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Project: The out-degree of nodes in random trees

by

Michael Fuchs

1 General

This is the final report on the National Science Council Project entitled “The out-degree of nodes in random
trees” with number 97-2628-M-009-008 and time period from August 1st, 2008 to July 31st, 2009.
Before presenting our results in more details, we give an overview of the main outcomes of the project.

e The preprint [2] was written within this project. It contains the main findings of the project (the
preprint is enclosed).

e We gave an invited talk at the 9th International Conference on Finite Fields and Their Applications,
Dublin, Ireland, July 13-19, 2009.

2 Results

The original purpose of this project was to apply our recent variant of the moment-transfer approach

[1], [5] to the analysis of the out-degree of nodes in certain classes of random trees. However, this task
turned out to be too complicated. Hence, we slightly changed the focus of this project. More precisely,
we investigated further the applicability of the moment-transfer approach (in its standard form) to some
problems for which the approach was known to fail. Since this somehow deviates from our original

proposal, we start by explaining the new problem and then present our findings.

The moment-transfer approach was used in several recent papers for deriving limit laws of sequences c
random variables that satisfy a distributional recurrence. The approach consist of the following steps: first.
one observes that all (centered and non-centered) moments satisfy the same type of recurrence; secor
one studies this underlying recurrence and obtains transfer theorems; third, one uses the transfer theorer
to derive an asymptotic expansion of the mean value; fourth, one shifts the mean; fifth, one uses inductior
together with the asymptotic of the mean value and the transfer theorems to derive the first order asymptoti
of all higher moments; finally, one identifies the limiting distribution via the moment sequence. It was well-
known that this approach does not work for some sequence of random variables satisfying particular eas
recurrences such as

X, L X, 41,  (n>1), (1)

whereX, = 0, ,, = Uniform{0,...,n — 1}, and(Z,,),>1 and(X,,),>o are independent.

In this project, we proposed a variant of the above scheme which can be applied to (1). Roughly
speaking, the main observation was that all higher moments satisfy an expansion of a certain shape whic
is proved by induction. The same expansion also holds for the central moments. Then, step five above jus
becomes a claim concerning the leading term of this expansion.

Overall, the new variant of the moment-transfer approach which can be applied to (1) consists of two
induction steps instead of only one, where the first step serves as input for the second step. Our approac
yields the following result.

This approach has been callewgethod of momentsefore. However, since this name is slightly misleading, we will use
moment-transfer approadhstead.



Theorem 1. Asn — oo,
X, —logn

Vviogn
It should be mentioned that our method of proof of the result is not the only one. More precisely, it
is not complicated to compute the moment-generating function from (1). Then, the central limit theorem
can also be proved by classical tools. Yet another approach is based on the contraction method and can |
found in [10]. However, the important feature of our work is that our method is of some generality and

can be applied to several related problems. We will exemplify some of the results which can be achievec
by our approach in the sequel (for more details the reader is referred to [2]).

L, N(0,1).

Analysis of Priority Trees. Priority trees have been analyzed in [8], [11], [12]. All limit laws proved
in these papers can be re-proved by using our approach. For instan&g, denote the number of key
comparisons when inserting a random key into a random priority tree ofisizEhen, the underlying
recurrence (satisfied by the centered and non-centered moment) is given by

S, D)

— i 2= )

n = Z Z 013! (n) a; + bn,
7j=0 \ =0 3

wherecy, ¢q, co are suitable constants anagl is a given sequence. Transfer theorems for this recurrence

were already obtained in [4]. Hence, by an (almost automatic) application of our method the following
result can be proved.

Theorem 2. Asn — oo,
X, — log2 n/3 4

—
\/101og® n/81

It should be mentioned that our method is easier than the method suggested by the authors in [8]
Actually, both methods are similar in the sense that they both work with the moments. However, the
authors in [8] do not shift the mean. Consequently, they need a very precise knowledge of the moments ir
order to handle the massive cancellations which are completely avoided in our approach.

N(0,1).

Successful and Unsuccessful Search in Binary Search TreesThese are classical quantities whose
analysis can for instance be found in [9]. The limit laws can be re-derived with our approach. The
important tools are again the transfer theorems which have already been obtained in [6].

Depth in Variants of Binary Search Trees. For simplicity we just concentrate on-ary search trees
(other variants of binary search trees are discussed in [2]). S&, ldenote the depth in a randam-ary
search tree build from records. Again our approach applies, where transfer theorems for the underlying
recurrence can be found in [3]. Then, the following result follows.

Theorem 3. Asn — oo,
X, —logn/(H,, — 1)
\/<H7(73) - 1) logn/ (Hy, —1)°

whereH,, =" 1/j andHY =" 1/52.

Jj=1

L, N(0,1),




Number of Collisions in the (2, b)-Coalescent. This is an example from mathematical biology and

can be found in [7]. The authors asked for a proof of their main result (a central limit theorem) directly
from the recurrence satisfied by the random variables. Indeed, our approach is applicable if one can proc
the following conjecture for the recurrence

n—1
Un =Y Tnjln_j+by,  (n>2), (2)
j=1

wherea, = 0 and
F'n—j+b—1)TC(n+1)
U+l (n = j)I(n+b)H(n,b)
with H(n,b) =b/(b+n—1)+¥(b+n—1) — ¥ (b) — 1 (hereV is the digamma function).

Tn,j :P(In:j) =

Conjecture 1. Consider (2). Leb, = O (1/n) with e > 0 suitable small. Then,
a, =c+ O (1/n),

wherec is a suitable constant.

3 Summary

The original purpose of this project was to apply the moment-transfer approach to the out-degree of node
in various classes of random trees. This goal, however, turned out to be too complicated (nevertheless, w
hope to come back to this problem in the future).

Consequently, we shifted our focus to a different (but related) problem, namely, the applicability of
the moment-transfer approach to certain one-sided distributional recurrence. We proposed a new variar
of the moment-transfer approach which can be applied to such situations. Moreover, we demonstrated th
power of our approach by applying it to several parameters from the analysis of algorithms.

One parameter which we have not considered, but which is likely to be treatable with our approach as
well is the distance between two random nodes in binary search trees and its variants. This parameter
important in finger search. A future project might be dedicated to the analysis of this parameter.

References

[1] H. Chang and M. Fuchs (2009). Limit theorems for patterns in phylogenetic &reldsith. Biol, in
press.

[2] C.-H. Chern and M. Fuchs (2009). On the moment-transfer approach for random variables satisfying
a one-sided distributional recurrence, preprint.

