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Abstract

Communication services today, such as telephony, instant message, email, and VoIP, use
a specific user or device ID to specify the called party. If the callee’s ID is unknown,
communication becomes impossible. Another way to indicate the callee(s) is to specify the
callee’s attributes, such as the callee’s name, age, etc. A set of user attributes, which is
meaningful and easy to remember, can be used to set up a communication. Developed in the
first year of this project, a Multi-Function Personal/Group Communication (MFPGC) system
supports communications using specific IDs and/or multiple under-specified attributes.
Communications using multiple user attributes is feasible through publishing and querying
users’ attributes on a DHT. The DHT of MFPGC system is based on Chord, and Bloom filter
is used to represent user attributes, which can be string, numeric, and hybrid data. In the
second year of this project, we designed a new Bloom filter that can represent large ranges of
numeric data in a space-efficient way. The techniques we used are grouping and/or
overlapping the elements of the inserted numeric ranges. The design also supports data/range
queries of multiple attributes. The grouping scheme reduces the number of keys inserted into
a Bloom filter, while the overlapping scheme reduces the number of bits set to one in a
Bloom filter. In addition, these two schemes can be combined to provide both benefits. To
minimize the total false positive rate of all attributes, we have developed a two-phase
algorithm using the marginal utility theory and gradient descent to optimize parameter
configurations of a combined grouping and overlapping Bloom filter. Numeric analysis has
also been conducted to demonstrate the effectiveness of our modified Bloom filter and the
proposed configuration algorithm. The numeric results show that as the size of an inserted
numeric range increases, overlapping scheme should be used first, and then both overlapping
and grouping need to be used. The combined grouping and overlapping Bloom filter

significantly reduces the false positive rates of data sets with large ranges of numeric data.

Keywords: Bloom filter, numeric range query, multiple-attribute query



I. Introduction

Bloom filter was invented by B. H. Bloom to represent a data set and support
membership queries [1]. It is a space-efficient randomized data structure with a probability of
false positives. In other words, elements that are not in the data set may be falsely determined
to be in. In recent years, Bloom filter has been used in various network applications where the
saving of space and/or transmission bandwidth is important [2]. Squid, a distributed web
cache system, uses Bloom filter to represent the summary of files cached [3]. OceanStore, a
distributed file storage, uses a modified Bloom filter to indicate the files stored in the
neighbors of each node [4]. Bloom filter was used to send the intermediate results of a
multi-keyword search to save transmission bandwidth required [5]. Bloom filter has also been
used in packet routing [6-8] and traffic measurement [9].

Bloom filter has a number of extensions. One major limitation of Bloom filter is that
deleting an element from a traditional Bloom filter may not be possible because of the way it
is constructed. Counting Bloom filter was designed to solve this problem [10]. Each entry in
a counting Bloom filter is exactly a counter. Inserting an element is to hash the element and
increment the corresponding counters. On the other hand, deleting an element is to hash and
decrement the corresponding counters. To be more space-efficient, Mitzenmacher presented
compressed Bloom filter that has the same false positive rate as a traditional Bloom filter but
with fewer bits [11]. A larger and sparser Bloom filter was first constructed, and then
compressed. Guo et al. presented multi-dimension dynamic bloom filters (MDDBF) that
dynamically adjust the number of Bloom filters used to represent a data set according to the
size of the data set [12].

However, Bloom filter has not been used to represent a large range of numeric data
because of space inefficiency. The proper size of a Bloom filter can be determined by a

desired false positive rate and the number of inserted elements. Given a false positive rate f, a



Bloom filter needs 1.44xlog,(1/f) bits of space per inserted element [2]. As a result, a Bloom
filter is space-inefficient in representing a large range of numeric data in a straightforward
manner. For example, a square area of Latitude 25.0000°-25.0999° and Longitude
121.1000°-121.1999° represents approximately 1 km by 1 km square area. To be accurate to
the four decimal places, the area can be represented by two integer intervals [250000, ...,
250999] and [1211000, ..., 1211999]; each range consists of 1000 integers. Note that the
precession of this representation is about 10 meters. This data type is valuable in supporting
location-based communications, for example, broadcasting messages to users in this area.
However, to obtain a false positive rate of 0.001, a traditional Bloom filter needs
approximately 48K bits, while the size of a typical Bloom filter is less than 1K bits. It is
obvious that a traditional Bloom filter is unsuitable for representing large ranges of numeric
data. A new space-efficient design is essential to apply a Bloom filter to versatile
applications.

The objective of this project is to develop a new Bloom filter to represent multiple data
attributes, which may include large ranges of numeric data. The new design should be
space-efficient to provide a small probability of false positives for membership queries, as a
traditional Bloom filter does for data sets of atomic data types. Our new Bloom filter design
can be easily applied to various applications. In particular, it can be used in multiple attribute
range queries [13, 14] where the use of Bloom filter has never been considered.

The remainder of the report is organized as follows. Section Il describes our new Bloom
filter designs for representing numeric ranges. Analytic models to obtain the false positive
rates of the new designs are presented in Section Ill. Section IV describes a two-phase
optimization algorithm using marginal utility theory and gradient descent to obtain a near
optimal configuration of the modified Bloom filter. Section V discusses the simulation and

analytic results, while Section VI concludes the report.



