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附件一



1.Introduction (前言與研究目的) 

This study is intended to examine the empirical performance of the 
Constant–Elasticity-of-Variance (CEV) option pricing model by Cox (1975) and Cox and 
Ross (1976), especially whether and by how much the generalization of the CEV model 
among prevailing option pricing models improves option pricing. In order to reduce the 
empirical biases of the Black-Scholes (BS) (1973) option pricing model, succeeding option 
pricing models have to relax the restrictive assumptions made by the BS model: the 
underlying price process (distribution), the constant interest rate, and the dynamically 
complete markets. The tradeoff is, however, a more computational cost.  

To examine whether these generalized models are worth the additional complexity 
and cost, Bakshi, Cao and Chen (1997) compared a set of nested models in which the most 
general model allowed volatility, interest rate, and jumps to be stochastic (SVSI-J)1. They 
examined four alternative models from three perspectives: (1) internal consistency of 
implied parameters/volatility with relevant time-series data, (2) out-of-sample pricing, and 
(3) hedging. Their research showed that modeling stochastic volatility and jumps (SVJ) is 
critical for pricing and internal consistency, while introducing stochastic volatility (SV) 
alone yields the best performance for hedging.2 However, models not in the nested set 
were not evaluated in their empirical study. Accordingly, the CEV model, which introduces 
only one more parameter while providing the time-changing volatility feature, is not nested 
in the stochastic volatility model and thus not empirically tested by Bakshi, Cao and Chen 
(1997). Therefore, this study is to include the CEV model in the empirical investigation 
and examine the model performance. 

Although the CEV model is not as general and flexible as the SVJ model, its 
simplicity may still be worth exploring since the above mentioned models are expensive to 
implement. In particular, the above mentioned models, when applied to American option 
pricing, require high-dimensional lattice models which are prohibitively expensive.  On 
the other hand, the CEV model requires only a single dimensional lattice (Nelson and 
Ramaswamy (1990) and Boyle and Tian (1999)). 

The CEV model proposed by Cox (1975) and Cox and Ross (1976) is complex 
enough to allow for changing volatility and simple enough to provide a closed form 
solution for options with only two parameters. The CEV diffusion process also preserves 

                                                 
1 Bakshi, Cao and Chen (2009) complement the nested model tests and report the empirical performance of 
the four models nested in the SVSI model. According to the pricing and hedging performance measures, their 
results show that the SVSI and the SV models both perform much better than the stochastic interest rate (SI) 
and the BS models. The SI model can produce respectable pricing improvement over the BS model. 
However, in the presence of stochastic volatility, doing so no longer improves pricing performance much 
further.  
2 Bakshi, Cao and Chen (2000) expanded their samples to longer term options using LEAPS. Their empirical 
results still indicate that modeling stochastic volatility is the first-order of importance. Once the model has 
accounted for stochastic volatility, allowing interest rates to be stochastic does not improve pricing 
performance any further. Only for devising a hedge of LEAPS put does incorporating stochastic interest rates 
make a difference. However, the hedging performance is not the interest of this paper. Therefore, we will 
focus our analysis on pricing performance. 
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the property of nonnegative values of the state variables as is in the lognormal diffusion 
process assumed in the Black-Scholes model (Chen and Lee, 1993). The early research of 
the CEV model was conducted by MacBeth and Merville (1980) and Emanuel and 
MacBeth (1982) to test the empirical performance of the CEV model and compared it with 
the BS model. Recent studies of the CEV process include applications in path-dependent 
options and credit risk models. We will briefly review and summarize the literature in 
Section 2.  

The empirical study of the CEV model was first conducted by MacBeth and 
Merville (1980). They provided results on six stock options and showed that the CEV 
parameter β is generally less than two, which explains the empirical evidence for the 
negative relationship between the sample variance of returns and stock prices. Manaster 
(1980) criticized the approach by MacBeth and Merville (1980) and suggested that (i) the 
CEV parameter β and the volatility parameter δ  should be estimated jointly without 
using the information (implied parameterσ̂ of at-the-money option) from the BS model, 
and (ii) post-estimation testing should be conducted to see whether the CEV model 
continues to fit the observed date better than the BS model for the day or week following 
the parameter estimation. In response, Emanuel and MacBeth (1982) tested the 
post-estimation performance of the CEV model but still used similar approach for 
parameter estimation. More recently, Lee, Wu, and Chen (2004) took S&P 500 index 
options as opposed to stock options to avoid the American option premium biases, but still 
employed the similar two-step estimation to obtain the estimatedβ andδ . Also using the 
S&P 500 index to reduce market imperfections, Jackwerth and Rubinstein (2001) 
compared the ability of several models including the CEV model to explain the otherwise 
identically observed option prices that differ by strike prices, times-to-expiration, or trade 
times. They found that the performance of the CEV model is similar to other models they 
tested, and those better performing models all incorporate the negative correlation between 
the index level and volatility.  

In contrast to the previous empirical studies of the CEV model, first, we jointly 
estimate parameters β and δ by minimizing the sum of squared dollar pricing errors, 
absolute dollar pricing errors, and percentage pricing errors of the daily market price and 
the estimated price of options. Secondly, a “synchronized” dataset of stock prices and 
option prices by Bakshi, Cao and Chen (1997) is used3. We find that (i) In terms of 
in-sample performance, the squared sum of pricing errors of the CEV model is similar to 
the SV models in short-term and at-the-money options, but is worse in other categories and 
(ii) In terms of out-of-sample performance, the mean absolute errors and percentage errors 
show that the CEV model performs better than the SV model in the short term and 
out-of-the-money categories. In addition, the CEV model is even better than the SVJ 
model in a few cases in these categories.  

The rest of the paper is organized as follows: Section 2 reviews the CEV model and 
previous empirical studies. The recent applications under the CEV process of 

                                                 
3 We thank Charles Cao for providing the original data of the paper “Empirical Performance of Alternative 
Option Pricing Models,” Journal of Finance, 1997. 
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path-dependent option pricing as well as credit risk derivative modeling are also presented. 
Section 3 discusses the CEV model as well as alternative models to be empirically tested in 
our study. Section 4 provides the empirical testing results, and Section 5 presents 
conclusion. 

2. Literature Review (文獻探討) 

We first review the CEV model and previous empirical studies in Section 2.1. In 
Section 2.2, the recent applications under the CEV process of path-dependent option 
pricing as well as credit risk derivative modeling are presented. 

2.1 The Constant Elasticity Variance Option Pricing Model  

2.1.1 The CEV Option Pricing Model  

An important issue in option pricing is to find a stock return distribution that allows 
returns to stock and its volatility to be correlated with each other. There is considerable 
empirical evidence that the returns to stocks are heteroscedastic and the volatility of stock 
returns changes with the stock prices. A great deal of empirical evidence indicates that 
stock volatility is negatively related to the stock price, and it is so-called leverage effect 
first discussed by Black (1976). To accommodate this leverage effect, the Constant 
Elasticity of Variance (CEV) model by Cox (1975) and Cox and Ross (1976) relaxes the 
constant volatility assumptions of the Black-Scholes model and treats volatility as a 
deterministic function – as a power function of the price of the underlying asset. The 
rationale for an inverse relationship between the stock price and its variance of return can 
be explained by some simple economic arguments. Researchers use both financial and 
operating leverage arguments. A decline in a leveraged firm’s stock price may lead to an 
increase in its debt-equity ratio, hence the riskiness of the stock increases. Even if a firm 
has no debt, the decline of the stock price can make it more difficult for the firm to meet its 
fixed costs and thus increases volatility (Hull, 2002). 

The CEV model assumes the diffusion process for the stock is  

 (Eq 2.1.1) dzSSdtdS 2/βδµ += , 

and the instantaneous variance of the percentage price change or return, 2σ , follows 
deterministic relationship:  

(Eq 2.1.2) )2(22 ),( −= βδσ StS             

where the elasticity of this variance with respect to the stock price equalsβ .  

If β =2, prices are lognormally distributed and the variance of returns is constant, 
which is the same as the well-known Black-Scholes model. If β <2, the stock price is 
inversely related to the volatility. Cox originally restricted 20 <≤ β . Emanuel and 
MacBeth (1982) extended his analysis to the case 2>β and discussed its properties. 
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However, Jackwerth and Rubinstein (2001) found that typical values of theβ can fit market 
option prices well for the post-crash period only when 0<β , and they called the model 
with 0<β the unrestricted CEV model4. In their empirical study, the difference of the 
pricing performance of restricted CEV model ( 0≥β ) and BS model is not significant.  

When β <2, the nondividend-paying CEV call pricing formula is as follows: 

(Eq 2.1.3) 
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When β >2, the CEV call pricing formula is as follows: 

(Eq 2.1.4) 
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C is the call price; S, the stock price; τ , the time to maturity; r, the risk-free rate of 
interest; K, the strike price; andβ andδ , the parameters of the formula. 

2.1.2 Previous Empirical Studies  

MacBeth and Merville (1980) were the first to empirically test the CEV option 
model. They tested the CEV model against the Black-Scholes (BS) model using daily 

                                                 
4 The unrestricted CEV model is mathematically legitimate. However, there are some economic arguments 
supporting a restriction on the parameter β . For example, it is inconceivable for the stock index to have a 
significant probability of bankruptcy while this is likely with sufficiently negative β . See the detail in 
Jackwerth and Rubinstein (Page 12; 2001) and Bates (1996a).    
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closing prices of call options on six companies’ stock from December 31, 1975 to 
December 31, 1976. Their estimation procedure is as follows: 

From (Eq 2.1.1),  

(Eq 2.1.5) )1()( 2
2

χµ
β ∝≡

−
tu

dtS
SdtdS  

where the constant or proportionality is 2/1 δ . 

Following (Eq 2.1.5), for some interval of time dt,  

(Eq 2.1.6) )]1(ln[lnln2ln])ln[( 22 χβδµ ++=−− SdtSdtdS .  

They first estimate µ from the sample of daily returns. Point estimates of the 
elasticity parameterβ can then be obtained using a linear regression since the Chi-square 
random variables are uncorrelated through time. Note that they only choose the integer 
value ofβ and fix it the same for all options written on the same stock. The way they 
choose the integer value is that starting with their point estimate ofβ , they use a numerical 
routine to calculate an implied value ofδ for each observed option price until they have 
approximately the same of value ofδ for each option price. This is done on four arbitrarily 
selected days during a year. Finally, δ is deduced from the BS model by taking an 
at-the-money option on a given day. That is 2/)2( βσδ −= ttt S where the variance rate 2

tσ is 
from the BS model.  

Their empirical results show that the CEV parameterβ is generally less than two 
and ranging from -4 for IBM to 1 for Xerox, which explains the empirical evidence for the 
negative relationship between the sample variance of returns and stock price. Moreover, 
they demonstrate that under these circumstances, the CEV model generates estimated 
option prices closer to the market prices than those of the BS models.  

Manaster (1980) criticized the approach by MacBeth and Merville (1980) and 
suggested that (i) the CEV parameter β and the volatility parameterδ should be estimated 
jointly without using the information (implied parameterσ̂ of at-the-money option) from 
the BS model, and (ii) post-estimation testing should be conducted to see whether the CEV 
model continues to fit the observed date better than the BS model for the day or week 
following the parameter estimation.  

In response, Emanuel and MacBeth (1982) tested the post-estimation performance 
of the CEV model for 1 day, 5 days (a week), and 17 days (a month) including the daily 
closing prices of call options written on the same six stocks for each day in 1978. To 
perform the out-of-the-sample test, they select the best value ofβ on each day by searching 
integer values minimizing the squared deviation between model prices and market prices 
of option with at least 90 days to expiration. Their results showed that the CEV model 
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yields more accurate predictions of future option prices than the BS model in nearly all 
cases in the period of less than one month5.   

Using time series data of underlying assets alone, several empirical studies found 
that estimates of β are confined to 0 and 2 as opposed to the negative estimates. Beckers 
(1980) estimated the CEV parameters for 47 stocks using the daily stock price data from 
1972 to 1977. He found that most return distributions are less positively skewed than the 
lognormal ( 2<β ) and support the significant relationship between the level of the stock 
price and its volatility. Gibbons and Jacklin (1988) examined stock prices over a longer 
data sample during 1962 to 1985, and also almost invariably estimatedβ between 0 and 2.   

Recently, Lee, Wu, and Chen (2004) took the S&P 500 index options as opposed to 
stock options to avoid the American option premium biases, and used the non-central 
chi-square probability functions proposed by Schroder (1989) to reduce the approximation 
errors. In addition, they also expanded their analysis into six moneyness and three maturity 
categories. They employed a similar two-step estimation to obtain the estimated β andδ as 
MacBeth and Merville (1980), and the difference was that they did not constrain the 
elasticity valueβ to integer values. Their results still supported the MacBeth and Merville 
results (1980) although the samples were not subject to the American premium biases. The 
CEV model in terms of the non-central chi-square distribution performs better than the 
Black-Scholes model in pricing the S&P 500 index call options during January 1, 1992 to 
June 30, 1997. Furthermore, with the estimates of 2<β for the sample period, it is implied 
that a negative relation exists between the sample index value and its volatility of daily 
returns.  

Also using the S&P 500 index to reduce market imperfections, Jackwerth and 
Rubinstein (2001) evaluated five kinds of option models with a total of nine models among 
the deterministic models, the stochastic models and the naïve trader rules. The five 
categories of models are: (i) the Black-Scholes model; (ii) two naïve smile-based 
predictions that use today’s observed smile directly for the prediction; (iii) two versions of 
the CEV models; (iv) an implied binomial tree model; and (v) three parametric models 
including displace diffusion, jump diffusion, and stochastic volatility. 

They performed two main types of tests for the following relations: (1) Options 
prices at the same time, with the same underlying asset, and the same strike price, but with 
different times-to-expiration; (2) Option prices with the same underlying asset, the same 
expiration date, and the same ratio of strike price to underlying asset price, but observed at 
different times. Investigating the relation (1) involves the problem of deducing short-term 
option prices from longer-term option prices. The volatility smile for the longer-term 
options is assumed known, and the volatility smile for the shorter-term options is unknown. 

                                                 
5 They also noted that the CEV model works best when β is less than two, given the empirical evidence that 
implied volatility is inversely related to stock price. However, for the period of April to November in 1978, 
the estimated values of β are larger than two. This in turn predicts that volatility and stock price move in the 
same direction and hence reduces the superior predictive power of option prices of the CEV model compared 
with the BS model during 1978.   
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They then fitted the alternative option models to the longer-term option prices, and 
compared the model values with the observed market prices for the shorter-term options 
and calculated pricing errors (backward-looking test). To investigate relation (2), they 
calibrated alternative models on current longer-term option prices, and computed the errors 
of the forecast prices using the underlying asset price observed 10 and 30 days later 
(forward-looking test). To decompose the source of any remaining pricing errors, they also 
conducted related experiments assuming in addition that the at-the-money implied 
volatility of the shorter-term options in the test (1), and the future at-the-money option 
price in the test (2) are known.  

The database includes minute-by-minute trades and quotes from April 2, 1986 to 
December 29, 1995, which can be divided into a pre-crash period from April 2, 1986 to 
October 16, 1987, and a post-crash period from June 1, 1988 to December 29, 1995. All 
option models are parameterized to price the observed longer-term options best, those with 
times-to-expiration between 135 and 225 days, and options with 45 to 134 days to 
expiration are classified as shorter-term options. They then calculate the implied volatilities 
for these two groups each day and use the median implied volatilities as the representative 
daily volatility smile for a given time-to-expiration. Finally, due to the lack of liquidity for 
the deep out-of-the money and deep in-the-money options, they only use those with 
moneyness (strike price / index level ratios) between 0.79 and 1.16.   

Jackwerth and Rubinstein found that in the pre-crash period, all models match the 
performance of the Black-Scholes model. The reason is that the volatility smiles were 
almost flat during this period. In the post-crash period, surprisingly, the naive trader rules 
perform best. Furthermore, the performances of all models are very similar, except the 
Black-Scholes and the restricted CEV model. The unrestricted CEV model is similar to 
other models they tested, and those better performing models all incorporate the negative 
correlation between index level and volatility.  

2.2 Recent Development and Applications of the CEV Process  

Recent applications of the CEV process are mainly in path-dependent option and 
credit derivative pricing. We first summarize the recent path-dependent option pricing 
studies under the CEV process in Section 2.2.1, and then present the credit risk application 
of the CEV process under the unified pricing framework in Section 2.2.2.  

