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時窗限制下的動態車輛路線問題之等待策略 

摘要 

 

時窗限制下的車輛路線問題已經有廣泛的研究，問題主要為規劃車輛路線以滿足所有

含時間窗限制的需求點，而目標一般為最少車輛數與最少總行走距離。而近年由於電

子導航及通訊科技發展越趨成熟，幫助實時車輛指派與調度的可行性，而且得使在現

有路線上加入動態即時的需求變得可行。本研究之目的是要發展一套有效之等待策略

去求解動態的時窗限制下的車輛路線問題。等待策略意即把車輛安排在適當的地點等

待，使增加可以接受即時需求的可能性。透過幾何機率的方法，本研究發展出一套在

動態車輛路線問題可使用的最佳等待策略。 

 

關鍵詞:  等待策略; 動態; 即時需求; 時窗限制下的車輛路線問題  

 

 

Waiting Strategies for the Dynamic Vehicle Routing Problem with Time 
Windows 

 
Abstract 

 

The Vehicle Routing Problem with Time Windows (VRPTW) is a well-known and classic 
problem in Logistic management and Operations research. The problem is to determine a set 
of routes for a fleet of vehicles visiting a number of known customers associated with time 
windows, and the objective is to minimize the number of vehicles required and the total 
travel time. The objective of this study is to develop an optimal strategy trying to maximize 
the probability of inserting new real-time requests in the existing route. This can be achieved 
by holding a vehicle at appropriate locations so as to exploit a larger region of service being 
able to reach at a limited slack time.  
 
Some waiting strategies were proposed in a previous study (Yuen et al., 2009). In this study 
we developed a methodology to quantify the expected number of arrivals that a waiting 
strategy can insert. It is shown that the optimality of strategies should depend on more 
factors such as distances between locations, width to time windows and waiting times, and 
demand intensity. 
 
Keyword: Waiting Strategies; Dynamic; Real-time request; Vehicle Routing Problem with 
Time Windows   

 



INTRODUCTION AND BACKGROUND 
 
The Vehicle Routing Problem with Time Windows (VRPTW) is a well-known and classic 
problem in Logistic management and Operations research. The problem is to determine a set 
of routes for a fleet of vehicles visiting a number of known customers associated with time 
windows, and the objective is to minimize the number of vehicles required and the total travel 
time. It is a combinatorial optimization problem and has been studied in numerous papers (see 
Cordeau et al, 2002). The dynamic vehicle routing with real-time requests has been becoming 
an important topic. In contrast to the static case in which known requests are preplanned 
before the day of operation, the dynamism of the problem are due to the time-dependent 
nature of the network travel time or real-time arrivals of customer requests, which are 
unknown beforehand. The characteristics of dynamic vehicle routing problems and early 
studies in this area were identified by Psaraftis (1995) and Gendreau and Potvin (1998). 
 
In the dynamic problem, known requests with specified time windows are preplanned, while 
new customer requests are to be considered for possible insertion. A common approach to 
solve the problem for new customer arrivals are re-optimization. Re-optimization is a straight 
forward algorithm which repeats the static optimization algorithm each time the system is 
updated (e.g. on arrival of a new request) (see Gendreau et al., 1999). For the dynamic pickup 
and delivery problem with time windows, Mitrovic-Minic et al. (2004) proposed a 
double-horizon based heuristic which examine the benefit of updating frequency with 
short-term and long-term objectives.  
 
Several recent papers contributed on the solution or computing methodology in increasing the 
demand acceptance rates, level of service, and/or reducing operating cost. Diana (2006) 
considered several characteristics of the information flow (including percentage of real-time 
requests, interval between call-in and requested pickup time, and length of the computational 
cycle time) in evaluating the effectiveness of how the input is revealed to the algorithm in 
dynamic. Coslovich et al. (2006) solved the routing of unexpected demands in the dial-a-ride 
problem, with a new two-phase insertion technique. In contrast, Branke et al. (2005) and Yuen 
et al. (2009) investigated the waiting strategies in the scheduling problem. In Yuen et al. 
(2009), a Modified Dynamic Wait (MDW) strategy was proposed to allocate the waiting times 
of a vehicle along the stops of a planned route, which can potentially increase the flexibility 
and reduce the operating cost in accepting future calls. Testing against the classic Drive First 
(DF) and Wait First (WF) strategies, MDW is shown to be superior in general. More robust 
algorithms and heuristics were developed by formulating the problem into shortest path 
problem (Fabri and Recht, 2006), artificial neural network (Fu, 1999) and fuzzy logic 
(Teodorovic and Radivojevic, 2000).  
 



