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中文摘要 

現今的通訊系統，包含電信系統、即時通訊、電子郵件、和網路電話等，都利用

明確的使用者識別碼來指定使用者。如不知道接收端的識別碼即不能通訊。本計畫第一

年開發一多功能通訊平台（MFPGC）能利用指定接收端的各項屬性，例如姓名、年紀，

學校等，建立通訊連線。MFPGC 架構在 Chord 之上，使用布隆過濾器(Bloom filter)來

儲存多屬性的資料，包含字串，數值和混合型態的屬性。透過屬性發佈和搜尋的機制，

媒合發話端和受話端。本計畫第二年我們針對 MFPGC 中布隆過濾器，提出創新的設

計，使其能有效率的表示數值範圍的屬性，例如指定接收端需位於東經

121.1000°-121.1999°，北緯 25.0000°-25.0999°。傳統的布隆過濾器無法表示如此大的數

值範圍。我們針對數值範圍內的元素，加以群組化，或/且重疊化。群組化的方式減少

加入布隆過濾器的元素，而重疊化的方式減少布隆過濾器中設定為 1 的位元數。為了降

低所有屬性之總體錯誤肯定率（false positive rate），我們開發了一兩階段的程式尋找群

組與重疊化布隆過濾器的最佳參數設定。第一階段利用經濟學的邊際效益理論取得初步

參數設定；第二階段利用梯度下降(gradient descent)演算法求得更好的參數設定。我們

使用數值分析的方法驗證群組與重疊化布隆過濾器，以及參數最佳化程式的效益。我們

的實驗結果顯示對較小範圍的數值，應只採用重疊化技巧；當數值範圍大過臨界點時，

則應採用群組化和重疊化兩種技巧。而且，群組與重疊化布隆過濾器確實能表示大範圍

的數值，並提供很低的錯誤肯定率，這是傳統的布隆過濾器所無法做到的。 

關鍵字：網路通訊，多屬性查詢，數值範圍查詢，布隆過濾器 
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Abstract 

Communication services today, such as telephony, instant message, email, and VoIP, use 

a specific user or device ID to specify the called party. If the callee’s ID is unknown, 

communication becomes impossible. Another way to indicate the callee(s) is to specify the 

callee’s attributes, such as the callee’s name, age, etc. A set of user attributes, which is 

meaningful and easy to remember, can be used to set up a communication. Developed in the 

first year of this project, a Multi-Function Personal/Group Communication (MFPGC) system 

supports communications using specific IDs and/or multiple under-specified attributes. 

Communications using multiple user attributes is feasible through publishing and querying 

users’ attributes on a DHT. The DHT of MFPGC system is based on Chord, and Bloom filter 

is used to represent user attributes, which can be string, numeric, and hybrid data. In the 

second year of this project, we designed a new Bloom filter that can represent large ranges of 

numeric data in a space-efficient way. The techniques we used are grouping and/or 

overlapping the elements of the inserted numeric ranges. The design also supports data/range 

queries of multiple attributes. The grouping scheme reduces the number of keys inserted into 

a Bloom filter, while the overlapping scheme reduces the number of bits set to one in a 

Bloom filter. In addition, these two schemes can be combined to provide both benefits. To 

minimize the total false positive rate of all attributes, we have developed a two-phase 

algorithm using the marginal utility theory and gradient descent to optimize parameter 

configurations of a combined grouping and overlapping Bloom filter. Numeric analysis has 

also been conducted to demonstrate the effectiveness of our modified Bloom filter and the 

proposed configuration algorithm. The numeric results show that as the size of an inserted 

numeric range increases, overlapping scheme should be used first, and then both overlapping 

and grouping need to be used. The combined grouping and overlapping Bloom filter 

significantly reduces the false positive rates of data sets with large ranges of numeric data. 

 

Keywords: Bloom filter, numeric range query, multiple-attribute query 
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I. Introduction 

Bloom filter was invented by B. H. Bloom to represent a data set and support 

membership queries [1]. It is a space-efficient randomized data structure with a probability of 

false positives. In other words, elements that are not in the data set may be falsely determined 

to be in. In recent years, Bloom filter has been used in various network applications where the 

saving of space and/or transmission bandwidth is important [2]. Squid, a distributed web 

cache system, uses Bloom filter to represent the summary of files cached [3]. OceanStore, a 

distributed file storage, uses a modified Bloom filter to indicate the files stored in the 

neighbors of each node [4]. Bloom filter was used to send the intermediate results of a 

multi-keyword search to save transmission bandwidth required [5]. Bloom filter has also been 

used in packet routing [6-8] and traffic measurement [9]. 

Bloom filter has a number of extensions. One major limitation of Bloom filter is that 

deleting an element from a traditional Bloom filter may not be possible because of the way it 

is constructed. Counting Bloom filter was designed to solve this problem [10]. Each entry in 

a counting Bloom filter is exactly a counter. Inserting an element is to hash the element and 

increment the corresponding counters. On the other hand, deleting an element is to hash and 

decrement the corresponding counters. To be more space-efficient, Mitzenmacher presented 

compressed Bloom filter that has the same false positive rate as a traditional Bloom filter but 

with fewer bits [11]. A larger and sparser Bloom filter was first constructed, and then 

compressed. Guo et al. presented multi-dimension dynamic bloom filters (MDDBF) that 

dynamically adjust the number of Bloom filters used to represent a data set according to the 

size of the data set [12]. 