2.2.1 Path-Dependent Option Pricing  

In the context of path-dependent option pricing, numerical method of the CEV 
process was first developed by Nelson and Ramaswamy (1990) using the binomial method. 
Boyle and Tian (1999) then constructed a trinomial method to approximate the CEV 
process and used it to price the barrier and lookback options. Boyle and Tian found that the 
prices of the barrier and lookback options for the CEV process deviate significantly from 
those for the lognormal process in the BS model, while the corresponding differences 
between the CEV and the Black-Scholes models are relatively small. They concluded that 
the model specification of options depend on extrema is much more important than for that 
of standard options. Later on, Detemple and Tian (2002) proposed a recursive integral 
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equation for the valuation of American-style derivatives when the underlying asset price 
follows the CEV process. Using the Early Exercise Premium (EEP) representation, they 
derived a recursive integral equation for the exercise boundary and provide a parametric 
representation of the prices of American option and American capped option.  

Opposed to the numerical method, Davydov and Linetsky (2001, 2003) derived the 
analytic closed-form formulae for the prices of the barrier and lookback options. In the 
former paper, a Euler numerical inversion algorithm of the Laplace transforms is used to 
obtain the option value, while in the latter they used a different approach by Eigenfunction 
expansion. Leung and Kwok (2006) derived the analytic expressions for the double 
Laplace transform of the density function of occupation time and the joint density function 
of occupation time and terminal asset value under the CEV process. They also used it to 
price the α -quantile options. In addition to the research mentioned above, some 
applications of the CEV process in path-dependent option pricing and the related papers 
are Lo, Yuen, and Hui, (2000), Lo, Tang, Ku and Hui (2004), and DelBaen and Sirakawa 
(2002). 

2.2.2 Application in Credit Risk and Derivative Modeling  

In credit risk modeling, the CEV process also has an advantage over the geometric 
Brownian motion that, intuitively, the standard CEV process can hit zero due to the 
increased volatility of the former process at low stock prices while the geometric Brownian 
motion cannot. To circumvent the estimation problem of structural credit risk models in 
which the leverage information is from the stale book values, these studies alternatively 
model the default trigger event as equity value hitting the zero barrier. In addition, the 
empirical evidence of the clear link between default risk and equity volatility can also be 
parsimoniously captured using the CEV process given its ability to model the leverage 
effect.  

Albanese and Chen (2004) and Campi and Sbuelz (2005) used the CEV model to 
price the equity default swaps. Carr and Linetsky (2006) and Campi, Polbennikov, and 
Sbuelz (2005) further introduced the hazard process of the reduced-form models to avoid 
the default predictability issue. Their models assume that the stock price follows a CEV 
diffusion, punctuated by a possible jump to zero. Therefore, using the stock process hitting 
zero as the default trigger event, the default can come from either diffusion or the 
unpredictable Poisson jump process. They call the resulting stock price process the jump to 
default extended CEV process (the JDCEV model). They also showed that, by 
incorporating jump into the model, the JDCEV model can capture the volatility skews 
much better than the pure CEV diffusion model, especially for the skews across different 
moneyness.    

Carr and Linetsky (2006) developed a unified framework under the CEV diffusion 
and jump to default process for pricing, trading, and risk managing corporate liabilities, 
credit derivatives, and equity derivatives. Their generalizations are financially relevant as 
they include killing (default), as well as time-dependent parameters, while retaining 
analytical tractability due to the remarkable properties of the Bessel processes. Campi, 
Polbennikov, and Sbuelz (2005) also used a similar but time homogeneity setting, which 
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does not include correlated jump parameter, for corporate bond prices and credit default 
swap (CDS) prices.  

 Carr and Linetsky (2006) assume frictionless markets, no arbitrage, and take an 
equivalent martingale measure (EMM)Q . The pre-default stock dynamics under the EMM 
is a time-inhomogeneous diffusion process solving a stochastic differential equation  

(Eq 2.2.1) tttttt dBStSdtStStqtrdS ),()],()()([ σλ ++−= ; 00 >= SS  

where 0)( ≥tr , 0)( ≥tq , 0),( >tSσ and 0),( ≥tSλ are the time-dependent risk-free interest 
rates, time-dependent dividend yields, time- and state-dependent instantaneous stock 
volatilities, and time- and state-dependent default intensities, respectively.  

To be consistent with the leverage effect and the implied volatility skew, Carr and 
Linetsky (2006) assume the instantaneous volatility as a CEV process6 βσ StatS )(),( = . In 
addition, to be consistent with the empirical evidence of linkage of corporate bond yields 
and CDS spreads to equity volatility, the default intensity is assumed as an affine function 
of the instantaneous variance of the underlying stock  

(Eq 2.2.2) βσλ 222 )()(),()(),( StcatbtSctbtS +=+= . 

where 0)( ≥tb is a deterministic non-negative function of time and 0>c governs the 
sensitivity of default intensity to instantaneous equity variance 2σ . By letting both the 
hazard rate and the instantaneous variance depend on the stock price, the JDCEV model 
accommodates large negative correlations between default indicators and stock prices, and 
between realized volatilities and stock prices. Moreover, by forcing the hazard rate and the 
instantaneous variance to depend on the stock price in the same manner, the JDCEV model 
induces the large positive correlation between default indicators and volatilities that have 
been observed in the market. The parametersβ and c both play a role in determining the 
slope of the volatility skew, which gives more flexibility in accommodating slopes which 
vary with term. Note that their pre-default process is a CEV process with the additional 
term 122 )( +βStca in the drift term. 

Note that the standard CEV model of Cox (1975) is nested within their general 
specification. In fact, the JDCEV model nests a more general time-inhomogeneous version 
of Cox’s model with time-dependent interest rate, dividend yield, and volatility scale 
parameters )(tr , )(tq , and )(ta , respectively. To obtain this special case, set 0=b and 0=c , 
so that default can only occur when the stock price diffuses into zero7. When 0>b is a 
positive constant and 0=c , the JDCEV model reduces to the CEV model with killing at a 
constant rate considered by Campi et al. (2005). In fact, the model by Campi et al. (2005) 

                                                 
6 They follow the notation of Davydov and Linetsky (2001a, 2003).  
7 The CEV process with 0<β hits zero with positive probability. In contrast, for 0=β the limiting process 
of geometric Brownian motion never hits zero. 
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differs from the JDCEV model only in that they impose time-homogeneity and the default 
intensity is independent of the stock price and the return volatility.  

3. The Option Pricing Models (選擇權模型) 

In this section, the CEV and the stochastic volatility models to be tested in this study 
are presented. The general model incorporating the stochastic volatility, stochastic interest 
rate and random jump by Bakshi, Cao and Chen (1997) is presented in Appendix.  

3.1 The CEV Option Pricing Model 

The CEV model and the call option formula have been shown by Cox (1975) in 
Section 2.1. In this paper, the CEV formula in terms of the noncentral chi-square 
distribution expressed by Schroder (1989) is adopted to compute option prices. Therefore, 
in this section we present the work by Schroder (1989) in which the complementary 
noncentral chi-square distribution function can be evaluated by the iterative algorithm as 
well as an approximation derived by Sankaran (1963).  

Schroder (1989) expressed the CEV call option pricing formula in terms of the 
noncentral chi-square distribution: 

When β <2,  

(Eq 3.1.1) ))2),2/(22;2(1()2),2/(22;2( yxQKexyQSC rt
t ββ −+−−−+= −  

When β >2,  

(Eq 3.1.2) ))2),2/(22;2(1()2),2/(22;2( xyQKeyxQSC rt
t ββ −+−−−+= −  

),;( kvzQ is a complementary noncentral chi-square distribution function with z , v , 
and k being the evaluation point of the integral, degree of freedom, and noncentrality, 
respectively, where 

)1)(2(
2

)2(2 −−
= − τββδ re

rk  

τββ )2(2 −−= r
t ekSx  

β−= 2kKy  

The complementary noncentral chi-square distribution function can be expressed as 
an infinite double sum of gamma functions as follows8: 

                                                 
8 Extensive literature exists to efficiently compute noncentral chi-square distribution (see Dyrting 

(2004), Benton and Krishnamoorthy (2003) and the references therein).  
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(Eq 3.1.3) ∑ ∑
∞

= =

+−=
1 1

),(),(1)2,2;2(
n

n

i
kigzvngkvzQ  

Schroder also presented a simple iterative algorithm to compute the infinite sum as 
follows: 

(1) Initializing the following variables: 

)1( v
zegA

vz

+Γ
=

−

 

kegB −=  

gBSg =  

SggAR ⋅−= 1  

where ),1( zvggA +=  and ),1( kggB =  

(2) Looping with n=2 and incrementing by one after each iteration until the contributions t 
the sum, R are becoming very small. 

1−+
⋅=

vn
zgAgA  

1−
⋅=

n
kgBgB  

gBSgSg +=  

SggARR ⋅−=  

where ),( zvnggA += , ),( knggB = and ),(),1( kngkgSg ++= L  

Although the CEV formula can be represented more simply in the terms of 
noncentral chi-square distributions that are easier to interpret, the evaluation of the infinite 
sum of each noncentral chi-square distribution can be computationally slow when 
neither z or k are too large. This study uses the approximation derived by Sankaran (1963) 
to compute the complementary noncentral chi-square distribution 

)2,2;2( kvzQ when z and k are large as follows: 

(Eq 3.1.4) 
)1(2

)]/([])2(5.01[1~),;(
mpph

kvzmphhhpkvzQ
h

+
+−−+−−  

where 2)2)(3)()(3/2(1 −+++−= kvkvkvh  
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2)(
2
kv

kvp
+
+

=  

)31)(1( hhm −−=  

When neither z or k are too large9 (i.e., z <1000 and k <1000 and no underflow 
errors occur), the exact CEV formula is used. Otherwise the approximation CEV formula is 
used.  

3.2 The Stochastic Volatility Option Pricing Models  

Unlike the CEV model, the Stochastic Volatility (SV) models consider the volatility 
of the stock as a separate stochastic factor. The SV models provide a flexible distribution 
structure of asset returns in which the correlation between the asset returns and the 
volatility process can be used to control the level of skewness and the volatility variation 
coefficient (volatility of volatility) can be used to control the amount of kurtosis. Skewness 
in the distribution of spot returns affects the pricing of in-the-money options relative to 
out-of-the-money options. Kurtosis affects the pricing of near-the-money versus 
far-from-the-money options.  

The stochastic volatility models differ in several aspects: the process assumed for the 
volatility, the correlation between the Wiener process of the asset price and that of the 
volatility, and the method of pricing volatility risk. 

First, the volatility processes are assumed in two different classes. Scott (1987), 
Wiggins (1987), Stein and Stein (1991), and Heston (1993) assume mean-reverting 
processes, while Hull and White (1987) assume a constant drift. Second, the introduction 
of a stochastic volatility process makes the partial differential equation (PDE) governing 
the options price much more complex. Some of the stochastic volatility models make the 
questionable assumption that this correlation is zero in order to simplify the PDE (Stein 
and Stein; 1991). Others develop the models under the assumption of arbitrary correlation 
to make it more realistic (Hull and White, 1987; Wiggins, 1987; Scott 1987; Heston, 1993). 

Third, a stochastic volatility is not a tradable or hedgeable source of risk. As a result, 
there is no unique risk-neutral probability valuation measure to price the options, and risk 
premium associated with the stochastic volatility must be introduced to cope with the 
problem. Hull and White (1987), and Stein and Stein (1991) assume that volatility risk is 
uncorrelated with consumption and therefore perfectly diversifiable. Scott (1987) makes 
the same assumption when he applies their models, although they formulate the models in 
terms of an unspecified risk premium at the beginning. Instead of making an assumption 
that avoids the problem of pricing volatility risk, Wiggins (1987) assumes investors’ 
preferences may be represented by a constant relative risk-aversion utility function and 
empirically estimate the price of volatility risk. Lastly, Heston (1993) assumes that the risk 
premium is proportional to the return variance.  
                                                 
9 Since the computational speed of computers is much faster today, we changed the original setting of 
Schroder from z <200 and k <200 to z <1000 and k <1000 and found no difficulty.  
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Here we only present the setting of the Heston model (1993) since it is most relevant 
to the model we will empirically test in our study. Heston (1993) derived a closed-form 
solution for the price of the European call option with stochastic volatility using the 
technique of the characteristic function. In addition, his model allows for arbitrary 
correlation between the asset returns and volatility.  

Heston (1993) assumes that the asset price at time t follows the diffusion equation 

(Eq 3.2.1) )()( 1 tSdZtvSdtdS += µ  

where )(1 tZ is a Weiner process. 

The volatility dynamic follows the Ornstein-Uhlenbeck process as 

(Eq 3.2.2) )()()( 2 tdZdttvtvd δβ +−=  

Using Ito’s lemma, this is the square-root process used by Cox, Ingersoll, and Ross (1985): 

(Eq 3.2.3) )()()]([)( 2 tdZtvdttvtdv σθκ +−=  

where )(2 tZ is a Weiner process having correlation ρ with )(1 tZ . The parametersκ ,θ , 
andσ are the speed of adjustment, long-term mean, and variation coefficient of the 
variance of the instantaneous return )(tv .  

Recently, Jones (2003) extends the Heston model and proposes a more general 
stochastic volatility models in the CEV class and a model with a time-varying leverage 
effect. The first model in the CEV class has been applied in interest rate by Chan et al 
(1992), in which the square root in the variance diffusion term is replaced by an exponent 
of undetermined magnitude. The second model separates power parameters on the two 
random shocks to instantaneous variance of the model. Thus, the elasticity of variance is 
no longer constant but depends on the level of the variance process. Moreover, this enables 
the correlation of the price and variance processes to depend on the level of instantaneous 
variance.    

4. Empirical Tests and Reslts (研究結果與討論) 

In this section, the empirical results of European option pricing are reported in 
Section 4.1, while the analysis of numerical methods in terms of cost-accuracy based 
analysis is presented in Section 4.2.  

4.1 European-Style Option Pricing 
In this section, the empirical results following the framework of Bakshi, Cao and 

Chen (1997) to facilitate the comparison of model performances is presented. The dataset 
is described in Section 4.1.1, and the option pricing models in Section 4.1.2. Next, we 
repost the empirical results of the in-sample performance in Section 4.1.3, the model 
misspecification in terms of volatility smile in Section 4.1.4, and the out-of-sample 
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performance in Section 4.1.5, respectively.  

4.1.1 Data Description 
We use the S&P 500 call option prices for the empirical work10. The sample period 

extends from June 1, 1988 through May 31, 1991. The intradaily bid-ask quotes for S&P 
500 options are originally obtained from the Berkeley Option Database. The daily 
Treasury-bill bid and ask discounts with maturities up to one year are from the Wall Street 
Journal. Note that the recorded S&P 500 index are not the daily closing index level. Rather, 
they are the corresponding index levels at the moment when the option bid-ask quote is 
recorded. Therefore, there is no nonsynchronous price issue here, except that the S&P 500 
index level itself may contain stale component stock prices at each point in time.  

For European options, the spot stock price must be adjusted for discrete dividends. 
For each option contract with τ periods to expiration from time t, Bakshi, Cao and Chen 
first obtain the present value of the daily dividends )(tD by 

computing ∑ −

=

− +=
1

1

),( )(),(
τ

τ
s

sstR stDetD , where ),( stR is the s-period yield-to-maturity. 

Next, they subtract the present value of future dividends from the time-t index level, in 
order to obtain the dividend-exclusive S&P 500 spot index series that is later used as input 
into the option models.  

Bakshi, Cao and Chen (1997) also exclude some samples with the following filters: 
(1) option price quotes that are time-stamped later than 3:00pm Central Standard Time are 
eliminated. This ensures that the spot price is recorded synchronously with its option 
counterpart. (2) Options with less than six days to expiration may induce liquidity-related 
biases. (3) Price quotes lower than $3/8 are not included due to the impact of price 
discreteness. (4) Quotes not satisfying the arbitrage 
restriction ( )),(),()(,)(,0max),( τττ tKBtDtSKtStC −−−≥ . 

In light of the Black-Scholes model’s moneyness- and maturity-related biases, 
researchers and practitioners have tried to find ways to estimate and use the 
“implied-volatility matrix.” To see how the candidate models are compared against each 
other under such a matrix treatment, the option data is dividend into several categories 
according to either moneyness or term to expiration. Define KtS −)(  as the time-t 
intrinsic value of a call. A call option is then classified as at-the-money (ATM) if its 

)03.1,97.0(/ ∈KS ; out-of-the-money (OTM) if 97.0/ ≤KS ; and in-the-money (ITM) if 
97.0/ ≥KS . A finer partition resulted in six moneyness categories. By the term to 

expiration, an option contract can be classified as (i) short-term (<60 days); (ii) 
medium-term (60-180 days); and (iii) long-term (>180 days). The sample properties of the 
S&P 500 call prices are reported in the paper of Bakshi, Cao and Chen (1997)11 and not 
repeated here.   