The above studies focused on the determination of customer sequence in routes. Another line 
of research to answer this question is to examine if it is possible to reduce the number of 
required vehicles and/or total distance travelled when a vehicle should wait at a location 
before moving to the next customers Yuen et al. (2009) investigated the dynamic dial-a-ride 
problem, and suggested a waiting strategy which holds a vehicle for possible future calls until 
the time (if no calls arrive) that it will arrive the next location and catch the earliest pickup 
time, in a just-in-time alike manner. It is shown to reduce the total distance by 5 to 7% in a 
simulation experiment. 
 
More recently, Berbeglia et al. (2009) gave a review on the dynamic pickup and delivery 
problems and its variations. Some issues and recent new solution concepts are identified, such 
as vehicle diversion (Ichoua et al., 2000), degree of dynamism (Lund et al., 1996; Larson, 
2000), anticipation of future requests (Ichoua et al., 2006; Tjokroamidjojo et al., 2006) with 
waiting and buffering strategy (Pureza and Laporte, 2008). For instance, a vehicle-waiting 
heuristics, which was proposed in Ichoua et al. (2006) for the dynamic vehicle routing and 
dispatching problem, investigated the value of knowledge of knowing the probabilistic 
arrivals of future demands. In their study, dummy customers are created representing 
forecasted requests, and the proposed strategy is used to decide for the vehicle to wait or not. 
Pureza and Laporte (2008) investigated a waiting strategy, which delays the assignment of 
vehicles to next destination, and a request buffering strategy, which postpones the assignment 
of non-urgent new requests to the next route planning. With numerical examples, it showed 
that request buffering improves the performances in the system with higher degree of 
dynamism.  
 
MODEL FORMULATION AND SPECIFICATION 
 
Vehicle trajectory 
 
Three waiting strategies, namely, Drive First (DF), Wait first (WF) and Modified Dynamic 
Wait (MDW), were developed in Yuen et al. (2009) for the dynamic demand responsive 
transport services with time windows. Once the routes (i.e., the sequence of the stops) are 
determined, the allocation of waiting times at each stop can be calculated. The corresponding 
pseudo codes were given in Wong et al. (2009). In the VRPTW problem, given the time 
windows of each stop and the sequence of locations to visit, the vehicle trajectory by each of 
the strategies can be calculated with the procedure. In particular, Drive First and Wait First 
can be used as the earliest bound and latest bound of departure. Therefore, any trajectory 
above DF and below WF is feasible, and DF and WF forms the lower bound and upper bound 
of waiting at each location. As proposed in Wong et al. (2009), a Modified Dynamic Wait 



(MDW) strategy suggests a feasible trajectory that can potentially saves number of vehicle 
and/or distance travelled.  
 
The expected number of customer arrivals  
 
The idea of the proposed dynamic waiting strategy tries to maximize the probability of 
accepting future calls. We would show and quantity this value in the following analysis. The 
probability of inserting an unknown request into an existing route can be analyzed with the 
method of geometric probability (see Larson and Odoni, 1981). For a case where a vehicle is 
moving from location i to i+1 after the service, with the travel time denoted as D and there is 
a slack time (i.e. waiting time) that enables the vehicle to detour and pickup a real-time 
request. As shown in Figure 1, if one adopts the DF strategy, the vehicle would spend the 
slack time at i+1, and therefore if it detours to a new customer from i+1 before the service can 
start, it has to move back to i+1 before moving on to i+1. The potential service region is a 
circle with the centre at location i+1, with a radius of S/2. On the other hand, with WF 
strategy, the vehicle would spend the slack time at i, and the service region is an ellipse, with 
locations i and i+1 as focal points, D as the distance between the two foci. Therefore the sum 
of distances from any point on the curve to the two foci is D+S.  

 

Figure 1. Service Regions of Drive First and Wait First waiting strategies 

The size of the area implies how far a vehicle can go to pickup a new customer without 
violating the time windows planned requests. Then we can express the expected number of 
customers a vehicle can pickup based on a specific strategy. To facilitate the discussion, a list 
of the notations of variables and parameters are given in Table 1. 

D = Direct travel time from location i to location j 
S = Slack time available for the vehicle to detour  

 (a) Service region for DF              (b) Service region for WF 
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Table 1  Notations of input of customer requests 
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The area is proportional to the possibility of accepting a new request at a particular time 
instance. As time goes by, the area covered is shrinking over time with the waiting, and the 
expected number of arrivals can be achieved by integrating the area, which is expressed as a 
function of waiting time.  

