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一、中文摘要 

核醣核酸在後轉譯調控上扮演重要的

角色，然而與去氧核醣核酸不同的是，去

氧核醣核酸的 motif 大多可在序列間發掘

其保留區，而核醣核酸的 motif 則必須在

結構間找尋。目前已有部分分析系統工具

可以在一群功能性相同的核醣核酸中尋找

可能的共通結構元，但是其大多僅能從功

能性相同的核醣核酸中搜尋，本計畫提出

並完成新的核醣核酸共同結構元預測及分

群的系統，且已利用多個已知的核醣核酸

家族做系統測試。 

關鍵詞: 核醣核酸，二級結構，分群 

Abstract 
RNA plays a crucial role in 

post-transcriptional regulation. Unlike DNA 
binding proteins, which recognize motifs 
composed of conserved sequences, RNA 
protein binding sites are more conserved in 
structures than in sequences. Though some 
current approaches can now identify common 
structure motifs from a set of RNAs, they 
typically assume the given set forms a single 
family, which is not necessarily correct. We 
proposed and developed a new adaptive 
method that conducts structure prediction as 
well as clustering simultaneously. We 
demonstrated its performance on several real 
RNA families. 
 
Keywords: RNA, secondary structures, 
clustering 
 
Introduction 

Like proteins, RNA functions generally 
depend on their structures. Although structural 
genomics, the systematic study of all 
macro-molecular structures in a genome, is 
currently focused more on proteins, thousands 
of genes produce transcripts exerting their 
functions without ever producing protein 
products [1]. It can be easily argued that the 
comprehensive understanding of the biology 
of a cell requires the knowledge of identity of 

all functional RNAs (both non-coding and 
protein-coding) and their molecular structures. 
Since it is often difficult to acquire the 3D 
spectrum data of RNA molecules for structure 
determination, versatile and reliable 
computational methods that can predict RNA 
structures are highly desirable. 

Many computational methods for the 
prediction of RNA secondary structures have 
been developed. According to the search 
strategies used, they can be roughly classified 
into the following categories: (1) 
thermodynamics, (2) comparative sequence 
analysis, (3) stochastic context-free grammars, 
(4) heuristics and (5) hybrid. By applying 
dynamic programming, thermodynamic 
methods are aimed to find the optimal 
secondary structure for single RNA sequences 
with the global minimum free energy [2-4]. If 
homologous sequences are available, from the 
alignment of these sequences, comparative 
approaches look for covariance evidence 
between base pairs to identify consensus 
structures [5-8]. Some researchers applied 
stochastic context-free grammars (SCFG) to 
build a probabilistic model for consensus 
structures in a family of related RNAs, which 
is considered the SCFG-based analogue of 
profile HMMs [9,10]. The tree structure of 
this SCFG-based analogue allows for a 
convenient graphical representation that 
intuitively and compactly reflects the structure 
of the RNA family being modeled [11]. Due to 
the fact that the time and space complexity of 
most methods are still too high to be practical, 
some approaches adapt useful heuristics to 
alleviate the problem [12-15]. Although these 
methods are not guaranteed to fine the optimal 
structure, they are able to produce the 
approximately best solutions. There also exist 
some hybrid approaches that combine the 
virtue of various strategies such as 
thermodynamic stability, sequence covariance, 
phylogenetic analysis, etc. [16-18]. Besides 
the search strategy that describes how to find 
the solutions, RNA secondary structure 



prediction methods can also be classified by 
what to find. Some methods focus on finding 
the optimal structure for an entire single RNA 
sequence [2,3,12,13,20]; others, the consensus 
structure elements shared by a family of 
related RNA sequences [19,21,22]. 

Many functional RNAs have 
evolutionarily conserved secondary structures 
in order to fulfill their roles in a cell. For 
protein-coding RNAs, some of the functions 
can be presented by functional motifs. For 
example, several best-understood structurally 
conserved RNA motifs are found in viral 
RNAs, such as the TAR and RRE structures in 
HIV and the IRES regions in Picornaviridae 
[23]. Apparently, structural information is 
very useful in characterizing a class of 
functional RNAs. Based on characteristic 
structures, we can likely identify novel 
functional RNAs or partition given RNAs into 
biologically meaningful families. Several 
systems have been developed to find 
consensus structural elements within a family 
of functionally related RNAs [9,15,19]; 
however, there is little work on clustering of 
unaligned RNAs based on characteristic 
secondary structures. Given a set of unaligned 
RNA sequences without prior knowledge of 
the number or identity of families in the set, 
our goal is to automate both clustering and 
secondary structure prediction simultaneously. 
In this paper, we propose an adaptive 
approximation approach combined with a 
genetic programming-based structure 
prediction method to identify from unaligned 
RNAs reasonable clusters associated with 
characteristic secondary structure elements. To 
demonstrate its performance, we tested it on 
several real datasets. 