4.1.2 Option Pricing Models 
We follow the framework of Bakshi, Cao and Chen (1997) and conduct the empirical 

tests in the CEV model. The testing results will then be compared with those of Bakshi, 
Cao and Chen (1997): (i) the Black-Scholes (BS) model, (ii) the square root 

                                                 
10 See footnote 4.  
11 Table 1 of Bakshi, Cao and Chen (1997), page 2013.  
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stochastic-volatility (SV) model, (iii) the stochastic-volatility and stochastic-interest-rate 
(SVSI) model, and (iv) the stochastic-volatility random-jump (SVJ) model. The empirical 
results will focus on the CEV and four models as described above. 

In this paper, the CEV formula in terms of the noncentral chi-square distribution 
expressed by Schroder (1989) is adopted to compute option prices. IMSL (International 
Mathematical and Statistical Library) is used for the computation of the noncentral 
chi-square probabilities. 

4.1.3 Structural Parameter Estimation and In-Sample Performance 
4.1.3.1 Estimation Procedure 
Step 1. Collect N option prices on the same stock and taken from the same point in time 
(or same day), for any N greater than or equal to one plus the number of parameters to be 
estimated. For each n=1,…,N, let nτ and nK be respectively the time-to-expiration and the 

strike price of the n-th option; Let ),,(ˆ
nnn KtC τ be its observed price, 

and ),,( nnn KtC τ its model price as determined by, for example,  (Eq 3.1.17) 

with )(tS and )(tR taken from the market. The difference between nĈ  and nC is a 
function of the values taken by )(tV and by },,,,,,,,{ JJvvvRRR σµλσθκσθκ≡Φ . For 
each n, define 
(Eq 4.1.1)  ),,(),,(ˆ]),([ nnnnnnn KtCKtCtV ττε −≡Φ  
Step 2. Find )(tV and parameter vectorΦ , to solve 

(Eq 4.1.2) 
2

1),(

]),([min)( ∑
=Φ

Φ≡
N

n
n

tV

tVtSSE ε  

This step results in an estimate of the implied spot variance and the structural 
parameter values, for date t. Go back to Step 1 until the two steps have been repeated for 
each day in the sample.  

4.1.3.2 Implied Parameters and In-Sample Pricing Fit  
Before proceeding to the model comparison, we first preset the comparison between 

the unrestricted and the restricted ( 0≥β ) CEV model as follows:  
 
  Daily Average 

  Observation Beta SSE Implied volatility

All Options Unrestricted CEV 50.9735 -2.9290 23.9336 0.1964 
 Restricted CEV  0.0031 50.1240 0.2015 

Short-Term Options Unrestricted CEV 19.4066 -4.4277 4.6479 0.2021 
 Restricted CEV  0.0158 9.5121 0.2118 

At-the-money Options Unrestricted CEV 13.9563 -2.7787 3.5062 0.1852 
 Restricted CEV  0.1316 4.9300 0.1856 
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From the testing results above, we find that out the pricing performance of the 
unrestricted CEV model is clearly superior to the restricted CEV model. The average daily 
square sum of dollar pricing error (SSE) of the unrestricted CEV model is smaller than the 
restricted CEV model in all of the categories we tested. This is consistent with the findings 
of Jackwerth and Rubinstein (2001). In addition, the elasticity parameter β  is less than 
two, which confirms the negative correlation between index level and volatility. Thus, in 
this paper hereafter, we only use the unrestricted CEV model throughout all of the 
empirical tests.  

As shown in Table 1, we compare the testing results of the CEV model with those of 
the BS, the SV, the SVSI, and the SVJ models obtained by Bakshi, Cao and Chen (1997). 
In the all-option category, the SSE of the CEV model is lower than that of the BS model, 
but higher than those of the SV, the SVSI, and the SVJ models. However, in short-term 
options category, the CEV model has lower SSE than the those of SV and the SVSI models, 
only higher than the SSE of the SVJ model. Furthermore, the CEV model performs best 
even better than the SVJ model in at-the-money options category.   

4.1.4 Assessment of the Relative Model Misspecification 

As Rubinstein (1985) had done, the most popular diagnostic of relative model 
misspecification is to compare the implied-volatility patterns of each model across both 
moneyness and maturity12. The procedure is as follows: First, substitute the spot index and 
interest rates of date t as well as the structural parameter values implied by all date (t-1) 
option prices, into the option pricing formula, which leaves only the spot volatility 
undetermined. Next, for each given call option of date t, find a spot volatility value that 
equates the model-determined price with the observed price of the call. Then, after 
repeating these steps for all options in the sample, obtain for each moneyness-maturity 
category an average implied-volatility value.  

Using the subsample data from July 1990 to December 1990 as Bakshi, Cao and 
Chen (1997), the average implied volatilities of the CEV model are computed in Table 2. 
In Figure 1, the implied volatility graph is presented. We then compare it with the results 
by Bakshi, Cao and Chen (1997)13. For short-term calls, the CEV model still shows large 
U-shaped moneyness-related biases. However, the magnitude of the biases, 6.5%, is only 
slightly larger than that the SV model, around 6%. For medium-term and long-term calls, 
the moneyness-related smiles of implied volatility are greatly reduced, and the 
corresponding magnitudes are only 1.68% and 1.36%, respectively. We can also find that 
the implied volatility of the CEV model in long-term options (maturity≥ 180 days) is the 
most stable case compared with other maturity-based options. For those options with 
longer than 180 days to expiration, the implied volatility of the CEV model is more stable 
than all of the other models including the SVJ model.  

In sum, the CEV model is still subject to the model misspecification problems as all 

                                                 
12 See Hull (2002) for the discussion of volatility smile and Mayhew (1995) for the comprehensive literature 
review of implied volatility and volatility smile.  
13 Figure 1, Bakshi, Cao and Chen (1997), page 2022. 
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of the option pricing models tested in Bakshi, Cao and Chen (1997). However, in terms of 
the implied volatility, the extent of the moneyness-related biases is similar to the SV model, 
and is much better that the BS model.  

4.1.5 Out-of-Sample Pricing Performance 

In out-of-sample option pricing, the presence of more parameters may actually cause 
over-fitting and have the model penalized if the extra parameters do not improve its 
structural fitting. For this purpose, Bakshi, Cao and Chen rely on the previous day’s option 
prices to back out the required parameter/volatility values and then use them as inputs to 
compute the current day’s model-based option prices. Next, they subtract the 
model-determined price from its observed counterpart, to compute both the absolute and 
the average percentage pricing errors and their associated standard errors. This prevents the 
biases in the objective function (Eq 4.1.2) in favor of more expensive calls, such as 
long-term and in-the-money calls. To make our results comparable with those of Bakshi, 
Cao and Chen (1997), we also follow their approach by changing the objective function in 
(Eq 4.1.2) to absolute pricing errors  

(Eq 4.1.3) ∑
=Φ

Φ≡
N

n
n

tV

tVtAPE
1),(

]),([min)( ε  (Table 3)  

and percentage pricing errors  

(Eq 4.1.4) ∑
=Φ

Φ
≡

N

n nnn

n

tV KtC
tVtPPE

1),( ),,(ˆ
]),([min)(

τ
ε  (Table 4) . 

Pricing errors reported under the heading “All-Options-Based” are obtained using the 
parameter/volatility values implied by all of the previous day’s call options; those under 
“Maturity-Based” are obtained using the parameter/volatility values implied by those 
previous-day calls whose maturities lie in the same category (short-term, medium-term, or 
long-term) as the option being priced; those under “Moneyness-Based” are obtained using 
the parameter/volatility values implied by those previous-day calls whose moneyness 
levels lie in the same category (OTM, ATM, or ITM) as the option being priced.  

In Table 3, we compare the out-of-sample pricing errors of the CEV model with those 
of the BS, the SV, the SVSI, and the SVJ models from Bakshi, Cao and Chen (1997). We 
mark those results of the CEV model which are better or equal to the results of the SV 
model. In general, the out-of-sample pricing errors of the CEV model are in-between the 
BS model and the SVJ model. In OTM and part of the ATM option cases (S/K <1.00), the 
CEV model performs better than the SV model, while in the deep ATM and ATM options, 
the CEV model has larger pricing errors than the SV model. In Table 4, percentage pricing 
errors of the CEV model also show similar results as those of absolute pricing errors. 
However, in Table 4, the CEV model performs slightly better in short-term (maturity<60) 
and worse in long-term (maturity≥ 180). 
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Finally, we should note that the CEV model only produces negative percentage 
pricing errors for short-term OTM ( 0.1/ ≤KS  and days-to-expiration less than 60) 
options. This is slightly different from the observation of Bakshi, Cao and Chen (1997) that 
all models produce negative percentage pricing errors for options with 
moneyness 0.1/ ≤KS , and positive percentage pricing errors for options with 03.1/ ≥KS , 
subject to time-to-expiration not exceeding 180 days.   

4.2 Pricing Performances of Numerical Procedures  

In this section, we will compare the pricing performances of the CEV and the 
stochastic volatility models in terms of cost-accuracy based analysis, namely, numerical 
accuracy and computational efficiency. The numerical accuracy is measured by the 
absolute pricing error between the option values generated by the numerical method and 
the closed-form solution, given fixed CPU time. The computational efficiency is measured 
by the required CPU time, given fixed pricing errors between the option values generated 
by numerical method and the closed-form solution.  

The numerical method of the CEV process we use is the trinomial model developed 
by Boyle and Tian (1999). The numerical method of the stochastic volatility model we use 
is the finite difference algorithm by Scott (1997).14  

4.2.1 The Trinomial Method Under the CEV Process  

Boyle and Tian (1999) first transform the stochastic process under nature’s 
probability measure into the Q-measure under which the deflated price processes of all 
securities are martingales. The revised process is as follows: 

(Eq 4.2.1) dzSrSdtdS 2/βσ+=  

They first transform the variable S so that the transformed process has constant 
volatility.  

Let ),( Styy = and apply Ito’s Lemma, the stochastic differential equation for y is 

(Eq 4.2.2) dzS
S
ydt

S
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S
yrS

t
ydy 
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To make the process (Eq 4.2.2) has constant volatility, they use the transformation 
such that  

vS
S
y

=
∂
∂ 2/βσ  

for some positive constant v . And this is equivalent to  

                                                 
14 We thank Louis Scott for providing the finite difference algorithm used in Scott (1997).  
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2/β

σ
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∂
∂ Sv
S
y  

Therefore, this transformation is given by 

(Eq 4.2.3) ( )
2/1

2/1
β

βσ
−

−
= Svy  for 2≠β  

and the appropriate transformation )log(Svy
σ

= for 2=β . 

For the case with 2≠β , the transformed equation becomes 

(Eq 4.2.4) vdzdtSvSSvrSdy +













−+= −−− 12/22/

22
1 βββ

σ
βσ

σ
 

( ) vdzdt
y

vyr +







−

−





 −=

2/142
1

2

β
ββ  

The transformed process above has constant volatility, which allows for a 
straightforward construction of a two-dimensional grid for trinomial trees. However, this 
transformed process has a complex drift term, which explodes when y approaches zero 
(with the only exception when 0=β ). This makes the standard trinomial branching 
process problematic for the region close to 0=y , because the trinomial jumps and 
probabilities must be chosen to match not only volatility but the drift.  

They then modify the standard trinomial method as suggested by Tian (1994), in 
which the trinomial branching process simultaneously utilizes both the transformed 
process (Eq 4.2.4) and the original process (Eq 4.2.1). The detailed procedures can be 
implemented in two steps as in the work by Boyle and Tian (1999). 

4.2.2 The Finite Difference Method of the SV Model  

The finite difference algorithm of Scott (1997) is briefly summarized as follows: 

)(tS , 0≥t represents the price for a stock or a stock portfolio. Scott uses squared 
Gaussian diffusions under actual measure: 

(Eq 4.2.5) )()(])([)( tdZtydtytdy γλκκθ ++−= ,15 

where Z is Brownian motion and 0=jλ for the risk-neutral process.  

                                                 
15 Note that there are slight differences by Scott’s notation in (Eq 4.2.5) and (Eq 4.2.6) compared with those 
of Bakshi, Cao and Chen (1997) in (Eq A.2) and (Eq A.1).  
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The price process is  

(Eq 4.2.6) )()()()()()( tdWtStydttStrtdS σ+=  

whereW is a Brownian motion correlated with Z that dtdWdZ ρ= .  

The finite difference method is then applied to the PDE for the valuation problem 

(Eq 4.2.7) 
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Scott (1997) then expresses )(ln tS with the Brownian motionW as 

)(1)()( 2 tWtZtW ′−+= ρρ  andW ′ is a Brownian motion independent of Z . He first 
transforms from the state variables S and y to *s and y , where ySs )/(ln* γρ−= . This step 
is to eliminate the correlation between two state variables. Next, y is transformed to y . 
This step is to make the volatility of state variable a constant. Scott then solves the PDE by 
solving implicitly on *s and explicitly on y . The explicit method for the square root 
process of Hull and White (1990) is adopted. N is the number of steps in the time 
dimension and M is the number of steps for the transformed stock *s . The value of N 
determined the grid and the step size for the variable y as in Hull and White (1990). 

4.2.3 Cost-Accuracy Analysis of the CEV and the SV Models  

In our comparison of numerical methods, we choose the parameters of the CEV and 
the SV models close to the all option categories of the in-sample test as we perform the 
European-style option empirical test. We set 5.1=κ , 04.0=θκ , 4.0=γ , 65.0−=ρ , 0=λ , 
and the initial volatility %20=σ  for the SV model. And for comparison purposes, the 
CEV parameters are set to make the option prices equal to those of the SV model, 
fixingβ as -3. The maturity of the option is 0.5 year; the interest rate is 5%; and the stock 
price is $300. Our experiment is conducted using 3GHz Intel Pentium4 and 1GB DDR2 
DRAM PC, and both methods are programmed in C++.  

Three different moneyness of put options are studied in our experiment. We set the 
strike prices of at-the-money put option as $300, deep out-of-the-money put option as $250, 
and deep in-the-money put as $350. The corresponding analyses for numerical accuracy 
are presented in Table 5, Table 7, and Table 9; and computational efficiencies are reported 
in Table 6, Table 8, and Table 10. The pricing error is defined as the option value generated 
by numerical method minus that of the closed-form solution.  
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One can observe from the Table 5, Table 6, Table 9, and Table 10 that to reach the 
desired precision in option pricing, the CEV model requires much less time than the SV 
model in order to converge to its closed-form solution. The CEV model can reach $0.001 
precision within 4 seconds for all three moneyness settings. In contrast, even to reach a 
precision with $0.01 absolute pricing error, the SV model needs over 20 seconds for 
at-the-money case and over 40 seconds for deep in-the-money case. The SV model 
performs better for the cheaper deep out-of-the-money put option as shown in Table 7 and 
Table 8, however, it is still far away from the performance of the CEV model.   

In empirical work, the number of iterations can be very large and therefore each 
iteration in optimization must be carried out in seconds in order to accommodate the large 
volume of cross-sectional and time series option data. Furthermore, there are a total of four 
parameters that need to be estimated in the SV model. Consequently, although the 
numerical methods of the SV model are applicable for pricing, its computational intensive 
optimization procedure makes the SV model practically infeasible for this task if one 
would like to conduct empirical test for American options.  

Next, we investigate the pricing performance of the CEV numerical method across 
several values ofβ . Six different most common values ofβ — -4, -3, -2, -1, 0, and 1 — in 
our European option empirical test of previous section are chosen in our experiment. 
Another parameter δ is set to make the volatility equal 20%, i.e., 

22 11 %)20(
ββ

σδ −− == SSBS . A summary of computational efficiency in pricing European put 
options is reported in Table 11 withβ values. We can find that computational efficiency of 
the CEV model is robust across different values ofβ . The longest time to reach $0.0005 
absolute pricing error in our experiment is merely 0.75 second in pricing deep 
in-the-money put withβ equals to 0 and -1. Therefore, we can conclude that the trinomial 
method of the CEV process by Boyle and Tian (1999) in terms of numerical efficiency is 
robust enough for the empirical study.  

  Finally, we should note that the algorithms of American option pricing for these 
two numerical methods are similar to their European cases, except for the additional step 
for checking the early exercise possibility at each time step. Therefore, the time for pricing 
American style option is expected to be longer than that of the European option.  