Since [ai , bi] is the time windows of a location i, and [ iD , iA ] is the latest feasible departure 

time and earliest service time of a location i. Therefore, for any arbitrary waiting strategy, the 
following conditions should hold: 

iii bAA ≤≤ ; iii DDa ≤≤  

The expected number arrivals can be determined by the area covered multiplied by the 
duration of waiting and multiplied by the demand intensity. 
 
Drive First strategy 

The expected number arrival in the covered area at location i with the DF strategy, DF
iEA , 

can be calculated by 
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ai , bi  Earliest and latest service time of location i 
iA , iD , iWT  Arrival time, departure time and waiting time of a vehicle at location i for 

a waiting strategy 

iA , iD , iWT  Arrival time, departure time and waiting time of a vehicle at location i for 
the Wait First strategy  

iA , iD , iWT  Arrival time, departure time and waiting time of a vehicle at location i for 
the Drive First strategy  

( )izλ  Demand intensity in the zone close to location i 

jit ,   travel time from location i to location j 

s   slack time 



where the first term denotes the expected number of arrivals when the vehicle is on the way to 
location i, and the second term is the expected number of arrivals when the vehicle is waiting 
at location i. For more details, the first term is determined with the integration of the area 

covered with a slack ( )ii AD −  during a period of WS before iA , multiplied by ( )izλ , the 

demand intensity in the area (with the unit of number of arrivals per unit area per unit time). 
Here WS is a reasonable time width that a new request is considered by a route. Since the new 
request arrives when the vehicle is on the way to the location, the area covered is a fixed value 
over the integration. The second term is calculated by integrating the area from its arrival time 

iA  to its departure time iD . It can detour to a location and return with a before the latest 

feasible departure time iD . And the total expected number arrival with the DF strategy, 

DFEA , is calculated as  ∑
=

=
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Wait first strategy 

The expected number arrival in the covered area at location i with the WF strategy, WF
iEA , 

can be calculated by 
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where the first term and second term, similar to the case of DF, denote the expected number of 
arrivals when the vehicle is on the way to location i and that when the vehicle is waiting at 
location i. The difference here is that the service is done once the vehicle arrives a location i, 
and therefore to pickup up a new request, say at location j, the vehicle can move from i to j to 
i+1 without returning back to i. If a vehicle goes for a new request, it must return to i+1 
before 1+iA . The demand intensity is considered for the region between i and i+1, and thus 

approximated by ( )
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Modified Dynamic Wait strategy 
 
The case of modified dynamic wait can be determined in a similar way: 
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General Dynamic Wait strategy 
 
The above cases have the properties that both iA  and iD  are earlier than or equal to ia  
(for DF) in which any detour must return to location i, or both iA  and iD  are later than or 
equal to ia  (for WF and MDW) in which any detour must not return to location i. For a 
general dynamic waiting strategy, it could happen that iii DaA << , and the area covered 
would be different if a request arrive before the earliest service time ia  or after ia . 
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The above equations measure the ability to insert an additional customer. The above example 
only shows the idea with two stops and no subsequence customers after i+1, and therefore it 
seems WF is more attractive than DF with its larger service area covered. As shown in Yuen et 
al. (2009), it is only true when there are not many demands. The actual calculation will be 
more complicated if we consider more than 2 stops and take the time windows into 

consideration. One reason is that iD  is sometimes constrained by 1+ib  or 2+ib  but not ib . 

For a route with several stops, there is a slack for each of the stops because of the time 
windows. This slack may be reserved to the subsequence stops if the length of the time 
window of the next stop is wide enough. If this slack cannot be reserved because of the 
narrow time window of the next stop, the value of the slack is zero. With the Drive First and 
Wait First strategies which can determine the lower and upper envelopes of waiting at a 
particular location, we can analyze the maximum serve region of detouring to pickup a future 
request based on the distance between the stops and the slack times. 
 
NUMERICAL EXPERIMENTALS 
 
With the above derived equations, it can be proved that there is no single waiting strategies 
dominate in all situations. We show that in a numerical experiment with three scenarios: tight 
schedule, loose schedule, and loose schedule with scatter demand locations. The results are 
shown in Table 2 with demand intensity set to be 0.01 across the whole study area.  