However, Bloom filter has not been used to represent a large range of numeric data 

because of space inefficiency. The proper size of a Bloom filter can be determined by a 

desired false positive rate and the number of inserted elements. Given a false positive rate f, a 
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Bloom filter needs 1.44×log2(1/f) bits of space per inserted element [2]. As a result, a Bloom 

filter is space-inefficient in representing a large range of numeric data in a straightforward 

manner. For example, a square area of Latitude 25.0000°-25.0999° and Longitude 

121.1000°-121.1999° represents approximately 1 km by 1 km square area. To be accurate to 

the four decimal places, the area can be represented by two integer intervals [250000, ..., 

250999] and [1211000, …, 1211999]; each range consists of 1000 integers. Note that the 

precession of this representation is about 10 meters. This data type is valuable in supporting 

location-based communications, for example, broadcasting messages to users in this area. 

However, to obtain a false positive rate of 0.001, a traditional Bloom filter needs 

approximately 48K bits, while the size of a typical Bloom filter is less than 1K bits. It is 

obvious that a traditional Bloom filter is unsuitable for representing large ranges of numeric 

data. A new space-efficient design is essential to apply a Bloom filter to versatile 

applications. 

The objective of this project is to develop a new Bloom filter to represent multiple data 

attributes, which may include large ranges of numeric data. The new design should be 

space-efficient to provide a small probability of false positives for membership queries, as a 

traditional Bloom filter does for data sets of atomic data types. Our new Bloom filter design 

can be easily applied to various applications. In particular, it can be used in multiple attribute 

range queries [13, 14] where the use of Bloom filter has never been considered. 

The remainder of the report is organized as follows. Section II describes our new Bloom 

filter designs for representing numeric ranges. Analytic models to obtain the false positive 

rates of the new designs are presented in Section III. Section IV describes a two-phase 

optimization algorithm using marginal utility theory and gradient descent to obtain a near 

optimal configuration of the modified Bloom filter. Section V discusses the simulation and 

analytic results, while Section VI concludes the report. 
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II. Bloom Filter Design for Numeric Ranges 

A traditional Bloom filter is an array of m bits representing a data set of n elements {x1, 

x2, …, xn}. Let S denote a data set. All bits of the Bloom filter are 0 initially. k independent 

hash functions h1, h2, …, hk, with range {1, …,m}, are used to hash each element x in S to k 

array positions h1(x), h2(x), …, hk(x), and the bits at the hashed array positions are set to 1. To 

check membership of y in S, we verify if all bits hi(y), i=1, 2, .., k, are set to 1. If at least one 

bit is 0, we are sure that y is not in S; otherwise, y is assumed to be in S, with a probability of 

being wrong. The situation of being wrong is so called false positive. Figure 1 depicts an 

example of Bloom filter representing {x1, x2}. From the Bloom filter, we can determine that 

y1 is not in the set because not all the hashed array positions are set to 1. On the other hand, 

although y2 is not in the set, the Bloom filter cannot distinguish this because all the hashed 

array positions are all set to 1. Thus y2 is a false positive. 

Assume that the hash functions are perfectly random, the probability of a false positive 

for an element is not in S (i.e., the false positive rate) can be derived as follows. Given m, n, 

and k of a Bloom filter, the probability that an array position is not set to 1 after n elements 

are hashed into the Bloom filter can be approximated as 

0

x1 x2

y1 y2

0 1 0 0 1 1 0 0 0 0 1 0 0 1 0

 

Figure 1. An illustrative example of Bloom filter operation. 
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Let f denote the false positive rate. An element that is not in the set would be determined as a 

false positive if all its k hashed array positions are set to 1. Thus f can be expressed as 

follows. 

                )1()1( / kmnkk e-pf −−≈=           (2) 

The false positive rate is minimized when k = (m/n)ln2 and p = 1/2, i.e., when half of the 

array positions are set to 1 [2]. 

In this project, we intend to use a Bloom filter for multi-attribute data/range queries. A 

data set, S, contains multiple data attributes. Each attribute is specified by an attribute name 

and an attribute value. The attribute values can be atomic or numeric ranges. An atomic data 

value can be a text string or an integer. Floating point numbers can be represented by integers 

with a desired degree of accuracy. For example, Latitude 23.2621448° can be represented by 

232621 with accuracy to the four decimal places, i.e, 10 meters. In addition, the attribute 

value can be a numeric range, for example, Latitude 23.0000°-23.999°. Hashing an attribute 

into a Bloom filter is to hash the text string concatenating the attribute name and the attribute 

value. For example, inserting Latitude 23.0000° is to set array positions hi ("Latitude:230000") 

to 1. For multiple-attribute queries, we are interested in checking if a data set S1 is a subset of 

another set S2. Let BF(S) denote the Bloom filter representing data set S. It is clear that if all 

array positions that are set to 1 in BF(S1) are also set in BF(S2), we can assume S1 is a subset 

of S2 with a possibility of being wrong. 

We will describe three approaches to modify a traditional Bloom filter for multi-attribute 

queries. We focus on how a numeric range is represented by the modified Bloom filter; 

attributes of atomic data type are treated in the same way as the traditional Bloom filter. The 

techniques we used are grouping successive elements (i.e., successive numbers of a numeric 
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range) and overlapping hashed positions of successive elements. 

