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Waiting Strategies for the Dynamic Vehicle Routing Problem with Time
Windows

Abstract

The Vehicle Routing Problem with Time Windows (VRPTW) is a well-known and classic
problem in Logistic management and Operations research. The problem is to determine a set
of routes for a fleet of vehicles visiting a number of known customers associated with time
windows, and the objective is to minimize the number of vehicles required and the total
travel time. The objective of this study is to develop an optimal strategy trying to maximize
the probability of inserting new real-time requests in the existing route. This can be achieved
by holding a vehicle at appropriate locations so as to exploit a larger region of service being
able to reach at a limited slack time.

Some waiting strategies were proposed in a previous study (Yuen et al., 2009). In this study
we developed a methodology to quantify the expected number of arrivals that a waiting
strategy can insert. It is shown that the optimality of strategies should depend on more
factors such as distances between locations, width to time windows and waiting times, and
demand intensity.

Keyword: Waiting Strategies; Dynamic; Real-time request; Vehicle Routing Problem with
Time Windows



INTRODUCTION AND BACKGROUND

The Vehicle Routing Problem with Time Windows (VRPTW) is a well-known and classic
problem in Logistic management and Operations research. The problem is to determine a set
of routes for a fleet of vehicles visiting a number of known customers associated with time
windows, and the objective is to minimize the number of vehicles required and the total travel
time. It is a combinatorial optimization problem and has been studied in numerous papers (see
Cordeau et al, 2002). The dynamic vehicle routing with real-time requests has been becoming
an important topic. In contrast to the static case in which known requests are preplanned
before the day of operation, the dynamism of the problem are due to the time-dependent
nature of the network travel time or real-time arrivals of customer requests, which are
unknown beforehand. The characteristics of dynamic vehicle routing problems and early
studies in this area were identified by Psaraftis (1995) and Gendreau and Potvin (1998).

In the dynamic problem, known requests with specified time windows are preplanned, while
new customer requests are to be considered for possible insertion. A common approach to
solve the problem for new customer arrivals are re-optimization. Re-optimization is a straight
forward algorithm which repeats the static optimization algorithm each time the system is
updated (e.g. on arrival of a new request) (see Gendreau et al., 1999). For the dynamic pickup
and delivery problem with time windows, Mitrovic-Minic et al. (2004) proposed a
double-horizon based heuristic which examine the benefit of updating frequency with
short-term and long-term objectives.

Several recent papers contributed on the solution or computing methodology in increasing the
demand acceptance rates, level of service, and/or reducing operating cost. Diana (2006)
considered several characteristics of the information flow (including percentage of real-time
requests, interval between call-in and requested pickup time, and length of the computational
cycle time) in evaluating the effectiveness of how the input is revealed to the algorithm in
dynamic. Coslovich et al. (2006) solved the routing of unexpected demands in the dial-a-ride
problem, with a new two-phase insertion technique. In contrast, Branke et al. (2005) and Yuen
et al. (2009) investigated the waiting strategies in the scheduling problem. In Yuen et al.
(2009), a Modified Dynamic Wait (MDW) strategy was proposed to allocate the waiting times
of a vehicle along the stops of a planned route, which can potentially increase the flexibility
and reduce the operating cost in accepting future calls. Testing against the classic Drive First
(DF) and Wait First (WF) strategies, MDW is shown to be superior in general. More robust
algorithms and heuristics were developed by formulating the problem into shortest path
problem (Fabri and Recht, 2006), artificial neural network (Fu, 1999) and fuzzy logic
(Teodorovic and Radivojevic, 2000).



The above studies focused on the determination of customer sequence in routes. Another line
of research to answer this question is to examine if it is possible to reduce the number of
required vehicles and/or total distance travelled when a vehicle should wait at a location
before moving to the next customers Yuen et al. (2009) investigated the dynamic dial-a-ride
problem, and suggested a waiting strategy which holds a vehicle for possible future calls until
the time (if no calls arrive) that it will arrive the next location and catch the earliest pickup
time, in a just-in-time alike manner. It is shown to reduce the total distance by 5 to 7% in a
simulation experiment.