[3] H.-H. Chern and H.-K. Hwang (2001). Phase changes in random m-ary search trees and generalize
quicksort,Random Structures and Algorithpi®, 316-358.

[4] H.-H. Chern, H.-K. Hwang, T.-H. Tsai (2002). An asymptotic theory for Cauchy-Euler differential
equations with applications to the analysis of algorithdesirnal of Algorithms44, 177-225.

[5] M. Fuchs (2008). Subtree sizes in recursive trees and binary search trees: Berry-Esseen bounds at
Poisson approximation§ombin. Probab. Compytl7, 661-680.

3



[6] H.-K.Hwang and R. Neininger (2002). Phase change of limit laws in the quicksort recurrences under
varying toll functions SIAM Journal on Computingl, 1687-1722.

[7] A. Iksanov, A. Marynych, M. Nbhle (2008). On the number of collisions in b@#)-coalesents,
Bernoulli, 15, 829-845.

[8] M. Kuba and A. Panholzer (2007). Analysis of insertion costs in priority trees, in “Proceedings of the
Ninth Workshop on Algorithm Engineering and Experiments and the Fourth Workshop on Analytic
Algorithmics and CombinatoricsSIAM Philadelphial75-182.

[9] H. M. Mahmoud (1992). Evolution of Random Search Trees, Wiley, New York.

[10] R. Neininger and L. Rschendorf (2004). On the contraction method with degenerate limit equation,
The Annals of Probability32, 2838-2856.

[11] A.Panholzer (2008). Analysis for some parameters for random nodes in priorityliseigte Math-
ematics and Theoretical Computer Scier@ 1-38.

[12] A. Panholzer and H. Prodinger (1998). Average case analysis priority trees: a structure for priority
gueue administratiomlgorithmicg 22, 600-630.



On the Moment-Transfer Approach for Random Variables
satisfying a One-Sided Distributional Recurrence

Che-Hao CHEN and Michael FUCHS
Department of Applied Mathematics
National Chiao Tung University
Hsinchu, 300
Taiwan

September 24, 2009

Abstract

The moment-transfer approach is a standard tool for deriving limit laws of sequences of random
variables satisfying a distributional recurrence. However, so far the approach could not be applied to
certain recurrences which are “one-sided”. In this paper, we propose a modified version of the moment-
transfer approach which can be applied to such recurrences. Moreover, we demonstrate the usefulness
of our approach by re-deriving several recent results in an almost automatic fashion.

1 Introduction

In Combinatorics and Computer Science, one often encounters sequence of random variables which satis
a distributional recurrence. For instance, the following recurrence arises in the analysis of quicksort (see
[8] for background): letX,, be a sequence of random variables satisfying

Xy X + X +1, (n>1), 1)

whereX, = 0 andl,, = Uniform{0,...,n — 1}, X, L X with (1,)n>1, (Xn)n>0, (X)n>0 independent.
One is then normally interested in properties such as asymptotic behavior of mean and variance as well &
deeper properties such as limit laws, rates of convergence, etc.

As for limit laws, the so-calleadnoment-transfer approaétas evolved into a major tool in recent
years. Roughly speaking, the approach consists of the following steps: first, one observes that all mo
ments (centered or non-centered).of satisfy a recurrence of the same type (the so-callederlying
recurrenc®. For instance, the underlying recurrence gy above is given by

n—1
2
n — j bn> > 1 >
a - JEO a; + (n )

*Partially supported by National Science Council under the grant NSC-97-2628-M-009-008.
This approach has been callegthod of moments most previous works. However, since this name might be misleading,
we decided to usmoment-transfer approadhstead.



whereay, = 0 andb, is a given sequence (called ttw@l sequence Second, one derives general results
that link the asymptotic behavior éf to that ofa,, (calledtransfer theorems Third, one uses the transfer
theorems to obtain an asymptotic expansion for the mean. Forth, one derives the recurrences of the centr
moments (this step is calleshifting-the-mean Fifth, one uses the transfer theorems together with the
expansion for the mean and induction to derive the first order asymptotic of all higher moments. Finally,
the limit law is identified via the limit moment sequence. This approach has been used to treat numerou:
examples; seel] and the survey article/] for many recent references.

Overall, the main ingredients in the moment-transfer approach are the transfer theorems, the remain
ing steps being almost automatic. However, maybe surprisingly, the approach does not work for some
sequences of random variables satisfying particular easy distributional recurrences. One such example
given by the one-sided variant df)( More precisely, lefX,, be a sequence of random variables satisfying

Xn g XL,, + 17 (TL 2 1)7 (2)

whereX, = 0 and/,, = Uniform{0,...,n — 1} with (7,),>1 and(X,,),>o independent.
We provide some more details to illuminate where the approach fails. Therefore, observe that the
underlying recurrence is given by

n—1
1
n— j bn> 217 3
a n;aj—l— (n ) (3)

wherea, = 0 andb,, is a given sequence. The next step is to obtain transfer theorems. For our crude
purpose the following transfer theorems are enoughafamon-negative integer, we have

(i) by ~log®n = a, ~log""'n/(a+1)
(i) b, =0 (log*n) = a,=0 (logaJrl n)
(these and more precise results will be proved in the next section; seeZplsdlpw, the meark(.X,,)

satisfies §) with b, = 1. Hence, by transfer (i) aboB(X,,) ~ logn. Next, we are going to shift the
mean. Therefore, let!] = E(X, — E(X,))". Then,

Al = = ZA +BI" (n>1),

whereAl” = 0 and
r—1

B =% (;) % n; A1 EXG) - E(X,)

k=0
Let us first look at the variance which is obtained by setting 2. This yields

,_\

n—

1
BT[ZQ} _ 1+ E(X;) — E(Xn))2 ~ / (1+ logx)2 dr =1,
0

1
n

.
Il
o

where we have used the asymptotic of the mean. Hence, again by transfer (i)\ab0¥g) ~ logn.
Finally, we want to generalize the latter argument to obtain the first order asymptotic of all central mo-
ments. Here, we should mention that it is well-known that (suitable centralized and normalized) is
asymptotically normal. Hence, due to theeEnet-Shohat theorem, our goal is to show that fomatt 0

Al (2m)!

n 2mm

log"n and AP™ = O (log™n). (4)
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Note that the claim trivially holds for = 0. As for the induction step assume that the claim is proved for
allm’ < m. Then, in order to prove it fom, we first look at the toll sequence. In the even case, we have

2m—1 n—1
m 2m\ 1 k m—Fk
331:§:<k)ﬁ§:4H1+mXﬁ—Eumf .
k=0 j=0
It is easy to see that the term with= 2m — 1 is the dominant one. Hence,
2m, n—1
m 2m—1 m—
Bl hw-g-E:fQ F1+ B(X;) - E(X,) = O (log™ " n) .
j=0

Then, by the transfer (ii) above, we obtat{™ = O (log™n). This is, however, not strong enough to
imply the claim. A similar problem occurs as well when considering odd central moments.

