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Avram and Pistorius(2004), Jacobsen(2005), Chen, Lee and Sheu(2007), 
and many others. 
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Keywords: Lévy process, matrix-exponential distribution, first exit, two-sided exit problem
2000 Mathematics Subject Classification: 60J75,60G51,60G99
Running Title: First exit for Lévy processes
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1 Introduction

Consider a Markov process X = (Xt, t ≥ 0) on R. For x ∈ R, denote by Px the law of X under which
X0 = x and write simply that P0 = P. Given an arbitrary open set G ⊂ R, a bounded function g
on G{ = R\G and a killing rate r > 0, we consider the function Φ which measures the position of
X by a value function g at the first time it leaves G:

Φ(x) ≡ Ex

[
e−rτGg(XτG

)
]

(1.1)

where τG = inf{t ≥ 0;Xt /∈ G} and Ex(Y ) ≡ ∫
Ω

Y (ω)Px(dω). Clearly, Φ(x) = g(x) for x /∈ G.
Finding solutions of Φ in G which are sufficiently explicit is not only a classical problem in probability
theory but also a critical issue in applied sciences such as mathematical finance and insurance
mathematics. However, except in few cases, little progress was made for general jump-diffusion
processes.

Many studies have been conducted on solutions to Φ in a one-sided exit problem, that is G =
(0,∞), with the underlying process X as a Lévy process. Besides the classical case of Lévy processes
with no negative jumps, various authors have found that by choosing the Lévy measure of X in the
family of matrix-exponential distributions (see Section 2 below), sufficiently explicit solutions may
be produced. For example, Asmussen, Avram, and Pistorius [3] studied the Russian and American
put options given that the logarithm of the underlying stock price is a phase-type Lévy process.
(Phase-type distributions are a special case of matrix-exponential distributions.) They showed in
Proposition 2 of [3] that the solution Φ is a linear combination of some semi-explicit exponentials
and that the coefficients satisfy a system of linear equations. Their approach relies heavily on the
probabilistic interpretation of phase-type distributions.

Inspired by the works of Gerber and Landry in [16], Asmussen, Avram, and Pistorius in [3] and
many others, Chen, Lee, and Sheu first considered the function Φ in [11] under the assumption
that the process follows a two-sided phase-type Lévy process. They obtained a general form for
the function Φ under this simplifying assumption. Next, by observing that the solution structurally
depends only on the downward jumps, they obtained a semi-explicit solution for Φ even if the
downward jump distribution is a hyper-exponential distribution, namely a convex combination of
exponential distributions (and upward jumps are determined by a general Lévy measure). As an
application, the authors determined the optimal endogenous default level for Leland’s model with
jumps (cf. [18]).

Very recently, Chen and Sheu [13] reconsidered the model in [11] and gave a semi-explicit solution
for Φ, with a method completely different from the one in [11], even if the downward jump distrib-
ution is a matrix-exponential distribution. Their result depends on an identity for the joint Laplace
transform of the first-exit time and the undershoot(see Alili and Kyprianou [1]) and a semi-explicit
solution of the negative Wiener-Hopf factor obtained by Lewis and Mordecki [22](see also [3]). (For
a recent advance in the study of a generalization of the function Φ when X is a spectrally negative
Lévy process, see Biffis and Kyprianou [5].)

In addition to the classical Lévy model, some authors have devoted to the study and application
of regime-switching Lévy models in insurance mathematics. For example, Jacobsen [19] studied the
time to ruin for a class of Markov additive process with two-sided jumps, which is a special case
of regime-switching Lévy processes. The author determined explicitly the joint Laplace transform
of the time to ruin and the undershoot at ruin under the assumption that the downward jump
distribution is a matrix-exponential distribution. The martingale method used in [19] is based on
the explicit partial eigenfunctions for the generator of the Markov additive process.

The technique in [19] was further exploited in Jacobsen and Jensen [20] for which they con-
sidered Ornstein-Uhlenbeck processes driven by a compound Poisson process and by a perturbed
compound Poisson process. The downward jumps are determined by a distribution on (0,∞) which
is a generalized hyper-exponential distribution, namely a linear combination of exponentials. (See
[8].) Besides calculating the joint Laplace transform of the first-exit time and the undershoot as
in [19], the authors considered the two-sided exit problem (assuming the jump distribution is a
two-sided matrix-exponential distribution). The two-sided exit problem, a nontrivial extension of
the one-sided exit problem, aims at identifying the law of the pair (τG, XτG

), where G = (a, b) is a
bounded interval. Till the present, very few results are available when X has two-sided jumps. For
surveys when X is a spectrally one-sided Lévy process, see Bertoin [4] and Kyprianou [21].
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Our main objective in this paper is to derive sufficiently explicit solutions for the function Φ,
when G is a general open set and X takes the following form

Xt = X0 + ct + σWt −
Nt∑

n=1

Yn, t ≥ 0. (1.2)

Here, c ∈ R, σ > 0, W = (Wt, t ≥ 0) is a standard Brownian motion, N = (Nt; t ≥ 0) is a Poisson
process with rate λ > 0 and (Yn, n ∈ N) are independently and identically distributed random
variables with two-sided matrix-exponential distribution F . The random elements W,N and Y are
mutually independent.

We first characterize the function Φ as a solution of some ODE in G. (Our approach for this result
is in the same spirit as that in [11]. However, our present result covers a wider class of processes,
as well as a general open set G instead of the restrictive case (0,∞) considered in [11]). By a
standard result of ODE, we write Φ as a linear combination of known functions in each component
of G{. Then, in the special case that F is a two-sided generalized hyper-exponential distribution,
we characterize the totality of the coefficients in all components of G{ as a solution of a system of
linear equations. Moreover, when G is a bounded interval, our approach solves a special case of
the two-sided exit problem, as shown in Example 4.1 below. Meanwhile, it is plausible that our
methodology can be applied to regime-switching Lévy processes as those considered in [19], except
that one would need to solve a system of ODE’s instead of a single ODE.

The rest of the paper is organized as follows. In Section 2, we give a characterization of matrix-
exponential distributions and show in Theorem 2.1 the transformation of an integro-differential
equation into an ODE. The result in Theorem 2.1 enjoys generality more than our need in this
paper and should be of interest itself. In Section 3, we prove the second-order regularity of Φ. By
results of Boyarchenko and Levendorskǐi [9] and Chen and Sheu [12], Φ satisfies an integro-differential
equation and hence an ODE which guarantees Φ is a linear combination of complex exponentials.
(Note that the knowledge of regularity of Φ is indispensable to ensure that Φ takes such a form,
if one does not yet have a solution to the integro-differential equation.) In Section 4, we consider
the case that the jump distribution is a two-sided generalized hyper-exponential distribution. Then,
by using the corresponding integro-differential equation as a ”sifter”, we determine the coefficients
for the function Φ by solving a system of linear equations. We close this paper in Section 5 by
considering an application of our result to defaultable bond pricing.

