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Abstract
Plasma process induced damage from high-density plasma dielectric etcher was studied
comprehensively. It was observed that PMOS devices were damaged more readily than
NMOS devices. Low field gate current is the most sensitive parameter to reflect the
permanent damages. Some permanent damages become hidden defects after backend of line
processes. These latent damages in the form of gate oxide traps result in poor oxide integrity
during Fowler-Nordheim stress or hot carrier stress. The damage shows good correlation with
the total exposed contact area. The safe antenna ratio is much lower than that at conductor
etch. athough no electron shading effect was observed. Thus, plasma damage during contact

or viahole etch in high-density plasma system must be considered carefully.

Keywords : plasma process induced damage; dielectric etch; high-density plasma; latent

damage



I. Introduction

Plasma process had been widely used in integrated circuit (IC) manufacturing. Since
plasma system has charged and accelerated particles, several kind of damage may be induced
during plasma process. The damages can be divided into four categories : (@) physica damage
due to ion bombardment; (b) metal contamination from chamber and gas piping; (c) radiation
damage due to glow discharge and ion bombardment; (d) charging damage due to unbalanced
chargein plasma[1]. Among these damages, charging damage attracts much more attention in
the past ten years because the damage may be magnified by the total exposed conducting area.
It is the so-called antenna effect [2-26].

In the past, much work has been devoted to antenna effect during conducting layer etch,
e.g. poly-Si layer and metal layer [2-17]. Basic mechanisms, damage modes, impacts on
device and circuit, test structures, and measurement techniques have been discussed widely.
From these fundamental understandings, low damage process, protection strategy, and new
plasma reactor were proposed [18-26]. It is also well accepted that PPID (Plasma Process
Induced Damage) can be withstood after optimizing process and circuit design.

Dielectric etch becomes more and more important in deep sub-micron era, because the
aspect ratio of contact and via hole become larger and larger for DRAM process [27]. On the
other hand, dual damascene process becomes main stream for metal patterning as Cu
interconnect is used instead of Al interconnect [28]. Conventional metal etch is replaced by
dielectric etch in damascene process. Therefore, dielectric etch is more and more important in
IC manufacture, especially at backend of line (BEOL) processes. Unfortunately, less work has
been done in the field of PPID of dielectric etch [29-33]. In ref.[29], the authors reported that
only gate current was degraded by PPID. But only fresh device characteristics were measured
and only area antenna effect was discussed. In ref.[30-32], the authors discussed the contact
etch damage on various thickness oxides. But the contact size is as large as 4 mm?. In ref.[33],

the authors studied the PPID of damascene process, but the etcher used is not a high-density



plasma system.

In this paper, we reported a comprehensive assessment of the PPID during dielectric etch
in a high-density plasma (HDP) etcher. A set of test structures with various contact number,
contact size, and contact space was designed. Various device parameters were measured
before and after stress to separate latent damages from permanent defects. Hot carrier
resistance was aso evaluated. It is observed that under the same area antenna ratio, dielectric
etch induces more severe damage to gate oxide than conductor etch does. Thus, PPID during

dielectric etch must be considered carefully.

1. Experiments

Both NMOS and PMOS devices were fabricated by a standard 0.25 mm single-poly-
tripleemetal CMOS technology using shallow trench isolation structure. Gate oxide was
thermally grown to 5 nm thick. N* and P+ doped-Si was used as gate el ectrode for NMOS and
PMOS devices, respectively. All devices used to monitor damage are identical and channel
length and channel width is 0.24 mm and 5 nm, respectively. In order to place more contacts to
poly-Si gate, and to exclude the effect of different antenna ratio during poly-Si etch, the
antennaratio of poly-Si pad areato gate oxide areawas set to 2K for all devices. Devices with
contact number of 125, 625, 1275, and 2875 corresponding to area antennaratio (AAR) of 7,
37, 75, and 170, respectively, were designed. The typical contact sizeis0.3 x 0.3um? and the
contact space is 0.3 pm. For some test structures the contact size and contact space are
changed to study the effect of contact size and contact density, respectively. Contact etch was
performed in a high density plasma system with inductively coupled plasma (ICP) source. The
plasma density at wafer surface is about 10™ ions/cm?. All devices were protected by p-n
diode and connected by the first layer metal to avoid damages from other plasma processes.
Fig.1 shows the schematic diagram of the test structure used in this work.

Low field leakage current of gate oxide (Ig) at 2.5V, linear region threshold voltage (Vi),



transconductance (gm), sub-threshold swing (S) were al measured before and after Fowler-
Nordheim (F-N) stress to separate the latent damages from permanent defects. The
specification of Iy is 10 pA which is typical limitation of the noise and leakage current of the
automatic measurement system. The F-N stress was performed in inversion polarity at the
current density of 1 mA/cm? for 10 sec. Channel hot carrier stress was performed on
NMOSFET devices at maximum substrate current and PMOSFET devices at maximum gate

current to evaluate the impact of damages on device integrity.