5. Conclusion and Conclusions (結論與建議) 

In this study, we empirically test the CEV option pricing model and compare the 
results with those by Bakshi, Cao and Chen (1997). The CEV option pricing model 
performs better than the BS model in all cases. The empirical evidence showed that (i) In 
terms of in-sample performance, the squared sum of pricing errors of the CEV model is 
similar to the SV models in short-term and at-the-money options, and is worse in the all 
options category. (ii) In terms of out-of-sample performance, the mean absolute errors and 
percentage errors of the CEV model show that CEV performs better than the SV model in 
short term and out-of-the-money cases. In addition, the CEV model is even better than the 
SVJ model in a few cases in these categories. (iii) In terms of model misspecification, by 
using implied volatility graph introduced by Rubinstein(1985), the fluctuation of implied 
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volatility of the CEV model is around 6.5% for short-term call options, which is much 
better than the BS model, and is only marginally higher than the SV model. For those 
options with larger than 60 days to expiration, the implied volatility of the CEV model is 
similar to all the other models. For longer-maturity options with more than 180 days to 
expiration, the volatility smile of the CEV model is even better than the SVJ model with 
only 1.36% fluctuation. 

When applied to American option pricing, high-dimensional lattice models are 
prohibitively expensive. One distinguished feature of the CEV model as opposed to other 
stochastic volatility models is that it requires only a single dimensional lattice. Therefore, 
we also compare pricing performances of the CEV and stochastic volatility numerical 
methods in terms of two aspects: numerical accuracy and computational efficiency. Our 
experiment results clearly show that the CEV model performs much better than the SV 
model in terms of the speed of convergence to its closed form solution. In contrast, the 
implementation cost of the SV model in American option pricing is way too high and 
practically infeasible for empirical work.  

In summary, the CEV model, introducing only one more parameter compared with 
the BS formula, improves the performance notably in all the tests of in-sample, 
out-of-sample and the stability of implied volatility. Furthermore, with a much simpler 
structure, the CEV model can still perform better than the SV model in short term and 
out-of-the-money categories. The empirical evidence also shows that the CEV model has 
similar stability of implied volatility as the SV, the SVSI, and the SVJ models. Therefore, 
with much less implementational cost and faster computational speed, the CEV option 
pricing model can be a better candidate than much more complex option pricing models, 
especially when one wants to apply the CEV process for pricing more complicated exotic 
options or credit risk models. 
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Appendix 

The Stochastic Volatility, Stochastic Interest Rate and Random Jump Model 
by Bakshi, Cao and Chen (1997) 

Scott (1997) was the first to derive a closed-form stochastic volatility, stochastic 
interest rates, and random jump option pricing model (SVSI-J). Here we present the 
version by Bakshi, Cao and Chen (1997) and follow their notations. Under the risk-neutral 
measure, the underlying nondividend-paying stock price )(tS and its components are, for 
any t, given by 

(Eq A.1) )()()()(])([
)(
)( tdqtJtdtVdttR

tS
tdS

SJ ++−= ωλµ     

(Eq A.2) )()()]([)( tdtVdttVtdV vvvv ωσκθ +−=      

(Eq A.3) 





 −++ 22,

2
1]1ln[~)](1ln[ JJJNtJ σσµ       

where )(tR is the time-t instantaneous spot interest rate; 

λ is the frequency of jumps per year 

)(tV is the diffusion component of return variance (conditional on no jump 
occurring); 

)(tSω and )(tvω are each a standard Brownian motion, 
with dttdtdCov vSt ρωω ≡)](),([ ; 

)(tJ is the percentage jump size (conditional on a jump occurring) that is lognormally, 
identically, and independently distributed over time, with the unconditional mean Jµ . 
The standard deviation of )](1ln[ tJ+ is Jσ ; 

)(tq is a Poisson jump counter with intensity λ , that is, dttdq λ== }1)(Pr{ and 
dttdq λ−== 1}0)(Pr{ ; 

vκ , vv κθ / and vσ are respectively the speed of adjustment, long-run mean, and 
variance coefficient of the diffusion volatility )(tV ; 

)(tq and )(tJ are uncorrelated with each other or with )(tSω and )(tvω  

The interest rate process is assumed to follow the single-factor Cox, Ingersoll, and Ross 
(1985) process  
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(Eq A.4) )()()]([)( tdwtRdttRtdR RRRR σκθ +−=  

where Rκ , RR κθ / , and Rσ are the speed of adjustment, long-run mean, and volatility 
coefficient of the )(tR process; )(twR is a standard Brownian Motion assumed to be 
uncorrelated with any other process in the economy. 

Note that the volatility risk )(tV , interest rate risk )(tR , and jump risk )()( tdqtJ are all 
rewarded in their valuation framework. The factor prices for )(tV and )(tR are 
respectively )(tVbv and )(tRbr for some constants vb and rb . These factors are implicitly 
reflected in (Eq A.2) and (Eq A.4) and adjusted through vκ and Rκ , respectively. Therefore, 
the risk premiums have been internalized in the stochastic structure rather than being 
assumed to be zero. 

The European call option price with strike price K and term-to-expirationτ by Bakshi, 
Cao and Chen (1997) is shown as follows:  

(Eq A.5) ),,;,(),(),,;,()(),( 21 VRSttKBVRSttStC ττττ Π−Π= , 

where the risk-neutral probabilities, 1Π and 2Π , are recovered from inverting the 
respective characteristic functions (see Bates (1996b, 2000) and Heston (1993) for similar 
treatments): 

(Eq A.6) 
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for j =1,2, with the characteristic functions jf respectively given in (Eq A.7) and (Eq 
A.8). The price of a European put option on the same stock can be determined from the 
put-call parity.  

(Eq A.7)  
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(Eq A.8)  
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where φσκξ iRRR
22 2−= , 22 )1(])1([ vvvv iii σφφρσφκξ +−+−=  

 )1(2 22* −−= φσκξ iRRR , and 22* )1(][ vvvv iii σφφφρσκξ −−+=  

The option valuation model in (Eq A.5) has several distinctive features. First, it 
incorporates stochastic interest rates, stochastic volatility, and jump risk, which means it 
nests all the models to be tested in our study as special cases. For example, we can obtain 
(i) the BS model by setting λ =0 and 0====== vvvRRR kk σθσθ ; (ii) the SI model 
by setting λ =0 and 0=== vvv k σθ ;(iii) the SV model by setting λ =0 and 

0=== RRR k σθ ; (iv) the SVSI model by setting λ =0; and (v) the SVJ model by setting 
0=== RRR k σθ , where to derive each special case from (Eq A.5) one may need to apply 

L’Hospital’s rule. Secondly, the option pricing formula contains only identifiable variables 
such that all parameters can be estimated. This is also parsimonious compared to the model 
in Scott (1997). 
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Table 1 Implied Volatility and In-Sample Fit 

All Options 
 CEV BS SV SVSI SVJ 

Implied Volatility (%) 19.64 18.23 18.66 18.65 19.38 
SSE 23.93 69.6 10.63 10.68 6.46 
      

Short-Term Options 
 CEV BS SV SVSI SVJ 

Implied Volatility (%) 20.21 18.15 18.45 18.54 20.65 
SSE 4.65 28.09 5.48 5.16 2.63 
      

At-the-Money Options 
 CEV BS SV SVSI SVJ 

Implied Volatility (%) 18.52 18.74 18.48 18.36 19.03 
SSE 3.51 25.34 5.98 5.45 5.31 
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Table 2 Implied Volatility 

Maturity <60 60-180 >=180 
Moneyness (S/K) Average Volatility Number of Obs Average Volatility Number of Obs Average Volatility Number of Obs 

0.94< 23.1709% 238 23.2591% 846 22.1351% 540 
0.94-0.96 21.6492% 255 22.1181% 241 21.8619% 112 
0.96-0.98 21.2072% 290 22.4297% 242 22.0806% 94 
0.98-1.00 21.3395% 290 22.7042% 233 22.5085% 109 
1.00-1.02 22.6581% 288 22.6880% 218 22.7989% 94 
1.02-1.04 23.3345% 261 22.9770% 200 22.9627% 75 
1.04-1.06 24.3749% 258 23.1121% 204 22.8800% 58 
1.06-1.08 25.5569% 225 22.8851% 188 22.7296% 75 

>1.08 27.7188% 529 21.5806% 713 21.6021% 328 
TTL  2634  3085  1485 
Max 27.7188%  23.2591%  22.9627%  
Min 21.2072%  21.5806%  21.6021%  

Range 6.5116%  1.6785%  1.3606%  
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Table 3 Out-of-Sample Pricing Errors (Absolute Pricing Errors) 

  All-Options-Based Maturity-Based Moneyness-Based 

    Days-to-Expiration Days-to-Expiration Days-to-Expiration 

Moneyness Model          

S/K   <60 60-180 ≥180 <60 60-180 ≥180 <60 60-180 ≥180 

Panel A: Absolute Pricing Errors 

<0.94 CEV 0.33 0.37 0.60 0.38 0.40 0.49 0.30 0.34 0.50

 BS 0.78 1.39 1.89 1.02 1.48 1.78 0.41 0.63 0.78

 SV 0.42 0.43 0.61 0.38 0.42 0.58 0.32 0.36 0.53

 SVSI 0.37 0.39 0.57 0.38 0.40 0.52 0.30 0.36 0.53

  SVJ 0.37 0.40 0.59 0.27 0.40 0.58 0.33 0.36 0.54

0.94-0.97 CEV 0.43 0.41 0.50 0.39 0.43 0.44 0.41 0.39 0.54

 BS 0.76 1.02 1.16 0.73 1.07 1.15 0.45 0.53 0.69

 SV 0.46 0.41 0.54 0.33 0.41 0.54 0.34 0.38 0.53

 SVSI 0.40 0.40 0.55 0.34 0.41 0.52 0.34 0.38 0.52

  SVJ 0.38 0.38 0.53 0.25 0.39 0.53 0.33 0.38 0.51

0.97-1.00 CEV 0.45 0.44 0.60 0.38 0.41 0.49 0.44 0.43 0.65

 BS 0.61 0.62 0.66 0.51 0.64 0.66 0.70 0.74 0.94

 SV 0.48 0.41 0.53 0.39 0.41 0.52 0.40 0.43 0.60

 SVSI 0.47 0.41 0.54 0.39 0.42 0.51 0.39 0.42 0.60

  SVJ 0.42 0.40 0.52 0.31 0.40 0.51 0.36 0.41 0.63

1.00-1.03 CEV 0.49 0.57 0.60 0.40 0.44 0.58 0.44 0.45 0.68

 BS 0.52 0.69 0.81 0.45 0.65 0.84 0.47 0.50 0.69

 SV 0.41 0.43 0.53 0.40 0.41 0.51 0.38 0.43 0.54

 SVSI 0.43 0.42 0.53 0.41 0.41 0.49 0.38 0.42 0.52

  SVJ 0.40 0.42 0.51 0.37 0.41 0.50 0.37 0.41 0.51

1.03-1.06 CEV 0.63 0.68 0.61 0.55 0.51 0.54 0.47 0.51 0.69

 BS 0.76 1.21 1.30 0.77 1.14 1.37 0.51 0.85 1.76

 SV 0.45 0.47 0.55 0.41 0.41 0.51 0.48 0.48 0.67

 SVSI 0.42 0.45 0.54 0.41 0.41 0.50 0.48 0.48 0.66

  SVJ 0.39 0.44 0.53 0.39 0.41 0.51 0.39 0.42 0.53

≥1.06 CEV 0.64 0.65 1.02 0.57 0.52 0.66 0.55 0.51 0.79

 BS 0.82 1.39 1.57 0.79 1.35 1.64 0.56 0.62 0.72

 SV 0.54 0.49 0.65 0.47 0.40 0.51 0.44 0.41 0.54

 SVSI 0.52 0.51 0.51 0.48 0.42 0.47 0.43 0.41 0.52

  SVJ 0.43 0.43 0.56 0.36 0.39 0.50 0.40 0.40 0.54
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Table 4 Out-of-Sample Pricing Errors (Percentage Pricing Errors) 

  All-Options-Based Maturity-Based Moneyness-Based 

    Days-to-Expiration Days-to-Expiration Days-to-Expiration 

Moneyness Model          

S/K   <60 60-180 ≥180 <60 60-180 ≥180 <60 60-180 ≥180 

Panel B: Percentage Pricing Errors 

<0.94 CEV -11.40% -0.69% 3.81% -3.92% 1.09% 0.24% -9.34% -0.69% 3.80% 

 BS -68.78% -41.87% -26.85% -82.99% -44.08% -25.30% -29.21% -18.59% -9.87% 

 SV -26.48% -2.78% -3.50% 6.63% 1.82% 0.32% -15.04% -1.21% 0.71% 

 SVSI -17.22% -1.38% -1.43% 5.26% 1.38% -0.41% -10.62% -0.65% -1.71% 

  SVJ -19.79% -1.44% 2.13% 2.88% 0.14% -0.43% -12.39% -1.58% 0.11% 

0.94-0.97 CEV -8.78% 0.50% 1.51% -0.72% -0.24% 0.21% -2.03% 4.44% 5.41% 

 BS -38.23% -15.14% -7.39% -35.52% -15.86% -7.18% -15.38% -2.34% 2.73% 

 SV -17.29% -1.80% 0.28% 1.85% -1.42% -0.55% -9.26% 0.13% -0.06% 

 SVSI -11.59% -0.70% 0.12% 2.14% -1.08% -0.17% -8.13% 0.06% 0.08% 

  SVJ -11.99% -1.03% 0.06% -0.39% -0.81% -0.48% -6.97% 7.00% -0.04% 

0.97-1.00 CEV -2.70% 2.54% 1.34% 2.29% 1.63% 0.79% -2.22% 3.28% 2.54% 

 BS -13.73% -3.11% -1.25% -11.61% -3.60% -1.18% -17.64% -5.62% -3.63% 

 SV -9.87% -0.47% -0.25% -5.08% -1.04% -0.24% -6.17% 0.97% 0.03% 

 SVSI -8.84% -0.57% -39.00% -5.01% -1.10% -0.29% -5.04% 0.89% -0.02% 

  SVJ -6.87% -0.33% -0.32% -0.81% -0.63% -0.17% -3.11% 0.25% -0.74% 

1.00-1.03 CEV 2.75% 3.30% 1.38% 4.85% 2.41% 1.22% -0.34% 0.73% -0.81% 

 BS 1.09% 2.61% 2.00% 1.58% 2.28% 2.41% -0.55% 0.91% 0.12% 

 SV -1.16% 0.54% -0.32% -1.09% -0.30% 0.16% -0.68% 0.75% -0.36% 

 SVSI -1.73% 0.05% -0.50% -1.16% -0.46% -0.09% -0.79% 0.64% -0.31% 

  SVJ -1.11% 0.31% -0.26% 0.05% -0.20% 0.20% -0.35% 0.47% -0.36% 

1.03-1.06 CEV 3.40% 3.10% 0.91% 4.34% 2.34% 0.69% 1.03% -0.03% -1.46% 

 BS 3.90% 4.57% 3.70% 4.02% 4.29% 4.01% -0.51% -2.76% -5.05% 

 SV 1.47% 0.92% -0.32% 1.05% 0.09% 0.25% -1.01% -0.58% 0.33% 

 SVSI 1.00% 0.50% -0.42% 1.04% -0.01% -0.05% -1.07% -0.62% 0.44% 

  SVJ 0.69% 0.55% -0.20% 0.22% 0.03% 0.24% 0.26% 0.34% -0.12% 

≥1.06 CEV 1.91% 1.61% -0.75% 2.12% 1.22% -0.05% 1.27% 0.46% -1.23% 

 BS 2.49% 3.27% 2.85% 2.41% 3.16% 3.01% 1.45% 0.89% -0.30% 

 SV 1.46% 0.79% -0.66% 1.18% 0.32% -0.02% 0.80% 0.25% -0.23% 

 SVSI 1.36% 0.74% -0.28% 1.21% 0.40% 0.03% 0.72% 0.22% -0.16% 

  SVJ 0.86% 0.50% -0.41% 0.09% 0.17% -0.04% 0.65% 0.36% -0.36% 
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Table 5 Comparison of Numerical Accuracy Between the CEV and the SV Models 
(At-the-Money) 

  At the Money Put Option    S=300  X=300 

  CEV       SV   

Time (Sec) N Price Error N, M Price Error 

  Analytic 29.14644   Analytic 29.14644   

0.1 1441 29.14279 -0.00365       

0.2 1975 29.14364 -0.00280 10 25.43504 -3.71140 

0.5 2912 29.14460 -0.00184 25 28.31479 -0.83165 

1 3639 29.14499 -0.00145 49 28.87105 -0.27539 

2 4642 29.14529 -0.00115 96 29.06642 -0.08001 

5 5805 29.14553 -0.00091 184 29.11721 -0.02923 

10    264 29.12901 -0.01743 

20    361 29.13582 -0.01061 

50    522 29.13957 -0.00687 

100    678 29.14158 -0.00486 

200       867 29.14308 -0.00336 

 

 

 

Table 6 Comparison of Computational Efficiency Between the CEV and the SV Models 
(At-the-Money) 

  CEV       SV   

Put X=300   Put X=300  

Error N CPU Time   Error N, M CPU Time 

  (Seconds)    (Seconds) 