More recently, Berbeglia et al. (2009) gave a review on the dynamic pickup and delivery
problems and its variations. Some issues and recent new solution concepts are identified, such
as vehicle diversion (Ichoua et al., 2000), degree of dynamism (Lund et al., 1996; Larson,
2000), anticipation of future requests (Ichoua et al., 2006; Tjokroamidjojo et al., 2006) with
waiting and buffering strategy (Pureza and Laporte, 2008). For instance, a vehicle-waiting
heuristics, which was proposed in Ichoua et al. (2006) for the dynamic vehicle routing and
dispatching problem, investigated the value of knowledge of knowing the probabilistic
arrivals of future demands. In their study, dummy customers are created representing
forecasted requests, and the proposed strategy is used to decide for the vehicle to wait or not.
Pureza and Laporte (2008) investigated a waiting strategy, which delays the assignment of
vehicles to next destination, and a request buffering strategy, which postpones the assignment
of non-urgent new requests to the next route planning. With numerical examples, it showed
that request buffering improves the performances in the system with higher degree of
dynamism.

MODEL FORMULATION AND SPECIFICATION

Vehicle trajectory

Three waiting strategies, namely, Drive First (DF), Wait first (WF) and Modified Dynamic
Wait (MDW), were developed in Yuen et al. (2009) for the dynamic demand responsive
transport services with time windows. Once the routes (i.e., the sequence of the stops) are
determined, the allocation of waiting times at each stop can be calculated. The corresponding
pseudo codes were given in Wong et al. (2009). In the VRPTW problem, given the time
windows of each stop and the sequence of locations to visit, the vehicle trajectory by each of
the strategies can be calculated with the procedure. In particular, Drive First and Wait First
can be used as the earliest bound and latest bound of departure. Therefore, any trajectory
above DF and below WF is feasible, and DF and WF forms the lower bound and upper bound
of waiting at each location. As proposed in Wong et al. (2009), a Modified Dynamic Wait



(MDW) strategy suggests a feasible trajectory that can potentially saves number of vehicle
and/or distance travelled.

The expected number of customer arrivals

The idea of the proposed dynamic waiting strategy tries to maximize the probability of
accepting future calls. We would show and quantity this value in the following analysis. The
probability of inserting an unknown request into an existing route can be analyzed with the
method of geometric probability (see Larson and Odoni, 1981). For a case where a vehicle is
moving from location i to i+1 after the service, with the travel time denoted as D and there is
a slack time (i.e. waiting time) that enables the vehicle to detour and pickup a real-time
request. As shown in Figure 1, if one adopts the DF strategy, the vehicle would spend the
slack time at i+1, and therefore if it detours to a new customer from i+1 before the service can
start, it has to move back to i+1 before moving on to i+1. The potential service region is a
circle with the centre at location i+1, with a radius of S/2. On the other hand, with WF
strategy, the vehicle would spend the slack time at i, and the service region is an ellipse, with
locations i and i+1 as focal points, D as the distance between the two foci. Therefore the sum
of distances from any point on the curve to the two foci is D+S.

(a) Service region for DF (b) Service region for WF

D = Direct travel time from location i to location j
S = Slack time available for the vehicle to detour

Figure 1. Service Regions of Drive First and Wait First waiting strategies

The size of the area implies how far a vehicle can go to pickup a new customer without
violating the time windows planned requests. Then we can express the expected number of
customers a vehicle can pickup based on a specific strategy. To facilitate the discussion, a list
of the notations of variables and parameters are given in Table 1.



Table 1 Notations of input of customer requests

ai, b Earliest and latest service time of location i

A, D, \WT, Arrival time, departure time and waiting time of a vehicle at location i for
a waiting strategy

A, Di,WT; Arrival time, departure time and waiting time of a vehicle at location i for
the Wait First strategy

A, D, ,WT, Arrival time, departure time and waiting time of a vehicle at location i for
the Drive First strategy

270 Demand intensity in the zone close to location i

t; | travel time from location i to location j

S slack time

For the ellipse shown in Figure 2(a), it is easy to show that the semi-major axis is (%}

2 2
and the semi-minor axis is (ST+%J ,and the area is Ar(S, D):z(s ; Dj [ST+%] .

The area is proportional to the possibility of accepting a new request at a particular time
instance. As time goes by, the area covered is shrinking over time with the waiting, and the
expected number of arrivals can be achieved by integrating the area, which is expressed as a
function of waiting time.

Since [a;, bi] is the time windows of a location i, and [Bi, A, ] is the latest feasible departure

time and earliest service time of a location i. Therefore, for any arbitrary waiting strategy, the
following conditions should hold:

A <A <b;; a <D; <D;j

The expected number arrivals can be determined by the area covered multiplied by the
duration of waiting and multiplied by the demand intensity.