As already mentioned above, there are other approaches to show,tHatitable centralized and
normalized) is asymptotic normal (more precisely, it is not complicated to compute the characteristic
function of X,,. Then, asymptotic normality can be proved by classical tools;deenf [L 3] for another
approach based on the contraction method). However, it is still an interesting question whether or not the
moment-transfer approach can be modified such that it appli€s.tdo provide such a modification is the
purpose of this work. Moreover, we will see that our modified version of the moment-transfer approach
can be applied rather automatically to various examples from the analysis of algorithms all of them having
the common feature that the recurrence satisfied by the sequence of random variables is one-sided in
similar sense a2 above.

We conclude the introduction by giving a short sketch of the paper. In the next section, we are going
to introduce our approach and apply it X9, above. Then, in the third section, we will re-derive recent
results on priority trees. This will put these results in a larger context. Moreover, our approach will yield
proofs which are simpler than the previous ones. In a final section, we will discuss further examples which
can be handled by our approach as well.

Notations. We will usee to denote a sufficient small constant which might change from one occurrence
to the next. SimilarlyJ3ol(x) will denote an unspecified polynomial which again might change from one
occurrence to the next. Moreover, if needed, we will indicate its degree as a subindex.

2 Asymptotic Normality of the Stirling Cycle Distribution

In this section, we will show how to modify the moment-transfer approach such that it can be applied to
(2).
Before starting, we will give some motivation as for why we are intereste®)infhe easiest example
of a sequenceX,, leading to R) is the number of cycles in a random permutation of sizdndeed, let
o1 - - - 0}, denote the the canonical cycle decomposition of a permutation of.siZéen, it is easy to see
that the probability thad;, has lengthj equalsl /n. Consequently,

Xo L X0 +12 X, +1.
Hence,X,, satisfies our recurrence. Of course, the probability distributiaol,pifs well-known

P(X, = k) = A8

n!

3



wherec(n, k) denote the Stirling cycle numbers (or Stirling numbers of first kind). Apart from this inter-
pretation ofX,,, there are many others; se3 &nd references therein.

Now, we are going to explain our modified moment-transfer approach which can be applied to prove
asymptotic normality ofX,, (suitable centralized and normalized). Again, the main ingredient will be a
transfer theorem.

Proposition 1. Consider 8).
(i) Letb, = O(1/n) withe > 0 suitable small. Then,
a, =c+0(1/n'7),
wherec is a suitable constant.

(i) Letb, = log®nwitha € {0,1,...}. Then,

loga+1 n

Ay =

+ Pol, (logn) + O (1/n°),

a+1

wheree > 0 is suitable small.
(i) Letb, = O (log® n) witha € {0,1,...}. Thena, = O (log*™" n).
(iv) Item (iii) holds withO replaced by as well.

Proof. It is easy to check thaB] has the general solution

A =by+ Y b (n>1). (5)

Now, in order to prove (i) observe that

1\ &b, > b, 1
_ . i j -+
a”_o(n€>+2j+1 ;j+1+0<n6>’

j=1

where the series is absolute convergent due to the assumption.

Also part (i) immediately follows from%) by a standard application of Euler-Maclaurin summation
formula. Note that alternatively (ii) can also by deduced from (i) by induction.

Finally, part (iii) and (iv) are simple consequences of part (il).

The next step is to look at the mean value. Therefore, let us more generally con#iideroments.
SetAl! = E(X7). Then,

whereA = 0 and

Settingr = 1 gives the toll sequencé}z” =1 (as in Section 1). Hence, by our transfer theorem

E(X,) = Al =logn + Pol,(logn) + O (1/n°),

4



wheree > 0 is suitable small.
The main new step in our modified version of the moment-transfer approach is another induction to
show that the above form of the expansion for the mean continues to hold for all higher moments.

Proposition 2. For all » > 1, we have
Al = Pol(logn) + O (1/n°),
wheree > 0 is suitable small.

Proof. Note that the claim was already proved for= 1. Assume that it holds for alt’ < r. In order
to prove it forr note that the induction hypothesis and Euler-Maclaurin summation formula imply that
B = = Pol(logn) + O (1/n). Hence, the claim follows by the transfer theorerh.
Next, we turn to central moments whose recurrence was already mentioned in Section 1. Note tha

since .
Al = (T) AR (E(Xx,)) "
0=20 () A (Bx)
the form of the expansion from Propositi@ralso holds for all the central moments. Heneh,i¢ in fact
only a claim concerning the leading term of this expansion.

Proposition 3. For all m > 0, we have

(2m)!

Alm
n 2m

log n and AP = O (log™n).
Proof. Note that the claim trivially holds form = 0. Assume now that the claim holds for all < m. We
are going to prove it fom.

First, consider the even case. Then, the toll sequence is given by

2m—1 n—1
. 2m\ 1 m—
B = Y ( k )EZAB’“ (1+B(X;) ~E(X,)" .
k=0 Jj=0

We start by looking at the contribution &f= 2m — 1 which is

n—1

2 1
AP (1 L E(X) - E(Xn))wclogm_ln/ (1+ log z)dz,
0

7=0

wherec is a suitable constant. Since the above integral vanishes this part contriiutés ' n). Next,
considerk = 2m — 2 which gives

2m(2m —

1
—— = _log™! n/ (1+logz)®da
2n D! 0

;A[M (14 B(X,) — B(X,))? ~ ngim)
_ (2m)!
- 2m(m —

!

As for all other parts, using a similar reasoning shows that they contrilflate™ ' n). Hence,

m—1

2m)!
BI2ml (2m) log"™ " n.

" 2m(m — 1)!

5



Using the transfer theorem proves the claim in the even case.
As for the odd case, here the toll sequence becomes

B1[12m+1] _ Z (2m+ 1) ZAIC 1+ E ) E(Xn))2m+1_k.

k=0

Using similar reasoning as above, the term with= 2m contributeso(log™ n). All other terms give a

smaller contribution. Hence3™ ™ = o(log™ n). By the transfer theorem > ™" = o(log™ ' n). Due
to the remark preceding the proposition this implies our claim in the odd case.
Overall, we have proved the following result.