 
System 

In order to find a reasonable partition for a 
given set of unaligned RNAs without knowing 
beforehand how many clusters actually 
existing in this set, we assume that each 
cluster is likely a functional family that 
contains characteristic structure elements. 
Based on this assumption, our new method is 
focused on finding significant consensus 
structure elements that can be used to 
characterize the families of RNAs. Since the 
number of clusters and its size are not known 
in advance, we adapt a generate-and-test 
strategy that iteratively adjusts the 
hypothesized cluster size until some 
significant consensus structure elements can 

be found associated with this cluster. After a 
cluster is obtained, all its members are then 
removed from the given set of RNAs. We can 
repeat the same separate-and-conquer strategy 
to identify other clusters until the set of RNAs 
is emptied. 

Consensus structure element prediction 
can be considered a supervised learning 
problem which involves both positive and 
negative examples [15]. Positive examples are 
a given set of RNA sequences; negative 
examples are some number of sequences 
randomly generated based on the observed 
frequencies of sequence alphabet in positive 
examples. The objective here is to learn the 
structure elements that can be used to 
distinguish the given functionally related 
sequences from the random sequences.  

We modify GPRM [22], an RNA 
consensus secondary structure prediction tool, 
to find significant structure elements from a 
dataset that may contain multiple 
variable-sized clusters of unaligned sequences. 
GPRM has been tested on several real RNA 
families, including pseudoknots, and shown 
its effectiveness in predicting conserved 
structure elements in a given RNA family. To 
describe the characteristic structure elements 
for a cluster, we adapt the same representation 
that is expressive enough to even represent 
pseudoknots. We also apply the same genetic 
operators to optimize candidate structure 
elements during evolutionary process. What is 
different from the previous work is the fitness 
function.  

The fitness function is used to measure the 
quality of individuals (i.e. candidate structure 
elements) in a population. The higher the 
fitness of an individual, the better its chances 
of survival to the next generation. In the 
previous work, the input dataset was assumed 
to be a single class of functionally related 
RNA sequences. We were interested in those 
structure elements that can reflect the 
characteristics conserved in a family, e.g. the 
RNA protein binding sites. Derived from the 
F-score, the fitness function was aimed to 
balance the importance of two measures, 
recall (i.e. sensitivity) and precision (i.e. 
positive predictive value) [15]. It assigns 
higher values to those structural motifs 
commonly shared by the given family of 
RNAs, and rarely contained in random 
sequences. For a given set of RNA sequences 
that form a single family only, the fitness 
function used in [15,22] can effectively guide 



the evolutionary process in genetic 
programming. Nevertheless, when the input 
dataset contains multiple functional classes, 
the recall measure may dominate the 
calculation of F-score if the fitness function 
treats the entire dataset as a single class. This 
will mislead the system to find over-general 
elements shared by most sequences. To 
alleviate the bias, we defined a new measure 
of recall. By taking cluster size into account, 
we can better constrain the search space and 
allow conserved clusters to emerge more 
likely instead of being buried in bigger but 
much less coherent clusters.  

The GP (Genetic Programming)-based 
structure prediction method can find the fittest 
secondary structure elements according to a 
given range of the cluster size, while the 
significance of the cluster found along with its 
characteristic structure elements is highly 
dependent on the range we choose. With 
proper adjustment of cluster size through the 
generate-and-test procedure combined with 
the GP-based prediction method, we can 
identify a meaningful cluster and the 
associated characteristic structure elements.  

The adaptive adjustment of cluster size in 
the generate-and-test procedure is controlled 
by the consensus structure specificity. It is 
defined as the Laplace prior precision. The 
Laplace prior approach has also been applied 
to inductive leaning to evaluate the 
significance of inductive rules [24]. We 
incorporate the Laplace prior into the 
calculation of precision with the aim to avoid 
well conserved but too small clusters. Note 
that the Laplace prior precision is only used to 
determine the significance of a cluster found, 
unlike the F-score, which is used to direct the 
optimization process to find the best structure 
elements under the constraints of the cluster 
size. By the comparison of the Laplace prior 
precision with a pre-specified threshold, we 
can adjust the range of cluster size accordingly, 
and then re-run the GP-based method to 
predict a new structure element and derive the 
new cluster it characterizes. 