1. Bloom Filter Design for Numeric Ranges

A traditional Bloom filter is an array of m bits representing a data set of n elements {x,
X2, ..., Xn}. Let S denote a data set. All bits of the Bloom filter are 0 initially. k independent
hash functions hy, hy, ..., hy, with range {1, ...,m}, are used to hash each element x in S to k
array positions hi(x), ha(x), ..., hk(x), and the bits at the hashed array positions are set to 1. To
check membership of y in S, we verify if all bits hi(y), i=1, 2, .., k, are set to 1. If at least one
bit is 0, we are sure that y is not in S; otherwise, y is assumed to be in S, with a probability of
being wrong. The situation of being wrong is so called false positive. Figure 1 depicts an
example of Bloom filter representing {xi, Xo}. From the Bloom filter, we can determine that
y1 is not in the set because not all the hashed array positions are set to 1. On the other hand,
although y- is not in the set, the Bloom filter cannot distinguish this because all the hashed

array positions are all set to 1. Thus y; is a false positive.

X1 X2
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Figure 1. An illustrative example of Bloom filter operation.

Assume that the hash functions are perfectly random, the probability of a false positive
for an element is not in S (i.e., the false positive rate) can be derived as follows. Given m, n,
and k of a Bloom filter, the probability that an array position is not set to 1 after n elements

are hashed into the Bloom filter can be approximated as



1 _
p:(l——)nk ~e nk /m (1)
m

Let f denote the false positive rate. An element that is not in the set would be determined as a
false positive if all its k hashed array positions are set to 1. Thus f can be expressed as
follows.

f=@p)~@—e ™MK (2)
The false positive rate is minimized when k = (m/n)In2 and p = 1/2, i.e., when half of the
array positions are set to 1 [2].

In this project, we intend to use a Bloom filter for multi-attribute data/range queries. A
data set, S, contains multiple data attributes. Each attribute is specified by an attribute name
and an attribute value. The attribute values can be atomic or numeric ranges. An atomic data
value can be a text string or an integer. Floating point numbers can be represented by integers
with a desired degree of accuracy. For example, Latitude 23.2621448° can be represented by
232621 with accuracy to the four decimal places, i.e, 10 meters. In addition, the attribute
value can be a numeric range, for example, Latitude 23.0000°-23.999°. Hashing an attribute
into a Bloom filter is to hash the text string concatenating the attribute name and the attribute
value. For example, inserting Latitude 23.0000° is to set array positions h; ("Latitude:230000")
to 1. For multiple-attribute queries, we are interested in checking if a data set S; is a subset of
another set S,. Let BF(S) denote the Bloom filter representing data set S. It is clear that if all
array positions that are set to 1 in BF(S;) are also set in BF(S,), we can assume S; is a subset
of S, with a possibility of being wrong.

We will describe three approaches to modify a traditional Bloom filter for multi-attribute
queries. We focus on how a numeric range is represented by the modified Bloom filter;
attributes of atomic data type are treated in the same way as the traditional Bloom filter. The

techniques we used are grouping successive elements (i.e., successive numbers of a numeric



range) and overlapping hashed positions of successive elements.
1. Grouping successive elements

The problem of representing a large range of numeric data by a traditional Bloom filter
is simply that there may be too many elements inserted. When a large number of elements are
inserted into a Bloom filter and most of the bits in the Bloom filter are set to 1, false positives
increase, and thus the Bloom filter becomes useless. A straightforward solution for the
problem is to reduce the number of elements inserted. This can be done by equally dividing
the numeric scope into groups; each group consists of a fixed number of successive numbers
(elements). The numbers in the same group are represented by the same inserted key, i.e. their
hashed positions in a Bloom filter are the same. This approach will be referred to as grouping
Bloom filter. Note that this approach reduces the number of bits set to 1 in a Bloom filter
representing a large range of numeric data, because fewer keys are inserted. Figure 2 depicts
the hashed positions of an example grouping Bloom filter, where five successive numbers are
grouped together and five hashed array positions are generated for each group. Ages 0-4 are
all represented by Age 0 when inserted in the Bloom filter. In other words, the grouping
Bloom filter does not distinguish between Ages 0-4.

Since numbers in the same group are represented by the same key, the number of keys
inserted and the number of bits set to 1 in the Bloom filter are reduced at the cost of false

positives caused by numbers in the same group. If some numbers of a group are inserted in a

Age0-4 h,(AgeO) 5:g BAgE0)  hiAe0) h4(Age0) h5(AgeO)

Age5-9 (AGeS) A hil Kged) VA AgeS) A hj(KgeS) " Hs(AgeS)
Agel0-14 [AAgel0) A Agel0) ) As(Agel0)  hAge10) | Ais(Agel0)
Agel5-19 A ge S ——hstAge S ——IstAge S —h{Age S hs(Agets)

Figure 2. An example of hashed array positions for a grouping Bloom filter.




Bloom filter, other numbers of the group would be determined as false positives by the
Bloom filter. The false positives caused by grouping successive numbers will be referred to
as grouping false positives.
2. Overlapping hashed positions of successive elements

Another solution for inserting a large range of numbers in a Bloom filter is to reduce the
number of array positions set to 1 by overlapping the hashed positions of successive numbers.
In a traditional Bloom filter, k independent hash functions hash each inserted element to k
array positions, and the positions are set to 1. In this overlapping scheme, each inserted
number also sets k array positions to 1, but only some, s (s < k), of the k positions are
determined by hashing the inserted number. The remaining (k-s) of the hashed positions are
determined by hashing the successive numbers, i.e., (k-s) of the k hashed positions of an
inserted number are the same as those of its successive number. Figure 3 depicts hashed
positions of an example overlapping Bloom filter, where k =5 and s = 2. The array positions
set by Age 0 are hi(Age0), ho(Age0), hi(Agel), ho(Agel), and hi(Age2). Only two array
positions are determined by Age 0; the other three array positions are determined by Age 1
and Age 2. By overlapping the inserted bits of successive numbers, the number of array
positions set to 1 by a numeric range is reduced. The cost of this approach is that numbers
adjacent to an inserted range have higher false positive rates, because their hashed array

positions overlap with those of the inserted numbers. This will be referred to as overlapping