0.01 562 0.015  0.01 382 22.812 

0.005 1078 0.047  0.005 668 96.031 

0.001 5411 3.953   0.001 2600-2700 >6215.891 
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Table 7 Comparison of Numerical Accuracy Between the CEV and the SV Models (Deep 
Out-of-the-Money Put Option) 

  Deep Out-of-the-Money Put Option (X=250)  S=300  X=250 

  CEV       SV   

Time (Sec) N Price Error N, M Price Error 

  Analytic 2.851594   Analytic 11.39016   

0.1 1433 11.38947 -0.00069       

0.2 1992 11.38803 -0.00213 10 13.51492 2.12476 

0.5 2946 11.38925 -0.00091 23 11.64352 0.25336 

1 3691 11.38920 -0.00096 49 11.42603 0.03587 

2 4481 11.38996 -0.00020 96 11.39743 0.00727 

5    184 11.38905 -0.00112 

10    265 11.38919 -0.00097 

20    361 11.38937 -0.00079 

50    522 11.38969 -0.00047 

100    678 11.38969 -0.00047 

200       870 11.38964 -0.00052 

 

 

 

Table 8 Comparison of Computational Efficiency Between the CEV and the SV Models 
(Deep Out-of-the-Money Put Option) 

  CEV       SV   

Put X=250   Put X=250  

Error N CPU Time   Error N, M CPU Time 

  (Seconds)    (Seconds) 

0.01 472 0.016  0.01 81 1.641 

0.005 873 0.031  0.005 102 2.156 

0.001 4431 1.922   0.001 537 53.609 
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Table 9 Comparison of Numerical Accuracy Between the CEV and the SV Models (Deep 
In-the-Money Put Option) 

  Deep In-the-Money Put Option (X=350)  S=300  X=350 

  CEV       SV   

Time (Sec) N Price Error N, M Price Error 

  Analytic 57.99747   Analytic 57.99747   

0.1 1434 57.99623 -0.00124       

0.2 1984 57.99584 -0.00163 10 48.40058 -9.59689 

0.5 2953 57.99688 -0.00059 24 55.76441 -2.23305 

1 3706 57.99656 -0.00091 48 57.47296 -0.52451 

2 4574 57.99745 -0.00002 86 57.82273 -0.17474 

5    184 57.95248 -0.04499 

10    265 57.97286 -0.02461 

20    361 57.98215 -0.01532 

50    522 57.98858 -0.00889 

100    678 57.99134 -0.00613 

200       869 57.99313 -0.00434 

 

 

 

Table 10 Comparison of Computational Efficiency Between the CEV and the SV Models 
(Deep In-the-Money Put Option) 

  CEV       SV   

Put X=350   Put X=350  

Error N CPU Time   Error N, M CPU Time 

  (Seconds)    (Seconds) 

0.01 348 0.016  0.01 477 39.563 

0.005 423 0.016  0.005 779 146.563 

0.001 4286 1.625   0.001 2800-2900 >9050.344 
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Table 11 Comparison of Computational Efficiency of the CEV Model  

Across Different Values ofβ  

CEV Put S=300 δ =(20%)S1-β/2      interest rate = 5% T=0.5 year 

  β=-4     β=-3   

 X=350     X=350   

Analytic Solution 43.5759014 Analytic Solution 43.8767725 

Absolute 

Error 
N 

CPU Time 

(Seconds) 

Absolute 

Error 
N 

CPU Time 

(Seconds) 

0.01 83 0.016  0.01 87 0.016 

0.005 235 0.016  0.005 224 0.016 

0.001 1267 0.063  0.001 1367 0.094 

0.0005 2567 0.344  0.0005 2589 0.375 

            

 X=300     X=300  

Analytic Solution 13.3942732  Analytic Solution 13.3508924 

Absolute 

Error 
N 

CPU Time 

(Seconds) 

Absolute 

Error 
N 

CPU Time 

(Seconds) 

0.01 137 0.016  0.01 113 0.016 

0.005 252 0.016  0.005 224 0.016 

0.001 1267 0.078  0.001 1069 0.063 

0.0005 2515 0.328  0.0005 2208 0.235 

            

 X=250      X=250   

Analytic Solution 3.32127105 Analytic Solution 2.85159417 

Absolute 

Error 
N 

CPU Time 

(Seconds) 

Absolute 

Error 
N 

CPU Time 

(Seconds) 

0.01 103 0.016  0.01 72 0.016 

0.005 190 0.016  0.005 175 0.016 

0.001 1581 0.125  0.001 959 0.047 

0.0005 2837 0.438 0.0005 2374 0.297 
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Table 11 (Cont.) Comparison of Computational Efficiency of the CEV Model  

Across Different Values ofβ  

CEV Put S=300 δ =(20%)S1-β/2      interest rate = 5% T=0.5 year 

  β=-2     β=-1   

 X=350     X=350   

Analytic Solution 44.2030637 Analytic Solution 44.5558916 

Absolute 

Error 
N 

CPU Time 

(Seconds) 

Absolute 

Error 
N 

CPU Time 

(Seconds) 

0.01 98 0.016  0.01 143 0.016 

0.005 271 0.016  0.005 146 0.016 

0.001 1413 0.094  0.001 1449 0.11 

0.0005 2506 0.344  0.0005 2714 0.391 

            

 X=300     X=300  

Analytic Solution 13.3168835  Analytic Solution 13.2912286 

Absolute 

Error 
N 

CPU Time 

(Seconds) 

Absolute 

Error 
N 

CPU Time 

(Seconds) 

0.01 105 0.016  0.01 101 0.016 

0.005 207 0.016  0.005 201 0.016 

0.001 1005 0.047  0.001 981 0.047 

0.0005 2013 0.203  0.0005 1940 0.187 

            

 X=250    X=250   

Analytic Solution 2.4388784 Analytic Solution 2.07327803 

Absolute 

Error 
N 

CPU Time 

(Seconds) 

Absolute 

Error 
N 

CPU Time 

(Seconds) 

0.01 67 0.016  0.01 59 0.016 

0.005 160 0.016  0.005 146 0.016 

0.001 878 0.031  0.001 629 0.032 

0.0005 1413 0.093 0.0005 1805 0.156 
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Table 11 (Cont.) Comparison of Computational Efficiency of the CEV Model  

Across Different Values ofβ  

CEV Put S=300 δ =(20%)S1-β/2      interest rate = 5% T=0.5 year 

  β=0     β=1   

Put X=350   Put X=350   

Analytic Solution 44.9365369 Analytic Solution 45.3465076 

Error N CPU Time Error N CPU Time 

    (Seconds)     (Seconds) 

0.01 158 0.016  0.01 142 0.016 

0.005 317 0.016  0.005 339 0.016 

0.001 1724 0.157  0.001 1605 0.14 

0.0005 3397 0.75  0.0005 3413 0.75 

            

Put X=300   Put X=300  

Analytic Solution 13.2732913  Analytic Solution 13.2626748 

Error N CPU Time Error N CPU Time 

    (Seconds)     (Seconds) 

0.01 103 0.016  0.01 108 0.016 

0.005 205 0.016  0.005 213 0.016 

0.001 1000 0.062  0.001 1069 0.063 

0.0005 2005 0.203  0.0005 2135 0.25 

            

Put X=250   Put X=250   

Analytic Solution 1.74889375 Analytic Solution 1.46169114 

Error N CPU Time Error N CPU Time 

    (Seconds)     (Seconds) 

0.01 71 0.016  0.01 65 0.016 

0.005 133 0.016  0.005 121 0.016 

0.001 852 0.047  0.001 724 0.032 

0.0005 1650 0.125 0.0005 1429 0.11 
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Figure 1 Implied Volatility Graph 
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計畫成果自評 
 

本研究符合原計畫進度。本研究詳盡的整理了常數彈性變異數過程的研究成果，包括
近期於信用風險的應用以及路徑相關選擇權的訂價文獻。實證分析上，我們將常數彈
性變異數過程在歐式選擇權的訂價結果，與文獻中 Bakshi, Cao, and Chen (1997)著名
的實證分析進行比較，我們發現在短期與價外的選擇權分類中，常數彈性變異數模型
與隨機波動度模型有相近的表現。在數值分析中，相較於隨機波動度模型，常數彈性
變異數模型有極佳的收斂速度以及定價表現。本研究部分已發表 — Chen, R. R., C. F. 
Lee, Lee, H.H.Lee, 2009, “Empirical Performance of the Constant Elasticity 
Variance Option Pricing Model,” Review of Pacific Basin Financial Markets and 
Policies, Volume 12, Issue: 2 (June 2009), 177-217 (FLI and EconLit)。此外，此研究
JDCEV 模型實證部份，目前正在進行進一步的實證分析，增加 robustness test，應可
於近期投稿國際學術研討會。 
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一、 參加會議經過 

十月二十一日報到領取研討會資料。十月二十二日研討會開始之後則陸續參與
Brad Barber 的演講 "Estimating Long-run Abnormal Returns"，以及數個
academic session。本人於十月二十三下午 2:30 至 3:00 進行口頭報告與 Ren-
Raw Chen 以及 Cheng-Few Lee 共同合作之 ”Default Prediction of Alternative 
Structural Credit Risk Models and Implications of Default Boundaries”，並與
session 參與者討論本篇研究。 

 

二、 與會心得 

此次參與 FMA 國際財務管理學會會議獲益匪淺，一則有機會於研討會中發表本人
之研究成果，並藉此與研討會參與者互動，獲得研討會參與者之回饋意見，對論
文進行修改，再則亦於 keynote speaker 的演講中,聽取目前最新之研究發展,尤其
Brad Barber 的"Estimating Long-run Abnormal Returns"，更讓我見識到大師的丰
采。最後，在各個財務的 session 與 reception 中，有機會與來自各不同國家與學
校的學者認識，討論與相互交流。 
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Abstract 

While most of the empirical studies of structural credit risk models try to test the performance 
of structural models in bond and credit derivatives pricing, little results are provided for 
default prediction. Therefore, in this study, we empirically compare four structural credit risk 
models – the Merton (1974), the Brockman and Turtle (2003), the Black and Cox (1976), and 
the Leland (1994) models – for their default prediction capabilities. Our empirical results 
indicate that exogenous default boundaries, flat or exponential, are not crucial in default 
prediction. In contrast, modeling endogenous boundary has significant improvement in long 
term prediction for non-financial firms. However, we should note that the performance of the 
Leland model compared to the Merton model is weakened as the default prediction horizon 
shortened. 

Keywords: Default Prediction, Structural Credit Risk Model, Maximum Likelihood Estimation, 
Default Boundary 
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1. Introduction 

This study is intended to examine whether and by how much the generalization of the 
prevailing structural credit risk models improves the performance of the default prediction. 
Following the seminal works of Black and Scholes (1973) and Merton (1974), the structural 
credit risk modeling literature has developed into an important area of research. While most 
of the empirical studies try to test the performance of structural models in bond and credit 
derivatives pricing, little results are provided for default prediction.i Therefore, in our study, 
we will compare various structural credit risk models for their default prediction capability. 
Moreover, the effect of default boundary modeling in default prediction can also be 
investigated. 

Credit risk models can be divided into two main categories: credit pricing models, and 
portfolio credit value-at-risk (VaR) models.ii Credit pricing models can be subdivided into 
two main approaches: structural-form models and reduce-form models.iii Portfolio credit VaR 
models, developed by banks and consultants, aimed at measuring the potential loss with a 
predetermined confidence interval that a portfolio of credit exposures could suffer within a 
specified time horizon. These models typically employ simpler assumptions and address less 
on the causes of single firm’s default. Reduced-form models are mainly represented by the 
Jarrow-Turnbull (1995) and Duffie-Singleton (1999) models. These models typically assume 
exogenous random variables drive defaults and do not condition default on the firm value and 
other structure features, such as asset value volatility and leverage, of the firm. In our 
empirical study, we limit our empirical analysis of default prediction in the single-firm 
structural models.iv  

Prior empirical studies of structural models in default prediction and default boundary, even a 
handful, do not seem to come to a consensus. Chen, Hu, and Pan (2006) show that the 
Longstaff and Schwartz model (1995) performs poorly and is statistically no different from 
the flat barrier model without random interest rate assumption. The simpler Black-Cox (1976) 
outperforms the complex Longstaff and Schwartz model and they attribute the better 
performance to the random recovery. Devydenko (2007) finds that, in default prediction 
power, the simple boundary specified in terms of the face value of debt performs at least as 
well as more complex alternatives, the Leland and Toft (1996) or the KMV boundary. 
Another finding provided by Brockman and Turtle (2003) shows that the default flat barriers 
are significantly positive while Wong and Choi (2009) find that default barriers are positive 
but not significant. It seems that the above empirical results are counter intuitive to the 
evolution of structural credit risk modeling. Therefore, it motivates us to empirically test a 
more comprehensive set of the structural models and to uncover the crucial factors of default 
prediction.  

In our empirical study, we will test various structural credit risk models extended from the 
Merton (1974) model. Succeeding structural models relax the restrictive assumptions 
originally made and seek to incorporate the most critical factors. Although these extensions 
introduce more realism into the model, they increase the analytical complexity and 
implemental difficulty. The goal of this study is, therefore, to empirically test if these 
complexities indeed improve the performance predicting corporate failure. Our focus is 
mainly put on two aspects of these extensions: the bond safety covenant in terms of 
continuous default, and the shareholders’ discretion on the going concern decision in terms of 
endogenous barrier modeling. Using the Merton model as the base case, we can observe the 
performance enhancement, if any, through the introduction of continuous default, bankruptcy 
costs, and tax effect.  
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The European option approach by Merton (1974) ignores the possibility of failure prior to 
debt maturity and implicitly models corporate debt and equity as path-independent securities 
of the underlying asset value process. Researchers therefore introduce the default barrier to 
model this deficiency. In barrier models, we test the flat (or constant) default barrier model by 
Brockman and Turtle (2003), and the exponential barrier model of Black-Cox (1976). An 
arguable assumption of the above barrier models is that the default barrier is exogenously 
determined. As a result, Leland (1994) developed the endogenous barrier model under 
stationary debt structure. Therefore, we will also include endogenous barrier model in our 
empirical test. 

Prior empirical studies indicate that structural models generate poor empirical performances. 
Ericsson and Reneby (2004) argue that the inferior bond pricing performance of structural 
models may come from the estimation approaches traditionally used in the empirical studies. 
As a result, the perceived advantage of reduced-form models is more a result of the estimation 
procedure rather that of the model structure. Therefore, we adopt a better estimation 
methodology, the Maximum Likelihood Estimation method proposed by Duan (1994) and 
Duan et al. (2004), which views the observed equity time series as a transformed data set of 
unobserved firm values with the theoretical equity pricing formula serving as the 
transformation. This method has been evaluated by Ericsson and Reneby (2005) through 
simulation experiments, and their result shows that the efficiency of MLE is superior to the 
commonly adopted volatility restriction approach in the literature. Another reason to employ 
MLE is that the major data required for this method in the context of structural models is the 
common stock prices, which have much less microstructure issues compared with bond 
prices.  

Our paper contributes to existing literature in two aspects: First, in contrast to previous 
research, we adopt the theoretically superior MLE approach and empirically test the default 
prediction capabilities of various models under different default barrier assumptions. Second, 
the role of the default barrier in structural models has long been adopted by researchers in 
literature while its validity is not empirically investigated until the research by Brockman and 
Turtle (2003) and Wong and Choi (2009). One of the advantages of the MLE approach is that 
it can jointly estimate asset volatility and default barrier. Therefore, in addition to the flat 
barrier assumption, we can also explore this issue further to the exponential barrier 
assumptions.   

Our empirical results surprisingly show that the simple Merton model has a similar capability 
in default prediction as that of the Black and Cox model. The Merton model even outperforms 
the Brockman and Turtle model, and the difference of predictive ability is statistically 
significant. The results are held for the in-sample, six-month and one-year out-of-sample tests 
for both the broad definition of bankruptcy as in Brockman and Turtle (2003) as well as the 
similar definition to Chen, Hu, and Pan (2006). In addition, we also find that the inferior 
performance of the Brockman and Turtle model may be the result of its unreasonable 
assumption of the flat barrier. In the one-year out-of-sample test, the Leland model 
outperforms the Merton model in non-financial sector and the results hold for two alternative 
definitions of default. Furthermore, these results are still preserved in our robustness test as 
we use risk-neutral default probabilities instead of physical default probabilities.  

The paper is organized as follows: Section 2 is the review of prior empirical studies of 
structural models in default prediction. Section 3 presents the estimation method we adopt and 
the issues of other current estimation approaches. A simulation study of the MLE method is 
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also reported. Section 4 reports empirical results, and Section 5 presents summary and 
concluding remarks.  