Theorem 1. Asn — oo, we have
X, —logn
Vlogn

To summarize, the only difference of our approach to the previous version of the moment-transfer
approach are two induction steps instead of only one. The first induction step establishes a certain shar
of all higher moments (centered and non-centered). Then, the second induction is used to derive mor
details concerning the leading term. Again, the main tool is the transfer theorem. Once such a result is
established, the remaining proof is rather automatic.

We will apply our new approach to a couple of other examples in the subsequent sections.

L, N(0,1).

3 Analysis of Priority Trees

Priority trees have been analyzed in several recent papersfkde], [15]. Since we are here just
interested in the applicability of our modified moment-transfer approach, we will just give the probabilistic
problem and direct the interested reader to the latter papers for background.

Length of the Left Path. We only briefly discuss this example due to its similarity to the example from
the previous section. Let,, be the length of the left path in a random priority tree build fromecords.
Then, we have

X0 LY+ Zooig,,  (n21),
Yngmﬁ.—i_l? (TLZ ]')7
Zo L Z; +1, (n>1),

whereX, = Z, = 0,Y, = 1 andl,, = Uniform{0, ..., n—1} with (1,,),,>1, (Y3.)n>0, (Zn)n>0 independent.

So, the central moments &f, andZ,, can be treated as in the previous section. Moreover, due to the
first recurrence, the (centered and non-centered) moments @fre connected to those &f, and 7,,.
Using this connection it is straightforward to prove tR&(X,,) ~ 2logn and that the--th central moment
of X,, (denoted as in the previous section) satisfies
(2m)!

m

APPml log™n and AP™ = O (log™n).

Consequently, we have the following result.

Theorem 2. Asn — oo, we have

X, —2logn g4
= — N(0,1).
v2logn (0.1)



Number of Key Comparisons for Insertion. This is a more sophisticated example whose proof of the
central limit theorem was briefly sketched i#].[] We will see that our approach applies quite straight-

forwardly. So, letX,, denote the number of key comparisons when inserting a random node in a random
priority tree build fromn records. Then, fon > 1,

X, (I, = ) a )Y+ U,_14, with probability(j +1)/(n + 1),
i =)= T with probability (n — j)/(n(n + 1)),

Yol (I, = j) & Y, +1, with probability (j +1)/(n + 1),
MW =T X, 12 with probability (n — §)/(n(n + 1)),

2, (L, = §) a ) Xj+U,_1-;+2, with probability (j +1)/(n + 1),
S A with probability (n — 7)/(n(n + 1)),

whereP(I, = j) = 1/n,0 < j < n, X, = 0,Yy, = Z, = 1, the probability generating function &f, is

given by
E (w'") = (“’*“‘1)

n
and(U,)n>0, (Xn)n>0, (Yn)n>o are independent.

The first step is to find the underlying recurrence which needs some tedious (but straightforward)
computations. Therefore, let

X(s,t) = Z(n +1)E () s™;

n>0
Y(s,t) = Z(n +1E (e"™) s™;
n>0
Z(s,t) =Y (n+1)E () s",
n>0
Then, from the above distributional recurrences, we get
0
—X(s,t) = Y(s,t Z(s,t);
o5 ) = T O A
0 t 2t
—Y(s,t) = Y(s,t X (s,t);
88 (87> 1_5 (57)+1_8 <S7 )7
0 €2t
—Z(s,t) = —— X (s,t Z(s,t
5570 = e X6 + 720 )
with initial conditionsX (0,¢) = 1 andY (0,t) = Z(0,t) = €'. EliminatingY (s, ¢) andZ(s, t) gives
o3 3+ 2et 02 2 et 0
—X(s,t) — — X (s,t) + 2¢' — —X(s,t
ds? (,2) 1—s 0s? (5,2) + 2 (1—s)2 (1—s)t)0s (5,2)
2€2t
——X(s5,t) =0
+ (1 _ 8)et+2 (37 )
with initial conditions X (0,¢) = 1, 2X(0,t) = 2¢', £5X(0,t) = 2¢' + 4e*. Now, let P,(t) = (n +

1)E(e'*). Reading off coefficients from the above differential equation yields

P =Y (;cz(t)é—!!(l)((i_l) v G52 )j(gf)( i) )P(zf), (n>3), ()




wherec, (t) = —4e! andey(t) = 3+2¢! and initial conditionsPy () = 1, Pi(t) = 2¢', andPy(t) = ' +2¢e*.
Finally, setAl]] = E(X]). Then, by differentiating times and setting = 0, we obtain

n—1 ] n 1 ]
7=0 =0 3

wherec, = ¢; = —2 andc, = 5, initial conditionsflg"] =0, [1[’"] 2, A[T] 1+ 27+, and toll sequence

I O o (07— (1)
=3 (1) S (S0 g+ i L 080

. Tlr—k]
(J +1)A4;

t=0

Hence, the underlying recurrence is given by
n 1 ])
Z Zl aj+by, (023 (8)
3! "
j=0 \1=0 3

with initial conditions as above (note that in slight difference to the previous sections, this is the recurrence
satisfied by the-th moment of X,, multiplied with » + 1). So, we need a transfer theorem for this
recurrence. Fortunately, this and more general recurrences were already studjed in [

Proposition 4. Consider 8).
(i) Letb, = O (n'~) withe > 0 suitable small. Then,
a, =cn+ O (nH) ,
wherec is a suitable constant.
(i) Letb, =nlog*nwitha € {0,1,...}. Then,

8nlog®ttn

1 1—e
] + nfPol,(logn) + O (n' ),

wheree > 0 is suitable small.
(iii) Letd, = O (nlog®n)witha € {0,1,...}. Thena, = O (n log®™! n)
(iv) Item (iii) holds withO replaced by as well.

Proof. See Section 2 in]. |
Before we use this result to treat (centered and non-centered) moments, we need a technical lemma.

Lemma 1. We have
d* [et+n
dth \n—1

wheree > 0 is suitable small.