Under a tight schedule, with WF it has a higher chance of inserting a new request than with 
DF. MDW and GDW are identical to WF, which is optimal in this case. For the case of loose 
schedule, DF is some what better than WF, but it can be significant improved with the 
proposed MDW. However, MDW, with W(MDW)={0.5, 4, 2, 5, 1, 0}, is not an optimal 
strategy in this scenario, as one can use a general waiting time strategy and allocate the 
waiting time from location 0 to location 1, such that and W(GDW)= {0, 4.5, 2, 5, 1, 0}. 
Looking into the details of the calculation, it is because of the short distance between 0 and 1 

( 1,0t =0.5) and the large value of 1D (with ii AD −  = 7-0.5 = 6.5). Therefore, spending a 

waiting time at location 0 can make a very small benefit with the detour, but there is a larger 
service radius with waiting at location 1.  
 
The third scenario shows a loose schedule with cluster locations, in which we modified the 
scenario 2 with the distances between locations to be 1 time unit. It models the situation of 
cluster locations, as compared to the time window width of 2 time unit. In this case, DF is 
superior to WF and MDW. It is a surprising finding, as previous studies demonstrated that 
MDW should be better than DF. However, one would argue that the measuring criteria used 
here, i.e. expected arrivals (EA), and may not be useful if the routes are quite empty. It would 
then be interested to know the opportunity cost of inserting a new request, i.e. the reduction of 
EA. If a new feasible call arrives, what is the probability of taking another call if the current 
new request is rejected (or inserted to another route)? This is worth further investigation. 
Furthermore in the example, it is showed that a GDW can be derived that is superior to DF 
and MDW. It reemphasizes that the optimality of a waiting strategy should also take into 
account the clustering of request locations, total length of waiting times (tightness of 
schedule), and demand intensity. 
 

CONCLUSIONS AND SELF EVALUATION 
 
In this research we have establish a methodology to quantify the performance of a waiting 
strategy for the dynamic vehicle routing problem with time windows. It is found that the 
optimality of a waiting strategy should depend on clustering of request locations and tightness 
of the schedule, and therefore the previous proposed strategy derived from only the time 
windows and sequence of locations may not be optimal. This research opened an avenue to 
look at the problem of waiting strategies with geometric probability rather than simulation. To 
derive an exact optimal strategy, it is worth to further investigate the opportunity cost of 
inserting a new request and also the probability of taking another call if the current new 
request is rejected. 
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Figure 1.  Trajectories of a vehicle using the three waiting strategies (Scenario 3) 

 
Table 2. Allocation of waiting times in different scenarios 

  Locations (i) 0 1 2 3 4 5     
Scenario 1:  A t ight schedule               
  ai 0 1 3 5 10 15     
  bi 0 3 5 7 10 15     
  t(i, i+1) 0.5 3 3 3 3      
  Wi (DF) 0 0.5 0 0 0 2 EA (DF) 0.0219
  Wi (WF) 0.5 0 0 0 2 0 EA (WF) 0.7184
  Wi (MDW) 0.5 0 0 0 2 0 EA (MDW) 0.7184
  Wi (GDW) 0.5 0 0 0 2 0 EA(GDW) 0.7184
Scenario 2:  A loose schedule             
  ai 0 1 7 11 18 21     
  bi 0 3 9 13 18 21     
  t(i, i+1) 0.5 2 2 2 2      
  Wi (DF) 0 0.5 4 2 5 1 EA (DF) 2.4781
  Wi (WF) 2.5 4 2 3 1 0 EA (WF) 2.4187
  Wi (MDW) 0.5 4 2 5 1 0 EA (MDW) 4.5972
  Wi (GDW) 0 4.5 2 5 1 0 EA(GDW) 4.7096
Scenario 3:  A loose schedule with c luster locations           
  ai 0 1 7 11 18 21     
  bi 0 3 9 13 18 21     
  t(i, i+1) 0.5 1 1 1 1      
  Wi (DF) 0 0.5 5 3 6 2 EA (DF) 5.2051
  Wi (WF) 2.5 5 3 4 2 0 EA (WF) 1.936
  Wi (MDW) 0.5 5 3 6 2 0 EA (MDW) 3.9321
  Wi (GDW) 0 0.5 5 3 8 0 EA(GDW) 5.3247
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ABSTRACT 

 
This paper proposes a Linear Complementarity Problem (LCP) formulation for risk-taking 
stochastic transit assignment problem with capacity constraints. A route-based linear 
programming (LP) reformulation of the LCP formulation is also proposed. A new solution 
method based on the column generation technique is developed to solve the proposed LP. The 
solution method utilizes the k-shortest path algorithm, revised simplex method and sorting 
algorithm to solve the LP and guarantees finite convergence. Numerical results are reported 
for an example transit network based on Singapore’s bus network. Based on the results 
obtained, the proposed approach is also compared with the congestion cost function approach 
implicitly capturing stochastic capacity. Sensitivity analysis of parameters involved is also 
discussed in detail. 