Once a significant cluster is found, we 
separate all its members out of the given 
dataset of RNA sequences. We then apply the 
same procedure to those that still remain in the 
dataset until the entire set is emptied. This 
separate-and-conquer strategy is effective 
even when no prior knowledge of the 
identities of the clusters is given. It can 
automatically partition the given dataset into 

meaningful clusters, and also identify their 
characteristic structure elements. 
 
Experimental Results 

Two types of quality were considered to 
evaluate the performance of our method. One 
is to measure the agreement between the 
predicted clusters and the actual cluster 
identities; the other, to quantify the agreement 
between the predicted structure elements and 
the actual structure assignment. We applied 
the adjusted Rand index [28] and the 
Matthews correlation coefficient [29] to 
measure the qualities. 

Our algorithm is designed to automatically 
partition a given set of unaligned RNA 
sequences into meaningful clusters, each 
associated with characteristic conserved 
secondary structure elements. The number of 
real clusters and the distribution of cluster size 
may affect the prediction of partitions and 
characteristic structure elements. To measure 
their effect on the performance, we tested our 
method on different datasets with various 
number and size of clusters. We used three 
families, including 16S RNA, IRE (Iron 
Response Element) and viral 3’UTR, to 
prepare the test datasets. They have been used 
in previous experiments and published in 
literature [15,19]. The sequence data and the 
correct structure elements can be accessed at 
public databases [26,27]. The 16S RNA 
dataset contains 34 archaea 16S ribosomal 
sequences originally derived from a set of 311 
sequences extracted from the SSU rRNA 
database. The archaea set of 311 sequences 
was further reduced to 34, filtering out the 
sequences that miss base assignments or are 
greater than 90% identical. The IRE dataset 
was constructed by Gorodkin et al. [19] from 
14 sequences from the UTR database. They 
modified the IREs and their UTRs to make the 
search more difficult. By iteratively shuffling 
the sequences and randomly adding one 
nucleotide to the IRE conserved region, they 
built a set of 56 IRE-like sequences from the 
14 IRE UTRs. The third data set includes 18 
viral 3'UTRs each of which contains a 
pseudoknot. Seven of the RNA sequences are 
the soil-borne rye mosaic viruses; the others 
are the soil-borne wheat mosaic viruses. 

With the three real families of RNA 
sequences, we first tested our method on each 
possible pair of the families, i.e. 16S 
RNA/IRE, 16S RNA/viral 3’UTR, and 
IRE/viral 3’UTR. We then applied our method 



to the union of all the three families. In each 
run of the experiment, no information 
regarding the number of families or the family 
size was given to the algorithm beforehand. 
One purpose of this experiment is to analyze 
the effect incurred by the number of clusters 
in a dataset. Furthermore, as the real 
conserved structure elements differ in various 
families, we can also observe how the 
interleaving of distinct structure elements 
within a single dataset may affect the 
prediction process. The results are presented 
in Table 1, and some partial predicted 
secondary structures are shown in Figure 1. 
 
Discussion 

In this project, we proposed a new 
approach that can perform structure prediction 
and clustering simultaneously for RNA 
analysis. The predicted results provide 
biologists with reasonable hypotheses and 
suggest further biological verifications. The 
performance of the new strategy has been 
demonstrated on several real RNA functional 
families. The system can be extended in the 
following directions. First, in case domain 
knowledge is available, we expect the results 
can be better improved by incorporating the 

background knowledge into the optimization 
process to effectively constrain the search 
space. Second, the discovery of important 
clusters in data usually goes through a 
repeated process cycle of finding clusters, 
interpreting results and augmenting data. No 
current unsupervised clustering system can 
produce maximally useful results if operated 
alone [11]. We plan to design a 
human-machine interface, so that biologists 
can easily monitor the system status and adapt 
the system parameter settings. Third, the 
algorithm itself is highly modular and most of 
the modules are independent of each other. 
This property may lead to a 
parallel-processing version of the system to 
significantly reduce its computational time. 
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          (a) 

IRE+viral 3’UTR Recall Precision Matthews 
IRE 0.97 0.99 0.97 

viral 3’UTR 0.71 0.95 0.79 
 

(b) 
16S RNA+viral 3’UTR Recall Precision Matthews

16S RNA 0.97 0.95 0.83 
viral 3’UTR 0.77 0.98 0.77 

 
(c) 

IRE+16S RNA Recall Precision Matthews 
IRE 0.73 0.99 0.85 

16S RNA 0.81 0.73 0.67 
Table 1. Summary of the experimental results. Table (a), (b) and (c) present the result for the 
dataset containing IRE and viral 3’UTR, 16S RNA and viral 3’UTR, IRE and 16S RNA, 
respectively.  
 