1. Grouping successive elements 

The problem of representing a large range of numeric data by a traditional Bloom filter 

is simply that there may be too many elements inserted. When a large number of elements are 

inserted into a Bloom filter and most of the bits in the Bloom filter are set to 1, false positives 

increase, and thus the Bloom filter becomes useless. A straightforward solution for the 

problem is to reduce the number of elements inserted. This can be done by equally dividing 

the numeric scope into groups; each group consists of a fixed number of successive numbers 

(elements). The numbers in the same group are represented by the same inserted key, i.e. their 

hashed positions in a Bloom filter are the same. This approach will be referred to as grouping 

Bloom filter. Note that this approach reduces the number of bits set to 1 in a Bloom filter 

representing a large range of numeric data, because fewer keys are inserted. Figure 2 depicts 

the hashed positions of an example grouping Bloom filter, where five successive numbers are 

grouped together and five hashed array positions are generated for each group. Ages 0-4 are 

all represented by Age 0 when inserted in the Bloom filter. In other words, the grouping 

Bloom filter does not distinguish between Ages 0-4. 

Since numbers in the same group are represented by the same key, the number of keys 

inserted and the number of bits set to 1 in the Bloom filter are reduced at the cost of false 

positives caused by numbers in the same group. If some numbers of a group are inserted in a 

 

Figure 2. An example of hashed array positions for a grouping Bloom filter. 
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Bloom filter, other numbers of the group would be determined as false positives by the 

Bloom filter. The false positives caused by grouping successive numbers will be referred to 

as grouping false positives. 

2. Overlapping hashed positions of successive elements 

Another solution for inserting a large range of numbers in a Bloom filter is to reduce the 

number of array positions set to 1 by overlapping the hashed positions of successive numbers. 

In a traditional Bloom filter, k independent hash functions hash each inserted element to k 

array positions, and the positions are set to 1. In this overlapping scheme, each inserted 

number also sets k array positions to 1, but only some, s (s < k), of the k positions are 

determined by hashing the inserted number. The remaining (k-s) of the hashed positions are 

determined by hashing the successive numbers, i.e., (k-s) of the k hashed positions of an 

inserted number are the same as those of its successive number. Figure 3 depicts hashed 

positions of an example overlapping Bloom filter, where k = 5 and s = 2. The array positions 

set by Age 0 are h1(Age0), h2(Age0), h1(Age1), h2(Age1), and h1(Age2). Only two array 

positions are determined by Age 0; the other three array positions are determined by Age 1 

and Age 2. By overlapping the inserted bits of successive numbers, the number of array 

positions set to 1 by a numeric range is reduced. The cost of this approach is that numbers 

adjacent to an inserted range have higher false positive rates, because their hashed array 

positions overlap with those of the inserted numbers. This will be referred to as overlapping 

 

Figure 3. An example of hashed array positions for an overlapping Bloom filter. 
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false positives. 

3. Grouping-overlapping Bloom filter 

To further reduce the number of inserted bits in a Bloom filter, we combine both the 

grouping and overlapping techniques. For grouping-overlapping technique, a numeric scope 

is equally partitioned into several groups and each group consists of successive numbers. 

Each group uses s independent hash functions to generate s array positions. When a number 

of a specific group is inserted, in addition to the s hashed positions, (k-s) array positions 

generated by the successive groups are set to 1. Figure 4 depicts the hashed positions of an 

example grouping and overlapping Bloom filter. Five successive numbers (e.g., Ages 0-4) 

form a group. Each group generates two hashed positions and use additional three hashed 

positions of the successive groups. It is clear that a grouping-overlapping Bloom filter has 

both grouping false positives and overlapping false positives as we have described. 

III. Analytic Models 

In this section, we theoretically analyze our designed Bloom filters. Indeed, we first 

estimate the number of array positions that are set to 1, and further derive the probabilities of 

grouping/overlapping false positives. 

Let R and n denote the scope size of a numeric attribute and the size of an inserted 

numeric range, respectively. Assume that the size of a Bloom filter is m bits, and the number 

 

Figure 4. An example of hashed array positions for a grouping-overlapping Bloom filter. 
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of array positions set by each inserted key is k. The false positive rate of each approach can 

be derived as follows. 

1. Grouping Bloom filter 

We first consider a grouping Bloom filter. Let d denote the size of a group, i.e., the 

number of discrete numeric values per group. Let g(n,d,k) denote the expected number of 

hashed positions generated by a numeric range of size n; note that the hashed array positions 

may be duplicated. g(n,d,k) is derived through Eq. (3). 

⎡ ⎤ k
d
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d

i
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0
+

−
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          (3) 

After setting g(n,d,k) hashed positions to 1, the probability that a bit position in the Bloom 

filter is still 0 can be expressed as follows. 
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The elements that may cause grouping false positives are those that are not in the 

inserted range, but in the same group with the inserted keys. The expected number of those 

elements can be expressed as in Eq. (5). 
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Let fg denote the false positive rate of a grouping Bloom filter; fg can be expressed as Eq. (6). 

The first term to the right of the equal sign in Eq. (6) represents the probability of grouping 

false positives, and the second term represents the probability of false positives that are not 

caused by grouping. 
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2. Overlapping Bloom filter 

Let s denote the number of hashed positions generated by each inserted element. When 
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inserting a numeric range of size n, the number of hashed positions generated can be 

expressed as follows, 

ksnksno +−= )1( ),,(        (7) 

After setting o(n,s,k) hashed positions to 1, the probability that a bit position in the Bloom 

filter is still 0 can be expressed as follows, 
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     (8) 

The number of elements that may cause overlapping false positives at each end of the 

inserted numeric range can be expressed as in Eq. (9). 

⎡ ⎤  1/ −= skr          (9) 

The false positive probability of an overlapping Bloom filter can be expressed as in Eq. (10). 