Age0 | hi(Age0)  h(Age0) | hi(Agel) | hiAgel) | hi(Age2)
Agel | hiAgel) | hi(Agel) | hi(Age2) | hiAge2) | hi(Age3)
Age2 | hi(Age2) | hiAge2) | hi(Age3) | hiAge3) | hi(Aged)
Age3 | hi(Age3) | hx(Age3) | hi(Aged) | hiAged) | hi(Age5)

Figure 3. An example of hashed array positions for an overlapping Bloom filter.




false positives.
3. Grouping-overlapping Bloom filter

To further reduce the number of inserted bits in a Bloom filter, we combine both the
grouping and overlapping techniques. For grouping-overlapping technique, a numeric scope
is equally partitioned into several groups and each group consists of successive numbers.
Each group uses s independent hash functions to generate s array positions. When a number
of a specific group is inserted, in addition to the s hashed positions, (k-s) array positions
generated by the successive groups are set to 1. Figure 4 depicts the hashed positions of an
example grouping and overlapping Bloom filter. Five successive numbers (e.g., Ages 0-4)
form a group. Each group generates two hashed positions and use additional three hashed
positions of the successive groups. It is clear that a grouping-overlapping Bloom filter has

both grouping false positives and overlapping false positives as we have described.
I11. Analytic Models

In this section, we theoretically analyze our designed Bloom filters. Indeed, we first
estimate the number of array positions that are set to 1, and further derive the probabilities of
grouping/overlapping false positives.

Let R and n denote the scope size of a numeric attribute and the size of an inserted

numeric range, respectively. Assume that the size of a Bloom filter is m bits, and the number

Age 0-4
Age 5-9
Age 10-14

Age 15-19

Figure 4. An example of hashed array positions for a grouping-overlapping Bloom filter.
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of array positions set by each inserted key is k. The false positive rate of each approach can
be derived as follows.
1. Grouping Bloom filter

We first consider a grouping Bloom filter. Let d denote the size of a group, i.e., the
number of discrete numeric values per group. Let g(n,d,k) denote the expected number of
hashed positions generated by a numeric range of size n; note that the hashed array positions

may be duplicated. g(n,d,k) is derived through Eg. (3).

+ 1)k 3)

g«n¢ky:ﬁflﬁn+n/dwd:(ﬂ§1
i=0

After setting g(n,d,k) hashed positions to 1, the probability that a bit position in the Bloom

filter is still O can be expressed as follows.

1 - 7(%_1+1)k/m
Pq =(1—E)9(“’ K ~e (4)

The elements that may cause grouping false positives are those that are not in the
inserted range, but in the same group with the inserted keys. The expected number of those

elements can be expressed as in Eq. (5).

d-1
i+ (n+i)modd
5, rorimedd -y

- o =d- 5)

Let fy denote the false positive rate of a grouping Bloom filter; fy can be expressed as Eq. (6).
The first term to the right of the equal sign in Eq. (6) represents the probability of grouping
false positives, and the second term represents the probability of false positives that are not
caused by grouping.

_d-1 _R-n-(d-1

£
9 R-n R—n

(L- pg)" (6)

2. Overlapping Bloom filter
Let s denote the number of hashed positions generated by each inserted element. When

10



inserting a numeric range of size n, the number of hashed positions generated can be
expressed as follows,
o(n,s, k) =(n—Ds+k (7
After setting o(n,s,k) hashed positions to 1, the probability that a bit position in the Bloom
filter is still 0 can be expressed as follows,
po=(l‘§)qmdk)”é{“knykym ®)
The number of elements that may cause overlapping false positives at each end of the
inserted numeric range can be expressed as in Eq. (9).
r=[k/s]-1 9)
The false positive probability of an overlapping Bloom filter can be expressed as in Eq. (10).
The first term to the right of the equal sign in Eq. (10) represents the probability of
overlapping false positives, and the second term represents the probability of false positives
that are not caused by overlapping.

2 isr is R-n-=2r
f, = 1-pg)® +——
o= R El( Po) a

(1 po)* (10)

3. Grouping-overlapping Bloom filter

Let d denote the size of a group, and s denote the number of generated hashed positions
per group. Note that total number of hashed positions of each group is k, but (k-s) of which
are generated by successive groups. When inserting a numeric range of size n, the expected

number of hashed positions generated can be expressed as follows,
d-1 : n-1
go(n,d,s, k) =(X |_(n+|)/d—\/d—1)s+k=Ts+k (11)
i=0

After setting go(n,d,s,k) hashed positions to 1, the probability that a bit position in the Bloom

filter is still zero can be expressed as follows,

11



n-1
—(—=s+k)/m
(OI +k)

ng — (1_%)90(n,d,s,k) ~e (12)

The number of groups that may cause overlapping false positives at each end of the
inserted numeric range can be expressed as,
r=[k/s]-1. (13)
The false positive probability of an overlapping Bloom filter can be expressed as Eq. (14).
The first term to the right of the equal sign in Eq. (14) represents the probability of grouping
false positives, the second term the probability of overlapping false positives, and the last
term represents the probability of false positives that are caused by neither grouping nor
overlapping.

d -1 2d is
fo=d72, 4 sq_
9%~ R, + Th El( Pgo)” +

R-n-(d-1)-2rd
R-n

d- pgo)k (14)

IV. Near Optimal Configurations of the Proposed Bloom Filters

For grouping and overlapping Bloom filters, the optimal choices of k, d and s are the key
factors to minimize the false positive rates. First, we consider a simple situation where only a
single numeric range is inserted in a Bloom filter. Although this simple situation may seem
impractical, it can clearly demonstrate how the false positive rate of each scheme holds as the
range of the inserted numeric data increases. Followed, we will consider
the optimal configurations of a Bloom filter representing a multi-attribute data set with
numeric ranges.