2. Previous Empirical Studies of the Structural Credit Risk Models in Default Prediction  

Brockman and Turtle (2003) investigate the bankruptcy prediction performance under down-
and-out call (DOC) framework using a large-cross section of industrial firms for the period 
from 1989 to 1998. Brockman and Turtle (2003) use the proxy approach measuring the 
market value of a firm’s assets as the book value of assets less the book value of shareholders’ 
equity, plus the market value of equity as reported in Compustat. The asset volatility is 
measured as the square root of four times the quarterly variance measure, where the quarterly 
variance measure is computed by quarterly percentage changes in asset values for each firm in 
the sample with at least ten years of data. The promised debt payment is measured by all non-
equity liabilities, computed as the total value of assets less the book value of shareholders’ 
equity. Finally, the life span of each firm is set to be ten years, and they argued that barrier 
estimates are not particularly sensitive to lifespan assumption by the robustness test. 
 
The empirical evidence shows that the failure probabilities implied by the DOC framework 
never underperform the well known accounting approach – Altman’s Z-score. In detail, the 
logistic regressions by including one or both of the implied failure probability and Z-score, 
the DOC approach dominates Z-score in predicting corporate failure percentage of the one, 
three, and five year tests as well as their size or book-to-market categorized tests. In addition, 
in the quintile-based test, the failure probability of DOC framework also stratifies failure risks 
across firms and years much more effectively than the corresponding Z-score. We should note 
that another empirical finding by Brockman and Turtle (2003) is that implied default barriers 
are statistically significant for a large cross-section of industrial firms. However, Wong and 
Choi (2009) argue that it is the proxy approach of Brockman and Turtle (2003) that leads to 
barrier levels above the value of corporate liabilities. Hence, they adopt the transformed-data 
MLE approach and find that default barriers are positive but not very significant in the 
empirical study of a large sample of industrial firms during 1993 to 2002. 

Bharath and Shumway (2008) examine the default predictive ability of the Merton distance to 
default (DD) model by studying all the non-financial firms for the period 1980 to 2003. The 
method they use to estimate the expected default frequency (EDF) is the same as the iterated 
procedure employed by Vassalou and Xing (2004). They compare the Merton DD probability 
with several variables — the naïve probability estimate (without implementing the iterated 
procedure), market equity, and past returns, and find that the Merton DD model does not 
produce sufficient statistics for the probability of default. Implied default probabilities form 
the CDSs and corporate bond yield spreads are only weakly correlated with the Merton DD 
probabilities after adjusting for agency ratings, bond characteristics, and their alternative 
predictors. Moreover, they find that the naïve probability they propose, which captures both 
the functional form and the same basic inputs of the Merton DD probability, performs slightly 
better as a predictor in hazard models and in out-of-sample forecasts. They conclude that the 
Merton DD probability is a marginally useful default forecaster, but it is not a sufficient 
statistic for defaultv. 

Recently, Chen, Hu, and Pan (2006) use the volatility restriction method to test five structural 
models including the models of Merton, Brockman and Turtle, Black-Cox, Geske (2 periods), 
and Longstaff-Schwartz as well as the proposed non-parametric model. The default 
companies in the study are those filed Chapter 11 for the period from January 1985 to 
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December 2002 with assets greater that $50 million. Their results indicate that the distribution 
characteristics of equity returns and endogenous recovery are two important assumptions. On 
the other hand, random interest rates, that play an important role in pricing credit derivatives, 
are not an important assumption in predicting default.  
 
Lastly, Davydenko (2007) uses a unique sample of risky firms with observed market values of 
equity, bonds, and bank debt to investigate whether default is associated with insufficient cash 
reserves relative to required payments or with low market values of assets relative to debt 
level. Davydenko estimates the market value of firms’ assets as the sum of market values of 
bonds, bank debt, and equity. Estimates of the market value of firms’ public debts are from 
the monthly quotes from Merrill Lynch bond trading desks, for bonds included in the Merrill 
Lynch U.S. High Yield Master II Index (MLI) between December 1996 and March 2004. 
Estimates of bank loan prices are based on quotes provided by the LSTA/LPC Mark-to-
Market Pricing service. In default prediction, his empirical results suggest that the simple 
boundary specified in terms of the face value of debt performs at least as well as more 
complex alternatives, the Leland and Toft (1996) or the KMV boundary. In addition, 
predictions based solely on liquidity measures, the “flow” measure in cash flow-based models 
such as interest coverage and quick ratio, are significantly less accurate than those based on 
asset values. However, his empirical observation indicates that liquidity shortages can 
precipitate default even by firms with high asset values when they are restricted from 
accessing external financing. Therefore, even though boundary-based default predictions can 
match observed average default frequencies, they misclassify a large number of firms in 
cross-section. 
 
Leland (2004) examines the default probabilities predicted by the Longstaff and Schwartz 
(1995) model with the exogenous default boundary, and the Leland and Toft (1996) model 
with endogenous default boundary. Leland uses Moody’s corporate bond default data from 
1970 to 2000 in his study and follows similar calibration approach similar to Huang and 
Huang (2003). Rather than matching the observed default frequencies, Leland instead chooses 
common inputs across models to observe how well they match observed default statistics. The 
empirical results show that when costs and recovery rates are matched, the exogenous and 
endogenous default boundary models fit observed default frequencies equally well. The 
models predict longer-term default frequencies quite accurately, while shorter-term default 
frequencies tend to be underestimated. Thus, he suggests that a jump component should be 
included in asset value dynamics.   

 

3. Empirical Methods 

In Section 3.1, we first describe in detail the Maximum Likelihood Estimation (MLE) 
procedures, and we summarize in Section 3.2 the problems of other existing estimation 
approaches that have been pointed out in the literature. In Section 3.3, we report our results of 
the Monte Carlo experiments of the MLE method. In Section 3.4, we present the method we 
use to measure the capability of predicting financial distress. 

Traditionally, structural credit risk models are estimated by the volatility restriction approachvi 
or an even simpler approach such as the proxy approach. However, these two approaches and 
their variants lack the statistical basis, and the empirical results they produce are less 
convincing. Thus, the new estimation method such as the transformed MLE has been 
introduced into the empirical researches of structural models.  
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3.1 Maximum Likelihood Estimation Method  

Duan (1994) develops a transformed data MLE approach to estimate continuous time models 
with unobservable variables using derivative prices. The obvious advantages are that (1) the 
resulting estimators are known to be statistically efficient in large samples; and (2) the 
sampling distribution is readily available for computing confidence intervals or for testing 
hypotheses. In the context of structural credit risk models, equity prices are the derivative of 
the underlying asset value process and are readily available with large samples. In this 
section, we first briefly summarize the transformed-data MLE approach proposed by Duan 
(1994), and then turn to the implementation of this method in structural credit risk models.  

Let X be an n-dimensional vector of unobserved variates. Assume that its density 
function, );( θxf , exists and it is continuously twice differentiable in both arguments. A 
vector of observed random variates,Y , results from a data transformation of the unobservable 
vector X . This transformation from nR to nR is a function of the unknown parameterθ , and is 
one-to-one for every Θ∈θ , whereΘ is an open subset of kR .    

Denote this transformation by );( θ⋅T , where );( ⋅⋅T is continuously twice differentiable in both 
arguments. Accordingly, );( θXTY = and );(1 θYTX −= . The log-likelihood function of the 
observed data Y is );( θYL . By change of variable, the log-likelihood function for the 
transformed dataY can be expressed by the log-likelihood function of the unobserved random 
vector X , denoted as );( θ⋅XL , and the Jacobian, J , of a given transformation.  

( )11 );(ln));;(();( −− += θθθθ XTJYTLYL X       (1) 

Implementation of the Transformed-Data MLE in the Context of Structural Credit Risk 

Models (Duan et al. (2004)): 

Step 1. Assign initial values of the parametersθ , and compute the implied asset value time 
series by )ˆ;()ˆ(ˆ )0(1)0( θθ ihih STV −= , where h is the length of the time period and )(ˆ mθ denotes 
the m-th iteration. Let m=1. 

Step 2. Compute the log-likelihood function 

∑
=

−==
n

i ih

mm
ihmm

ihV
m

dV
VdT

niVLSL
1

)()(
)()()( )ˆ);ˆ(ˆ(

ln)ˆ;,,1),ˆ(ˆ()ˆ;(
θθ

θθθ K   (2) 

to obtain the estimated parameters )(ˆ mθ .vii 

Step 3. Compute the implied asset value time series by )ˆ;()ˆ(ˆ )(1)( m
ih

m
ih STV θθ −= , and let 

m=m+1, go back to step 2 until the maximization criterion is met.  

Step 4. Use the MLEθ̂  to compute the implied asset value nhV̂ and the corresponding default 
probability.  
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3.2 Problems of Existing Estimation Approaches 

In this section, we first summarize in Table 1 the existing empirical works of structural 
models in terms of their subject of research, estimation methods and input data. Next, we 
briefly summarize the problems of the most popular existing estimation approaches that have 
been pointed out in the literatureviii.  

Problems of Volatility Restriction Approach 

Duan (1994) addressed that the shortcoming of the volatility restriction method. The volatility 
relationship used in volatility restriction method is a redundant condition which provides a 
restriction only because the equity volatility is inappropriately treated as a constant, which is 
calculated from historical data. Moreover, since the volatility restriction approach is not 
statistical, it provides no distribution information about the parameters and cannot perform 
statistical inferences. In addition, Duan et al. (2003) also pointed out that the drift of the 
unobservable asset process could not be estimated by the JMR-RV method since the 
theoretical equity pricing formula does not contain the drift of the asset value process under 
the physical probability measure. As a result, the default probability could not be obtained.  

Ericsson and Reneby (2005) also argued that the described volatility restriction effect implies 
that increasing stock prices result in underpriced bonds, while decreasing stock prices produce 
overpriced bonds. Ericsson and Reneby (2005) performed a simulation experiment and 
compared the performance of the transformed data maximum likelihood estimators with those 
of the volatility restriction method. Under the settings of four scenarios of different financial 
risk and business risk levels, they chose to test three structural models including the Black-
Scholes-Merton model, the Briys and de Varenne (1997) model, and the Leland and Toft 
(1996) model. They found that the bias of the transformed-data maximum likelihood 
approach is negligible for practical purposes in 12 of the Monte Carlo experiments, while the 
VR approach exhibits an average spread error of 23%.  

Problems of the KMV Approachix 

Duan et al. (2004) prove that the KMV method produces the point estimate identical to the 
transformed data ML estimate in the context of the Merton (1974) model. However, the KMV 
method cannot provide the sampling error of the estimate, which is crucial for statistical 
inference. In short, the KMV method can be regarded as an incomplete ML method. 
Moreover, in general, structural models may contain unknown parameters other than the 
firm’s asset value and volatility: for example, the unknown parameters specific to the 
financial distress level in the barrier models. In these models, estimates of the KMV method 
no longer coincide with those of the EM algorithm, and therefore the KMV method cannot 
generate a meaning estimate for these variables.   

Problems of Proxy Approach 

Eom, Helwege and Huang (EHH) (2004) use the sum of the market value of equity and total 
debt as a proxy of the asset value of a firm. That is, SKVproxy += . However, Li and Wong 
(2008) show this assumption is unreasonable even under Merton’s model. Under the option 
theory, assuming the true asset value trueV , one can find 

),,(),,( TKVCKVSTKVC proxyproxytrue <−== . The inequality above comes from the fact that 
a call option premium must be higher than its intrinsic value before the maturity date. Since 
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call option is an increasing function of its underlying asset, the relationship proxytrue VV < is 
implied by ),,(),,( TKVCTKVC proxytrue < . Therefore, we can find that the EHH approach 
overestimates the true asset value, and it yields biased estimation results. As the market value 
of assets has been overestimated, the predicted price of corporate bonds will be too high and 
the corresponding predicted yield spread will be underestimated. This implies the European 
option framework will automatically be rejected whenever the proxy approach is adopted.   

Wong and Choi (2009) further criticize the proxy approach under the down-and-out call 
option framework of Brockman and Turtle (2003). They show that employing the proxy is 
equivalent to presuming that the default barrier is greater than the future promised payment of 
liabilities. This result holds for the arbitrary sets of input parameters including industrial 
sector, option maturity, and rebate level. Hence, it explains why the hypotheses test and 
robustness tests of Brockman and Turtle (2003) work well. Firms are presumed to have 
positive barriers exceeding the book value of corporate liabilities, and no doubt the implied 
barriers in Brockman and Turtle (2003) are significantly positive. 
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Table 1 Summary of Previous Empirical Studies of Structural Models 
Research Subject Estimation Method Main Input Data for the Estimation 

Wei and Guo (1997) Credit Spreads Yield Curve Approach Eurodollar and T-Bill Data 

Anderson and Sundaresan (2000) Bond Pricing and Yield Spreads Asset Value Proxy Yield Indices of Investment 

Lyden and Saraniti (2001) Bond Pricing and Yield Spreads Asset Value Proxy Matrix Bond Prices 

Delianedis and Geske (2001) Bond Pricing and Yield Spreads Volatility Restriction Matrix Bond Prices 

Huang and Huang (2003) Bond Pricing and Yield Spreads Calibration Bond Prices 

Eom, Helwege, and Huang (2004) Bond Pricing and Yield Spreads 
Asset Value Proxy with Refined 

Volatility Estimation 
Bond Prices 

Hsu, Saà-Requejo, and Santa-Clara (2003) Bond Pricing GMM Exchange Traded Bond Prices 

Ericsson and Reneby (2004) Yield Spreads MLE 
Stock Prices, Bond Prices, Dividend 

Information 

Chen, Fabozzi, Pan, and Sverdlove (2005) CDS Spreads 
Minimize of Pricing Error and 

Absolute Pricing Error 
CDS Transaction Data 

Ericsson, Reneby, and Wang (2006) CDS Premia and Bond Pricing MLE Credit Default Swaps, Bond Prices 

Vassalou and Xing (2004) Equity Returns KMV (Simplified) Equity Prices 

Brockman and Turtle (2003) 
Default Prediction and Default 

Boundary 
Asset Value Proxy Equity Prices 

Bharath and Shumway (2008) Default Prediction KMV (Simplified) Equity Prices 

Chen, Hu, and Pan (2006) Default Prediction Volatility Restriction Equity Prices 

Wong and Choi (2009) Default Barrier MLE Equity Prices 

Davydenko (2007) 
Default Prediction and Default 

Boundary 

Market values of bond, equity, 

and bank loan  
Bond Prices, Bank loans, Equity Prices 

Leland (2004) Default Probability Estimation Calibration Moody’s Corporate Bond Default Data 
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3.3 Monte Carlo Experiment 
 
We follow Duan et al. (2004) and set the following parameter values to perform the 
simulation experiment: interest rate r =0.05, asset drift Vµ =0.1, asset volatility Vσ =0.3, initial 
firm value 0V =1.0, face value of debt F=1.0, and option maturity T=2. The sampling period is 
set to be 252 days a year, and maturity is set to be (2- δi ) years for the i-th data point of the 
simulated time series. Finally, we change the value of the default barrier in order to examine 
its effect on parameter estimation.  

Our results in Table 2 are based on 1,000 simulated samples following the procedure by Duan 
et al. (2004) to mimic the daily sample of observed equity value of a survived firm. We use 
the same numerical optimization algorithm of Nelder-Mead (in Matlab software package) as 
that in Wong and Choi (2009), and the initial value of the barrier is set as 0.5. Our experiment 
results in Table 2 clearly show the strength and the limitation of the MLE method. The MLE 
method can jointly estimate and uncover the true asset volatility and default barrier well, 
when the barrier hitting probability of the asset value process is not too low. However, as the 
true default barrier is under 0.5 in our experiment, the barrier estimates are seriously biased.  

Although the default barrier estimates are biased when barrier the hitting probability of asset 
value process is low, this is what the statistical theory precisely predicts since the value of 
likelihood function is flat and not sensitive to the change of the barrier level. A low barrier 
relative to the firm value (or the low hitting probability of the barrier) obviously implies that 
the barrier is immaterial. In other words, where it is exactly located doesn't materially affect 
equity values. Thus, one cannot expect to pin down the barrier using the equity time series.  
 
One important consequence regarding the estimate of the barrier parameter is that the testable 
hypothesis proposed by Brockman and Turtle (2003) should not be carried out by the 
estimates of the barriers. Brockman and Turtle (2003) use the nested concept of standard call 
option and down-and-out barrier option model to argue that when the default is zero, the 
down-and-out option collapses to the standard European call option. However, due to the 
nature of the likelihood function of down-and-out option framework, one cannot expect to pin 
down the barrier when the barrier is low relative to the asset value, i.e., the default probability 
is low. When the default probability is low, the low barrier estimate can vary for a wide range 
since it does not affect the likelihood function and equity pricing results. 

