ; 2( )W I XZ Iγ= + − , and 
X and Z are the solutions to the two algebraic Riccati equations 
as follows: 

1 1 1 1( ) ( ) 0T T T T TA BS D C X X A BS D C XBS B X C R C− − − −− + − − + =
 (12) 

1 1 1 1( ) ( ) 0T T T T TA BS D C Z Z A BS D C ZC R CZ BS B− − − −− + − − + =
 (13) 

where R = I+DDT, and S = I+DTD. 
If the plant is assumed to be strictly proper, i.e. D = 0, the 

realizations for the doubly coprime factorization can be 
presented as follows. 

1
SM −

SN

MΔ NΔ

−

K∞

−

−
rω1

Js B+

( )G s

 r
−−

PDFF 
controller H∞ feedback 

control 
( )K s

IK
s  TK

KFB 

KFR 

−

+ 
+ + + 
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0

S

S

A BF B
M

F I
N

C

+⎡ ⎤
⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 (14) 

0S S

A QLC B QL
N M

C I
+⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦

% %   (15) 

[ ]
0r r

A QLC B QL
X Y

F I
+ −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
  (16) 

[ ]
0l l

A BF B QL
X Y

C I
+ −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  (17) 

The pair ( , S SN M% % ) in (15) is the left coprime factorization 
of GS, but not the normalized left coprime factorization. 
Moreover, the pair (Xr ,Yr) are the left coprime factorization of  
K∞ when D = 0. That is, K∞ = Xr

-1Yr. The result presents for the 
second stage of the velocity controller that the pair (Xr,Yr) in 
Kv(s) of (8) can be obtained from the left coprime factorization 
of K∞ when D = 0. 

In Fig. 1, the transfer function from TL to ωr is (18). 
1 1

1 1( )r S r l LW N X H Y N W Tω − −= − + ⋅%   (18) 
For a step in TL, ωr with the zero steady state must satisfy the 

following equation, according to the final value theorem. 
1 1

00
( ) ( ) 0r l S S r ss
X H Y N H M X− −

==
+ = − + =%   (19) 

For rejecting a sinusoidal disturbance with known frequency 
σ in TL, the following equation must be satisfied obviously. 

1 1( ) ( ) 0r l S S r s js j
X H Y N H M X

σσ
− −

==
+ = − + =%   (20) 

Hence, for rejecting a step and/or sinusoidal disturbance in 
TL, H can be designed algebraically. For example, if only the 
step disturbance exists in TL, H is designed to be constant as 
follows. 

1

0
( )S r s

H M X −

=
= −  (21) 

If only a sinusoidal disturbance with known frequency 1σ  
exists in TL, H needs two unknown coefficients and is designed 
as follows: 

1
1( ) s kH s h

s p
+=
+

 (22) 

where H of (22) satisfies  

1 1

1( ) ( )S rs j s j
H s M Xσ σ

−
= =

= −  (23) 

p(>0) is given, and h1 and k1 can be solved according to (23). 
Analogously, if a number of n sinusoidal disturbances with n 
known frequencies σ1~σn, H needs 2n coefficients to be solved 
as follows. 

3 22
1 2 2 1( )

( ) ( )
n

n

h hhH s h
s p s p s p −= + + + +

+ + +
L    (24) 

Hence, since the pair (Xr ,Yr) in Kv is the left coprime 
factorization of K∞ in the LSDP, the completed velocity 

controller has several properties of the LSDP, including 
consideration of plant input and output performance, limited 
deteriorations at plant input and output, and bounded 
closed-loop objective functions. The three major properties of 
the LSDP are listed in [16]. Moreover, the velocity controller 
can use the H parameter to reject step and/or sinusoidal 
disturbances.  

The velocity feedback loop also has robustness with coprime 
factor uncertainty, and satisfies the following robust inequality: 

1 1 1
r l S r l S vY H Y M X H Y N ε− − −

∞
⎡ ⎤− + ≤⎣ ⎦

% %  (25) 

where εv is the stability margin in the velocity feedback loop. 
Eq. (25) presents that the H parameter can affect the value of 
the stability margin εv. Herein, H is selected according to the 
control requirements and then the value of εv can be checked. H 
may need several redesigns to obtain a satisfactory value of εv. 
Moreover, for the sake of the numerical realization, Kv also can 
be written as Kv =(1+Cv Xr)-1CvYr where Cv=H−MS. 