 
 
***** IRE ***** 
 
> seq_D15071.1 
 
  41     45   47      51            58     62 63      67  
t g c g g u c c u g g c c a g u g a g c u g g g c c g c  
 
predicted: 
. ( ( ( ( ( . ( ( ( ( ( . . . . . . ) ) ) ) ) ) ) ) ) )  
 
published: 
. ( ( ( ( ( . ( ( ( ( ( . . . . . . ) ) ) ) ) ) ) ) ) ) 
 
***** 16S RNA ***** 
 
> U51469  
 
  13            20    23              31          37                46          52                61           
g u u u c a u u g a a g u u u g c u u u u a g u g a g g u g a c g u c u a a u u g g c g u u a u c g 
 
  62        67              75    78            85 
  a a c u u g u g g u a a g c g a c a a g g g a a a a 
 
predicted: 
. ( ( ( ( ( ( ( ( . . ( ( ( ( ( ( ( ( ( . . . . . ( ( ( ( ( ( ( ( ( ( . . . . . ) ) ) ) ) ) ) ) ) ) 
  . . . . . ) ) ) ) ) ) ) ) ) . . ) ) ) ) ) ) ) ) . . 
 
published: 
. ( ( ( ( ( ( ( ( . . ( ( ( ( ( ( ( ( ( ( ( ( ( . . ( ( ( ( ( ( ( ( ( . . . . . ) ) ) ) ) ) ) ) ) . 
  . ) ) ) ) ) ) ) ) ) ) ) ) ) . . ) ) ) ) ) ) ) ) . . 
 
***** viral 3’UTR ***** 
 
> PKB183 
 
  14  16  18         24 25  27        32          38  
a c g u c g u g c a g u a c g g u a a a c u g c a c a u 
 
predicted: 
. ( ( ( . [ [ [ [ [ [ [ ) ) ) . . . . ] ] ] ] ] ] ] . . 
 
published: 
. ( ( ( . [ [ [ [ [ [ [ ) ) ) . . . . ] ] ] ] ] ] ] . . 
 

Figure 1. A partial result of the predicted RNA motifs. The numbers above the sequences are the 
indices of the nucleotides. The predicted and the published motifs are both shown for reference. 
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報告內容應包括下列各項： 

一、參加會議經過 

於 07/12 辦理註冊報到，07/13 參加 Opening Remarks by Dr. Arabnia from University of 
Georgia，於 07/13-07/16 期間，參加與會學者之論文發表，同時，07/13 發表論文。並

與多位國外學者討論相關研究議題。會議論文不乏有關基因表現分析，蛋白質結構分

析，調控訊號檢視，生物網路分析等等，對於我國內生物資訊的發展，將提供非常多的

助益與新的發展方向。 
 

二、與會心得 

本次參加人數及國家眾多，其研究領域更包括計算機科學、醫學、生物學等之應用，藉

由討論及論文發表，獲得寶貴經驗，對於未來研究提供了新的方向。其中更結識他國友

人，經由研討，可明白其他國家的發展經驗。 

目前系統生物學已經成為國際重要的研究課題，可預見的是，在不久的將來，大量的基

因表現資料以及蛋白質結構將如同 DNA 及蛋白質序列般，不斷地被產生及發表，如何

能從這些不同類型的生化資料中發掘有用的訊息將是重要課題。藉由這次與會學習的經

驗，我們可以得知國外研究之重點，作為我國在生物科技的發展依據。 
 

三、考察參觀活動(無是項活動者省略) 

 

四、建議 

由於生物科技是目前國內新興研究發展之重要產業，懇請國科會及相關單位，能多支持

與獎勵國內學者多參與此類國際研討會，除了增加我國在國際相關領域的能見度，同

時，提供相互學習之機會，這是直接提昇我國在生技發展地位的最有效做法。 

 