2 Transformation from integro-differential equation to ODE

Throughout this section we consider an integro-differential operator L given by

Lφ(x) = a(x)φ′′(x) + b(x)φ′(x) + c(x)φ(x) + λ

∫
φ(x− y)dF (y). (2.1)

Here, λ > 0 is a constant, and given a, b, and c all of which have sufficient regularities. To transform
the corresponding integro-differential equation into an ODE, we first recall a definition of the class
of matrix-exponential distributions.

Suppose that dF is a probability distribution on (0,∞) such that its Laplace transform takes
the form of rational function: ∫ ∞

0

e−zydF (y) =
P (z)
Q(z)

,

where P and Q are two polynomials with no common zeros. Note that limz→∞
∫∞
0

e−zydF (y) = 0,
and hence we must have Order(P ) < Order(Q). By partial fraction decomposition, we obtain

∫ ∞

0

e−zydF (y) =
N∑

j=1

Aj

(z + aj)nj
,

for some N ∈ N, aj ∈ C, Aj ∈ C, and nj ∈ N. It follows from the uniqueness theorem for Laplace
transforms that F has a probability density f given by

f(y) =
N∑

j=1

Ajy
nj−1e−ajy =

M∑

j=1

Rj(y)e−bjy, y > 0, (2.2)
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where M ≥ 1, each Rj is a polynomial in y, and bj ∈ C are distinct. Based on the argument in
[11] Proposition 3.6, we deduce that <aj > 0 for all j. Conversely, whenever a probability density
function f taking the form (2.2), its Laplace transform is also a rational function.

Definition 2.1 A distribution F on (0,∞) with a probability density function f is called a matrix-
exponential distribution if its Laplace transform is a rational function, or equivalently, if f takes
the form (2.2) with <(aj) > 0, Aj ∈ C, and nj ∈ N. In general, we say that a distribution dF on
R\{0} is a two-sided matrix-exponential distribution if it has a probability density function f
given by

f(y) = pf(+)(y)1y>0 + qf(−)(−y)1y<0, y ∈ R, (2.3)

where (p, q) is a probability vector and both f(−) and f(+) are matrix-exponential distributions on
(0,∞).

The two dense classes of distributions on (0,∞), phase-type distributions and generalized hyper-
exponential distributions, are both subclasses of matrix-exponential distributions and have found
many applications in applied probability. See Asmussen [2] and Botta and Harris [8].

In this section and section 3, we assume that F is a two-sided matrix-exponential distribution
with a probability density f given by (2.3). Clearly, under this assumption, we have

∫
e−ξydF (y) =

P (ξ)
Q(ξ)

, ξ ∈ iR, (2.4)

where the order of the polynomial P is smaller than the order O of the polynomial Q, and P and Q
have no common zeros. Note that Q has no zeros on iR.

Let D be the differential operator: Dφ = φ′. Also, given a polynomial Y (x) = anxn+· · ·+a1x+a0

over C, we follow the convention that

Y (D) = anDn + · · ·+ a1D + a0I,

where Dnφ(z) = φ(n)(z) and Iφ(z) = φ(z). Y (x) is called the characteristic polynomial of the
differential operator Y (D).

Proposition 2.1 Suppose that φ is in the space C∞c (R) of infinitely differentiable function with
compact support. Then

Q(D)
∫

φ(· − y)dF (y) =
∫

Q(D)φ(· − y)dF (y) = P (D)φ on R.

Proof. Since φ has compact support, the derivative of each order is bounded. By dominated
convergence, the first equality follows.

We show the second equality. Write Tκ(x) =
∫

κ(x − y)dF (y). Observe that if κ ∈ C∞c , then
Tκ ∈ L2 = L2(R). Indeed, since f ∈ L2, we deduce that

∫
[Tκ(x)]2dx =

∫ (∫
κ(x− y)f(y)dy

)2

dx =
∫ (∫

supp(κ)

κ(y)f(x− y)dy

)2

dx

≤
∫ (∫

κ(y)2dy

) (∫

supp(κ)

f(x− y)2dy

)
dx = ‖κ‖2L2

∫

supp(κ)

∫
f(x− y)2dxdy

≤‖κ‖2L2
‖f‖2L2

∫

supp(κ)

dy < ∞.

Also, Tκ ∈ L1 = L1(R) since
∫
|Tκ(x)|dx ≤

∫ ∫
|κ(x− y)|dxf(y)dy ≤ ‖κ‖L1‖f‖L1 < ∞.
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Next, we show that the Fourier transform F(TQ(D)φ) coincides with the one F(P (D)φ), where
Fh(θ) =

∫
e−2πiθyh(y)dy. Recall that F(Q(D)φ)(θ) = Q(2πiθ)F(φ)(θ) for all θ ∈ R. Since

T (Q(D)φ) ∈ L1 ∩ L2 by the above results, we have, for all θ,

F(TQ(D)φ)(θ) =
∫

e−2πiθx

(∫
Q(D)φ(x− y)f(y)dy

)
dx

=
∫ (∫

Q(D)φ(x− y)e−2πiθ(x−y)dx

)
e−2πiθyf(y)dy

=
P (2πiθ)
Q(2πiθ)

Q(2πiθ)F(φ)(θ)

=P (2πiθ)F(φ)(θ)
=F(P (D)φ)(θ).

By the Fourier inversion formula, we deduce that TQ(D)φ = P (D)φ almost everywhere. By conti-
nuity, we conclude that the equality actually holds everywhere. The proof is now complete. ¤

In the following, we consider a special class of two-sided matrix-exponential distributions and
obtain the same result as above by elementary calculus.

Example 2.1. Assume the probability density function f in (2.3) is of the form:

f(y) =

{ ∑m(+)
j=1 pjη

+
j e−η+

j y, y > 0,∑m(−)
j=1 qjη

−
j eη−j y, y < 0,

(2.5)

where η+
j and η−j are positive real numbers,

∑m(+)
j=1 pj +

∑m(−)
j=1 qj = 1, and pj , qj > 0.

Assume φ is in C∞c . Then we have

∫
φ(x− y)f(y)dy =

m(+)∑

j=1

pjη
+
j

∫ ∞

0

φ(x− y)e−η+
j ydy +

m(−)∑

j=1

qjη
−
j

∫ 0

−∞
φ(x− y)eη−j ydy

=
m(+)∑

j=1

pjη
+
j e−η+

j x

∫ x

−∞
φ(y)eη+

j ydy +
m(−)∑

j=1

qjη
−
j eη−j x

∫ ∞

x

φ(y)e−η−j ydy.

Note that
(

d

dx
+ η+

j

)
e−η+

j x

∫ x

−∞
φ(y)eη+

j ydy

=− η+
j e−η+

j x

∫ x

−∞
φ(y)eη+

j ydy + φ(x) + η+
j e−η+

j x

∫ x

−∞
φ(y)eη+

j ydy = φ(x),

and similarly (
d

dx
− η−j

)
eη−j x

∫ ∞

x

φ(y)e−η−j ydy = −φ(x).