1. The configuration for a single numeric range

To fairly compare the performance of different schemes, the optimal configuration, i.e.,
the best choice of k, d and s, for a given numeric range should be used. Note that the
grouping-overlapping Bloom filter is the most general of all schemes; other schemes are the
special cases of the grouping-overlapping Bloom filter. Indeed, the traditional Bloom filter is

12



a special case where d = 1 and s = k, the grouping Bloom filter d > 1 and s = k, and the
overlapping Bloom filter d = 1 and 1 < s < k. Since the grouping-overlapping Bloom filter is
the most general design, Therefore, we only describe an algorithm that optimizes the
configuration of a grouping-overlapping Bloom filter. The optimal configurations of other
schemes can be obtained in similar ways.

Given the scope size of a numeric attribute (R) and the size of the inserted range (n), we
need to find the optimum choice of (k, d, s) for a grouping-overlapping Bloom filter of size m
bits to minimize the false positive rate. From the experience of a traditional Bloom filter, we
conjecture that the optimal configuration sets approximately half of the array positions (i.e.,
m/2) by a total number of mIn2 hashed positions. Later experiments support this conjecture.

From Eqg. (11), we have

nTs+k:m><In2 (15)

When n is large, s/d (named s-to-d ratio) can be approximated as in (16).

min2
n

(16)

Ss

d
Note that s-to-d ratio represents the approximated number of hashed positions for each
inserted element. From our initial experiments, we observed that the optimal choice of (d, s)
is in the form of either (1, s) or (d, 1). For example, (2, 7) performs poorer than (1, 3) or (1, 4).
The reason is grouping produces more false positives than overlapping. This will become

clear later when we compare the numeric results of all schemes. Therefore, the initial setting

of (d, s) is determined as in (17).

S . S
(2, round(—)), if —>07
d d (17)

(d.5)= d
(round(—),1),  otherwise
S

Given (d, s), the optimal k that minimizes the false positive rate can be easily obtained

13



because the false positive rate appears to be a concave function of k. On the other hand,
arranging the possible choices of (d, s) pair in a sequence with an increasing order of s/d, we
obtain a sequence as follows, (..., (3, 1), (2, 1), (1, 1), (1,2), (1,3), ...). Note that the number
of hashed positions of an inserted range increases as s/d increases. Our experiments show that
the false positive rate also appears to be a concave function with respect to this sequence.
Therefore, the optimal choice of (d, s) can be obtained by finding the minimum point. The
proposed algorithm to derive the optimal choice of k, d and s is listed in Figure 5. First we
obtain the initial (d, s) using Eq. (17), and then starting from the initial (d, s), we obtain the
optimal choice of (d, s) using the conjecture that the false positive rate is a concave function
w.r.t. the (d, s) sequence described above. In addition, for each considered (d, s) pair, the
optimal k value can be obtained by using the conjecture that the false positive rate is a
concave function of k.

Note that the algorithm uses a two-level nested loop to search the optimal choice of (k, d,
s). The outer loop searches the optimal choice of (d, s), and the inner loop searches the
optimal k. These two loops are not exchangeable, because the false positive rate is not a
concave function of k when the optimal choice of (d, s) is used for each k. The exact reason is
unclear to us, but counter examples were found in our experiments.

2. Optimal configuration for a data set with numeric ranges

Procedure Optimal (4, d, s) configuration for a single numeric range

1. s/d=mxIn2/n;

2. if (s/d)=0.7, then (d, s)=(1, round(s/d));

3. else (d, s)=(round(s/d), 1);

4. For the initial (d, s), obtain the optimal choice of k£ by finding the minimum point of false positive rate w.r.t. &,
5. and store the optimal false positive rate.

6. On the list of (d, s) pairs (---, (2,1), (1,1), (1,2), (1,3),---), starting from the initial (d, s), find the optimal choice
7 of (d, s) that minimize the false positive rate.

8. //Note that for each (d, s) under consideration, its optimal choice of & can be obtained by finding the minimum
9 point of false positive rate w.r.t. £.

10. Return the optimal choice of (%, d, s) and the obtained minimum false positive rate.

Figure 5. Searching the optimal (k, d, s) configuration for a single numeric range.
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Given a set of attributes, the domain size and the inserted range of each attribute, we
need to find the optimal configurations to represent attributes so that the total false positive
rate, which is defined as the summation of per attribute’s false positive rate, is minimized. Let
{A1, Az, ..., An} denote the attribute set, R; and n; are the domain size and the inserted range
size of attribute A;, respectively. Note that when A; is of atomic data type, n; = 1. We assume
that for all attributes, the number of hashed positions (i.e., k) of each key is the same. We
develop an algorithm to derive the local-optimal parameter configurations, and this algorithm
consists of two phases. Phase 1 determines the initial k value by utilizing the marginal utility
theory of Economics, and Phase 2 minimizes the total false positive rate of all attributes
through gradient descent search. Both phases are described in detail in the following.

A. Phase 1: determining the initial values of (k, d;, s;) through marginal utility theory

To represent a set of attributes of different scope sizes and different range sizes, we need
to carefully allocate array positions to each attribute. From the marginal utility analysis of
Economics, we know that utility is maximized when the consumer's budget is so allocated
that the marginal utility to price ratio is equal for each good. This marginal utility theory can
be applied to obtain the initial choices of d; (the group size) and s; (the number of hashed
positions generated by each key) of each A;. For a Bloom filter, the utility of each attribute
can be represented by its false positive rate; the price is the number of hashed positions
allocated for the attribute. The total budget is assumed to be miIn2, i.e., half of the array
positions are expected to be set, and thus p =1/2. Since the false positive rate indicates the
utility, the lower the better.