The first term to the right of the equal sign in Eq. (10) represents the probability of 

overlapping false positives, and the second term represents the probability of false positives 

that are not caused by overlapping. 
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3. Grouping-overlapping Bloom filter 

Let d denote the size of a group, and s denote the number of generated hashed positions 

per group. Note that total number of hashed positions of each group is k, but (k-s) of which 

are generated by successive groups. When inserting a numeric range of size n, the expected 

number of hashed positions generated can be expressed as follows, 
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After setting go(n,d,s,k) hashed positions to 1, the probability that a bit position in the Bloom 

filter is still zero can be expressed as follows, 
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The number of groups that may cause overlapping false positives at each end of the 

inserted numeric range can be expressed as, 

⎡ ⎤ . 1/ −= skr        (13) 

The false positive probability of an overlapping Bloom filter can be expressed as Eq. (14). 

The first term to the right of the equal sign in Eq. (14) represents the probability of grouping 

false positives, the second term the probability of overlapping false positives, and the last 

term represents the probability of false positives that are caused by neither grouping nor 

overlapping. 
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IV. Near Optimal Configurations of the Proposed Bloom Filters 

For grouping and overlapping Bloom filters, the optimal choices of k, d and s are the key 

factors to minimize the false positive rates. First, we consider a simple situation where only a 

single numeric range is inserted in a Bloom filter. Although this simple situation may seem 

impractical, it can clearly demonstrate how the false positive rate of each scheme holds as the 

range of the inserted numeric data increases. Followed, we will consider 

the optimal configurations of a Bloom filter representing a multi-attribute data set with 

1. 

numeric ranges. 

The configuration for a single numeric range 

To fairly compare the performance of different schemes, the optimal configuration, i.e., 

the best choice of k, d and s, for a given numeric range should be used. Note that the 

grouping-overlapping Bloom filter is the most general of all schemes; other schemes are the 

special cases of the grouping-overlapping Bloom filter. Indeed, the traditional Bloom filter is 
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a special case where d = 1 and s = k, the grouping Bloom filter d ≥ 1 and s = k, and the 

overlapping Bloom filter d = 1 and 1 ≤ s ≤ k. Since the grouping-overlapping Bloom filter is 

the most general design, Therefore, we only describe an algorithm that optimizes the 

configuration of a grouping-overlapping Bloom filter. The optimal configurations of other 

sche

f mln2 hashed positions. Later experiments support this conjecture. 

From Eq. (11), we have 

mes can be obtained in similar ways. 

Given the scope size of a numeric attribute (R) and the size of the inserted range (n), we 

need to find the optimum choice of (k, d, s) for a grouping-overlapping Bloom filter of size m 

bits to minimize the false positive rate. From the experience of a traditional Bloom filter, we 

conjecture that the optimal configuration sets approximately half of the array positions (i.e., 

m/2) by a total number o

n ln2mks 
d

×=+
−1

   (15) 

When n is large, s/d (named s-to-d ratio) can be ap

   

proximated as in (16). 

nd
≈         (16) 

Note that s-to-d ratio represents the approximated number of hashed positions for each 

inserted element. From our initial experiments, we observed that the optimal choice of (d, s) 

is in the form of either (1, s) or (d, 1). For example, (2, 7) performs poorer than (1, 3) or (1, 4). 

The reason is grouping produces more false positives than overlapping. This will become 

clear later when we compare the 

ms ln2

numeric results of all schemes. Therefore, the initial setting 

of (d, s) is determined as in (17). 

⎪
⎩

otherwise ),1),(round (
s

Given (d, s), the optimal k that minimizes the false positive rate can be easily obtained 
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because the false positive rate appears to be a concave function of k. On the other hand, 

arranging the possible choices of (d, s) pair in a sequence with an increasing order of s/d, we 

obtain a sequence as follows, (…, (3, 1), (2, 1), (1, 1), (1,2), (1,3), …). Note that the number 

of hashed positions of an inserted range increases as s/d increases. Our experiments show that 

the false positive rate also appears to be a concave function with respect to this sequence. 

Therefore, the optimal choice of (d, s) can be obtained by finding the minimum point. The 

proposed algorithm to derive the optimal choice of k, d and s is listed in Figure 5. First we 

obtain the initial (d, s) using Eq. (17), and then starting from the initial (d, s), we obtain the 

optimal choice of (d, s) using the conjecture that the false positive rate is a concave function 

w.r.t. the (d, s) sequence described above. In addition, for each considered (d, s) pair, the 

optimal k value can be obtained by using the conjecture that the false positive rate is a 

conc

ch k. The exact reason is 

ents. 

2. O

ave function of k. 

Note that the algorithm uses a two-level nested loop to search the optimal choice of (k, d, 

s). The outer loop searches the optimal choice of (d, s), and the inner loop searches the 

optimal k. These two loops are not exchangeable, because the false positive rate is not a 

concave function of k when the optimal choice of (d, s) is used for ea

unclear to us, but counter examples were found in our experim

ptimal configuration for a data set with numeric ranges 

Figure 5. Searching the optimal (k, d, s) configuration for a single numeric range. 
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Given a set of attributes, the domain size and the inserted range of each attribute, we 

need to find the optimal configurations to represent attributes so that the total false positive 

rate, which is defined as the summation of per attribute’s false positive rate, is minimized. Let 

{A1, A2, …, An} denote the attribute set, Ri and ni are the domain size and the inserted range 

size of attribute Ai, respectively. Note that when Ai is of atomic data type, ni = 1. We assume 

that for all attributes, the number of hashed positions (i.e., k) of each key is the same. We 

develop an algorithm to derive the local-optimal parameter configurations, and this algorithm 

consists of two phases. Phase 1 determines the initial k value by utilizing the marginal utility 

theory of Economics, and Phase 2 minimizes the total false positive rate of all attributes 

A. 

 set, and thus p =1/2. Since the false positive rate indicates the 

utilit

(i.e., text string or integer), the false positive rate, 

denoted as f, can be expressed as follows. 

through gradient descent search. Both phases are described in detail in the following. 