The last equations imply that
(

d

dx
+ η+

1

)
· · ·

(
d

dx
+ η+

m(+)

)(
d

dx
− η−1

)
· · ·

(
d

dx
− η−m(−)

) ∫
φ(x− y)f(y)dy

=
m(+)∑

j=1

pjη
+
j

m(−)∏

k=1

(
d

dx
− η−k

) m(+)∏

l=1,l 6=j

(
d

dx
+ η+

l

)
φ(x)

−
m(−)∑

j=1

qjη
−
j

m(+)∏

k=1

(
d

dx
+ η+

k

) m(−)∏

l=1,l 6=j

(
d

dx
− η−l

)
φ(x). (2.6)
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On the other hand, note that
∫

e−ζydF (y) =
∫ ∞

0

e−ζyf(y)dy +
∫ 0

−∞
e−ζyf(y)dy

=
m(+)∑

j=1

pjη
+
j

ζ + η+
j

+
m(−)∑

j=1

−qjη
−
j

ζ − η−j
=

P (ζ)
Q(ζ)

, ζ ∈ iR,

where Q(ζ) =
∏m(+)

j=1 (ζ + η+
j )

∏m(−)
j=1 (ζ − η−j ) and

P (η) =
m(+)∑

j=1

pjη
+
j

m(−)∏

k=1

(ζ − η−k )
m(+)∏

l=1,l 6=j

(ζ + η+
l )−

m(−)∑

j=1

qjη
−
j

m(−)∏

k=1,k 6=j

(ζ − η−k )
m(+)∏

l=1

(ζ + η+
l ).

From these and (2.6), we obtain that Q(D)
∫

φ(x− y)f(y)dy = P (D)φ(x). ¤

The following theorem tells us how to transform an integro-differential equation into a linear
differential equation whose characteristic polynomial can be easily identified.

Theorem 2.1 Let Φ : R → R be a bounded Borel measurable function twice continuously differen-
tiable on some open set G and LΦ = h on G for some Borel measurable function h. Given ` ∈ N.
Suppose further the coefficient functions a, b, c and the function h are `−th continuously differen-
tiable on G and a(x) 6= 0 for all x ∈ G. Then we have Φ ∈ C`+2(G). Moreover, if ` ≥ O(the order
of the polynomial Q in (2.4)), the function Φ satisfies the ODE:

Q(D)L0Φ + λP (D)Φ = Q(D)h

on G. Here L0Φ(x) = a(x)Φ′′(x) + b(x)Φ′(x) + c(x)Φ(x).

Proof. Recall the density of F is given by the function f . For the representation (2.3) of f , we set

f(±)(y) =
M(±)∑

j=1

R
(±)
j (y)e−b

(±)
j y, y > 0.

We first show that if φ : R → R is bounded and is continuously differentiable in G up to order
k, then

∫
φ(x − y)dF (y) is continuously differentiable in G up to order k + 1. By the definition of

F , we have
∫

φ(x− y)dF (y) =
∫

φ(y)f(x− y)dy

=
∫ x

−∞
φ(y)f(x− y)dy +

∫ ∞

x

φ(y)f(x− y)dy

=p

M(+)∑

j=1

∫ x

−∞
φ(y)R(+)

j (x− y)e−b
(+)
j (x−y)dy + q

M(−)∑

j=1

∫ ∞

x

φ(y)R(−)
j (y − x)eb

(−)
j (x−y)dy.

Since each R
(+)
j is a polynomial, once expanding it to the form

∑n
m=1 dmxn−mym, we see that each

∫ x

−∞ φ(y)R(+)
j (x− y)e−b

(+)
j (x−y)dy can be written as a linear combination of integrals of the form

e−b
(+)
j xxn−m

∫ x

−∞
ymφ(y)eb

(+)
j ydy. (2.7)

Clearly, the term in (2.7) will be continuously differentiable in G up to order k + 1 and hence

x 7−→ ∫ x

−∞ φ(y)R(+)
j (x − y)e−b

(+)
j (x−y)dy will be, whenever φ is up to order k. Similar results

hold for the integrals
∫∞

x
φ(y)R(−)

j (y − x)eb
(−)
j (x−y)dy. This proves that x 7−→ ∫

φ(x − y)dF (y) is
continuously differentiable up to order k + 1, whenever φ is up to order k.
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Suppose now a, b, c, and h are in C`(G) and a 6= 0 on G. Rewrite the integro-differential equation
LΦ = h as

Φ′′(x) = − b(x)
a(x)

Φ′(x)− c(x)
a(x)

Φ(x)− 1
a(x)

∫
Φ(x− y)dF (y) +

h(x)
a(x)

.

Since the right hand side is continuously differentiable, it follows that Φ is C3(G). Recall we have
shown in the above that x 7→ ∫

Φ(x − y)dF (y) will be continuously differentiable in G up to order
k + 1 if Φ is up to order k. Hence, continuing the argument in this fashion, we deduce from the last
equation that Φ ∈ C`+2(G).

To complete the proof, it remains to show that, if ` ≥ O,

Q(D)
∫

Φ(· − y)dF (y) = P (D)Φ on G.

(Note that the right hand side makes sense since the order of P < O.)
Recall the operator T in the proof of Proposition 2.1. Let T ∗ be its adjoint operator, that

is, T ∗κ(x) =
∫

κ(x + y)dF (y). Then T ∗κ(x) =
∫

κ(x − y)dF ∗(y), where dF ∗(y) = f(−y)dy and∫
e−ξydF ∗(y) = P (−ξ)/Q(−ξ). Therefore, by Proposition 2.1, we have T ∗Q(D)∗φ = P (D)∗φ for

any φ ∈ C∞c (G). Hence,

〈Q(D)TΦ, φ〉L2 =〈Φ, T ∗Q(D)∗φ〉L2

=〈Φ, P (D)∗φ〉L2

=〈P (D)Φ, φ〉L2 .

Since φ ∈ C∞c (G) is arbitrary and P (D)Φ is continuous on G, we have P (D)Φ = Q(D)
∫

Φ(·−y)dF (y)
on G. ¤

Example 2.2. Consider the integro-differential operator L given by Lφ(x) = σ2

2 φ′′(x)+kxφ′(x)+
λ

∫
φ(x − y)dF (y) − λφ(x). Assume that Φ satisfy (L − r)Φ = 0 in G. By Theorem 2.1, we know

that Φ satisfies the following linear differential equation

0 =Q(D)
(

σ2

2
D2 + κxD − (λ + r)I

)
Φ(x) + λP (D)Φ(x)

=Q(D)(κxD)Φ(x) +
[
Q(D)

(
σ2

2
D2 − (λ + r)I

)
+ λP (D)

]
Φ(x).

Note that [
Q(D)

(
1
2
σ2D2 − (λ + r)I

)
+ λP (D)

]
Φ(x)

is a linear differential equation with constant coefficients and the order of this equation is O+2. On
the other hand, observe that Dn(xDΦ(x)) =

∑n+1
j=0 (αjx+βj)DjΦ(x) for some constants αj and βj .