Drive First strategy

The expected number arrival in the covered area at location i with the DF strategy, EAiDF,

can be calculated by

EAPsz/:‘_WSAr(Bi At Z(‘)dmj/z‘Ar(Bi—a),t” 2li)g



where the first term denotes the expected number of arrivals when the vehicle is on the way to
location i, and the second term is the expected number of arrivals when the vehicle is waiting
at location i. For more details, the first term is determined with the integration of the area

covered with a slack (Bi —Ai) during a period of WS before A,;, multiplied by lz(i), the

demand intensity in the area (with the unit of number of arrivals per unit area per unit time).
Here WS is a reasonable time width that a new request is considered by a route. Since the new
request arrives when the vehicle is on the way to the location, the area covered is a fixed value
over the integration. The second term is calculated by integrating the area from its arrival time
A; to its departure time D;. It can detour to a location and return with a before the latest

feasible departure time Di. And the total expected number arrival with the DF strategy,

n
EAPF is calculated as  EAPF = > EAPF.
i-0

Wait first strateqy

The expected number arrival in the covered area at location i with the WF strategy, EAiWF,
can be calculated by
A — _ o Di o
EAiWF _ _[Zi s AI’(Ai+1 - A ’tili+l)12(|—>l+l)da)+ki Ar(Ai+1 _w'ti,i+1)lz('_>'+l)da)

where the first term and second term, similar to the case of DF, denote the expected number of
arrivals when the vehicle is on the way to location i and that when the vehicle is waiting at
location i. The difference here is that the service is done once the vehicle arrives a location i,
and therefore to pickup up a new request, say at location j, the vehicle can move fromi to j to
i+1 without returning back to i. If a vehicle goes for a new request, it must return to i+1
before Ais1. The demand intensity is considered for the region between i and i+1, and thus

o 2(i) 2(i+1)
approximated by i) =L%J And the total expected number arrival with the

n
WF strategy, EAYF, is calculated by EAYF =" EAYF.
i=0

Modified Dynamic Wait strateqy

The case of modified dynamic wait can be determined in a similar way:

A i - i
EAiMDW = A -Ws Ar(Ai+l_Ai,ti’i_HI_)Z-Z(I_H-HL)da)-l-JAAﬁ Ar(Ai+1_w,ti’i_,_l)lz(l_)Hl)dC()



EAMDW _ Zn: EAiMDW
i=0

General Dynamic Wait strategy

The above cases have the properties that both A, and D, are earlier than or equal to &;
(for DF) in which any detour must return to location i, or both A, and D, are later than or
equal to a; (for WF and MDW) in which any detour must not return to location i. For a
general dynamic waiting strategy, it could happen that A; <a; < D;, and the area covered
would be different if a request arrive before the earliest service time a; or after a; .
I:_ws Ar(Bi - ALt )ﬁ-z(i)da)+j: Ar(Bi — o, ; g _
if A <a

EACDW _ +Ia|?i Ar(ﬂm —a),tiyiﬂ)lz(i_’”l)da)

A A i—>i D\ (A i .
J'Aq—WsAr(Anl—Ai,ti,i+1)'1z(l_”+l)da>+J‘Aﬁ Ar(Ai+1—a),ti,”l)&z('_“*l)da) if A >a

EACGDW _ Z”: EAiGDW

i=0
The above equations measure the ability to insert an additional customer. The above example
only shows the idea with two stops and no subsequence customers after i+1, and therefore it
seems WF is more attractive than DF with its larger service area covered. As shown in Yuen et
al. (2009), it is only true when there are not many demands. The actual calculation will be
more complicated if we consider more than 2 stops and take the time windows into

consideration. One reason is that Di is sometimes constrained by b;,; or b;,, butnot b;.

For a route with several stops, there is a slack for each of the stops because of the time
windows. This slack may be reserved to the subsequence stops if the length of the time
window of the next stop is wide enough. If this slack cannot be reserved because of the
narrow time window of the next stop, the value of the slack is zero. With the Drive First and
Wait First strategies which can determine the lower and upper envelopes of waiting at a
particular location, we can analyze the maximum serve region of detouring to pickup a future
request based on the distance between the stops and the slack times.

NUMERICAL EXPERIMENTALS

With the above derived equations, it can be proved that there is no single waiting strategies
dominate in all situations. We show that in a numerical experiment with three scenarios: tight
schedule, loose schedule, and loose schedule with scatter demand locations. The results are
shown in Table 2 with demand intensity set to be 0.01 across the whole study area.