For an attribute of atomic data type (i.e., text string or integer), the false positive rate,
denoted as f, can be expressed as follows.

f=01-p)f (1)(18)

To reduce the false positive rate, an extra array position can be allocated by increasing the

15



number of hashed positions (k) by 1. Assuming p is close to 1/2, the reduced false positive

rate, denoted as f’, can be approximated as in (19)
fro (o )l % f (18)

The marginal utility to price ratio can be approximated as

f—f
k+1-k

ol ko ik
~ 2(1 p)" = (2) (19)

In the following approximations for the false positive rate of a numeric range, we
assume that n; is small with respect to R; (i.e., nj << R;) and p is close to 1/2.

(a) Case 1: considering attribute A; whose sj=1and d; > 1

Such an attribute will be referred to as a grouping-overlapping attribute because both
grouping and overlapping techniques are used. The false positive rate in (14) can be

approximated by

L . r ; s—n: —(d: —=1) — .
Ri—ni Ri—nj Ri —n; (20)
~ 3di —1+ Rj —n; —(di —1)—2rdi (1- p)k
Ri Ri —N;

From (11), the number of hashed positions generated by this attribute can be expressed as

by ="k (21)
1

To reduce the false positive rate, extra array positions can be allocated by increasing d; by 1.
Thus the reduced false positive rate, f , can be approximated as follows.

3di +2+ Ri =0 —di —2I’(di +1) (1-p

k
Ri Ri —h; ) (22)

f'~

The increased number of hashed positions allocated, b;', can be expressed as follows.

ni-1

N k 23
i di—1+ (23)

The marginal utility to price ratio can be approximated as follows.
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—f 3dj -1
= 24
= (24)

f -
bi—=bi  Rn
In an optimally-configured Bloom filter, the marginal utility to price ratios for all

attributes should be the same. From (20) and (25), we have

(l)k-i-l ~ 3d| -l
2 Rini

R:N: N
d; zw/'T”'(%)k 1 (26)

Eqg. (27) indicates that the group size of a grouping-overlapping attribute, d;, can be

(25)

From (26), we can obtain

determined by the chosen k.
(b) Case 2: considering attribute A; whose di=1 and s;j> 1
Such an attribute will be referred to as an overlapping attribute because of using

overlapping technique. The false positive rate in (10) can be approximated by

r : . N —
f __ 2 Y (1-p)si +M(1_ )
Ri —nj j=1 R —n;
2 % R 2 0
L2 RiTmo2r,

R, R —n;
From (7), the number of hashed positions generated by this attribute can be expressed as
follows.

bj =(nj —1)sj +k (28)
Extra array positions can be allocated to this attribute by increasing s; by 1. The reduced false

positive rate, f , can be approximated as follows.

Si+l L _
- 2(1-p) N Ri—n—2r (- p)k (29)
Ri Ri —ni

f 1

The increased number of hashed positions allocated can be expressed as follows.
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bj'=(n —D(sj +1)+k (30)

The marginal utility to price ratio can be expressed as follows.

1 S
= .. a-p)r (31)
bi '—bi Rini

For an optimally-configured Bloom filter, all attributes have the same marginal utility to price

ratio. Thus from (20) and (32), we have

S.

Ly (3)°
o ~ 32
(2) R (32)

From (33), we further obtain
In(Rjn;)

s~ k+1-—L1 33
i + @2 (33)

Eqg. (34) indicates that for an overlapping attribute, the number of hashed positions
generated by each inserted key, s;, can also be determined by the chosen k.

Note that no grouping attribute is considered, because grouping causes more false
positive. Given k, we can determine whether attribute A; is a grouping-overlapping or

overlapping attribute from Egs. (27) and (34). d; and s; can be obtained as follows.

d; = max(l, round (, /%(%)"”)) (34)

In(Rin;)

In2) ) (35)

sj =max(1, round(k +1-

If di =1, it is an overlapping attribute; otherwise, it is a grouping-overlapping attribute.
The algorithm that determines the initial k (denoted as kin;) is shown in Figure 6. The initial k,
Kini, 1S chosen so that less than half of the array positions set to 1 with ki,; -1 hashed positions
for each key, and more than half of the array positions set with ki,; hashed positions for each
key.

B. Phase 2: minimizing the total false positive rate by gradient descent
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In Phase 1, we obtain ki,;, di and s; such that approximately half of the array positions
will be set and the marginal utility to price ratio is about the same for all attributes. However,
to minimize the total false rate of all attributes, we still need to determine the optimal choice
of k, di and s;. Let fr denote the total false positive rate. For a given k, fr may be further
reduced by increasing or decreasing the number of hashed bits of the attributes. For each
attribute, we consider the effects of increasing and decreasing its allocated hashed positions

on fr. Using gradient descent search, the hashed position re-allocation of the attribute that has

Procedure Initial value determination (m, R;, n;, k)
1. k=0; p=0.5;

2. do

3. { increase k by 1;
4. b=0;

5.  for all attribute A4;
6 { obtain d,, s;and b; from Egs. (35, 36, 22, 29);
7 b=b+b;;}

8. }while (b < mIn2)

9. return (k);

Figure 6. Phase 1 determines the initial k value.

Procedure Minimizing the total false positive rate (m, R;, n;, ki, d;, ;)

1. fo= the number of attributes ; //assume that f of all attributes =1

2. for (k= kj,-4; k<= k;, +3:kt+)

3.