In conclusion, Φ satisfies a Laplace equation. Namely,

O+2∑
n=0

(anx + bn)DnΦ(x) ≡ 0 on G, (2.8)

where an, bn are constants in C and aO+2 = 0. ¤

Remark. Novikov et al. [24] considered an Ornstein-Uhlenbeck process X with the generator
L in Example 2.2. They assumed that σ = 0 and F is an exponential distribution or a uniform
distribution. They were interested in the function Φ given by (1.1) for which G = (0,∞), r > 0, and
g ≡ 1. By direct differentiation, they transformed the integro-differential equation (L−r)Φ = 0 into
a second-order linear ODE which admits known basis functions. Then they plugged in the general
solution into the boundary value problem itself to find the coefficients. ¤
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3 Function Φ as linear combination of known functions

Recall that X is a two-sided matrix-exponential Lévy process of the form in (1.2) and F is a two-
sided matrix-exponential distribution with a probability density f given by (2.3). Also, given an
open set G ⊂ R and a bounded function g on Gc, the function Φ is defined in (1.1). To derive an
ODE for Φ, we first study the regularity of Φ.

Notation. Write h ∈ C2([a, b]) if h(i)(x), i = 0, 1, 2, are continuous on the interval [a, b]. We say
h ∈ C2

0([a,∞)) if h(i)(x), i = 0, 1, 2, are continuous in [a,∞) and they all converge to zero as x tends
to infinity. Functions in C2((−∞, b]) are defined in the similar way. Write G as the disjoint union of
the intervals:

G =
⋃

q∈Q

Iq.

Here each Iq = (aq, bq) is of the largest possible interval contained in G and Q is either of the finite
set {1, 2, · · · , n} or N. We write h ∈ H(G) if for every q ∈ Q, h is in C2([aq, bq]) if |bq − aq| < ∞ or
h is in C2

0((aq, bq)) if |bq − aq| = ∞. ¤

In the following, we set J as the first jump time of X and Xc
t = X0 + ct + σWt for all t ≥ 0. We

will show in Proposition 3.1 below that Φ ∈ C2([a, b]). Without loss of generality, we may assume
that σ = 1 from now on up to Proposition 3.1. For in the general case, if we set Φ∗(x) = Φ(σx) for
x ∈ (σ−1a, σ−1b), then Φ∗(x) is the functional in (1.1) with σ = 1 and the continuous differentiability
of Φ∗ is equivalent to that of Φ.

Lemma 3.1 Let (a, b) ⊂ G = Ec be maximal (that is, a, b ∈ ∂E) and of finite length. For every
x ∈ [a, b], we have

Ex

[
e−rτG ; τG < J,Xc

τG
= a

]
= ec(a−x)

sinh
(
(b− x)

√
2(λ + r) + c2

)

sinh
(
(b− a)

√
2(λ + r) + c2

) (3.1)

and

Ex

[
e−rτG ; τG < J,Xc

τG
= b

]
= ec(b−x)

sinh
(
(x− a)

√
2(λ + r) + c2

)

sinh
(
(b− a)

√
2(λ + r) + c2

) (3.2)

and

Ex

[
e−rτGg(XτG); τG ≥ J

]
= e−cxΓ [H1(x)−H2(x)] . (3.3)

Here,

Γ =
λ

√
2(λ + r) + c2 sinh

[
(b− a)

√
2(λ + r) + c2

] , (3.4)

H1(x) =
∫ b

a

dz

∫
dF (y) cosh

[
(b− a− |z − x|)

√
2(λ + r) + c2

]
eczΦ(z − y), (3.5)

and

H2(x) =
∫ b

a

dz

∫
dF (y) cosh

[
(b + a− z − x)

√
2(λ + r) + c2

]
eczΦ(z − y). (3.6)

Proof. (3.1), (3.2) and (3.3) follows immediately if x = a or b. So, we may assume x ∈ (a, b).
First, we deal with (3.1). Observe that on [τG < J ], the first exit of X from Ec is caused by

diffusion: τG = ρ and XτG
= Xc

ρ, where ρ = inf{t ≥ 0; Xc
t /∈ (a, b)}. Also, [τG < J ] = [ρ < J ].
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Hence, by the independence of W and J , we deduce that

Ex

[
e−rτG ; τG < J,XτG = a

]
=Ex

[
e−rρ; ρ < J,Xc

ρ = a
]

=
∫ ∞

0

λe−λtdtEx

[
e−rρ; ρ < t, Xc

ρ = a
]

=
∫ ∞

0

λe−λtdt

∫ t

0

e−rsPx

[
ρ ∈ ds,Xc

ρ = a
]

=
∫ ∞

0

e−(λ+r)sPx

[
ρ ∈ ds,Xc

ρ = a
]

(Fubini’s Theorem)

=Ex

[
e−(r+λ)ρ; Xc

ρ = a
]
.

Equation (3.1) now follows from Formula 3.0.5(a) in [7] page 309. Similarly, (3.2) follows from
Formula 3.0.5(b) in [7] page 309.

To complete the proof, we show (3.3). Observe that J is a stopping time, and by Strong Markov
property of X it follows that

Ex

[
e−rτGg(XτG); τG ≥ J

]
=Ex

[
e−rJΦ(Xc

J − Y1); a < min
0≤s≤J

Xc
s ≤ max

0≤s≤J
Xc

s < b

]

=
∫

dF (y)
∫

dtλe−(λ+r)tEx

[
Φ(Xc

t − y); a < min
0≤s≤t

Xc
s ≤ max

0≤s≤t
Xc

s < b

]
,

by independence of W , J and Y1. If we let J ′ be an exponential random variable with mean (λ+r)−1

independent of W and Y1, the last equation can be written as

Ex

[
e−rτGg(XτG); τG ≥ J

]

=
λ

λ + r

∫
dF (y)Ex

[
Φ(Xc

J ′ − y); a < min
0≤s≤J ′

Xc
s ≤ max

0≤s≤J ′
Xc

s < b

]
. (3.7)

Using the density of Px [a < mins≤J′ X
c
s ≤ maxs≤J′ X

c
s < b, Xc

J′ ∈ dz] given by Formula 1.15.6 in [7]
page 271, equation (3.3) now follows from Fubini’s Theorem. The proof is complete. ¤

It is clear from Lemma 3.1 that the functions on the right hand side of (3.1) and (3.2) are both
in C2([a, b]). To have the one on the right hand side of (3.3) also in C2([a, b]), we need the following
lemma.

Lemma 3.2 Let (a, b) be given as in Lemma 3.1. The function

H0(x) =
∫ b

a

dz

∫
dF (y)eC|z−x|eczΦ(z − y)

is in C2([a, b]) for any constant C ∈ R.

Proof. Write

H0(x) =
∫ x

a

dz

∫
dF (y)eC(x−z)eczΦ(z−y)+

∫ b

x

dz

∫
dF (y)eC(z−x)eczΦ(z−y), whenever x ∈ [a, b].

On the other hand, a slight modification of [25] Proposition 2.5 Chapter 2 shows a convolution of
an L1(R) function with a bounded function is continuous. So, by the facts that F has a density and
Φ is bounded, we deduce that H0 is differentiable on (a, b) and its first order derivative is given by

H ′
0(x) =C

∫ x

a

dz

∫
dF (y)eC(x−z)eczΦ(z − y)− C

∫ b

x

dz

∫
dF (y)eC(z−x)eczΦ(z − y).