Phase 1: determining the initial values of (k, di, si) through marginal utility theory 

To represent a set of attributes of different scope sizes and different range sizes, we need 

to carefully allocate array positions to each attribute. From the marginal utility analysis of 

Economics, we know that utility is maximized when the consumer's budget is so allocated 

that the marginal utility to price ratio is equal for each good. This marginal utility theory can 

be applied to obtain the initial choices of di (the group size) and si (the number of hashed 

positions generated by each key) of each Ai. For a Bloom filter, the utility of each attribute 

can be represented by its false positive rate; the price is the number of hashed positions 

allocated for the attribute. The total budget is assumed to be mln2, i.e., half of the array 

positions are expected to be

y, the lower the better. 

For an attribute of atomic data type 

        (1)(18) 

To reduce the false positive rate, an extra array position can be allocated by increasing the 
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number of hashed positions (k) by 1. Assuming p is close to 1/2, the reduced false positive 

rate, denoted as f’, can be approximated as in (19) 

fpf k
2

    )1(' ≈−=   
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The marginal utility to price ratio can be approximated as 
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erlapping techniques are used. The false positive rate in (14) can be 

approximated by 

assume that ni is small with respect to Ri (i.e., ni << Ri) and p is cl

(a) Case 1: considering attribute Ai whose si = 1 and di > 1 
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From (11), the number of hashed positions generated by this attribute can be expressed as 

k
di

i
nb i +
−

=  1
        (21) 

y increasing di by 1. 

Thus the reduced false positive rate, f ', can be approximated as follows. 

To reduce the false positive rate, extra array positions can be allocated b

k
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+
≈     (22) 

The increased number of hashed positions allocated, bi', can be expressed as follows. 

k
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i −
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−

=
1'        (23) 

The marginal utility to price ratio can be approximated as follows. 

1
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In an optimally-configured Bloom filter, the marginal utility to price ratios for all 

attributes should be the same. From (20) and (25), we have 
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From (26), we can obtain 
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Eq. (27) indicates that the group size of a grouping-overlapping attribute, di, can be 

determined by the chosen k. 

(b) Case 2: considering attribute Ai whose di = 1 and si ≥ 1 

Such an attribute will be referred to as an overlapping attribute because of using 

overlapping technique. The false positive rate in (10) can be approximated by 

1
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From (7), the number of hashed positions generated by this attribute can be expressed as 

follows. 

ksnb iii +−=  )1(         (28) 

Extra array positions can be allocated to this attribute by increasing si by 1. The reduced false 

positive rate, f ', can be approximated as follows. 

1 22(1 )'
is ki i

i i i
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R R n
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≈ +

−
−     (29) 

The increased number of hashed positions allocated can be expressed as follows. 
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ksnb iii ++−=  1))(1('        (30) 

The marginal utility to price ratio can be expressed as follows. 
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For an optimally-configured Bloom filter, all attributes have the same marginal utility to price 

ratio. Thus from (20) and (32), we have 
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From (33), we further obtain 

 
)2ln(
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nRks +≈ ,       (33) 

Eq. (34) indicates that for an overlapping attribute, the number of hashed positions 

generated by each inserted key, si, can also be determined by the chosen k. 

Note that no grouping attribute is considered, because grouping causes more false 

positive. Given k, we can determine whether attribute Ai is a grouping-overlapping or 

overlapping attribute from Eqs. (27) and (34). di and si can be obtained as follows. 

)))
2
1(

3
( round,1max( 1+= kii

i
nRd       (34) 
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i

nRks +=       (35) 

If di =1, it is an overlapping attribute; otherwise, it is a grouping-overlapping attribute. 

The algorithm that determines the initial k (denoted as kini) is shown in Figure 6. The initial k, 

kini, is chosen so that less than half of the array positions set to 1 with kini -1 hashed positions 

for each key, and more than half of the array positions set with kini hashed positions for each 

key. 

B. Phase 2: minimizing the total false positive rate by gradient descent 
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In Phase 1, we obtain kini, di and si such that approximately half of the array positions 

will be set and the marginal utility to price ratio is about the same for all attributes. However, 

to minimize the total false rate of all attributes, we still need to determine the optimal choice 

of k, di and si. Let fT denote the total false positive rate. For a given k, fT may be further 

reduced by increasing or decreasing the number of hashed bits of the attributes. For each 

attribute, we consider the effects of increasing and decreasing its allocated hashed positions 

on fT. Using gradient descent search, the hashed position re-allocation of the attribute that has 

 
Figure 6. Phase 1 determines the initial k value. 
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Figure 7. Phase 2 minimizes the total false positive rate. 



the largest improvement per bit change on fT is chosen. Note that the improvement of fT per 

bit change used in Phase 2 is similar to the marginal utility to price ratio used in Phase 1. 