五、攜回資料名稱及內容 

The Proceedings of Biocomp2009 
 

六、其他 



Discovery of Structural Motifs in Metalloproteins Using Protein Structural 
Alphabets and 1D Motif-finding Methods 
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Abstract 
Though the increasing number of available 3D proteins structures has made possible a wide variety of 

computational protein structure research, yet the success is still hindered by the high 3D computational complexity. 
Based on 3D information, several 1D protein structural alphabets have been developed, which not only can describe 
the global folding structure of a protein as a 1D sequence, but can also characterize local structures in proteins. In 
this paper, we introduce an approach that combines standard 1D motif detection method with structural alphabets 
to discover metal-binding sites in metalloproteins. We tested our method on different metal-binding proteins. The 
results show that our combinatorial strategy can efficiently and successfully identify the structural preferences in 
metal-binding sites.  
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1. Introduction 
 

As the rapid growth of protein structural information, biologists require accurate 
classification to understand and rationalize the variety in proteins [1]. To ensure the classification 
can be more easily constructed and better comprehensible, it is desired we provide only essential 
characteristic structural descriptions of protein functional parts. With such a classification, we 
can assign a novel protein to known categories, and thus predict its structures and functions. The 
task of extracting characteristic structural features for classification becomes more challenging 
for small proteins, where the characteristic statistics are marginal owing to short protein chains, 
or for proteins that only share low sequence similarity, e.g. some metal binding proteins. In this 
paper, we evaluate the feasibility of using structural alphabets and 1D motif detection methods to 
discover the structural motifs in Mg2+-binding and zinc-binding proteins.  

Metalloproteins requires metal cofactors in cellular biochemistry, which play important roles 
in both intra- and extracellular catalytic activities and structural stabilization [2-4], as metal 
binding increases thermal and conformational stability of small domains. Among many, here we 
focus our study on zinc-binding and Mg-binding proteins.  

The C2H2 zinc finger is one of the best-studied metal binding domains. It was first observed 
as a repeated zinc-binding motif with DNA-binding properties in the Xenopus transcription 
factor IIIA, and the term `zinc finger' is now largely used to denote any compact domain 
stabilized by a zinc ion [5-7]. Previous studies of zinc fingers include automatic neural 
network-based numerical taxonomy methods that identify evolutionary relationships among 
proteins [8-9] or the analysis of sequence and structure similarity using BLAST-based sequence 
alignment method in combination with DaLiLite followed by visual inspection [10][11]. 
Although these methods have made significant advances in structural classification, they still left 
plenty of space for improvement in classification accuracy and efficiency. 



Like zinc, magnesium is also a versatile and important metal cofactor. It helps stabilize a 
variety of protein structures, e.g., the interface of the ribonucleotide reductase subunits [12]. It is 
also used to stabilize nucleic acids by alleviating electrostatic repulsion between negatively 
charged phosphates [13]. A few relatively short sequence motifs have been discovered for Mg2+ 
proteins with close sequence homology. Examples include the NADFDGD motif, found in 
different RNA polymerases, DNA Pol I and HIV reverse transcriptase, and the YXDD or LXDD 
motifs in reverse transcriptase and telomerase, where the residues in bold are the Mg2+ ligands 
[2]. Nevertheless, these Mg2+ sequence motifs are sometimes too short to be statistically specific 
to Mg2+-binding sites, and may easily escape detection. On the other hand, the Mg2+-binding 
sites share sufficient structural similarity that can characterize Mg2+-proteins. 

As the conserved local structural features can be identified in various ways and described in 
different representations, e.g., the relationships between local sequences and structures [14-16], 
we took a simpler approach and applied the widely used 1D motif detection algorithms to protein 
structural alphabet sequences. Representing conserved local structural features by 1D structural 
alphabets instead of 3D co-ordinates is more efficient in comparison and more economical in 
storage. The 1D-based approaches can also serve as a pre-processor to filter out remotely related 
or irrelevant proteins before we apply other more accurate but more computationally intensive 
structure analysis tool. To demonstrate its applicability, we applied the 1D-based approach to 
discovering structural motifs in Zn-binding and Mg-binding proteins, and compared the motifs 
found against those reported in literature. 

  
2. Materials and Methods 

 
We first transformed protein sequences into a 1D representation, and later identified 

significant motifs from the 1D alphabet sequences that could characterize the local structural 
features. There are several protein structural alphabets available [17-19]. As these alphabets were 
derived from different design philosophies, their sizes can vary from a dozen to nearly a hundred. 
They address different structural characteristics and have various applications. Therefore, in 
different domains, we can apply an appropriate structural alphabet to transform amino acid 
sequences or protein 3D structures into 1D structural alphabet sequences as required. Currently, 
we use the alphabet designed for SA-FAST [20]. It contains 18 letters, five of which represent 
the helix structure, eight for the sheet, and the rest for the coil. 