Similar argument shows the left and right hand derivatives of Φ at b and a exist and are given by the
right hand side of the last equation with x = b and a, respectively. This gives first order regularities.
The proof of second order regularity of Φ follows the same as that of the first order one, and we
omit the proof.

9



¤

Proposition 3.1 The function Φ defined in (1.1) is in H(G).

Proof. Let I be a maximal interval in G. Assume I is unbounded above. Assume without loss
of generality the left hand boundary is 0. Then by following exactly the same argument as in [12]
Theorem 2.1, Φ satisfies the integral equation (2.8) in [12]. Since the subsequent proof of regularities
of Φ on I depends only on this functional equation instead of on Φ itself, it is clear that Φ ∈ C2

0(Ī).
If I is unbounded below, the same result follows by considering the dual process of X.

We consider the case that I = (a, b) is bounded. First, for x ∈ [a, b], write

Φ(x) = g(a)Ex

[
e−rτG ; τG < J,XτG

= a
]
+g(b)Ex

[
e−rτG ; τG < J,XτG

= b
]
+Ex

[
e−rτGg(XτG

); τG ≥ J
]
.

Then by Lemma 3.1, it suffices to show E· [e−rτGg(XτG
); τG ≥ J ] ∈ C2([a, b]). Observe that since

cosh z = ez+e−z

2 , H2 ∈ C2([a, b]). In addition, using Lemma 3.2, H1 ∈ C2([a, b]). It follows from (3.3)
that E· [e−rτGg(XτG

); τG ≥ J ] ∈ C2([a, b]), and the proof is complete.

¤

To write down the integro-differential equation for Φ, note that, for every ξ ∈ iR, we have

E
[
eζX1

]
= eψ(ζ), (3.8)

where

ψ(ζ) =
σ2

2
ζ2 + cζ + λ

∫
e−ζydF (y)− λ.

(ψ is called the Laplace exponent of X.) Under the assumption of the distribution F , the Laplace
exponent ψ can be written as the form

ψ(ξ) =
σ2

2
ξ2 + cξ + λψ1(ξ)− λ, ξ ∈ iR. (3.9)

Here ψ1(ξ) =
∫

e−ξyf(y)dy = P (ξ)
Q(ξ) by (2.4). As noted before, the right hand side of (3.9) is actually

a rational function on C with a finite number of poles in C\iR. Accordingly, we consider ψ and ψ1

on C as analytic functions except at the poles in C\iR. Besides we put

R(ζ) = Q(ζ)(ψ(ζ)− r). (3.10)

On the other hand, the infinitesimal generator LX of X has a domain containing C2
0(R) and for

any h ∈ C2
0(R),

LXh(x) =
σ2

2
h′′(x) + ch′(x) + λ

∫
h(x− y)dF (y)− λh(x). (3.11)

(For details, see [4].)

Let Z = (ρj ; 1 ≤ j ≤ m) be the distinct zeros of ψ(ζ) − r and each ρj be a zero of multiplicity
mj of ψ(ζ)− r. If mj = 1 for all j, then Z is said to be separable. In terms of these ρj , we show
below that the function Φ is a linear combination of known functions.

Theorem 3.1 Assume G is an open set and g is a bounded Borel measurable function on E = G{.
Then the function Φ defined in (1.1) is infinitely differentiable on G and R(D)Φ ≡ 0 on G. (R(ζ)
is the polynomial defined in (3.10).) Moreover, on each maximal open interval Iq = (aq, bq) in G,
we have

Φ(x) =
m∑

j=1

Qq
j(x)eρjx. (3.12)

Here, for every 1 ≤ j ≤ m,Qq
j(x) is a polynomial of degree less than mj. In particular, if Z is separa-

ble, then Qq
j(x) = Qq

j are constants. (The polynomial vector Q =
(
Q1

1, Q
1
2, · · · ,Q1

m, · · · , Qq
1, · · · ,Qq

m, · · · )
is called the coefficient vector for the solution Φ.)
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Proof. By Proposition 3.1, the function Φ is in H(G). So, by Theorems 4.1 and 4.2 in [12] (see also
[9]), we obtain that Φ is a (strong) solution of the integro-differential equation (LX − r)Φ(x) = 0 in
G. Then the first part of our results follows from Theorem 2.1. As for the second part, note that the
zeros of ψ(ζ)− r coincide with those of the polynomial R(ζ) defined in (3.10), counting multiplicity.
Since R(D)Φ = 0 in G, by standard ODE theory (see [15] Theorem 2.32 and Theorem 2.33), the
result follows. ¤

Remarks. (a) If Iq = (aq,∞), we obtain, by Proposition 3.1, that Φ(x) → 0 as x → ∞. Hence
Qq

j(x) = 0 whenever <ρj > 0. Similarly, if Iq = (−∞, bq), then Qq
j(x) = 0 whenever <ρj < 0. To fix

an idea, we say that a polynomial vector Q =
(
Q1

1, Q
1
2, · · · , Q1

m, · · · , Qq
1, · · · ,Qq

m, · · · ) satisfies the
vanishing condition if Qq

j = 0 whenever Iq = (aq,∞) (Iq = (−∞, bq), respectively) and <ρj > 0
(<ρj < 0 respectively).
(b) The equation R(ζ) = 0 is exactly the same as the modified Cramér-Lundberg equation (31)
from [19] when the latter equation is translated using our present notations.
(c) In [19], the author considered the case that G = (0,∞) and g(y) = ezy1y≤0 and searched for
partial eigenfunctions φ of the form (3.12) with the boundary condition φ = g. In other words, φ
satisfies the equation (LX − r)φ(x) = 0 in G and φ = g in (−∞, 0). See also [20] for related work.

¤
We close this section by stating the uniqueness of solutions for the boundary value problem.

Theorem 3.2 Let φ ≡ g on E = G{, φ ∈ H(G), and (LX − r)φ ≡ 0 in Ec. Then φ(x) =
Ex [e−rτg(Xτ )] for all x ∈ R.

Proof. The proof is the same as that of Proposition 4.1 in Chen et al. [11] if one replaces R+ by
Ec, and we omit the proof. ¤

4 Integro-differential equation as sifter

We have seen in Section 3 that for every open set G ⊂ R and every bounded measurable function g
on E = G{, the function Φ in (1.1) satisfies a linear ODE with constant coefficients and hence has a
known functional form. However, unlike the standard ODE problem, we do not have the knowledge
of boundary conditions of higher order derivatives, and hence the coefficient vector Q for Φ cannot
be solved by the classical ODE method. On the other hand, we have seen from Theorem 3.2 that
the integro-differential equation together with the function g on E, is sufficient to uniquely identify
the solution. A natural question arises: what can we exert from the integro-differential equation
to attain such a goal? We consider a special class of matrix-exponential distributions. We derive
its corresponding system of linear equations for Q which determines uniquely Q by the uniqueness
theorem.