2

= % log® n + n*Pol,_,(logn) + O (n*7°),
=0




Proof. The proof uses induction dn First fork = 1, we have

d (e +n e+ n\ v e (n+1)n 3
- = =—F— (Hwr1— 35 ),
dt(n—l)‘ (n—l)zet—i-j i

’ 2 2
t=0 Jj=2

t=0

where H, = >°7 1/ is then-th harmonic number. Hence, the claim follows from the well-known
asymptotic expansiof,, = logn + v + O (1/n), wherey denotes Euler’s constant.
Assume now that the claim holds for &ll < k. In order to prove it for, observe that

d_k et +n _d’“_1 et +n i et
dtk\n —1 Cdttt \\n—1 et + j

t=0 =2

t=0
1. n
dk 1—i 6t

k- i et +n
: 1 dtt\n—1
-0 ‘

(2

k—1—i t g ‘
:odt Jj=2 ¢t t=0

For the first derivative inside the sum, we can use the induction hypothesis. For the second derivative, on
shows by another induction (left as an exercise) that

dF < el

=logn+c+O(1/n)
t=0

@jﬁ et +j

for all £ > 0 with a suitable constant Plugging this in and doing some straightforward simplification
yields the claim. 1

Corollary 1. We have,
d¥ et +n
dtk n

wheree > 0 is suitable small. Moreover, we have

= nlog®n + nPol,_,(logn) + O (n'~°),
=0

d* (e +n g 2 2—¢
€ (n—l) :?log n + n*Pol,_, (logn) + O (n*~)
t=0
and
d¥ el +n i e
@6%( y ) = nlog" n + nPol,_,(logn) + O (n'~°),
t=0

wheree > 0 is suitable small.

Proof. All of the claims follow similarly. Hence, we just prove the first one. Therefore, note that

d* fet+n _ld_k(t+1) e'+n
dtx n t—O_ n dtk ¢ n—1

_2dF e+ +1 Fodki fet £
Condtf\n—1 n &~ dth-i\n—1

t=0 =1




Plugging in the result of the above lemma immediately yields the claim.
Now, we can turn to the mean which satisfiésWith » = 1. Hence, the toll sequence is given by

1 q ! D357 2e ()= ()
Zd‘@ 5ot © )

+

(G +1)

which we break into the two parts

and
g 2e (

—j—2 B —j—3
B = e

= dt 3! B

First, fora,, observe that

:n(—4/01952(1—:r)d$—|—2/01:1:3dx+0(1/n)) — /64 0(1),

where we have used Euler-Maclaurin summation formula. Next, we are going tgiraadere, we apply
Corollary1 and obtain

Bn :i n(HQi(i;(-nl)_ 2 ((n —j—2)log(n—j—2)+ca(n—7-2)+0 ((n - 2)176))
_ Z n(n%jl;r(;)_ 5 ((n —j2— 2) logln—7—2)+cn—37—-2)+0 ((n - 2)2e)> ’

wherec; andc, are suitable constants. By another application of the Euler-Maclaurin summation formula
and a trivial estimate for the remainder,

B = (2 /01 (1 — z)dx — /01 (1l — x)de) nlogn+cn+ O (n'™)
= %nlogn+nﬂ30[0(logn)+(’)( ),
wherec is a suitable constant ard> 0 is suitable small. Overall,
Bl = 1—12nlogn + nPoly(logn) + O (n'~°) .
Hence, by the transfer theorem
E(X,) = Al = %loan + Poly (logn) + O (1/n°).

As before, the next step is to show that a similar expansion more generally holds for all higher moments.

10



Proposition 5. For all » > 1, we have
Al = Pol(logn) + O (1/n°),
wheree > 0 is suitable small.

Proof. We use induction om. Note that the claim for = 1 was already proved above. Next, we assume
that the claim holds for alt’ < r. In order to show it for, we again break the toll sequence @f {nto
two partsa,, andj,,, where

r n—1 2 n—1
r d* (j)< 2— zj) . Tlr—k]
_— Cl Py (] + 1)A
=3 (1) Sty | oend
e (i) (i
I n—1 e'4+n—j— . et+n—j—
r dF 22 (", ) 1 — (2 , e
ﬁ"zz(k> e I A
k=1 §=0 3 t=0

Now, «,, and3,, are treated with exactly the same ideas as for the mean value above. For instance, wher
plugging the induction hypothesis intg, one obtains sums such as

nn—l n—2)

(‘Boi(logj) + 0 (1/5))

=1

<.

which due to Euler-Maclaurin summation formula yieRo((log n)+O (n'~¢). Hencep,, = nPol(logn)+
O (n'~€). Similarly, by plugging the induction hypothesis intp and using Euler-Maclaurin summation
formula and Corollaryi one obtains that, = nBol(logn) + O (n'=<). Overall,

Bl = nPol(logn) + O (n'~).

Applying the transform theorem concludes the inductioh.

Next, we turn to central moments. As in the previous section, the above proposition implies that
the central moments are of the same general shape. So, what is left is again to derive a more detaile
information of the leading term.

First, we need the recurrence of the central moments. Thereforg, @¢t= (n + 1)E(e!X»—EXn)),

Then, from @), we obtain forn > 3,

n—1 2 | n—1—j o et+nfj72 . et+n‘fjf2
Pn(t) _ Z (Z Cl(t)l ()( 2-1 ) + 2e ( n—j—2 )] ( n—j—3 >) et(E(Xj)_E(Xn))Pj(t>

<\ 3 () 3! (5)

with initial conditions Py (t) = 1, Pi(t) = 2¢~t, and Py(t) = 4 + 23, Next, setd!!! = E(X,, —
E(X,))". Taking derivatives times and setting = 0 yields

(DN ~[r]
> ag | (5 + DAY + Bl (n>3) (9)
3 (%)
=0 3
with initial conditions A" = 0, A7 = 2(—1)", Al = (—1)7(47 4+ 2 3") and toll sequence

n—1 ; 2 7\ (n—1—j 2 (€ ttn—j—2\ :  (et+n—j-2
" _ r d" l_'(z)( 20) | 2 ( n—j—2 )i = ( n—j—3 )

11,79,1
t1+i2+iz=r L7273 J=0 =1 3 s
13F#T

n—

(n+ 1)A£:] = Z

1
7=0

t=0

(E(X;) — E(X,))? (j + 1)A

11



Let us again first look at the variance. Hence, we have to choese in (9). As for the mean we
break the toll sequence into two patts andj3,,, where

wm 3 (i) S dpes G

3

(B(X;) = B(X,)2(k + 1) A}

21+12;Z5 =2 =1 +=0
i3 —~ _
1()£n12 i3
and
n—1 ; et+n—j5—2\ - et4+n—j—2
2 d" 262t ( n—j—2 )j B ( n—j—3 ) i i
b= 2 ( in, i ) ST R (R (B(X;) — B(X,))2(j + 1) A"
i1+7‘:2;é3:2 1,102,103 ! 3 =0
13 \ ~ V)

For «,,, we first considet, = 2 andi; = 0,

R =ty L () (PSr) IS INNR NP S
Piso~ > Y al0) —(glog j = 3log n) (j+1)

7=0 I=1 g)

@I»-B

! 13
4/ (1 — x) log? zdz + 5/ 23log? zdz | nlog®n = ———nlog®n.
0 0 1944

For the other terms in,,, we can use similar ideas to obtain the bodh¢ logn). Hence,

13
S TV

Next, we are going to treat,. Here, we first consideg = 0. Then, after a similar computation as fey,

> () P

i1 +ig=2 11,12
n—1 ; et+n—j5—2\ - et+n—j—2 i
2 ) d" 26%( n—j—2 )9_< n—j—3 ) (1 o . L. 5 \7 .
~ T - - =log®j—-log"n) (j+1)
i1§=2 (Zl’ 2/ g dtn 3! (3) 0 3 3

41 oo 1 ) n 1 | 103 1
~—— n— —nlog’n + —nlog’n = ——nlog®n.