4.  Given k, obtain (d,, s;) of all attributes using Egs. (35, 36) ;

5. Compute b, the total hashed positions of all attributes ;

6.  Compute p, the probability that an array position is setto 1 ;

7. Compute f7, the total false positive rate of all attributes ;

8. Do until f7 cannot be reduced

9. {

10. For all non-atomic attributes

11. check if f7 can be reduced by increasing or decreasing hashed positions ;
12. Select the re-allocation that improves fr the most per bit change ;
13. Re-compute b, p, and f7;

14. }

15, Iffr<fop

16. {opt=J1 5 kopt = k ; store (d}, s;) of all attributes; }

17. }

Figure 7. Phase 2 minimizes the total false positive rate.
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the largest improvement per bit change on fr is chosen. Note that the improvement of fr per
bit change used in Phase 2 is similar to the marginal utility to price ratio used in Phase 1.
However, the utility function used in Phase 2 is the total false positive rate; by contrast, that
of Phase 1 is the false positive rate of the attribute under consideration. In addition, the value
of p (the probability that an array position is set) is acutely computed in Phase 2, while it is
assumed to be 1/2 in Phase 1. Since we cannot be sure of the optimal choice of k, given ki
obtained in Phase 1, the gradient search for the optimal choice of d; and s; is performed for all

k’s where kini -4 < k < kini +3. The detailed Phase 2 algorithm is shown in Figure 7.

V. Simulation and Analytic Results

To validate the analytic model presented in Section 1l and to evaluate the performance
of the configuration algorithms presented in Section IV, we developed a simulation program
that computes the expected false positive rate when a single numeric range is inserted in a
grouping and/or overlapping Bloom filter. The inputs of the simulation program include the
attribute name, the scope of the attribute and the size of the inserted range. The program
literally computes the average false positive rate for all the possible inserted ranges of a given
size. For example, given attribute Age with scope [0..120] and an inserted range of size 10,
the program can compute the average false positive rate for all possible inserted ranges in
{[0..9], [1..10], [2..11], ..., [111..120]}. However, the analytic models presented in Section IlI
assume that overlapping false positives exit on both ends of each inserted range. Therefore,
our simulation program ignores the inserted ranges that do not allow all possible overlapping
false positives on either end. For an example attribute, Age, if (k, d, s) = (8, 10, 2), the
program ignores inserted ranges {[0..9], [1..10], [2..11], [109..118], [110..119],[111..120]},
and only considers {[3..12], [4..13], [5..14], ..., [108..117]}, so that on each end of the
inserted ranges considered, there are exactly 3 numbers (i.e., ]_k/s—\—l shown in Eqg. (13))

that may cause overlapping false positives. For any given inserted range, the simulation
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program first generates the Bloom filter, checks each number outside the inserted range to
determine whether it is a false positive or not, and then calculates the average false positive
rate.

The simulation program uses SHA-512("“attribute_name:attribute_value”) to generate
the hashed array positions for each key to be inserted. The 512-bit digest of SHA-512 is
partitioned into 32 16-bit words. When s hashed array positions are needed, the first s words
are used; each word modulo 512 (m) generates an array position.

Figure 8 depicts the false positive rates of a grouping-overlapping Bloom filter as the
inserted range increases from 4 to 60, the scope is [0,..,120] and k is 10. The same optimal
choice of (d, s) is used for each inserted range. The analytic model does not consider the
attribute name. The simulation results are obtained through using attribute name Age, while
the simulation average results are obtained from averaging the false positive rates of 1000
random attribute names. The analytic and simulation results for attribute Age are consistent
for most inserted ranges, but there exists significant discrepancy when the inserted range size

is near 52. The reason is the analytic models assume that the adopted hash functions are

0.001 I I | T I
Analytic results ———
Simulation results == —-
Simulation average results = = =
0.0008

0.0006

0.0004

0.0002

0 10 20 30 40 50 60
Inserted Range Size (n)
Figure 8. The analytic and simulation results.
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perfectly random. However, this may not be true for a specific attribute name, “Age” in this
example, which leads to a smaller false positive rate. On the other hand, the analytic and
average simulation results are consistent for all sizes of inserted ranges. This verifies the
correctness of our analytic model, and indicates our analytic model produces the average
false positive rates. To represent the average case and to speed up the comparison, for the

experiments hereafter, we will only use the analytic model.

1. Scenario 1: a single numeric range

For all experiments on representing a single numeric range hereafter, the scope size of
the attribute R is 10000, and the size of Bloom filter is 512 bits (i.e., m = 512). Figure 9 plots
the false positive rates of four schemes when a single numeric range is inserted and the size
of the inserted numeric range increases from 10 to 1200. The optimal choice of (k, d, s) is
used for each inserted range under each Bloom filter scheme. The results indicate that for a
given inserted range, the traditional Bloom filter has the largest false positive rate. The false
positive rates of both the traditional and the grouping Bloom filters increase rapidly when the

size of the inserted range (n) is larger than 20. When n = 22, the grouping Bloom filter starts
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1 -
1 o
2005 (' traditional BF -
! o grouping BF ===——-
! R overlapping BF =-=----
ol grouping-overlapping BF ---=----:
0 == 1 ] ] ] ]
0 200 400 600 800 1000 1200

Inserted Range Size (n)

Figure 9.  The impact of the inserted range size on false positive rate.
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grouping the inserted range. Although the grouping Bloom filter provides significant
improvements over the traditional one, it still performs much worse than both schemes
adopting overlapping technique. When n is less than 510, the overlapping and the
grouping-overlapping Bloom filters are the same, i.e., only overlapping is used. However,
when n is larger than 510, both overlapping and grouping need to be used, and the
grouping-overlapping Bloom filter provides the smallest false positive rate among four
schemes. The results indicate that overlapping technique is useful for all sizes of inserted
ranges, and grouping is only applicable when the size of the inserted range is very large. The
results also explain why a grouping-overlapping Bloom filter with (d, s) = (2, 7) has a higher
false positive rate than one with (d, s) = (1, 3) or (1, 4).

Let a; denote the expected number of array positions that are set to 1. a; can be derived

as follows.
ag =m(L-(@-2)M), (36)
m

where h is the number of hashed positions generated by an inserted range for a Bloom filter.