Throughout this section, we assume the jump-size density function f of X is a two-sided general-
ized hyper-exponential distribution, that is, f1 and f2 in (2.3) are linear combinations of exponential
distributions. Then we can write f as follows :

f(y) =
m∑

j=1

pj |ηj |e−ηjy[χ1(j)1y>0 + χ2(j)1y<0]; y ∈ R. (4.1)

Here p = (p1, · · · , pm) is a vector(not necessary a probability vector) such that
∑m0

i=1 pi = p ≥ 0,∑m
i=m0+1 pi = q ≥ 0 and p + q = 1. Also (η1, · · · , ηm) ∈ (0,∞)m0 × (−∞, 0)m−m0 has distinct

entries, and χ1 and χ2 are two indicator functions on integers: χ1(j) = 1{1,··· ,m0}(j) and χ2(j) =
1{m0+1,··· ,m}(j). We assume further that the zero set Z of ψ(z)− r is separable. (This is true if p
is a probability vector. See, e.g., [3] and [23].) It follows from Lemma 1.1(b) of [22] that there are
m0 + 1 distinct roots, say, {ρj , 1 ≤ j ≤ m0 + 1} in Z with <ρj < 0. In addition, by considering the
dual process −X, there are m−m0 + 1 distinct roots {ρj ,m0 + 2 ≤ j ≤ m + 2} in Z with <ρj > 0.
Since Z is separable, the coefficient vector Q is a constant vector. Moreover, the vector Q satisfies
the vanishing condition, i.e. , if −∞ = aq < bq < ∞, then Qq

k = 0 for k = 1, 2, · · · , m0 + 1, and if
−∞ < aq < bq = ∞, then Qq

k = 0 for k = m0 + 2, · · · ,m + 2.
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Given a candidate constant vector Q which further satisfies the vanishing condition if G is
unbounded. Define a function φ : R→ R by

φ(x) =
{

g(x) if x ∈ E,∑m+2
j=1 Qq

je
ρjx, if x ∈ Iq, q ∈ Q. (4.2)

Assume further that the candidate vector Q is chosen well so that φ satisfies

(LX − r)φ = 0 on G.

In the following, we will show that Q satisfies a system of linear equation which contains sufficient
information to uniquely identity Q.

Fix Iq = (aq, bq) for some q ∈ Q and x ∈ (aq, bq). We have

0 = (LX − r)φ(x) =
m+2∑

k=1

Qq
keρkx

[
σ2

2
ρ2

k + cρk − (λ + r)
]

+ λ

∫
φ(y)f(x− y)dy. (4.3)

Write ∫
φ(y)f(x− y)dy =

(∫

E

+
∫

Ec\(aq,bq)

+
∫

(aq,bq)

)
φ(y)f(x− y)dy.

Let us compute the three integrals on the right hand side of the last equation. Firstly, since
φ = g on E and x ∈ (aq, bq), we obtain

∫

E

φ(y)f(x− y)dy =
∫

E

g(y)f(x− y)dy

=
m∑

j=1

pj |ηj |e−ηjx

(
χ1(j)

∫

(−∞,aq ]∩E

+χ2(j)
∫

E∩[bq,∞)

)
g(y)eηjydy. (4.4)

Secondly, we have

∫

Ec\(aq,bq)

φ(y)f(x− y)dy =
∑

q′ 6=q

∫ bq′

aq′
φ(y)f(x− y)dy

=
m∑

j=1

pj |ηj |e−ηjx





χ1(j)

∑

bq′≤aq

+χ2(j)
∑

bq≤aq′




m+2∑

k=1

Qq′

k

ρk + ηj

(
e(ηj+ρk)bq′ − e(ηj+ρk)aq′

)

 . (4.5)

And finally,
∫

(aq,bq)

φ(y)f(x− y)dy

=
m+2∑

k=1

Qq
k

∫ bq

aq

eρkyf(x− y)dy =
m+2∑

k=1

Qq
keρkx

∫ x−aq

x−bq

e−ρkyf(y)dy

=
m+2∑

k=1

Qq
keρkx

m∑

j=1

pj |ηj |
(

χ1(j)
∫ x−aq

0

+χ2(j)
∫ 0

x−bq

)
e−(ρk+ηj)ydy

=
m+2∑

k=1

Qq
keρkx

m∑

j=1

pj |ηj |
ρk + ηj

[
χ1(j)

(
1− e−(ρk+ηj)(x−aq)

)
+ χ2(j)

(
e−(ρk+ηj)(x−bq) − 1

)]

=
m+2∑

k=1

Qq
keρkx

m∑

j=1

pj |ηj |
ρk + ηj

[χ1(j)− χ2(j)] +
m∑

j=1

pj |ηj |e−ηjx
m+2∑

k=1

Qq
k

ρk + ηj

(
−χ1(j)eaq(ρk+ηj) + χ2(j)ebq(ρk+ηj)

)
.

(4.6)
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Write for 1 ≤ j ≤ m,

Cq
jQ =

m+2∑

k=1

[
Qq

k

[−χ1(j)eaq(ρk+ηj) + χ2(j)ebq(ρk+ηj)
]

ρk + ηj
+


χ1(j)

∑

bq′≤aq

+χ2(j)
∑

bq≤aa′


 Qq′

k

(
e(ηj+ρk)bq′ − e(ηj+ρk)aq′

)

ρk + ηj

]
, (4.7)

where Cq
j is a row vector with obvious entries. Observe in the present case, the Laplace exponent

of X is given by

ψ(ζ) =
σ2

2
ζ2 + cζ + λ

m∑

j=1

pj |ηj |
ζ + ηj

[χ1(j)− χ2(j)]− λ.

Summarize (4.3) and the decompositions (4.4), (4.5) and (4.6) of
∫

φ(y)f(x− y)dy. We derive that
(LX − r)φ(x), which is equal to 0, is the sum of the following two identities:

m+2∑

k=1

Qq
keρkx(ψ(ρk)− r)

and

λ

m∑

j=1

pj |ηj |e−ηjx

[
Cq

jQ +

(
χ1(j)

∫

(−∞,aq]∩E

+χ2(j)
∫

E∩[bq,∞)

)
g(y)eηjydy

]
. (4.8)

Since ψ(ρk) − r = 0 for all k, we deduce that (4.8) is equal to zero. Further, by comparing the
coefficients of e−ηjx (1 ≤ j ≤ m) and combining the conditions of φ on ∂E, we obtain a square
system Sq of linear equations. Its form is given below according to the type of Iq.

Case 1: −∞ < aq < bq < ∞. We have m + 2 equations given by:




Cq
jQ = − ∫

(−∞,aq ]∩E
g(y)eηjydy, 1 ≤ j ≤ m0,

Cq
jQ = − ∫

E∩[bq,∞)
g(y)eηjydy, m0 + 1 ≤ j ≤ m,∑m+2

k=1 Qq
keρkaq = g(aq),∑m+2

k=1 Qq
keρkbq = g(bq).