T33" 108" 1 — qagnlog’n + fpnlegin = goamlog”

The other terms i, are easily shown to contribute onty (n logn). Hence,

By, ~ —1944n10g n
Overall, we obtain for the toll sequence
13 103 5
B~ — " pl ——nl = —nl
W~ T iggg" 08 Tgggnlog’ n = gognlog®n.

Using our transfer theorem yields
10
Var(X,,) ~ 31 log® n.

Now, the final step is to generalize these arguments to all central moments.

12



Proposition 6. For all m > 0, we have

2 10 ‘
Alml (Qﬂ (ﬁ) log™n and AR =0 (log® ' n).
mm!

Proof. We are going to use induction oan. Note that the claim holds for, = 0. Next assume that the
claim holds for allm’ < m. We will show that it holds forn as well.

First, let us consider the even case. Then, as for the variance, we are going the break the toll sequenc
of (9) into two partsw,, andj,,, where

n—1 ; 2 n—1
( 2m ) din ("5
=) > alt)z=mat

i1, 19,17 dti ”
i tigtig=2m N 172073/ =1 3)
i37$2m 4

(B(X)) ~ B(X,))™( + 1) A"

and

G- Y ( 2m )”1 dn 2_&((6@?;3;2)]'— (7))
i1 +iz+iz=2m i1, 4,83/ =5 di 3l ()
137#2m N - .

_Bn
_Ti17i2vi3

We first treato,, which we again break into two parié‘"] andy,[f“} according to whethei; is even or

not, i.e.,
S 2m -\ e,
n i 0. 20 11,12,213
i14igt2iz=2m N\ 12721203
i3#m
and

2 : 2m
[ _ —
" (il,i2,2¢3+1> 12 27+

i1+i2+2i3+1=2m

As for 2! , plugging in the expansion for the mean and the induction hypothesis gives

n—1 ; 2 n—1 . . .
o dn N ()5 1, o, 1. 5, \2, . (2i5)! (10 is
T~ i 20 5| (515 i) w0y (ee's)
Using ideas as in the proof of Propositibnwe obtalanl“;2 sis ™ CiyinisT 108 n, wherec;, ;, ;, are
suitable constants. Hence, choosing- 0, i, = 2, andi; = m — 1 gives the main contribution. So,

ol ~ (2 o — 2)T0,5,2m—2
n—1 N\ (n—1—j 2 . m—1
2m [! (]l)( 2713) Lo L. 5 (2i3)! (10
~ ) WA 2] (1025 2 1 |
(2,%—2)220’( )3 A (3 08 73708 ”) U+ Doai) (81 o8 ‘7)

13 (2m)! o\™" L
- = log® ! n.
1944 27 (m — 1)! ( ) ness

13



Next, fory["] we first consider the term with = 0,7, = 1 andiz = m — 1. Note that by Proposition
5 we know thatA”" " is a polynomial inlogn. Therefore, by induction hypothesis, we know that

AP clog®™ 2 j with a suitable constant Consequently,

o — l' (]l) (n;i?j) 1 2 . 1 2 . 3m—2 -
T07 om—1 ™~ ZZCl(O)?T (g log”j — glog n) (J+ 1clog™ 7
j=0 I1=1 ) 3

3
Foriz < m — 1, we can use similar ideas to show that; . = o (n log®™ 2 n) Therefore,

7

ylol = 2mTy T 51 + 0 (n logm ™2 n> ~ =5

Overall, we obtain for the contribution of,,

13 (2m)! 10\ . . 3dem _ 4
1944 2m(m — 1)1 \ 81

= 21 4 yle) o —

Next, we turn ta3,, which is handled in exactly the same manner. So, we again break it into two parts
2 andy! according to whether, is even or not. Consequently,

L8 — 2m N
n Z Z 22 11,892,213
i14ia42iz=2m N 1272 <"3
i37#m

and

2m
Bl § Tﬂn
Yn (7;17 2'2, 22'3) 11,42,2i3+1"

i1+120+2i3+1=2m

As for 21! the same reasonlng as above shows &t 5. ~ ¢y iy, log™ T2 0, wherec;, ;, ;, are
suitable constants. Hencg,= m — 1 gives the main ‘contribution. Consequently, by Corollagnd the
induction hypothesis,

2m
Jé] Bn
9511} ~ E ( . >Ti1,z'2,2m—2

=2 N1 "2
n—1 .
(n—j—2)2) ; .
~ 2 n—j—2)j—————|)log"(n—j—2
zlﬂgz:?(l’Zg)z;( j 2 © ( ’ )
om —2)l (10"
| 2’__1 2 : 1(— v log3m—3
(3 06 773708 ”) U+ gm0 (81) nios

41 (2m 1 /2m 1 /2m (2m—2)! /10\"™"' . |
~ | - — + — —_— | = nlog
1944\0,2) 216\1,1) " 12\2,0/) ) 2m=1(m — 1)! \ 81

103 (2m)! 10\ .
- = log®™ ! n.
194427 (m — 1)! (81) nos

14



For y[m we again start by looking a; = m — 1 for which due to Propositio® we haveA[Qm U~

3m=2 ; with a suitable constant Hence, as above

> e~ 2 (2)5 (1nms-2y- B

i1+ia=1 i1+i0=1 =0

: 1 1 2
log"(n —j —2) <§ log? j — = log? n> (j + 1)clog®™?

clog

3

Similar arguments foi < m — 1 show thatl’”", . =o (n 1Og3m—g n> Therefore,

11,12,i3

34cm
Bl 1 3m—1
Yy 516 nlog n.

Overall, we have

ﬂnN

103 (2m)! (10
216

1944 27 (m — 1)1 \ 81
Now, collecting everything gives

34
) nlog® 1 n + L log®™ 1 n.