500 - | | | | | —

400

300

a;

200

100 = traditional BF -
grouping BF ===~-—-
overlapping BF ==----
grouping-overlapping BF xexsxee
0 | ] ] ]
0 200 400 600 800 1000 1200

Inserted Range Size (n)
Figure 10. The expected number of array positions that are set to 1 for all schemes.
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Figure 10 plots a; of each Bloom filter scheme, upon varying inserted range size from 1 to
1200, and R being 10000. We expect that about half (i.e., 256) of the array positions are set to
1. The grouping Bloom filter has the slightest variations in a;, as n increases. On the other
hand, the others have large variations. It is interesting that a; of those schemes are of zigzag
curves. Each drop of the a; curves indicates a decrement of k for the traditional Bloom filter,
and a decrement of s for both the overlapping and the grouping-overlapping Bloom filters for
n < 250. When n > 250, k =1 for the traditional Bloom filter, and thus k cannot be decreased
further. In addition, s =1 for the overlapping Bloom filter, and cannot be reduced further. As a
result, after that, a; of both schemes increases steadily as n increases. On the other hand, the
grouping-overlapping Bloom filter starts grouping by increasing d by 1 when n=511 and 897.
As a result, a; is kept close to m/2 (256). The results are consistent with the results in Figure
9; the false positive rate of the grouping-overlapping schemes increases slower than that of

the overlapping scheme as n increases.
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Figure 11. The optimal values of k and s for all schemes.

Figure 11 plots the values of k and s of all schemes and Figure 12 plots the values of d

for the grouping and grouping-overlapping schemes upon varying n value from 5 to 1200.
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The results show that k of the traditional Bloom filter and s of the overlapping and
grouping-overlapping Bloom filter drop rapidly and almost at the same pace, as n increases.
This implies that the three schemes set about the same number of array positions; this is
consistent with the results of Figure 10. In addition, we observe that the overlapping and the
grouping-overlapping Bloom filters are the same when n < 510. Moreover, when n > 510, k
of the overlapping Bloom filter keeps increasing, while k of the grouping-overlapping Bloom
filter makes a steep dive (shown in Figure 11) and the corresponding d value of the
grouping-overlapping Bloom filter increases by 1 at the same time (as shown in Figure 12).
On the other hand, the k values of the grouping scheme fluctuate substantially when n is
small, and then becomes stable as n increases. For all sizes of inserted range, the k value of
grouping scheme is less than that of the overlapping and grouping-overlapping schemes. The
results in Figure 12 indicate that d of the grouping and grouping-overlapping schemes are
both staircase functions. However, d of the grouping scheme increases at a much faster pace
than that of the grouping-overlapping scheme. When n = 1200, the d value of the
grouping-overlapping scheme is only 2, while that of the grouping scheme is 50. This
indicates that the grouping false positives are much more common in a grouping Bloom filter.
We further investigate the performance of false positive rate upon fixed k value. This
constraint is practical because the size of the inserted range is usually not fixed. By using a
constant k, we set the desired false positive rate below (1/2)* when less than half of the array
positions are set to 1. Figure 13 plots the false positive rates of each scheme as the inserted
range increases, and Kk is fixed at 10. In other words, the desired false positive rate is below
(1/2)*°~0.001. The optimal choices of d and s are used for each inserted range under each
Bloom filter scheme. The results indicate that a traditional Bloom filter cannot satisfy the
desired false positive rate when the size of a stored numeric range is larger than 60. In

contrast, meeting the requirement of the false positive rate, the grouping Bloom filter can
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store a numeric range of size up to 240, the overlapping Bloom filter up to 340, and the
grouping-overlapping Bloom filter up to 1000. Note that although the false positive rate of an
overlapping Bloom filter is very low when n is less than 240, it increases more rapidly than
that of a grouping Bloom filter afterwards. When n is larger than 360, its false positive rate
surpasses that of the grouping Bloom filer. In summary, as the size of the inserted range
increases, we suggest utilizing only overlapping technique first, and then both overlapping

and grouping techniques.
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Figure 12 The optimal values of d for the grouping and
grouping-overlapping schemes.
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Figure 13. The false positive rates of all scheme when k is fixed (=10).

2. Representing a data set with numeric ranges

To evaluate the performance of a grouping-overlapping Bloom filter for multiple
attribute range queries, we consider an example attribute set listed in Table 1. There are five
attributes of atomic data type (text string) and five attributes of numeric range. The attribute

names, scope sizes, and inserted range sizes are also listed in Table 1. Given the attributes,
= 15. Through the Phase 2

the Phase 1 configuration algorithm obtains the initial k value, Ky

algorithm, the optimal configurations and minimal false positive rates for all k’s, where kin; -4
< k < kinj +3, are obtained. Table 2 summarizes the expected numbers of array positions set to
1 (i.e., a1), and the total false positive rates (fy) for various k's. The results indicate a;
increases as k increases, and about half of the array positions are set when k = Kiyi-1. In
addition, fr appears to be a concave function of k, and the optimal k is the ki,; obtained in

Phase 1. The difference in fr for all k’s is insignificant. This implies the optimal choice of k

may not be as important as the optimal choice of (d, s) for each attribute.
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Table 1. The attributes used in multi-attribute experiments.