(4.9)

Case 2: −∞ < aq < bq = ∞. (Note that Qq
k = 0 for k = m0 + 2, m0 + 3 · · · ,m + 2 by vanishing

condition.) We have m0 + 1 equations given by
{

Cq
jQ = − ∫

(−∞,aq]∩E
g(y)eηjydy, 1 ≤ j ≤ m0,∑m0+1

k=1 Qq
keρkaq = g(aq).

(4.10)

Case 3: −∞ = aq < bq < ∞ (Note that Qq
k = 0 for k = 1, 2, · · · ,m0 + 1 by vanishing condition.)

We have m−m0 + 1 equations.
{

Cq
jQ = − ∫

E∩[bq,∞)
g(y)eηjydy, m0 + 1 ≤ j ≤ m,∑m+2

k=m0+2 Qq
keρkbq = g(bq).

(4.11)

We will write the system S = {Sq, q ∈ Q} in matrix form:

S : CQ = V (g) (4.12)

where C is the k× k− matrix with obvious entries and V (g) is a k-dimensional column vector that
can be read off from the right hand sides of (4.9), (4.10), and (4.11). Here the positive integer k is
defined by

k =





|Q| · (m + 2), if G is bounded,
(|Q| − 1) · (m + 2) + m0 + 1, if G is bounded below but unbounded above,
(|Q| − 1) · (m + 2) + m−m0 + 1, if G is bounded above but unbounded below,
(|Q| − 2) · (m + 2) + m + 2, if G is unbounded both above and below.

We summarize our results as follows.
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Proposition 4.1 Given a candidate vector Q that always satisfies the vanishing condition if G is
unbounded. Define the function φ for Q by (4.2). If (LX −r)φ = 0 on G, then the vector Q satisfies
the system of equation S in (4.12). Conversely, if the vector Q is a solution of the system S in
(4.12) for a given bounded function g on E, then the function φ satisfies the equation (LX − r)φ = 0
on G.

Proof. By the above argument, one observes that (LX − r)φ(x) is equal to the identity in (4.8).
Our results follows directly from this observation. ¤

Theorem 4.1 For every open set G ⊂ R and every bounded measurable function g on E = R\G,
the system of equation S in (4.12) has a unique solution Q that satisfies the vanishing condition if
G is unbounded. Moreover, on each maximal open interval Iq = (aq, bq) in G, we have

Φ(x) ≡ Ex

[
e−rτGg(XτG)

]
=

m∑

j=1

Qq
je

ρjx. (4.13)

Proof. Let G be an open set in R and g a bounded measurable function on E = R\G. By
Theorem 3.1, the function Φ(x) ≡ Ex [e−rτGg(XτG)] is of the form in (4.2) and satisfies (LX−r)φ = 0
on G. It follows from Proposition 4.1 that the coefficient vector Q for Φ is a solution of the system
S in (4.12). Furthermore, by the remark after Theorem 3.1, the vector Q satisfies the vanishing
condition if G is unbounded.

To prove the uniqueness property, we assume that P is another solution of the system S in (4.12)
satisfying the vanishing condition if G is unbounded. Define the function φ for P by (4.2)(with Qq

j

replaced by P q
j .) Note that φ = Φ on E. By Proposition 4.1 and then Theorem 3.2, we ob-

tain (LX − r)φ = 0 on G and φ = Φ on G. That P = Q is due to the linear independence of
{eρix, 1 ≤ i ≤ m + 2} on each maximal interval Iq. This prove the first part of the theorem. The
second part follows directly. ¤

Remark. (a) Consider the case that |Q| < ∞. Then, C is an invertible matrix, and we can find
the vector Q by setting Q = C−1V (g).
(b) It is interesting to compare Theorem 4.1 with Theorem 1(iii)-(iv) of Jacobsen [19]. For related
works, see Jacobsen and Jensen [20] and Novikov et al. [24]. ¤

In the following example, we consider the two-sided exit problem. We note that when X is a
spectrally negative Lévy process, formulae for solutions of Φ for special functions like g(x) = 1x≤a

and g(x) = 1x≥b are available in terms of the scale function. See Kyprianou [21] for details and
remarks on the history of these formulae.

Example 4.1. Consider the case that G = (a, b), where −∞ < a < b < ∞. Then for every
bounded measurable function g on G{, we have, for x ∈ (a, b),

Φ(x) = Ex

[
e−rτ(a,b)g(Xτ(a,b))

]
=

m+2∑

j=1

Qje
ρjx.

Here the constant vector Q = (Q1, Q2, · · · , Qm+2) is the unique solution of the following system of
linear equations:

{ ∑m+2
k=1 Qk

ρk

ρk+ηj
eaρk = g(a)− e−aηj

∫ a

−∞ g(y)ηje
ηjydy, 0 ≤ j ≤ m0,∑m+2

k=1 Qk
ρk

ρk+ηj
ebρk = g(b) + e−bηj

∫∞
b

g(y)ηje
ηjydy, mo + 1 ≤ j ≤ m + 1,

(4.14)

where we set η0 = ηm+1 = 0.
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Indeed, the system of equation (4.9) reads:

m+2∑

k=1

Qk

−1
ρk + ηj

ea(ρk+ηj) = −
∫ a

−∞
g(y)eηjydy, 1 ≤ j ≤ m0, (4.15)

m+2∑

k=1

Qk

1
ρk + ηj

eb(ρk+ηj) = −
∫ ∞

b

g(y)eηjydy, m0 + 1 ≤ j ≤ m, (4.16)

m+2∑

k=1

Qkeρka = g(a), (4.17)

m+2∑

k=1

Qkeρkb = g(b). (4.18)

For 0 ≤ j ≤ m0, to get the equation in (4.14), we first multiply both sides of (4.15) by ηje
−ηja

and then adding the resulting equation and (4.17). One may obtain (4.14) for m0 + 1 ≤ j ≤ m + 1
similarly. ¤

In the example below, we write down explicitly the system of equations S in (4.12) when G is a
union of two disjoint bounded intervals.

Example 4.2. Consider the case that G = G1 ∪ G2, where G1 = (a, b), G2 = (u,w), and −∞ <
a < b < u < w < ∞. Then for every bounded measurable function g on G{, we have, on each Gi,

Φ(x) = Ex[e−rτGg(XτG)] =
m+2∑

j=1

Qi
je

ρjx.

Here the constant vector Q = {Qi
j , i = 1, 2, 1 ≤ j ≤ m + 2} is an unique solution of the following

system of linear equations:




∑m+2
k=1 Q1

k
ρk

ρk+ηj
eaρk = g(a)− e−aηj

∫ a

−∞ g(y)ηje
ηjydy, 0 ≤ j ≤ m0,∑m+2

k=1 [Q1
k

ρk

ρk+ηj
ebρk −Q2

k
ηje−bηj

ρk+ηj
(ew(ρk+ηj) − eu(ρk+ηj))]

= g(b) + e−bηj
∫
(b,u)∪(w,∞)

g(y)ηje
ηjydy, mo + 1 ≤ j ≤ m + 1,

∑m+2
k=1 [Q2

k
ρk

ρk+ηj
euρk + Q1

k
ηje−uηj

ρk+ηj
(eb(ρk+ηj) − ea(ρk+ηj))]

= g(u)− e−uηj
∫
(−∞,a)∪(b,u)

g(y)ηje
ηjydy, 0 ≤ j ≤ m0,∑m+2

k=1 Q2
k

ρk

ρk+ηj
ewρk = g(w) + e−wηj

∫∞
w

g(y)ηje
ηjydy, m0 + 1 ≤ j ≤ m + 1.