B7[z2m] = oy + ﬁn
13 (2m)! 10\™" .., 3dem | o
194427 (m — 1) (81> nOsT T g e
103 (2m)! 10 P 34cm 3m—1
= log®™ log®™
T 19412 (m — 1) (81> e T

5 (2m)! 0\ .
_ e log®™ ! n.
108 2™ (m — 1) (81) nes s

and using the transfer theorem concludes the proof in the even case.

Next, we briefly sketch the odd case which can be treated with the same ideas as the even case. Agai
we break the toll sequence into two pattsand, which are defined as above (with the only difference
that2m is replaced b2m + 1). Then, as above, one shows that

17 (2m)! 3m+1

~ —(2m +1 1
ay, (2m + )2162mm'n og n
and 17 (2m)
m
2 1 1 3m+1 )
B e Gt ) o G108
Hence,

B7[12m+1] =Qp + 671

17 (2m)! 3m+1
~ —(2m+ 1)216 T nlog

= o0 (n(logn)®*™ ).
Using the transfer theorem shows thaf™ ™ = o (n(logn)*™*1) and due to the remark in the paragraph

succeeding Propositidnthe claim is established.l
Finally, by the Fechet-Shohat theorem, the last proposition implies the following theorem.

17 (2m)! n 10g3m+1

2m +1
n+(2m+ )216 2mm

15



Theorem 3. Asn — oo, we have

X, —log’n/3 4

—
\/101og® n/81

Another example which is very similar to the one above is the depth of a random node in a random
priority tree of sizen; see [L4]. Here, the underlying recurrence is as above. Hence, one can again use the
transfer theorem to derive the central limit theorem. Since the details are straightforward, we leave then
as an exercise for the reader.

N0, 1).

4  Further Examples

In this final section, we will briefly sketch some further examples. It should by now be clear that our
approach essentially rests on the transfer theorem. Once such a result is established, the remaining pro
is rather automatic.

Number of Key Comparisons for Insertion and Depth in Binary Search Trees. These examples are
similar but more easier than the examples discussed in the previous section. For instaXigeldebte

the number of key comparisons when inserting a random node in a random binary search tree build fron
n records (this quantity is also called “unsuccessful search”; see Chapter 3 forfbackground). Then,

forn >1,

X; +1, with probability (j + 1)/(n + 1),

€ J) {Xn—l—j + 1, with probability(n — 1 — j)/(n + 1)

with P(1,, = j) = 1/n,0 < j < n andX, = 0. From this, a straightforward computation reveals that the
underlying recurrence (with a scaling facto# 1 as in the previous section) is given by

n—1
an:%;aﬁbn, (n>1) (10)
with ay = 0. A transfer theorem for this recurrence of similar type as in the previous section is easily
derived and can be found ig][
Proposition 7. Consider (L0).
(i) Letd, = O (n'~¢) with e > 0 suitable small. Then,
a, =cn+ O (nl_e) ,
wherec is a suitable constant.
(i) Letd, =nlog®nwitha € {0,1,...}. Then,

_ 2n log®*n

o + nPol, (logn) + O (n' ),

G

wheree > 0 is suitable small.

(i) Letb, = O (nlog®n) witha € {0,1,...}. Thena, = O (nlog™*' n).

16



(iv) Item (iii) holds withO replaced by as well.

Hence, our approach applies as in the last section (the technical details being easier) and we obtain tf
following theorem.

Theorem 4. Asn — oo, we have

X, —2logn 4
———— — N(0,1).
v2logn (0.1)

Similarly, the depth of a random node satisfies almost the same distributional recurrence (again set
Chapter 2 in [ 1] for background). Hence, again a central limit theorem follows from the above transfer
theorem by applying our approach.

Depth of Variants of Binary Search Trees. The previous example of the depth can be extended to
several extensions of binary search trees. Here, we are going to discuss three of them, namely, median-c
(2t + 1) binary search trees (sed), m-ary search trees (seg]], and quadtrees (se&]). Subsequently,
let X,, denote the depth of a randomly chosen record in the random tree builchfrenords. Moreover,
the underlying recurrence will be satisfied by all centered and non-centered moments multiplied by

First, for median-ofi2¢+1) binary search treesy,, satisfies the distributional recurrence fop 2t+1

X;+1, with probability j /n,
Xl (In = j) £ { X,_1_; +1, with probability (n — 1 — j)/n,
0, with probability 1/n

with P(I, = j) = (1) ("7, 77)/(,+1),0 < j < n and suitable initial conditions. Hence, the underlying

recurrence is given by

Mi

<)(”_1_J>aj+bn, (n>2t+1) (11)

with suitable initial conditions. This recurrence was extensively studiedinr particular, the following
transfer theorem can be proved with the tools of the latter paper.

2t+1 j=0

Proposition 8. Consider (1).
(i) Letd, = O (n'~) withe > 0 suitable small. Then,
a, =cn+ O (nl_e) ,
wherec is a suitable constant.
(i) Letd, =nlog®nwitha € {0,1,...}. Then,

nloga—i-l
(Hatyo — Hipr)(a + 1)

Ap —

+ nPol, (logn) + O (n' ) ,

wheree > 0 is suitable small and?, = 3°7_, 1/; denotes the:-th harmonic number.

("I) Letb” =0 (7’L loga TL) witha € {Oa L.. } Thenian =0 (n 10ga+1 n)

17



(iv) Item (iii) holds withO replaced by as well.
Hence, our approach applies and yields the following result (§der{a different approach).
Theorem 5. Asn — oo, we have

X, —log n/(H2t+2 - Ht—',—l)

—5 N(0, 1),
\/(Héf-)i-Q — H{?))logn/(Hy — Hyiy)?
2 n .
whereH? = > 1/5%
Next, for them-ary search tree, we have for> m — 1

Xj +1, with probability j; /n,

Xn I}Ll]:jl,7[1[lm]:]m g )
[ ) X, +1, with probability 5., /n,

0, with probability (m — 1) /n

with P(IY =1, I =3, = 1/(" ) gty 2 0,1+ o4 =n—m+1andXy=--- =
Xm—2 = 0. The underlying recurrence is given by

n—m-+1 .
— 1=
) (” j)aj+bn, (n>m—1) (12)
(mfl) j=0 m— 2
with ap = --- = a,,_2 = 0. Also, this recurrence was already investigated before and transfer theorems

can be found in4] and [5].
Proposition 9. Consider (2).
(i) Letd, = O (n'~) withe > 0 suitable small. Then,
a, =cn—+ O (nl’e) ,
wherec is a suitable constant.
(i) Letb, =nlog*nwitha € {0,1,...}. Then,

nlog®tn
(Hp — )(a+1)

ay, = + nPol,(logn) + O (n' ™),

wheree > 0 is suitable small and?, = 37, 1/; denotes the:-th harmonic number.
(i) Letb, = O (nlog®n)witha € {0,1,...}. Thena, = O (nlog®*' n).
(iv) Item (iii) holds withO replaced by as well.