Fortunately, for our empirical studies in default prediction, this should present no practical 
difficulties. The bias of low barrier cases could hardly affect the default probabilities of 
sample firms, even when the barrier estimates vary for a wide range. Furthermore, a formal 
test shall be carried out by the performance of default prediction capability using alternative 
statistical test. In our study, we adopt the Receiver Operating Characteristic Curve and 
Accuracy Ratio for this issue and we discuss them in the following section.  
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Table 2 A Monte Carlo Study of the MLE Method for 

the Brockman and Turtle (2003) Model 
  Model Parameters F=1 T=2 

  Vµ Vσ H (Barrier) Barrier 
 Hitting Probability 

True Value 0.1 0.3 0.9 67.746936% 
Mean 0.36377 0.30211 0.89479  
Median 0.34914 0.29857 0.89837  
Standard Deviation 0.21523 0.04856 0.07941  

True Value 0.1 0.3 0.8 39.585685% 
Mean 0.24807 0.29789 0.79156  
Median 0.22296 0.29490 0.80203  
Standard Deviation 0.21503 0.04449 0.11039  

True Value 0.1 0.3 0.75 28.074173% 
Mean 0.23082 0.30232 0.69968  
Median 0.17726 0.29878 0.74795  
Standard Deviation 0.24533 0.05624 0.18828  

True Value 0.1 0.3 0.7 18.671759% 
Mean 0.19528 0.29924 0.61289  
Median 0.17426 0.29643 0.69106  
Standard Deviation 0.23842 0.03912 0.22313  

True Value 0.1 0.3 0.6 6.409692% 
Mean 0.11387 0.29343 0.49035  
Median 0.09683 0.29164 0.57849  
Standard Deviation 0.26237 0.03410 0.24217  

True Value 0.1 0.3 0.5 1.347824% 
Mean 0.11484 0.29314 0.41125  
Median 0.11833 0.29224 0.35967  
Standard Deviation 0.28141 0.03252 0.24325  

True Value 0.1 0.3 0.4 0.127036% 
Mean 0.09522 0.29244 0.41637  
Median 0.07599 0.29224 0.35732  
Standard Deviation 0.29297 0.03222 0.24788  

True Value 0.1 0.3 0.0000001 0.000000% 
Mean 0.08946 0.29237 0.40017  
Median 0.08844 0.29143 0.29074  
Standard Deviation 0.29598 0.03291 0.24124   
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3.4 Measuring Capability of Predicting Financial Distress — Receiver Operating 
Characteristic Curve and Accuracy Ratio  

To analyze the capability of predicting financial distress, we adopt the accuracy ratio (AR) 
and Receiver Operating Characteristic (ROC) method proposed by Moody’s, which is also 
widely used in academic literature such as the studies by Vassalou and Xing (2004) and Chen, 
Hu, and Pan (2006), and Duffie, Saita, and Wang (2007). Stein (2002, 2005) argues that the 
power of a model to predict defaults is its ability to detect “True Default,” and the capability 
of a model to calibrate to the data is its ability to detect “True Survival.”  
 
The ROC curve in the context of bankruptcy prediction is a plot of cumulative probability of 
the survival group against the cumulative probability of the default group. Assuming a firm 
defaults when its default probability is less than a cut-off threshold, the survival sample 
contains true survivals and false defaults, and the default sample contains true defaults and 
false survivals. Thus, the probabilities within the survival (default) group of true survival 
(default) and false default (survival) sum to unity. Figure 1 and Figure 2 demonstrate the ROC 
curves; the more powerful model successfully sets apart the default and survival distribution, 
the more concave is the ROC curve. In contrast, a model with no differentiating power shows 
a 45 degree line in its ROC curve since the default and survival samples overlap completely 
and two distributions are, in reality, one distribution.  

The key statistic in the ROC methodology, known as the Cumulative Accuracy Profile (CAP), 
is the Accuracy Ratio (AR). AR is defined as the ratio of the area of tested model A to the area 
of perfect model PA , i.e., PAAAR /=  where 10 ≤≤ AR . Hence, the higher the AR is, the more 
powerful is the model.  

In our study, we modified the approach by Chen, Hu, and Pan (2006)x as follows: 

1. Rank all default probabilities ( DefP ) from the largest to smallest. 
2. Compute the 100 percentiles of default probabilities ( DefP ). 
3. Divide the sample into default and survival groups. 
4. In the default group, compute the cumulative probability greater than each percentile of 

default probabilities. This will be plotted on the y axis. 
5. In the survival group, compute the cumulative probability greater than each percentile 

of default probabilities. This will be plotted on the x axis. 
6. Plot the ROC curve.  
7. For each structural model, repeat step 1 to step 6. Calculate the Accuracy Ratio (AR) 

and the z-statistic by the methods of comparing the areas under ROC curves by 
Hanley and McNeil (1983). 
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Figure 1 Four Models with Different Powers 

 

Figure 2 ROC Curves 
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4. Empirical Tests and Results 

In this Section, we first describe the structural credit risk models to be tested in our empirical 
study in Section 5.1. We next present our data and the descriptive statistics in Section 5.2. In 
Section 5.3, the empirical results are reported and discussed. Robustness tests are presented in 
Section 5.4. 

4.1 The Models 

In our empirical study, we will test three barrier structural credit risk models extended from 
the Merton (1974) model. We will focus on two aspects of these extensions: the bond safety 
covenant in terms of continuous monitoring and default (Brockman and Turtle, 2003; Black-
Cox, 1976); the shareholders’ discretion on the going concern decision in terms of 
endogenous barrier modeling under the stationary debt structure assumption (Leland, 1994). 
We summarize their key features and parameters of these models in Table 3 and Table 4. All 
of the details of these models including close-form solutions and their corresponding default 
probabilities of risky debts are provided in Appendix. 

5.2 Data and Summary Statistics 
 
In our empirical test, equity prices are collected from CRSP (the Center for Research in 
Security Prices) and the financial statement information is retrieved from Compustat. The 
sampling period of the firms is from January 1986 to December 2005, while the quarterly 
accounting information is from 1984 to 2005 since some firms under financial distress stop 
filing financial reports a long time before they are delisted from the stock exchanges. The 
accounting information we use in our study is quarterly reports from CRSP/Compustat 
Merged (CCM) Database. This is to obtain the most updated debt levels and payout 
information, especially for those defaulted firms. In our empirical test, we consider only 
ordinary common shares (first digit of CRSP share type code 1) and exclude certificates, 
American trust components, and ADRs. Our final sample covers a 20-year period from 1986 
to 2005 and includes 15,607 companies. 

In our empirical test, we adopt two different definitions of default: 

Definition I The broad definition of bankruptcy by Brockman and Turtle (2003), which 
includes firms that are delisted because of bankruptcy, liquidation, or poor performance. A 
firm is considered performance delisted, named by Brockman and Turtle, if it is given a 
CRSP delisting code of 400, or 550 to 585. Note that there are still other delisted firms due to 
mergers, exchanges, or being dropped by the exchange for other reasons, and they are 
considered as survival firms. 

Definition II This definition of bankruptcy is similar to that adopted by Chen, Hu, and Pan 
(2006). Default firms are collected from the BankruptcyData.com database, which includes 
over 2,500 public and major company filings dating back to 1986. We next match the 
performance delisted firms with those samples collected from BankruptcyData.com, and add 
back the liquidated firms (with delisting code 400), to be our default group. All remaining 
firms are classified as survival firms. Note that one difference between our classification and 
Chen, Hu, and Pan (2006) is that some of the companies that filed bankruptcy petitions but 
were later acquired by (merged with) other companies (Delisting code: 200) are classified into 
survival group. 
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Table 3 Summary of Model Key Features 

Model Asset Value Distribution Barrier Interest Rate Recovery  Bankruptcy Cost 
Merton  Log-normal None Constant Random No 
Brockman and Turtle (Flat Barrier) Log-normal Flat Constant Random No 
Black and Cox Log-normal Exponential Constant Random No 
Leland Log-normal Flat* Constant Fixed Yes 
* The character of endogenous flat barrier is different from the exogenously flat barrier. The endogenous barrier is derived endogenously from the optimal leverage decision, 
and its flat feature results from the stationary debt structure.  
 
 
 

Table 4 Summary of Model Parameters 

Model Asset Value Process Barrier 
Related 

Bankruptcy 
Cost Related 

Tax Shield 
Related 

Other 
Parameters 

Merton  },,{ VVV g σµθ = #    r , F  
Brockman and Turtle (Flat Barrier) },,{ VVV g σµθ = # H    r , F  
Black and Cox },,{ VVV g σµθ =  )(CH ,γ    r , F  
Leland },,{ VVV g σµθ = #  α  CT ,C  r  
# The original Merton, Brockman and Turtle, and Leland models do not assume the asset payout, but they can be easily added into the models. 
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Before proceeding to the summary statistics of our final sampling firms, we first describe our 
sample selection criteria. First, companies with more than one share classes are excluded in 
our test. Second, since we also need accounting information in order to empirically test these 
models, firms without accounting information within two quarters going backward from the 
end of the estimation period are excluded. Thirdly, active firms (delisting code 100) during 
our sampling period while being delisted in 2006 are excluded. This is to ensure survival 
firms with delisting code 100 are financially healthy companies. Finally, to ensure adequate 
sample size for the MLE approach, we consider only those companies with over 252 days 
common share prices available.  

Next, we report in Table 5 the main firm characteristics of our default samples in terms of 
market equity value, book leverage (total liabilities divided by asset value), and market 
leverage (total liabilities divided by market value of the firm). We can find that on average 
firms in default group are smaller and tend to have higher book and market leverage. In 
addition, the mean and median of book and market leverage of default group of default 
Definition II are higher than those of Definition I. This is because firms that delisted without 
filing Chapter 11 are considered as default firms in default Definition I, and as survival firms 
in Default definition II; such firms may not have debt levels as high as companies which filed 
Chapter 11. Finally, in Table 6, a summary of the default firms by industry and year is 
presented.  

In the end of this section, we present our key inputs for the structural models. Determining the 
amount of debt for our empirical study is not an obvious matter. As opposed to the simplest 
approach, for example, by Brockman and Turtle (2003), to set the face value of debt equal to 
the total liabilities, we adopt the rough formula provided by Moody’s KMV — the value of 
current liabilities including short-term debt, plus half of the long-term debt. This formula is 
also adopted by some researchers such as Vassalou and Xing (2004).xi 

Secondly, the payout rate g captures the payouts in the form of dividends, share repurchase, 
and bond coupons to stock holders and bondholders. To estimate the payout rate, we adopt the 
weighted average method similar to those by Eom, Helwege, and Huang (2004) and Ericsson, 
Reneby, and Wang (2006) as 

)1()()( LeverageratioPayoutEquityLeveragesLiabilitieTotalExpensesInterest −×+×  
where )( ValueEquityMarketsLiabilitieTotalsLiabilitieTotalLeverage +=   

For the market value of equity, we chose the number of shares outstanding times market price 
per share on the day closest to the financial statement date. The equity payout rate is estimated 
as the total equity payout, which is the sum of cash dividends, preferred dividends, and 
purchase of common and preferred stock, divided by the total equity payout plus market value 
of equity.  

 



 18

Table 5 Summary Statistics of Sampling Firms 
Default Definition I 

 Group Number of firms Mean Median Maximum Minimum 
Market Equity Value Survival 10729 1770.7762 173.0430 367495.1442 0.3016
 Default 4878 58.1062 8.7146 36633.7544 0.0271
Book Leverage Survival 10729 0.5541 0.5500 4.0093 0.0008
 Default 4878 0.7628 0.6880 203.0000 0.0003
Market Leverage Survival 10729 0.4321 0.3932 0.9961 0.0007

 Default 4878 0.5188 0.5387 0.9997 0.0001
Default Definition II 

 Group Number of firms Mean Median Maximum Minimum 
Market Equity Value Survival 14244 1340.6120 81.9271 367495.1442 0.0271
 Default 1363 136.7769 23.4698 36633.7544 0.3356
Book Leverage Survival 14244 0.5996 0.5666 203.0000 0.0003
 Default 1363 0.8253 0.7888 12.5273 0.0025
Market Leverage Survival 14244 0.4389 0.4058 0.9997 0.0001

 Default 1363 0.6718 0.7577 0.9995 0.0024
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Table 6 Number of the Default Firms by Industry and Year 

Default Definition I 
      SIC Code       

Year Missing 0 1 2 3 4 5 6 7 8 9 Total 
1986 4 1 62 21 73 8 27 11 27 9 0 243
1987 0 5 23 16 44 9 31 10 18 4 0 160
1988 0 1 26 22 53 11 31 10 40 13 0 207
1989 1 4 23 30 63 14 29 17 30 6 0 217
1990 0 1 19 22 86 16 33 21 29 10 0 237
1991 0 2 28 33 85 10 31 24 39 13 0 265
1992 0 2 53 26 84 16 45 31 38 22 0 317
1993 0 2 15 15 52 8 11 13 15 9 0 140
1994 0 0 20 13 52 12 20 19 25 8 2 171
1995 0 1 19 21 50 12 38 21 39 16 1 218
1996 0 0 7 20 42 10 33 12 17 11 2 154
1997 0 0 16 25 52 17 44 15 36 17 0 222
1998 0 2 36 45 97 25 61 35 64 32 2 399
1999 0 4 48 53 87 22 43 28 50 34 0 369
2000 0 0 10 34 71 26 50 28 53 26 0 298
2001 0 2 15 42 87 44 58 23 131 24 1 427
2002 0 0 14 31 87 45 23 31 94 17 0 342
2003 0 1 9 20 75 20 34 16 54 18 0 247
2004 0 0 3 13 23 7 16 20 20 4 0 106
2005 0 0 5 20 43 14 8 17 25 7 0 139
Total 5 28 451 522 1306 346 666 402 844 300 8 4878

SIC Code: 0: Agriculture, Forestry, and Fishing; 1: Mining and Construction; 2 and 3: Manufacturing;  4: Transportation, Communications, Electric, Gas, and Sanitary 
Service; 5: Wholesale Trade, and Retail Trade; 6: Finance, Insurance, and Real Estate; 7 and 8: Service; 9: Public Administration 



 20

Table 6 Number of the Default Firms by Industry and Year (Cont.) 

Default Definition II 
      SIC Code       

Year Missing 0 1 2 3 4 5 6 7 8 9 Total 
1986 1 0 5 3 11 3 4 2 3 1 0 33
1987 0 2 3 1 4 0 3 0 2 1 0 16
1988 0 0 3 1 4 6 7 1 0 0 0 22
1989 0 0 4 7 6 4 11 6 5 0 0 43
1990 0 0 3 3 12 4 8 7 2 1 0 40
1991 0 2 2 3 21 3 7 7 7 2 0 54
1992 0 1 5 2 10 6 13 7 3 5 0 52
1993 0 0 4 4 11 0 6 4 2 0 0 31
1994 0 0 2 4 14 3 5 3 4 2 2 39
1995 0 0 2 5 8 6 16 8 6 4 0 55
1996 0 0 5 6 7 3 16 2 2 0 0 41
1997 0 1 5 5 12 7 13 4 7 5 0 59
1998 0 1 6 13 28 7 20 12 13 11 1 112
1999 0 0 13 14 21 14 18 8 8 13 0 109
2000 0 0 6 17 28 15 30 12 21 13 0 142
2001 0 0 3 15 41 31 28 10 49 10 0 187
2002 0 0 6 9 33 27 11 12 23 8 0 129
2003 0 0 1 11 33 12 16 3 14 5 0 95
2004 0 0 2 7 7 3 8 5 7 0 0 39
2005 0 0 3 5 22 13 8 3 5 6 0 65
Total 1 7 83 135 333 167 248 116 183 87 3 1363

SIC Code: 0: Agriculture, Forestry, and Fishing; 1: Mining and Construction; 2 and 3: Manufacturing;  4: Transportation, Communications, Electric, Gas, and Sanitary 
Service; 5: Wholesale Trade, and Retail Trade; 6: Finance, Insurance, and Real Estate; 7 and 8: Service; 9: Public Administration 
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Thirdly, since the models in our study assume constant interest rate, one needs to feed in the 
appropriate interest rate for model estimation. The three month T-bill rate from the Federal 
Reserve website is chosen as the risk-free rate. However, the three month T-bill rate 
fluctuated heavily; from a high of 9.45% in March 1989, it dropped to a low of 0.81% in June 
2003, and then went back to 4.08% in the end of December 2005. Therefore, to assure the 
proper discount rate for each firm across a 20-year sampling period, interest rates are 
estimated as the average of 252 daily 3-month Constant Maturity Treasury (CMT) rates for 
each firm during the sampling period. 