However, the utility function used in Phase 2 is the total false positive rate; by contrast, that 

of Phase 1 is the false positive rate of the attribute under consideration. In addition, the value 

of p (the probability that an array position is set) is acutely computed in Phase 2, while it is 

assumed to be 1/2 in Phase 1. Since we cannot be sure of the optimal choice of k, given kini 

obtained in Phase 1, the gradient search for the optimal choice of di and si is performed for all 

k’s where kini -4 ≤ k ≤ kini +3. The detailed Phase 2 algorithm is shown in Figure 7. 

V. Simulation and Analytic Results 

To validate the analytic model presented in Section III and to evaluate the performance 

of the configuration algorithms presented in Section IV, we developed a simulation program 

that computes the expected false positive rate when a single numeric range is inserted in a 

grouping and/or overlapping Bloom filter. The inputs of the simulation program include the 

attribute name, the scope of the attribute and the size of the inserted range. The program 

literally computes the average false positive rate for all the possible inserted ranges of a given 

size. For example, given attribute Age with scope [0..120] and an inserted range of size 10, 

the program can compute the average false positive rate for all possible inserted ranges in 

{[0..9], [1..10], [2..11], …, [111..120]}. However, the analytic models presented in Section III 

assume that overlapping false positives exit on both ends of each inserted range. Therefore, 

our simulation program ignores the inserted ranges that do not allow all possible overlapping 

false positives on either end. For an example attribute, Age, if (k, d, s) = (8, 10, 2), the 

program ignores inserted ranges {[0..9], [1..10], [2..11], [109..118], [110..119],[111..120]}, 

and only considers {[3..12], [4..13], [5..14], …, [108..117]}, so that on each end of the 

inserted ranges considered, there are exactly 3 numbers (i.e., ⎡ ⎤ 1/ −sk  shown in Eq. (13)) 

that may cause overlapping false positives. For any given inserted range, the simulation 
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program first generates the Bloom filter, checks each number outside the inserted range to 

determine whether it is a false positive or not, and then calculates the average false positive 

rate. 

The simulation program uses SHA-512(“attribute_name:attribute_value”) to generate 

the hashed array positions for each key to be inserted. The 512-bit digest of SHA-512 is 

partitioned into 32 16-bit words. When s hashed array positions are needed, the first s words 

are used; each word modulo 512 (m) generates an array position. 

Figure 8 depicts the false positive rates of a grouping-overlapping Bloom filter as the 

inserted range increases from 4 to 60, the scope is [0,..,120] and k is 10. The same optimal 

choice of (d, s) is used for each inserted range. The analytic model does not consider the 

attribute name. The simulation results are obtained through using attribute name Age, while 

the simulation average results are obtained from averaging the false positive rates of 1000 

random attribute names. The analytic and simulation results for attribute Age are consistent 

for most inserted ranges, but there exists significant discrepancy when the inserted range size 

is near 52. The reason is the analytic models assume that the adopted hash functions are 

 
Figure 8. The analytic and simulation results. 
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perfectly random. However, this may not be true for a specific attribute name, “Age” in this 

example, which leads to a smaller false positive rate. On the other hand, the analytic and 

average simulation results are consistent for all sizes of inserted ranges. This verifies the 

correctness of our analytic model, and indicates our analytic model produces the average 

false positive rates. To represent the average case and to speed up the comparison, for the 

experiments hereafter, we will only use the analytic model. 

1. Scenario 1: a single numeric range 

For all experiments on representing a single numeric range hereafter, the scope size of 

the attribute R is 10000, and the size of Bloom filter is 512 bits (i.e., m = 512). Figure 9 plots 

the false positive rates of four schemes when a single numeric range is inserted and the size 

of the inserted numeric range increases from 10 to 1200. The optimal choice of (k, d, s) is 

used for each inserted range under each Bloom filter scheme. The results indicate that for a 

given inserted range, the traditional Bloom filter has the largest false positive rate. The false 

positive rates of both the traditional and the grouping Bloom filters increase rapidly when the 

size of the inserted range (n) is larger than 20. When n = 22, the grouping Bloom filter starts 

 
Figure 9. The impact of the inserted range size on false positive rate. 
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grouping the inserted range. Although the grouping Bloom filter provides significant 

improvements over the traditional one, it still performs much worse than both schemes 

adopting overlapping technique. When n is less than 510, the overlapping and the 

grouping-overlapping Bloom filters are the same, i.e., only overlapping is used. However, 

when n is larger than 510, both overlapping and grouping need to be used, and the 

grouping-overlapping Bloom filter provides the smallest false positive rate among four 

schemes. The results indicate that overlapping technique is useful for all sizes of inserted 

ranges, and grouping is only applicable when the size of the inserted range is very large. The 

results also explain why a grouping-overlapping Bloom filter with (d, s) = (2, 7) has a higher 

false positive rate than one with (d, s) = (1, 3) or (1, 4). 

Let a1 denote the expected number of array positions that are set to 1. a1 can be derived 

as follows. 

))11(1(1
h

m
ma −−= ,       (36) 

where h is the number of hashed positions generated by an inserted range for a Bloom filter. 