Given a set of functionally or structurally related proteins, after the conversion into 1D 
structural alphabet sequences, we can apply a sequence motif detection algorithm to discover 
significant motifs. There has been significant amount of research on motif discovery with 
different objective functions, motif representations and search strategies [21-23]. In our study, we 
used MEME [24] to detect structural motifs, which adopts an expectation maximization 
approach to find motifs represented as weight matrices. Unlike IUPAC-IUB codes, motifs 
described in weight matrices are more flexible because a weight matrix can show each alphabet 
letter preference in every motif position. Besides, a weight matrix can be easily transformed to 
IUPAC-IUB codes or regular expressions when necessary, but not vice versa.  

We call the motifs found by MEME in the structural alphabet sequences simple motifs. When 
the local properties in protein structures are too complicated, e.g. multiple binding sites or 
sub-domains, to capture in a simple motif, we combine several simple motifs into a compound 
motif. To avoid the computational complexity of combining matrices, we transform simple 



motifs to regular expressions first, and then combine them to a compound motif. A compound 
motif example looks like the following. 
M1[20,50]M2[0,6]M3, where M1, M2 and M3 are simple motifs, and the numbers in the brackets 
denote the range of residue separation between motifs. 
M1= SP[PS][SN]N[NE]EE, 
M2= [WE][NE]EEACWGQS, 
M3= TTTTTTTTTLK[TG][SH]WNMR[DQ], 
where letters in brackets denote the possible structural alphabet letters in the respective motif 
position.  

We illustrate the system flow in Figure 1. We proposed for structural motif discovery a 
general framework in which the structural alphabet and the motif finding algorithm can be 
replaced with others when needed in different applications. 
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Fig 1. System flow of structural motif discovery 
 
 

3. Experimental Results 
 

The domains from C2H2-like fingers consist of a β-hairpin followed by an α-helix that forms 
a left-handed ββα-unit, where two zinc ligands are contributed by a zinc knuckle at the end of 
the β-hairpin and the other two ligands come from the C-terminal end of the α-helix [25,26]. The 
C2H2 zinc finger motif (classic zinc finger) was first discovered in the Xenopus laevis 



transcription factor IIIA, and has since been found in many transcription factors and in other 
DNA-binding proteins.  

This classic C2H2 zinc finger typically contains a repeated ~30 amino sequences. To 
demonstrate that our approach is capable of detecting the structural ββα-unit, we first 
transformed the 156 zinc finger proteins in SCOP C2H2 zinc finger family into structural 
alphabet sequences, and then applied standard motif-finding algorithms to these sequences to 
identify common motifs that can characterize the ββα-unit.  

We used 8 as the motif width and ran MEME to find motifs. A motif found was considered as 
corresponding to a sub-domain correctly if more than half of the residues in the sub-domain were 
included in the motif. If any simple motif or compound motif correctly corresponded to a 
sub-domain, we claimed this sub-domain was recovered successfully (i.e. a hit). In Table 1, we 
present the simple motif or compound motif found to characterize the sub-domains, and its 
coverage. The results suggest that using standard motif-finding algorithms, e.g. MEME, 
combined with an appropriate structural alphabet was able to recover the structural sub-domains 
in C2H2 zinc finger proteins. We show some C2H2 zinc finger proteins with structural motifs 
highlighted in color in Figure 2. 

Unlike Zn2+ binding sites, Mg2+ binding sites have less sequence similarity, but sufficient 
structural similarity, which make an appropriate test case to verify our motif-finding method’s 
capability of discovering structural motifs with low sequence homology. Previously, Dudev and 
Lim applied a similar idea to identify the structural motifs in Mg2+-binding proteins [13]. In the 
study, they successfully discovered four motifs corresponding to the Mg2+ binding sites in 16 out 
of 70 Mg2+-binding proteins. For comparison, we used the same 70 proteins in our experiments. 
Instead of the structural alphabet in PBE [27], we used the alphabet designed for SA-FAST [20] 
to represent the 70 Mg2+-binding proteins. Furthermore, we used a widely-used motif-finding 
system, MEME, rather than a method solely based on motif occurrence frequency [28], to 
identify common motifs (simple motifs) first, and then combined those significant simple motifs 
(i.e. with low E-value) into compound motifs.  