Under a tight schedule, with WF it has a higher chance of inserting a new request than with
DF. MDW and GDW are identical to WF, which is optimal in this case. For the case of loose
schedule, DF is some what better than WF, but it can be significant improved with the
proposed MDW. However, MDW, with W(MDW)={0.5, 4, 2, 5, 1, 0}, is not an optimal
strategy in this scenario, as one can use a general waiting time strategy and allocate the
waiting time from location 0 to location 1, such that and W(GDW)= {0, 4.5, 2, 5, 1, 0}.
Looking into the details of the calculation, it is because of the short distance between 0 and 1

(to1=0.5) and the large value of Bl(with Di — A, = 7-0.5 = 6.5). Therefore, spending a

waiting time at location 0 can make a very small benefit with the detour, but there is a larger
service radius with waiting at location 1.

The third scenario shows a loose schedule with cluster locations, in which we modified the
scenario 2 with the distances between locations to be 1 time unit. It models the situation of
cluster locations, as compared to the time window width of 2 time unit. In this case, DF is
superior to WF and MDW. 1t is a surprising finding, as previous studies demonstrated that
MDW should be better than DF. However, one would argue that the measuring criteria used
here, i.e. expected arrivals (EA), and may not be useful if the routes are quite empty. It would
then be interested to know the opportunity cost of inserting a new request, i.e. the reduction of
EA. If a new feasible call arrives, what is the probability of taking another call if the current
new request is rejected (or inserted to another route)? This is worth further investigation.
Furthermore in the example, it is showed that a GDW can be derived that is superior to DF
and MDW. It reemphasizes that the optimality of a waiting strategy should also take into
account the clustering of request locations, total length of waiting times (tightness of
schedule), and demand intensity.

CONCLUSIONS AND SELF EVALUATION

In this research we have establish a methodology to quantify the performance of a waiting
strategy for the dynamic vehicle routing problem with time windows. It is found that the
optimality of a waiting strategy should depend on clustering of request locations and tightness
of the schedule, and therefore the previous proposed strategy derived from only the time
windows and sequence of locations may not be optimal. This research opened an avenue to
look at the problem of waiting strategies with geometric probability rather than simulation. To
derive an exact optimal strategy, it is worth to further investigate the opportunity cost of
inserting a new request and also the probability of taking another call if the current new
request is rejected.
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Figure 1. Trajectories of a vehicle using the three waiting strategies (Scenario 3)

Table 2. Allocation of waiting times in different scenarios

Locations (i) 0 1 2 3 4 5
Scenario 1: Atight schedule
ai 0 1 3 5 10 15
bi 0 3 5 7 10 15
t(ii+1) 05 3 3 3 3
Wi (DF) 0 0.5 0 0 0 2 | EA (DF) 0.0219
Wi (WF) 05 0 0 0 2 0 | EA (WF) 0.7184
Wi (MDW) 0.5 0 0 0 2 0 | EA (MDW) 0.7184
Wi (GDW) 05 0 0 0 2 0 | EA(GDW) 0.7184
Scenario 2: Aloose schedule
ai 0 1 7 11 18 21
bi 0 3 9 13 18 21
(i i+1) 05 2 2 2 2
Wi (DF) 0 05 4 2 5 1| EA (DF) 24781
Wi (WF) 25 4 2 3 1 0| EA (WF) 2.4187
Wi (MDW) 05 4 2 5 1 0 | EA (MDW) 45972
Wi (GDW) 0 4.5 2 5 1 0 | EA(GDW) 47096
ai 0 1 7 11 18 21
bi 0 3 9 13 18 21
t(i,i+1) 05 1 1 1 1
Wi (DF) 0 05 5 3 6 2 | EA (DF) 52051
Wi (WF) 25 5 3 4 2 0 | EA (WF) 1.936
Wi (MDW) 05 5 3 6 2 0 | EA (MDW) 39321
Wi (GDW) 0 0.5 5 3 8 0 | EAGDW) 5.3247
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ABSTRACT

This paper proposes a Linear Complementarity Problem (LCP) formulation for risk-taking
stochastic transit assignment problem with capacity constraints. A route-based linear
programming (LP) reformulation of the LCP formulation is also proposed. A new solution
method based on the column generation technique is developed to solve the proposed LP. The
solution method utilizes the k-shortest path algorithm, revised simplex method and sorting
algorithm to solve the LP and guarantees finite convergence. Numerical results are reported
for an example transit network based on Singapore’s bus network. Based on the results
obtained, the proposed approach is also compared with the congestion cost function approach
implicitly capturing stochastic capacity. Sensitivity analysis of parameters involved is also
discussed in detail.