 
Figure 10. The expected number of array positions that are set to 1 for all schemes. 
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Figure 10 plots a1 of each Bloom filter scheme, upon varying inserted range size from 1 to 

1200, and R being 10000. We expect that about half (i.e., 256) of the array positions are set to 

1. The grouping Bloom filter has the slightest variations in a1, as n increases. On the other 

hand, the others have large variations. It is interesting that a1 of those schemes are of zigzag 

curves. Each drop of the a1 curves indicates a decrement of k for the traditional Bloom filter, 

and a decrement of s for both the overlapping and the grouping-overlapping Bloom filters for 

n < 250. When n > 250, k =1 for the traditional Bloom filter, and thus k cannot be decreased 

further. In addition, s =1 for the overlapping Bloom filter, and cannot be reduced further. As a 

result, after that, a1 of both schemes increases steadily as n increases. On the other hand, the 

grouping-overlapping Bloom filter starts grouping by increasing d by 1 when n=511 and 897. 

As a result, a1 is kept close to m/2 (256). The results are consistent with the results in Figure 

9; the false positive rate of the grouping-overlapping schemes increases slower than that of 

the overlapping scheme as n increases. 

Figure 11 plots the values of k and s of all schemes and Figure 12 plots the values of d 

for the grouping and grouping-overlapping schemes upon varying n value from 5 to 1200. 

 
Figure 11. The optimal values of k and s for all schemes. 
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The results show that k of the traditional Bloom filter and s of the overlapping and 

grouping-overlapping Bloom filter drop rapidly and almost at the same pace, as n increases.  

This implies that the three schemes set about the same number of array positions; this is 

consistent with the results of Figure 10. In addition, we observe that the overlapping and the 

grouping-overlapping Bloom filters are the same when n < 510. Moreover, when n > 510, k 

of the overlapping Bloom filter keeps increasing, while k of the grouping-overlapping Bloom 

filter makes a steep dive (shown in Figure 11) and the corresponding d value of the 

grouping-overlapping Bloom filter increases by 1 at the same time (as shown in Figure 12). 

On the other hand, the k values of the grouping scheme fluctuate substantially when n is 

small, and then becomes stable as n increases. For all sizes of inserted range, the k value of 

grouping scheme is less than that of the overlapping and grouping-overlapping schemes. The 

results in Figure 12 indicate that d of the grouping and grouping-overlapping schemes are 

both staircase functions. However, d of the grouping scheme increases at a much faster pace 

than that of the grouping-overlapping scheme. When n = 1200, the d value of the 

grouping-overlapping scheme is only 2, while that of the grouping scheme is 50. This 

indicates that the grouping false positives are much more common in a grouping Bloom filter. 

We further investigate the performance of false positive rate upon fixed k value. This 

constraint is practical because the size of the inserted range is usually not fixed. By using a 

constant k, we set the desired false positive rate below (1/2)k when less than half of the array 

positions are set to 1. Figure 13 plots the false positive rates of each scheme as the inserted 

range increases, and k is fixed at 10. In other words, the desired false positive rate is below 

(1/2)10≈0.001. The optimal choices of d and s are used for each inserted range under each 

Bloom filter scheme. The results indicate that a traditional Bloom filter cannot satisfy the 

desired false positive rate when the size of a stored numeric range is larger than 60. In 

contrast, meeting the requirement of the false positive rate, the grouping Bloom filter can 
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store a numeric range of size up to 240, the overlapping Bloom filter up to 340, and the 

grouping-overlapping Bloom filter up to 1000. Note that although the false positive rate of an 

overlapping Bloom filter is very low when n is less than 240, it increases more rapidly than 

that of a grouping Bloom filter afterwards. When n is larger than 360, its false positive rate 

surpasses that of the grouping Bloom filer. In summary, as the size of the inserted range 

increases, we suggest utilizing only overlapping technique first, and then both overlapping 

and grouping techniques. 

 

 

Figure 12 The optimal values of d for the grouping and 
grouping-overlapping schemes. 
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 Figure 13. The false positive rates of all scheme when k is fixed (=10). 

 
2. Representing a data set with numeric ranges 

To evaluate the performance of a grouping-overlapping Bloom filter for multiple 

attribute range queries, we consider an example attribute set listed in Table 1. There are five 

attributes of atomic data type (text string) and five attributes of numeric range. The attribute 

names, scope sizes, and inserted range sizes are also listed in Table 1. Given the attributes, 

the Phase 1 configuration algorithm obtains the initial k value, kini = 15. Through the Phase 2 

algorithm, the optimal configurations and minimal false positive rates for all k’s, where kini -4 

≤ k ≤ kini +3, are obtained. Table 2 summarizes the expected numbers of array positions set to 

1 (i.e., a1), and the total false positive rates (fT) for various k's. The results indicate a1 

increases as k increases, and about half of the array positions are set when k = kini-1. In 

addition, fT appears to be a concave function of k, and the optimal k is the kini obtained in 

Phase 1. The difference in fT for all k’s is insignificant. This implies the optimal choice of k 

may not be as important as the optimal choice of (d, s) for each attribute. 
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Table 1. The attributes used in multi-attribute experiments. 
Attribute Name Data Type and Scope Size of inserted range 

First Name Text string － 
Last Name Text string － 
University Text string － 

Hobby Text string － 
Vocation Text string － 

Age Integer [1,..,120] 10 
Year Integer [1900,..,2100] 20 

Income Integer [0,..,5000] 500 
Longitude Integer [-1800000,..,1800000] 100 
Latitude Integer [-900000,..,900000] 100 

 

Table 2. The expected number of array positions set to 1, and the total false positive rates. 
 k = 11 

(kini-4) 
k = 12 
(kini-3) 

k = 13 
(kini-2) 

k = 14 
(kini-1) 

k = 15 
(kini) 

k = 16 
(kini+1) 

k = 17 
(kini+2) 

k = 17 
(kini+3) 

a1 214 232 237 261 270 275 280 284 
fT 5.818E-3 5.652E-3 5.602E-3 5.549E-3 5.496E-3 5.503E-3 5.589E-3 5.727E-3

 