 
D. PDFF Velocity Control Method 

In digital control systems of PMSM drive, most of 
applications are using its velocity and torque control mode. The 
position loop of PMSM drive is taken control by outside 
multi-axis controller such as CNC controller. Many 
manufacturers use PI velocity loops, eliminating the derivative 
(“D”) term. Tuning PI loop is easy and is ideal for maximum 
responsiveness applications such as pick-and-place machines. 
But PI control has a weakness—because of its integral gain 
must remain relatively small to avoid excessive overshoot 
provides that it does not have good low frequency “stiffness”. 
PDFF velocity control was developed to combat this problem. 
Fig. 3 shows the block diagram in frequency domain of a plant 
with a PDFF controller of the form: 

( ) ( ) ( )( ) ( )I
FR FB

Ku s d s K r s e s K y s
s

= + ⋅ + ⋅ − ⋅   (26) 

 

 
Fig. 3 Plant and disturbance with PDFF Controller 

 
The transfer function of disturbance to output with the plant 

is simplified as a first order model is derived by  

( )
( )
( )2( )d

FB I

y ss JG s
s B J K J s K J d s

= =
+ + +

  (27) 

One of the most important specifications in many motion 
control applications is the load-torque disturbance rejection 
capability. The disturbance response can be tuned by moving 
closed poles more to the left side in the complex plane, and 
tracking response can be further optimized by adding zeros to 
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the system via feedforward, as shown in (28). 
( )

( )
( )
( )2( ) I FR

c
FB I

K K s J y s
G s

s B J K J s K J r s
+

= =
+ + +

  (28) 

The PDFF controller which locates the zero at an optimal 
place that shortens the step response rise time without 
overshoot. 
 

IV. RESULTS OF SIMULATION RESEARCH 
A 1KW PMSM is included in the simulation, its mechanical 

parameters are: J = 6.37 and B = 0.1. According to the method 
discussed in part C of Section III, W1, W2, Xr, Yr, H and Cv are 
given as follows. 

3

1
5 10 ( 2500)sW

s
× += , W2 = 1, 

2 4 7

2 4 7

1.395 10 2.348 10
1.181 10 1.216 10r

s sX
s s

+ × + ×=
+ × + ×

,  

4 7

2 4 7

2.016 10 1.216 10
1.181 10 1.216 10r

sY
s s

× + ×=
+ × + ×

 

30.393( 2.713 10 )
1

sH
s

− + ×=
+

 

3 3 2 6 9

3 3 2 6 6

1.393 1.903 10 3.040 10 2.090 10
2.132 10 1.965 10 1.962 10v

s s sC
s s s

− − × − × − ×=
+ × + × + ×

 

 
The design yields that GS has the crossover frequency about 

300Hz as shown in Fig. 4(a), and the velocity feedback loop 
have the stability margin 19.36%. Moreover, it yields that the 
velocity feedback loop can reject the 250Nm step at 0.02 sec 
and 300Hz sinusoidal at 0 sec disturbances in TL as shown in 
Fig. 4(b), and the input sensitivity, W1MSXrW1

-1 is presented in 
Fig. 4(c). The effect of PDFF controller also has contribution 
on the disturbance rejection, as shown in Fig. 4(b). 
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Fig. 4 (a) GS shape (b) disturbance responses with 250Nm step (at 0.02sec) 
and sin600πt (at 0 sec) (c) input sensitivity 

The key difference between PI and PDFF is that PDFF 
forces the entire error signal through integration. This makes 
PDFF less responsive to the velocity command than PI. 
Although the feed-forward term injects the command ahead of 
the integral making the system more responsive to commands, 
moving average (MA) filter of error signal is considered to 
improve the responsiveness. Fig. 6 shows the step response of a 
1KW PMSM and servo drive system with MA filter 
compensation in the velocity loop.  

 
Fig. 5 Block diagram of PDFF controller with MA filter. 
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Fig. 6 1KW PMSM drive step response: (a) no load (b) with load. 
w/o compensation, with compensation, MA compensation signal 

 
V. CONCLUSIONS 

This paper proposes a combined design for the velocity 
controller of a high performance PMSM speed servo using 
PDFF and H∞ feedback control to meet the requirements of 
robust stability, exterior load disturbances rejection, 
low-frequency stiffness and responsiveness. The simulation 
and experimental results demonstrate the good control 
performance of the proposed control scheme. 
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