Then, again by our approach, the following result can be proved (seeZdland [17] for different
approaches).

18



Theorem 6. Asn — oo, we have
X, —logn/(H,, —1)

: —L, N(0, 1),
VH? = 1) logn/(H,, 1)

whereH" = 5" 1/52.

Jj=1

Finally, for d-dimensional quadtrees, we have fop 1
X, +1, with probability 7, /n,

(10— 1) £ -
X, +1, with probability joa /7,

0, with probability1/n
with X, = 0 and

) . n—1 . )
P(]T[Ll] = j1,... ’[7[12d] — ]Qd) = (jl ; d) / dql(X)Jl . --qu(x)Jgdx,
yeees ]2 [071]

wherejy, ..., joa > 0,51+ + joa =n— 1,x = (21,...,24) and

an(x) = H (1 = bi)a; + bizy) (1<h<29)

=1

with (by, ..., by)- the binary representation 6f— 1. From this, we obtain for the underlying recurrence
n—1
an = QdZ'ﬂ_n’jazj + by, (n>1) (13)
j=0

with ap = 0 and

1 . )
Tnj = <n , > / (1 xg) (1 — - -:cd)”_l_J dx.
J [0,1]¢

This recurrence was studied if][ The following transfer theorem can be proved with tools from the latter
paper.

Proposition 10. Consider (3.
(i) Letd, = O (n'~°) with e > 0 suitable small. Then,
a, =cn+ 0O (nl_e) ,
wherec is a suitable constant.
(i) Letd, =nlog®nwitha € {0,1,...}. Then,

_ 2n log®™ n

1—e
Ay = o+ 1) + nPol, (logn) + O (n' ),

wheree > 0 is suitable small and7,, = 37, 1/j denotes the-th harmonic number.
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(i) Letb, = O (nlog®n)witha € {0,1,...}. Thena, = O (nlog®*' n).
(iv) Item (iii) holds withO replaced by as well.
Using our approach then gives the following result (see alkarjd [6] for different approaches).
Theorem 7. Asn — oo, we have
X, —2logn/d

\/2logn/d?

Number of Collisions in the 3(2, b)-Coalescent. This is an example from coalescent theory (s&@ [
for background). LefX,, be a sequence of random variables satisfying

—L, N(0,1).

Xpo L X 41 (n>2)
with X; = 0 and(/,),>1 independent ofX,,),,>1 with distribution

T(n—j+b—1)T(n+1)
(J+DI'(n = j)I'(n+b)H(n,b)

Mg = Pl = j) = (1<j<n—1),

whereb > 0 and )

b+n—1
The authors of 10] asked for a proof of their main result (a central limit theorem Xgy suitable cen-
tralized and normalized) directly from the above recurrence. Indeed, our approach is able to solve this
problem once a suitable transfer theorem for the underlying recurrence is proved. Therefore, note that th
underlying recurrence (without a scaling factor) is given by

H(n,b) = +U(b+n—1)—Y() — 1.

n—1
n = Z T, j0n—j + bna (n > 2)7 (14)
j=1

wherea,; = 0. Unfortunately, due to the more complicated nature,of this recurrence is more involved.
In particular, we have not been able to prove an analogous result to part (i) of the transfer results above
However, we strongly conjecture that the following claim holds true.

Conjecture 1. Consider (4). Letb, = O (1/n°) with ¢ > 0 suitable small. Then,
a, =c+ O (1/n%),
wherec is a suitable constant.

As before, apart from this property, we need a couple of other transfer properties. However, once this
conjecture is established, the other properties can be deduced from it.

Proposition 11. Assume that the above conjecture holds.
() Leth, =log®nwitha € {—1,0,1,...}. Then,
loga—‘rQ

ap = ————
(o + 2)my

+ nPol,,,(logn) + O (1/nf),
wheree > 0 is suitable small andn, = (2, b) with {(z, b) the Hurwitz zeta function.
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(i) Letd, = O (log” n) witha € {—1,0,1,...}. Thena, = O (log**"*n).
(iii) Item (ii) holds withO replaced by as well.

Proof. All these properties follow from the conjecture by using similar ideas ash [ |
Finally, by applying our approach, we obtain the following result.

Theorem 8. Asn — oo, we have

\/m2 log® n/(3m3)

wheremy = 2((3,b).
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Participation in conferences within NSC
97-2628-M-009-008

by

Michael Fuchs

This is a short report concerning participation in international conferences
within my national science counsel project NSC 97-2628-M-009-008.

| participated in the 9th International Conference on Finite Fields and Their
Applications, Dublin, Ireland, July 13-19, 2009. The conference was to honor the
65th birthday of Prof. Harald Niederreiter (retired from National University of
Singapore) who was the supervisor of my master thesis. Participation was only
possible after submitting and acceptance of an abstract of the proposed talk. The
abstract of my talk which took place on July 16th, 2009 is enclosed.

After my talk, | had a couple of interesting discussions with Alain Lasjau-
nias (University of Bordeaux) and we started to work on an interesting problem
concerning continued fractions in the field of formal Laurent series over a finite
field. We have already achieved some partial results and this might lead to a future
research paper.



Metric Diophantine Approximation for Formal Laurent
Series over Finite Fields

Michael Fuchs

National Chiao Tung University

Let F,((T')) be the field of formal Laurent series endowed with the
valuation | - | induced by the degree function. Consider the set

L={feF,(T7"): Ifl <1}
together with the Haar probability measure. Several recent studies investi-
gated the diophantine approximation problem
P 1 B PO —
f_é <W> deg@ =mn, ged(P,Q)=1, (1)
where f € L and [, is a sequence of non-negative integers.

For instance, in [1] a strong law of large numbers with error term for the
number of pairs (P, Q) with (1) with deg @ < N was proved. Moreover, in [2]
a similar result for (1) without the comprimeness assumption was established,
however, under further assumptions on [,, and without an error term.

In this talk, we will discuss improvements of these results as well as gen-
eralizations to inhomogeneous Diophantine approximation, restricted Dio-
phantine approximation, and simultaneous Diophantine approximation. A
typical result which improves the main result in [2] reads as follows:

Theorem The number of pairs (P, Q) satisfying (1) without the coprime-
ness condition and deg Q) < N is almost surely given by

U(N) + O ((¥(N))2(log W(N))*),
where € >0 and ¥(N) =X,y q .
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