(4.19)

Here we set η0 = ηm+1 = 0. (By similar arguments as in Example 4.1, we get the above system of
equations from (4.9).) ¤

5 An application: pricing perpetual callable coupon bond

To illustrate our results in Section 4, we consider an application to bond pricing. For another
two-sided exit problem applied to perpetual American strangles, see Boyarchenko [10].

It is commonly stipulated in a bond covenant that the bond will be redeemed for recapitalization
purpose if the firm value is above a certain level. In this case, in addition to the common practice of
taking into account the recovery at default in corporate bond pricing, one should also consider the
recovery at redemption prior to default. This modeling of corporate bonds is well recognized and
discussed in, for example, Black and Cox [6] and Goldstein and Leland [17].

We assume that the firm asset value is a jump diffusion whose logarithm is the one considered
in Section 4. We will give explicit solution of a risk neutral price of a perpetual corporate bond for
which both the default and redemption of bond are possible given two deterministic boundaries.

We also assume the existence of a constant risk free rate r > 0 for all maturities. Let Q be an
equivalent martingale measure such that the firm’s asset value takes the form

Vt = eXt , t ≥ 0.
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Here X, if V0 = 1, is the process considered in Section 4, namely, X is given by (1.2) whose jump
pdf is given by (4.1). Then by the definition of the family (Px), Q = Plog(V0).

Assume the management decides to follow the upward capital structure strategy throughout
time (see [17]). That is, at time 0, the firm chooses two thresholds V 0

L and V 0
U satisfying V 0

L < V0 <
V 0

U and issues a perpetual callable coupon bond whose covenant specifies

(1) The life time of the bond ends if either of the following events occurs:

(a) The firm asset value falls outside (V 0
L , V 0

U ) at τ1 by crossing the upper boundary V 0
U . Then

recapitalization takes place, and the bond is called at a time-inhomogeneous callable price
K.

(b) The firm asset value falls outside (V 0
L , V 0

U ) at τ2 by crossing V 0
L . Then the firm declares

bankruptcy, and liquidation occurs. The bondholder takes over the firm and receives the
remaining value of the firm. However, a fraction α of the remaining firm value is lost due
to bankruptcy costs.

(2) The bond pays a constant coupon rate C > 0 up to the life time of the bond.

Under the given risk neutral probability measure Q, the no-arbitrage price of the corporate bond is
given by

D(V0) = Elog V0

[∫ τ1∧τ2

0

C(1− τp)e−rtdt

]
+ Elog V0

[
ĝ(Vτ1∧τ2)e

−rτ1∧τ2
]
, (5.1)

where τp is the personal tax rate and

ĝ(y) =
{

(1− α)y, if y ≤ V 0
L ,

K, if y ≥ V 0
U .

Set x = log V0. Recall that Vt = eXt , and set τG = inf{t ∈ R+;Xt 6∈ G}, where G =
(log V 0

L , log V 0
U ). Then τG = τ1 ∧ τ2, and the components of the bond price (5.1) can be written

as

Ex

[∫ τG

0

C(1− τp)e−rtdt

]
=

C(1− τp)
r

(
1− Ex

[
e−rτG

])
(5.2)

Ex

[
(1− α)Vτ1e

−rτ11(τ1 < τ2)
]

= (1− α)Ex

[
e−rτGeXτG 1XτG

≤log V 0
L

]
(5.3)

and
E

[
Ke−rτ21(τ2 < τ1)

]
= KEx

[
e−rτG1XτG

≥log V 0
U

]
. (5.4)

We use the result in Section 4 to give explicit solution for D(V0). For every bounded Borel
measurable function g on Gc, we have, by Theorem 4.1,

Φ(x) = Ex[e−rτGg(XτG
)] =

m+2∑

j=1

Qje
ρjx, x ∈ (log V 0

L , log V 0
U ) (5.5)

for some constants Qj . Moreover, (4.14) implies that the constant vector Q = (Q1, Q2, · · · ,Qm+2)
satisfies the following system of linear equations:
{ ∑m+2

k=1 Qk
ρk

ρk+ηj
(V 0

L )ρk = g(log V 0
L )− (V 0

L )−ηj
∫ log V 0

L

−∞ g(y)ηje
ηjydy, 0 ≤ j ≤ m0,∑m+2

k=1 Qk
ρk

ρk+ηj
(V 0

U )ρk = g(log V 0
U ) + (V 0

U )−ηj
∫∞
log V 0

U
g(y)ηje

ηjydy, mo + 1 ≤ j ≤ m + 1.
(5.6)

Here we set η0 = ηm+1 = 0. Consider Q as a column vector. We rewrite the system (5.6) in matrix
form:

DQ = U(g) (5.7)

where D is the (m + 2)× (m + 2) matrix with the entries given by

Dj,k =

{
ρk

ρk+ηj
(V 0

L )ρk if 0 ≤ j ≤ m0, 1 ≤ k ≤ m + 2
ρk

ρk+ηj
(V 0

U )ρk if m0 + 1 ≤ j ≤ m + 1, 1 ≤ k ≤ m + 2
, (5.8)
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and U(g) is the column vector with component U(g)j defined by

U(g)j =

{
g(log V 0

L )− (V 0
L )−ηj

∫ log V 0
L

−∞ ηjg(y)eηjydy if 0 ≤ j ≤ m0

g(log V 0
U ) + (V 0

U )−ηj
∫∞
log V 0

U
ηjg(y)eηjydy if m0 + 1 ≤ j ≤ m + 1.

(5.9)

If we set
g1(y) ≡ 1, g2(y) = ey1y≤log V 0

L
, and g3(y) = 1y≥log V 0

U
,

we have

W ≡− C(1− τp)
r

U(g1) + (1− α)U(g2) + KU(g3)

=− C(1− τp)
r

(1, 0, · · · , 0, 1) + (1− α)
(

V 0
L ,

1
η1 + 1

V 0
L , · · · ,

1
ηm0 + 1

V 0
L , 0, · · · , 0

)
+ K (0, · · · , 0, 1)

=
(
−C(1− τp)

r
+ (1− α)V 0

L ,
1− α

η1 + 1
V 0

L , · · · ,
1− α

ηm0 + 1
V 0

L , 0, · · · , 0,−C(1− τp)
r

+ K

)
.

Write M for the inverse matrix of D. It follows from (5.1) that the price of the callable coupon
bond is given by the formula

D(V0) =
C(1− τp)

r
+ (MW )>eρ(x) (5.10)

where x = log V0 and eρ(x) ≡ (eρ1x, · · · , eρm+2x). Therefore we obtain an explicit formula for the
price of a perpetual callable coupon bond.
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