We show in Table 2 some of the compound motifs that cover the Mg2+-binding residues. Each 
of the simple motifs has an E-value lower than 1.9e-015 as presented in Table 3. Based on the 
compound motifs generated, we noticed that Mg2+-specific structural compound motifs are not 
commonly shared among the 70 Mg2+-binding proteins. This observation is similar to that by 
Dudev and Lim [13], who found only four first-shell structural motifs shared by more than three 
Mg2+-binding proteins, with a total of 16 proteins containing these motifs. Unlike Dudev and 
Lim, who defined a structural motif based on its occurrence frequency, we constructed 
compound motifs, more flexible and expressive than Dudev and Lim’s, from significant simple 
motifs found by MEME. By constraining the number of simple motifs, e.g. setting a reasonable 
E-value threshold, we can reduce the search space for compound motif candidates, and still avoid 
the risk of overlooking less frequent but significant structural motifs.    
 

4. Conclusion 
 

 In this paper, we introduced a general framework for structural motif discovery, and applied 
it to two types of metalloproteins, Mg2+-binding proteins and C2H2 zinc finger proteins. Two 
major components in our framework are the structural alphabet used to describe protein 
structures and the motif-finding algorithm used to discover significant local structure features. In 



our experiments, we used the alphabet designed for SA-FAST, and a widely used motif detection 
algorithm, MEME. These components can be flexibly replaced with others when necessary to 
increase the applicability in different domains. The experimental results showed that using 
structural alphabets combined with standard motif-finding algorithms could successfully identify 
biologically meaningful sub-domains in proteins.  

With the positive results, we plan to carry out the future work as what follows. First, many 
structural alphabets and quite a few motif detection algorithms have been developed based on 
different design philosophies and application domains. We intend to incorporate other structural 
alphabets and motif-finding algorithm into our system. We expect to discover more kinds of 
motifs in a wider variety of protein structures. Second, we plan to build a structural alphabet 
motif database. Given the effectiveness and the economy in characterizing and storing structural 
properties of proteins, a structural alphabet motif database can complement most protein 
sequence and 3D structure databases. Third, we will design a protein function predictor using 
structural motifs as important features. Based on the motifs, the functions of novel proteins can 
be predicted by classifying them to protein groups with known functions. Finally, as there have 
been many protein structure or function prediction systems available, we also plan to evaluate 
the feasibility of using structural alphabet-based methods as a preprocessor. Compared with most 
prediction strategies typically based on 3D information, alphabet-based methods have much 
lower computational complexity. They can help other predictors constrain the search space 
efficiently by filtering out irrelevant predictions. 
 
 

 
d1a1ia2 d1jk1a1 d1a1ga1 d1a1ja1 

 
d1p47a1 d1f2ig1 d1llmc1 d3znf 

 
Fig 2. Examples of C2H2 zinc finger protein structures. The simple motifs that map to the β-hairpin and the α-helix are highlighted in color, 
where M1=[GN][HE][NE]AC[AW]RQ, M2=[FH]CWNA[RC]QK and M3= TTTTTT[PL][KPL]. The compound motif mapping to the ββα-unit is 
[FH]CWNA[RC]QK (0-2) [GN][HE][NE]AC[AW]RQ (0-5) TTTTTT[PL][KPL]. 

 

 

 



Table 1. Summary of compound motifs mapping to C2H2 zinc finger ββα-unit that consists of β-hairpin and α-helix. 

SCOP 1.73 (C2H2 zinc finger) 
g.37.1.1 

 
Structural (sub-)domain 

 
 

Compound motif 
 Hita Coverageb 

β-hairpin [FH]CWNA[RC]QK(0-2) [GN][HE][NE]AC[AW]RQ 131 83.9 % 
α-helix [GN][HE][NE]AC[AW]RQ(0-5)TTTTTT[PL][KPL] 142 91.0% 
ββα-unit [FH]CWNA[RC]QK(0-2) [GN][HE][NE]AC[AW]RQ 

(0-5) TTTTTT[PL][KPL] 
124 79.5% 

Total  --- 156 100% 
aWe called it a hit for a structural (sub-)domain when more than half of the (sub-)domain residues were contained in a motif. We presented the 
count of hits of different (sub-)domains.  
bCoverage was defined as the ratio of the count of hits to the number of zinc finger proteins, e.g., if No.=156 and Hits=131, then 
Coverage=131/156=83.9%. 

 

Table 2. Structural motifs found in Mg2+-binding proteins.   