Table 3 displays the detailed configurations of the grouping-overlapping Bloom filter 

and the false positive rate of each attribute. The results indicate that the false positive rates of 

atomic data type decrease as k increases. On the other hand, the false positive rates of 

numeric ranges are in the form of irregular patterns. They may not be a concave function of k; 

attribute Age is such an example. The configurations to minimize the false positive rates 

per-attribute basis and all-attributes basis are not exactly the same. For example, the 

minimum total false positive rate occurs at k = 15, while the minimum false positive rate of 

attribute Longitude at k=16. Note that the number of array positions allocated for each 

attribute (bi) increases as k increases. In addition, attributes with larger false positive rates 

have more array positions. For example, among all attributes, Income accounts for 62% 

(3.4/5.496≈0.619) of the total false positive rate and obtains the largest number of array 

positions. The results show that the grouping-overlapping Bloom filter provides very low 
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false positive rates for all attributes and this is not attainable for the traditional Bloom filter. 

 

Table 3. The detailed configurations and false positive rates of all attributes. 

Attribute 
Name 

k = 13 
(kini-2) 

k = 14 
(kini-1) 

k = 15 
(kini) 

k = 16 
(kini+1) 

d, s bi fi d, s bi fi d, s bi fi d, s bi fi 

First Name - 13 4.5E-5 - 14 7.8E-5 - 15 6.7E-5 - 16 4.7E-5

Last Name - 13 4.5E-5 - 14 7.8E-5 - 15 6.7E-5 - 16 4.7E-5

University - 13 4.5E-5 - 14 7.8E-5 - 15 6.7E-5 - 16 4.7E-5

Hobby - 13 4.5E-5 - 14 7.8E-5 - 15 6.7E-5 - 16 4.7E-5

Vocation - 13 4.5E-5 - 14 7.8E-5 - 15 6.7E-5 - 16 4.7E-5

Age 1,5 58 4.4E-4 1,5 59 7.2E-4 1,6 69 4.6E-4 1,6 70 4.9E-4

Year 1,3 70 1.3E-3 1,4 90 8.7E-4 1,4 91 9.9E-4 1,4 92 1.0E-3

Income 6,1 96 3.5E-3 5,1 114 3.3E-3 5,1 115 3.4E-3 5,1 116 3.5E-3

Longitude 70,1 14 9.8E-5 70,1 15 1.4E-4 65,1 17 1.3E-4 61,1 18 1.0E-4

Latitude 49,1 15 1.2E-4 50,1 16 1.6E-4 46,1 17 1.5E-4 43,1 18 1.3E-4

 
We expect that when k=kini, more than half of the array positions are set to 1, and when 

k=kini-1, less than half. Therefore, we speculated that both cases are likely to be the optimal 

choice of k. To verify our speculation, we randomly generate 1000 attribute sets; each set 

contains 10 numeric range attributes. The scopes of the attributes are uniformly distributed in 

[100, .., 1000000], and the inserted range sizes are uniformly distributed in [0.001, 01]×Ri 

(the corresponding scope size). The distribution of the optimal k values is shown in Table 4. 

For 781 out of 1000 samples, kini is the optimal choice of k, and kini-1 is the optimal choice for 

another 216 samples. Only three samples’ optimal k choices are not kini or kini-1. The results 

suggest that kini is a very good initial choice, and the optimal configuration tends to set more 

than half of the array positions to 1. Table 5 is the distribution of a1, the expected number of 

array positions that are set to 1 by the optimal configurations. The results indicate that 

slightly more than half of the array positions are set to 1 for the optimally configured 

grouping-overlapping Bloom filter. 

  29



Table 4. The distribution of the optimal k. 

The optimal k kini-3 kini-2 kini-1 kini kini+1 kini+2 
Occurrences 0 1 216 781 2 0 

 

Table 5 The distribution of the expected number of array positions set to 1. 

≤ 254 [255,..,259] [260,..,264] [265,..,269] [270,..,274] [275,..,279] ≥ 280
Occurrences 2 1 77 502 361 56 1 

 
 

VI. Conclusions 

Traditional Bloom filter is space-inefficient to represent data sets that contain large 

ranges of numeric data. In this report, we presented grouping and overlapping Bloom filter 

schemes for representing a data set with numeric ranges. In addition, we have developed 

algorithms based on the marginal utility theory and gradient descent to obtain the optimal 

configurations of the modified Bloom filter schemes. Numeric analysis and computer 

simulations have been conducted to show the effectiveness of our schemes and configuration 

algorithms. Our experiments showed that the overlapping technique can be used for all sizes 

of numeric ranges, while the grouping technique should only be applied for large numeric 

ranges. The numeric results also showed that the grouping-overlapping Bloom filter provides 

very low false positive rates for multi-attribute range queries, which are not attainable for the 

traditional Bloom filter. Moreover, the optimally-configured grouping-overlapping Bloom 

filter set slightly more than half of the array positions. 

In this report, we assume the number of hashed positions, k, of an inserted key of each 

attribute is the same. It is possible that different k for different attributes may result in a lower 

overall false positive rate. In addition, the conjectures we made in searching the optimal 

choice of (k, d, s) for a numeric range may need a formal proof. The optimal configuration of 

a grouping-overlapping Bloom filter for a data set with numeric ranges obtained from our 

algorithm may not be the optimum configuration, but only a local optimum.
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