[1. Results and Discussion

Since the poly-Si area must be large enough to contain more contact holes, the
damage level at poly-Si etch step must be examined at first. Four device parameters, 1g,
Vi, Om, and S, were al measured on NMOS and PMOS devices with various AAR at
poly-Si layer. The contact number is one and the metal pad is connected to a protection
diode. It is observed that even if the AAR of poly-Si is as high as 10K, no degradation of
any parameters were observed. These results imply that the poly-Si AAR of 2K used for
contact hole etch experiments will not introduce damage during poly-Si etch.
Furthermore, the protection diode at metal-1 level is effective to avoid damage at metal
etch step. All damages observed for higher contact hole AAR must be attributed to the

contact hole etch step.

1. Damage Observation

Fig.2(a), (b), and (c) show the cumulative probability plots of Ig, Vi, and gm of NMOS
devices with various contact number before F-N stress, respectively. Although dlight
difference of mean value of |4 is observed, al of them are within specification. The dlight
difference of Iy may be arisen from the different surface leakage current since various

structures are placed at various position of the test chip. Neither yield nor deviation degrades



with the increase of contact number for all parameters. Fig.3(a), (b), and (c) show the
cumulative probability plots of I, Vi, and gm of PMOS devices with various contact number
before F-N stress, respectively. PMOS devices with large contact number show wider spread
of lg. Although the distribution of Vi, and gn of PMOS devices do not show any contact
number dependence, the obvious correlation between Iy distribution and contact number
reflects that PPID occurred and resulted in permanent damage to PMOS devices during
contact etch. Sub-threshold swing was also measured, but no contact number dependence was
observed for both NMOS and PMOS devices.

From the direct measurement results, two important phenomena were observed. At first, Ig
Is the most sensitive parameter to reveal damage among the measured DC parameters of
devices. This can be easily understood. Oxide charges induced by PPID can be neutralized
after BEOL processes. However, most of the trap sites can not be removed at the relatively
low process temperature (around 400 °C). Low field I is related to oxide trap sites while the
other device parameters are related to the trapped charges. Therefore, |4 can reflect PPID more
sensitive. The current-voltage characteristics of high Ig devices show stress induced |eakage
current (SILC). This confirms the existence of oxide trap sites. This result is similar to that
reported in ref.[30-32, 34]. Second, PMOS device is damaged easier than NMOS device. This
may be due to the polarity of charging during plasma process or due to the difference of poly-

Si doping type and is till under investigation.

2. Latent Damages

To determine if any defects were passivated during BEOL processes, another device
popul ations were F-N stressed to 10 mC/cm?, and lg, Vin, Om, and S were measured. Fig.4(a) is
the cumulative probability plot of I of PMOS devices with various contact numbers after
stress. It shows that devices with more contact holes have much wider |4 distribution after

stress than those with less contact holes. The Vi, shift after stress, defined as Vi, (after



stress) —V, (before stress), is larger for devices with more contact holes as shown in Fig.4(b).
However, no apparent gm and S shift difference was observed on PMOS devices with different
antenna ratio after stress (not shown). These phenomena indicate that most of the plasma
process induced defects were passivated during BEOL processes. Since these defects only
results in Vi, shift but not g, and S shift after stress, these passivated defects were located in
gate oxide but not at oxide/silicon interface.

NMOS devices were also F-N stressed to reveal latent damages. However, except the
mean value of NMOS devices with 2875 contact holes (AAR=170) increased from 2 pA to 10
PA, the other parameters did not show contact number dependence. The latent damages in
NMOS devices are much less than that in PMOS devices. This confirms that NMOS device
shows less PPID than PMOS device in this experiment.

It should be noted that the F-N stress used is not strong. The only purpose is to re-generate
hidden damages. So, if device was not damaged by PPID, 15 will not increase after F-N stress.
The results indicate that the device with largest AAR is damaged seriously during contact etch.
Since the sensitivity of F-N test is lower than hot carrier test, hot carrier stress was performed
in the next step. It was shown that hot carrier stress can resolve latent damages even if the

contact number isonly severa hundreds.