Attribute Name Data Type and Scope Size of inserted range
First Name Text string —
Last Name Text string —
University Text string —

Hobby Text string —
\ocation Text string —
Age Integer [1,..,120] 10
Year Integer [1900,..,2100] 20
Income Integer [0,..,5000] 500
Longitude Integer [-1800000,..,1800000] 100
Latitude Integer [-900000,..,900000] 100

Table 2. The expected number of array positions set to 1, and the total false positive rates.

k=11 k=12 k=13 k=14 k=15 k=16 k=17 k=17

(ini-4) (kini-3) (Kini-2) (Kini-1) (Kini) (Kini+1) (kini+2) (ini+3)
a1 214 232 237 261 270 275 280 284
fr | 5.818E-3 | 5.652E-3 | 5.602E-3 | 5.549E-3 | 5.496E-3 | 5.503E-3 | 5.589E-3 | 5.727E-3

Table 3 displays the detailed configurations of the grouping-overlapping Bloom filter
and the false positive rate of each attribute. The results indicate that the false positive rates of
atomic data type decrease as k increases. On the other hand, the false positive rates of
numeric ranges are in the form of irregular patterns. They may not be a concave function of k;
attribute Age is such an example. The configurations to minimize the false positive rates
per-attribute basis and all-attributes basis are not exactly the same. For example, the
minimum total false positive rate occurs at k = 15, while the minimum false positive rate of
attribute Longitude at k=16. Note that the number of array positions allocated for each
attribute (b;) increases as k increases. In addition, attributes with larger false positive rates
have more array positions. For example, among all attributes, Income accounts for 62%
(3.4/5.496~0.619) of the total false positive rate and obtains the largest number of array

positions. The results show that the grouping-overlapping Bloom filter provides very low
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false positive rates for all attributes and this is not attainable for the traditional Bloom filter.

Table 3. The detailed configurations and false positive rates of all attributes.

Attribute k=13 k=14 k=15 k=16
Name (Kini-2) (kini-1) (Kini) (kinit1
d, S bi fi d, S bi fi d, S bi fi d, S bi fi

First Name - 13 4.5E-5 - 14 | 7.8E-5 - 15 | 6.7E-5 - 16 4.7E-5
Last Name - 13 4.5E-5 - 14 | 7.8E-5 - 15 | 6.7E-5 - 16 4.7E-5
University - 13 4.5E-5 - 14 | 7.8E-5 - 15 | 6.7E-5 - 16 | 4.7E-5
Hobby - 13 4.5E-5 - 14 | 7.8E-5 - 15 | 6.7E-5 - 16 | 4.7E-5
\Vocation - 13 4.5E-5 - 14 | 7.8E-5 - 15 | 6.7E-5 - 16 | 4.7E-5
Age 15 | 58 44E-4| 15 59 | 72E4 | 1,6 69 | 46E-4 | 1,6 70 | 4.9E-4
Year 13 | 70 13E-3| 14 90 | 8.7E4 | 14 91 | 99E4 | 14 92 1.0E-3
Income 6,1 | 96 35E-3| 51 | 114 | 33E-3| 51 | 115 | 34E-3| 51 116 | 3.5E-3
Longitude | 70,1 | 14 9.8E-5| 70,1 | 15 | 1.4E-4 | 651 | 17 | 1.3E-4 | 61,1 18 | 1.0E-4
Latitude 49,1 | 15 1.2E-4| 50,1 | 16 | 1.6E-4 | 46,1 | 17 | 1.5E-4 | 43,1 18 | 1.3E-4

We expect that when k=Kki;, more than half of the array positions are set to 1, and when
k=Kkini-1, less than half. Therefore, we speculated that both cases are likely to be the optimal
choice of k. To verify our speculation, we randomly generate 1000 attribute sets; each set
contains 10 numeric range attributes. The scopes of the attributes are uniformly distributed in
[100, .., 1000000], and the inserted range sizes are uniformly distributed in [0.001, 01]xR;
(the corresponding scope size). The distribution of the optimal k values is shown in Table 4.
For 781 out of 1000 samples, kini is the optimal choice of k, and kini-1 is the optimal choice for
another 216 samples. Only three samples’ optimal k choices are not ki or Kini-1. The results
suggest that ki,; is a very good initial choice, and the optimal configuration tends to set more
than half of the array positions to 1. Table 5 is the distribution of a;, the expected number of
array positions that are set to 1 by the optimal configurations. The results indicate that
slightly more than half of the array positions are set to 1 for the optimally configured

grouping-overlapping Bloom filter.
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Table 4.  The distribution of the optimal k.

The optimal k Kini-3 Kini-2 Kini-1 Kini Kini+1 Kini+2
Occurrences 0 1 216 781 2 0

Table 5 The distribution of the expected number of array positions set to 1.

<254 |[255,..,259] | [260,..,264] | [265,..,269] | [270...,274] | [275,..,279] |> 280
Occurrences 2 1 77 502 361 56 1

V1. Conclusions

Traditional Bloom filter is space-inefficient to represent data sets that contain large
ranges of numeric data. In this report, we presented grouping and overlapping Bloom filter
schemes for representing a data set with numeric ranges. In addition, we have developed
algorithms based on the marginal utility theory and gradient descent to obtain the optimal
configurations of the modified Bloom filter schemes. Numeric analysis and computer
simulations have been conducted to show the effectiveness of our schemes and configuration
algorithms. Our experiments showed that the overlapping technique can be used for all sizes
of numeric ranges, while the grouping technique should only be applied for large numeric
ranges. The numeric results also showed that the grouping-overlapping Bloom filter provides
very low false positive rates for multi-attribute range queries, which are not attainable for the
traditional Bloom filter. Moreover, the optimally-configured grouping-overlapping Bloom
filter set slightly more than half of the array positions.

In this report, we assume the number of hashed positions, k, of an inserted key of each
attribute is the same. It is possible that different k for different attributes may result in a lower
overall false positive rate. In addition, the conjectures we made in searching the optimal
choice of (k, d, s) for a numeric range may need a formal proof. The optimal configuration of
a grouping-overlapping Bloom filter for a data set with numeric ranges obtained from our

algorithm may not be the optimum configuration, but only a local optimum.
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