Compound motifa PDB Binding residue 
position Dudev & Lim's motifb Functional description 

m11-85-m19 1TW1 254-344-347 b(89)d(2)d beta-1-4-galactosyltransferase 1 

m11-98-m22 1JYL 107-216-218 b(115)d(1)b ctp:phosphocholine cytidylytransferase 

     

m5-79-m23-5-m23 2BVC 135-219-227 d(83)f(17)d glutamine synthetase 1 

     

m35-1-m1 1IG5 54-56-58-60 m(1)o(1)o(1)a calbindin d9k 

m23-1-m1-0-m21 1WDC 28-30-32-34-39 m(1)o(1)o(1)a(4)m scallop myosin 

     

m5-29-m5 1OBW 65-70-102 o(4)d(31)d inorganic pyrophosphatase 

m5-28-m5 1HUJ 115-120-152 h(4)d(31)d inorganic pyrophosphatase 

     

m23-0-m42 1OFH 157-160-163 m(2)c(2)c atp-dependent protease hslv 

m25-0-m8 1XXX 162-164-167 m(1)m(2)n dihydrodipicolinate synthase 

     

m20-27-m6 1IV2 8-10-42 d(1)d(31)m 2-c-methyl-d-erythritol 2-4-cyclodiphosphate synthase

m20-41-m11 1WC1 1017-1018-1061 d(0)e(42)b adenylate cyclase 

     

m8-27-m10 1MXG 252-256-292 m(3)k(35)k N/A 

m8-43-m11 1KHZ 112-116-164 m(3)n(47)a adp-ribose pyrophosphatase 

     

m15-98-m26-164-m5 1ED9 51-155-322 h(103)l(166)d alkaline phosphatase 

m15-106-m26-158-m5 1SHQ 37-151-310 h(113)l(158)d alkaline phosphatase 

     



m5-20-m20 1ZPD 440-467-469 k(26)h(1)a pyruvate decarboxylase 

m5-23-m39 1POX 447-474-476 k(29)h(1)a pyruvate oxidase 

m5-27-m4 1UMD 175-204-206 k(28)h(1)a 2-oxo acid dehydrogenase alpha subunit 

m5-25-m39 2C3M 963-991-993 k(27h(1)a pyruvate-ferredoxin oxidoreductase 

     

m16-155-m18 1NUY 1118-1121-1280 f(1)h(158)m fructose-1-6-bisphosphatase 

m16-146-m18 1KA1 142-145-294 f(1)h(148)m halotolerance protein hal2 

m16-123-m18 2BJI 1090-1093-1220 f(1)h(126)m inositol-1(or 4)-monophosphatase 

     

m24-155-m12 1O08 1008-1010-1170 f(1)h(159)b beta-phosphoglucomutase 

m24-106-m12 1U7P 11-13-123 f(1)h(109)b magnesium-dependent phosphatase-1 

m24-186-m12 2C4N 9-11-201 f(1)h(189)b nagd 

m24-118-m12 2B82 44-46-167 f(1)h(119)b class b acid phosphatase 
aCompound motifs are composed of significant simple motifs, e.g. m24-161-m12 is a compound motif composed of simple motif m24 and m12, 
where 161 is the number of residues in between. The significance of a simple motif is determined by its E-value. The E-value of all simple motifs 
in table is less than or equal to1.9e-015 (the smaller E-value, the more significant).  
bDudev & Lim considered a motif significant if the number of its occurrence is greater than or equal to 3. Significance motifs are marked in bold.  

 

Table 3. Summary of simple motifs used in compound motifs. 

Simple Motif 
(regular expression) Motif Index E-value 

LKGHN m1 5.2e-954 

M[DA]DHN m4 9.0e-547 

EEARQ m5 4.8e-531 

TLKGH m6 6.6e-477 

ACWNE m8 8.6e-422 

MADWN m10 1.7e-303 

[LM]KGHN m11 1.2e-287 

ACARQ m12 7.7e-309 

EMAD[HQ] m15 3.9e-231 

EEACW m16 8.5e-204 

[FA]RQ[TP]T m18 1.5e-176 

TLKGM m19 1.6e-163 

EEEE[MAE] m20 3.0e-136 

ARQTT m21 2.8e-095 



TTLKG m22 1.8e-098 

TTPP[PS] m23 5.7e-088 

ACW[NF]Q m24 1.0e-075 

SF[RP]CN m25 7.6e-078 

SFRQT m26 6.9e-055 

TT[ST]PP m35 3.3e-022 

MM[DA]DH m39 1.9e-015 

AR[CQW]PP m42 7.1e-020 
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