3. Impact on Hot Carrier Resistance

Fig.5(a) shows the Vi, shift of PMOS devices with various contact numbers after hot
carrier stress at Vgs=-5V and Vg=-0.8V. Higher contact number structure shows higher V,
degradation rate. The other parameters such as g, and S do not show contact number
dependence. There are two possible explanations. First, no significant interface states were
generated during hot carrier stress. It is reasonable because it is well accepted that the major
degradation mechanism of PMOS devices under hot carrier stress is oxide trap but not

interface state [35-37]. Second, the injected electrons were trapped at those trap sites



generated during plasma process in maor. Since the plasma process induced defects are
uniformly distributed in channel region, the trapped electrons distributed broader. The Vi,
shift of NMOS devices stressed at Vg=4.5V and Vg=1.6V aso show contact number
dependence similar to that of PMOS devices as shown in Fig.5(b). These results confirm that
defects located in gate oxide were passivated during BEOL processes and can be re-generated
during electrical stress. Although the amount Vy, degradation of NMOS devices is higher than
that of PMOS devices, the difference between various contact number of NMOS devices is
less apparent than that of PMOS devices. This is consistent with the conclusion in previous
sections that NMOS device show less PPID than PMOS device. Furthermore, the major
degradation mechanism of NMOS and PMOS devices under hot carrier stress is interface
traps and oxide traps, respectively. The observed phenomenon also supports the argument that

the latent damages are in the form of oxide traps.

4. Effect of Contact Hole Sze and Contact Hole Density

At first, cumulative probability of 15 of NMOS and PMOS devices with various contact
hole size of 0.2, 0.25 and 0.3 mm (aspect ratio of 3.75, 3.0, and 2.5) and various contact hole
of 0.3, 0.6, and 1.2 mm) are measured. Since the contact number is 600 and 625 for devices
with various contact hole size and various contact hole space, respectively. No difference of Ig
distribution was observed. Thisis not surprising according to the results shown in section 3.1.
To improve the resolution, hot carrier stress was performed on PMOS devices. The stress
condition is the same as that used in previous section.

Fig.6(a) shows the Vy, shift of PMOS devices with various contact hole size after hot
carrier stress. It seems smaller contact hole results in smaller Vi, shift. This may be due to the
reduction of antenna ratio by a factor of 2.25 as contact hole size is reduced from 0.3 mm to
0.2 mm. No electron shading enhanced effect was observed.

Fig.7 shows the Vy, shift of PMOS devices with various contact hole space after hot



carrier stress. It is surprising that the larger the contact hole space, the larger the V, shift. This
may be due to the local field disturbing effect [38]. To deeply understand the mechanism
required additional works on the local field distribution which is beyond the scope of this
paper. Fortunately, the contact hole space will be pushed to technology limitation to improve

the circuit density. This wide space layout does not occur at real circuit.

V. Conclusion

In this work, the PPID during contact hole etch in a HDP system was investigated
comprehensively. Among the devices DC parameters, | is the most sensitive parameter to
reveal the permanent defects. Some permanent defects were hidden during the BEOL process.
These latent damages in the form of oxide trap exist in gate oxide. They can be re-generated
after F-N stress or hot carrier stress. NMOS devices show less PPID than NMOS devices in
this work.

The PPID shows good correlation with the number of contact, i.e. the total area of contact
holes. The hot carrier degradation decreases with the decrease of contact hole size due to the
reduction of antennaratio. The PPID is enhanced by the wide contact hole space. Fortunately,
it will not beissuesin real circuit. It is also observed that the safe antennaratio of contact hole
etch is much less than that of conductor. Therefore, PPID during contact hole or via hole etch

must be considered carefully.
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Fig.l.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Figure Captions

Schematic diagram of the test structure used to study the plasma process induced
damage during contact hole etch. The area antenna ratio at poly-Si layer is 1000.
Structures with various contact number, contact size, and contact density are al
designed and measured.

Cumulative probability plots of (a) gate current Ig, (b) threshold voltage Vi, and (C)
transconductance gn,, of NMOS devices with various contact number before F-N stress.

Cumulative probability plots of (a) gate current Ig, (b) threshold voltage Vi, and (C)
transconductance gn, of PMOS devices with various contact number before F-N stress.

Cumulative probability plots of (a) gate current and (b) threshold voltage shift of
PMOS devices with various contact number after F-N stress at inversion polarity at 1
mA/cm? for 10 second.

Threshold voltage shift of (a) PMOS devices and (b) NMOS devices with various
contact numbers after hot carrier stress. The PMOS devicesis stressed at V=5V and
Vgs=-0.8 V. The NMOS devicesisstressed at V4s=4.5V and V=16 V.

Threshold voltage shift of PMOS devices with various contact hole size of 0.2, 0.25
and 0.3 nm. The contact space is 0.3 nm and the number is 600.

Threshold voltage shift of PMOS devices with various contact hole space of 0.3, 0.6,

and 1.2 mm. The contact sizeis 0.3 nm and the contact number is 625.
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