Finally, the Leland model needs debt coupons and we follow Ericsson, Reneby and Wang 
(2006) to set the average coupon as risk-free rate times total liabilities: 

RateRiskfreesLiabilitieTotalCoupon ×= . In addition, the Leland model considers tax 
deductibility as well as bankruptcy cost. We follow Eom, Helwege, and Huang (2004) and set 
the tax rate to 35% and financial distress cost as 51.31%. Furthermore, we also follow Leland 
(1998) and Ericsson, Reneby and Wang (2006) and set the tax rate to 20% as an alternative 
setting. This is to reflect personal tax advantages to equity returns which reduce the advantage 
of debt. 

 

5.3 Empirical Results 

In our empirical test, we use the same numerical optimization algorithm of Nelder-Mead (in 
Matlab software package) as that adopted by Wong and Choi (2009). The inputs of 
parameters for debt level, asset payouts, interest rates, coupons, tax rate, and financial distress 
cost are as described in Section 5.1, and the option time to maturity is two years. The original 
Merton, Brockman and Turtle, and Leland models do not assume the asset payout rate, but 
they can be easily added into the models. For comparison purposes, we choose to estimate 
default barriers, FH α= , instead of discount rates,γ , of each firms in the Black and Cox 
model, and the discount rates are assumed to be the average risk-free rates for those firms 
during the equity time series sampling period.  

The delisting date of a delisted firm is simply the very last security trading day, while the 
delisting date of an active firm (delisting code 100) is set as the last trading day in year 2005. 
Inputs of equity time series for in-sample estimation are the equity values, ending on the 
delisting date and travelling back 252 trading days. The six-month (one-year) out-of-sample 
estimation uses equity time series from 377 to 126 (503 to 252) trading days before the 
delisting date. The sample sizes of the in-sample, six-month out-of-sample, and one-year out-
of-sample tests are 15,607, 14,775, and 13,750, respectively. The differences in the sample 
sizes come from the availability of equity trading data. As we push the estimation period 
backward in time, we lose some firms due to the relatively shorter lives of these companies. 
After numerical optimization, final samples for in-sample test, six-month out-of-sample, and 
one-year out-of-sample tests include 15,598, 14,765, and 13,744 firms.xii  

5.3.1 Testing Results of Default Definition I 

We first present in Table 7 the performance of default prediction by decile-based analysis and 
provide the percentages of performance delisting in each decile. Defaulting firms are sorted 
into deciles by corresponding physical default probability estimates of each model, where the 
physical default probabilities of firms for the in-sample and out-of-sample tests are computed 
using the estimated firm values one week (5 trading days), six months (126 trading days), and 
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one year (252 trading days) before the delisting date, respectively. One can clearly find that 
the Merton and the Black and Cox models outperform the Brockman and Turtle model, 
especially in the out-of-sample predictions.  

We next present in Figure 3, Figure 4, and Figure 5, respectively, the in-sample, out-of-
sample (six-month) and out-of-sample (one-year) ROC curves of the tested models. Formal 
statistical tests are carried out by the Accuracy Ratios (ARs) and the z statistics. Z statistics, 
compared with the Merton model, for the tested models are reported in the parentheses in 
Table 8. We find that in accordance with the results in the decile-based analysis, the 
Brockman and Turtle model is clearly inferior to the Merton and the Black and Cox models. 
The Leland model of in-sample test in both tax rate settings also underperforms the Merton 
model.  

 

 

Figure 3 ROC Curves – One Week In-Sample Test (All Sample) 
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Figure 4 ROC Curves – Six-Month Out-of-Sample Test (All Sample) 
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Figure 5 ROC Curves – One-Year Out-of-Sample Test (All Sample) 
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Our empirical result shows that the simple Merton model surprisingly outperforms the flat 
barrier model in default prediction. Furthermore, the performance of the Merton model is also 
similar to that of the Black and Cox model in all tests. The Black and Cox model has slightly 
higher ARs than those of Merton’s model, however, the differences are not statistically 
significant based on the z test. Moreover, Merton’s model also performs significantly better 
than the Leland model of the in-sample test.  

The results of z test indicate that the difference of prediction capability between the Merton 
and the flat barrier models is statistically significant and the results hold for both in-sample 
and out-of-sample tests. Although theoretically the down-and-out option framework should 
nest the standard call option model, practically it may not perform better in the default 
prediction. Several possible reasons may explain our empirical results. 

One of the possible explanations is that the continuous monitoring assumption of the flat 
barrier model makes it possible to default before debt maturity, and thus increases the 
estimated default probabilities of the survival firms. One may argue that the implied default 
probabilities of the default firms increase as well. However, the magnitude of the increments 
may not be the same, and we do observe this in our empirical results.  

For example, the case of Alfacell Corporation, a survival firm, (CRSP permanent company 
number 35) clearly reflects this issue as shown in Figure 6. Alfacell experienced a drastic 
downfall of share prices in year 2005. However, it still survived through the end of 2006. In 
Figure 6, we present the one-year market equity, the estimated firm value of the Merton 
model, the estimated firm value of the Brockman and Turtle model, the implied barrier, and 
the debt level of the KMV formula, respectively. Both models generate reasonable firm value 
estimates based on the corresponding model assumptions. Estimated firm values of the flat 
barrier model are higher than those of the Merton model due to the existence of the claims of 
the bondholders modeled as the down-and-in option. The implied default probability of 
Alfacell Corporation is merely 0.04% by the Merton model, while the default probability of 
the flat barrier model is as high as 61.21%. The gigantic difference comes from the implied 
default barrier. The debt level by the KMV formula is $1.75 million, but the implied barrier 
from the Brockman and Turtle model is $31.37 million! Such a high implied barrier leads to a 
high default probability by the flat barrier model. In contrast, default in Merton’s model is 
only related to the debt level at debt maturity and thus the default probability is very low. 
Note that to prevent from the local optimum problem of the barrier estimate, we also use 
another optimization routine, the fmincon function in Matlab, to re-estimate the Alfacell case 
but still obtain the same implied default barrier. 

One may argue that imposing constraints on the default barrier can solve this issue. However, 
the high implied default barrier is a result of the return distribution of the equity value 
process. Imposing constraints clearly violates the fundamental of the maximum likelihood 
estimation method and hinders the MLE method from searching the global optimum. In the 
case of Alfacell Corporation, the likelihood function of the Brockman and Turtle model and 
the Merton model are 566.397 and 562.288, respectively. This indicates that the introduction 
of the barrier does improve the fitting of the return distribution of the equity value process. 
Furthermore, the equity pricing function of the flat barrier model in Equation (A.3) does not 
pre-specify the location of the barrier. The flat default barrier can be higher than the debt 
level, as assumed in the Brockman and Turtle model. Accordingly, the fundamental issue is 
that the flat barrier assumption itself might be unreasonable and unrealistic. Finally, we 
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should note that the extraordinarily high implied default barrier cannot happen in the Black-
Cox model since it assumes that the default barrier is lower than the debt level. As a result, 
the implied default probability of Alfacell Corporation is only 0.06% by the Black and Cox 
model. 

Another possible explanation is from our measure of the default prediction capability. The AR 
only preserves the ranking information of the default probabilities in our empirical test. The 
flat barrier model may generate the default probability distribution closer to the true default 
probability distribution, compared with that of the Merton model. It is the tails of the default 
probability distributions of survival and default groups that truly determine the ARs. 
Nonetheless, one can clearly observe from the decile-based results in Table 7 that the 
Brockman and Turtle model does not have the same differentiating power for default and 
survival groups as that of the Merton model.     

Finally, we cannot completely rule out the local optimum possibility, since it is well known 
that high dimensional optimization may not uncover the global optimum. The superior default 
prediction capability of the Merton model may come from the better estimates of model 
parameters due to its simpler likelihood function and lower dimension in the optimization 
procedure.  

We next turn to the sub-sample analysis by financial (Table 9) versus non-financial (Table 10) 
firms. Financial companies have industry-specific high leverage ratios and thus cannot be 
modeled well in finance literature. Consistent with the findings by Chen, Hu, and Pan (2006), 
we find that the Brockman and Turtle model perform much better in finance sector than in the 
industrial sector, while the Merton and the Black and Cox models perform better in the 
industrial sector. Accordingly, the difference of default prediction power of the flat barrier 
and the Merton model in finance sector is no longer significant.  

Another important finding is that the Leland model outperforms Merton’s model in the Non-
financial sector, and the differences are significant in the six-month and one-year out-of-
sample tests. The Leland model shows large differences of default predictability between 
financial and non-financial sectors. This difference leads to its superior power of prediction in 
non-financial sector.  

Finally, we turn to the discussion of default barriers. Unlike the Wong and Choi (2009), we 
do not present the barrier-to-debt ratio and have our inference based on it. This is because of 
the nature of likelihood function of down-and-out option framework, one cannot expect to pin 
down the barrier when the barrier is low relative to the asset value, i.e., the default probability 
is low. Therefore, to get rid of this bias, we present the differences of default probabilities 
between barrier models and Merton’s model. Our results in Table 11, Table 12, and Table 13 
show that the introduction of default barriers does influence default probabilities, especially 
on the default group. However, for most of the survival firms and around 30% of the firms in 
the default group, the impact is small. This in turn indicates that exogenous flat or exponential 
barriers do not have significant impact in equity pricing for these companies. Thus, our 
empirical finding is consistent with the results by Wong and Choi (2009) and does not support 
the finding by Brockman and Turtle (2003) that default barriers are significantly positive.  
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Table 7 Percentages of Performance Delisting firms in Each Decile (Default Definition I) 

In Sample Test  One Week     
15,598 firms – 10,727 survival and 4,871 performance delisting firms 

Decile ( DefP ) Merton Brockman and Turtle Black and Cox Leland (TC=20%) Leland (TC=35%) 
1 (Large) 30.86% 30.82% 31.02% 30.65% 30.63%
2 28.27% 28.04% 28.33% 28.68% 28.80%
3 22.34% 20.80% 22.28% 21.64% 21.58%
4 9.46% 8.91% 9.16% 8.97% 8.89%
5 3.37% 4.52% 3.49% 3.63% 3.55%
6-10 (Small) 5.71% 6.92% 5.73% 6.43% 6.55%
Out of Sample Test Six Months     
14,765 firms - 10,232 survival and 4,533 performance delisting firms 
Decile ( DefP ) Merton Brockman and Turtle Black and Cox Leland (TC=20%) Leland (TC=35%) 
1 (Large) 28.04% 27.05% 28.08% 27.91% 27.95%
2 24.69% 22.81% 24.88% 24.73% 24.75%
3 18.47% 17.36% 18.60% 17.67% 17.63%
4 11.03% 12.11% 11.01% 11.21% 11.23%
5 7.32% 7.54% 7.10% 6.86% 6.93%
6-10 (Small) 10.46% 13.13% 10.32% 11.63% 11.52%
Out of Sample Test 1 Year     
13,744 firms - 9,637 survival and 4,107 performance delisting firms 
Decile ( DefP ) Merton Brockman and Turtle Black and Cox Leland (TC=20%) Leland (TC=35%) 
1 (Large) 26.83% 25.66% 26.91% 26.86% 26.86%
2 22.23% 20.50% 22.40% 21.50% 21.48%
3 17.09% 16.78% 17.39% 17.34% 17.36%
4 12.25% 12.15% 11.91% 12.66% 12.86%
5 8.01% 8.13% 7.74% 8.04% 7.94%
6-10 (Small) 13.59% 16.78% 13.66% 13.61% 13.51%
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Table 8 Accuracy Ratios and z Statistics of Physical Probabilities (Default Definition I; All Sample) 

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.9357 0.9253 (-5.8513) 0.9365 (0.7667) 0.9314 (-2.3810) 0.9315 (-2.1933) 

Six Months  
(Out of Sample) 0.8749 0.8531 (-8.5565) 0.8768 (1.5632) 0.8705 (-1.6938) 0.8711 (-1.3984) 

One Year     (Out 
of Sample) 0.8422 0.8156 (-8.8537) 0.8433 (0.8055) 0.8442 (0.6621) 0.8449 (0.8316) 

In-Sample One-Week (15,598 firms – 10,727 survival and 4,871 performance delisting firms) 
Out-of-Sample 6-Month (14,765 firms - 10,232 survival and 4,533 performance delisting firms) 
Out-of-Sample 1-Year (13,744 firms - 9,637 survival and 4,107 performance delisting firms) 
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Table 9 Accuracy Ratios and z Statistics of Physical Probabilities (Default Definition I; Financial Firms) 

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.8939 0.8900 (-0.5698) 0.8926 (-0.3598) 0.8750 (-3.1532) 0.8744 (-3.0896) 

Six Months  
(Out of Sample) 0.8496 0.8539 (0.5305) 0.8520 (0.5858) 0.8209 (-3.9062) 0.8199 (-3.7674) 

One Year     (Out 
of Sample) 0.8319 0.8240 (-0.8894) 0.8333 (0.3162) 0.8083 (-2.7714) 0.8097 (-2.6578) 

In-Sample One-Week (2,809 firms – 2,409 survival and 400 performance delisting firms) 
Out-of-Sample 6-Month (2,694 firms – 2,313 survival and 381 performance delisting firms) 
Out-of-Sample 1-Year (2,556 firms – 2,195 survival and 361 performance delisting firms) 

 

Table 10 Accuracy Ratios and z Statistics of Physical Probabilities (Default Definition I; Non-Financial Firms) 

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.9371 0.9255 (-6.2231) 0.9380 (0.8838) 0.9373 (0.0707) 0.9376 (0.2090) 

Six Months  
(Out of Sample) 0.8714 0.8437 (-10.0585) 0.8729 (1.1717) 0.8777 (2.2951) 0.8786 (2.5352) 

One Year     (Out 
of Sample) 0.8379 0.8054 (-9.8963) 0.8385 (0.3975) 0.8543 (5.1790) 0.8555 (5.2588) 

In-Sample One-Week (12,789 firms – 8,318 survival and 4,471 performance delisting firms) 
Out-of-Sample 6-Month (12,071 firms – 7,919 survival and 4,152 performance delisting firms) 
Out-of-Sample 1-Year (11,188 firms – 7,442 survival and 3,746 performance delisting firms) 
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Figure 6 An Illustration of the Problem of the Brockman and Turtle Model by Alpacell Corporation 
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Table 11 The Effect of Default Barriers in Terms of the Default Probabilities (In-Sample Test) 

 
Difference of Default Probabilities BT: PDef(BT)-PDef(Merton) BC: PDef(BC)-PDef(Merton) 
 All   Survival   Default  
Percentile BT BC Percentile BT BC Percentile BT BC 

5% -0.010% 0.000% 5% -0.010% 0.000% 5% -0.009% -0.001%
10% 0.000% 0.000% 10% 0.000% 0.000% 10% -0.001% 0.000%
20% 0.000% 0.000% 20% 0.000% 0.000% 20% 0.000% 0.001%
30% 0.000% 0.000% 30% 0.000% 0.000% 30% 0.001% 0.045%
40% 0.000% 0.000% 40% 0.000% 0.000% 40% 0.226% 0.277%
50% 0.003% 0.000% 50% 0.000% 0.000% 50% 1.562% 0.879%
60% 0.415% 0.005% 60% 0.015% 0.000% 60% 5.293% 2.090%
70% 3.321% 0.141% 70% 0.808% 0.001% 70% 12.572% 4.295%
80% 12.113% 1.294% 80% 6.233% 0.024% 80% 23.580% 7.785%
90% 30.705% 5.947% 90% 23.732% 0.760% 90% 39.896% 11.195%
95% 47.584% 10.034% 95% 42.673% 3.838% 95% 53.779% 13.118%

Mean 7.540% 1.421% Mean 5.685% 0.504% Mean 11.729% 3.491%
Standard 
Deviation 17.314% 3.789% Standard 

Deviation 16.407% 2.099% Standard 
Deviation 18.537% 5.538%

Absolute 
Difference     

<0.1% 51.673% 67.057% <0.1% 59.548% 83.278% <0.1% 33.885% 30.419%
<0.5% 57.465% 74.028% <0.5% 65.012% 88.155% <0.5% 40.419% 42.119%
<1% 60.920% 77.788% <1% 67.875% 90.334% <1% 45.210% 49.448%
<5% 71.156% 88.348% <5% 76.681% 95.700% <5% 58.675% 71.744%
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Table 12 The Effect of Default Barriers in Terms of the Default Probabilities (Six–Month Out-of-Sample Test) 

Difference of Default Probabilities BT: PDef(BT)-PDef(Merton) BC: PDef(BC)-PDef(Merton) 
 All   Survival   Default  
Percentile BT BC Percentile BT BC Percentile BT BC 

5% -0.002% 0.000% 5% 0.000% 0.000% 5% -0.252% -0.160%
10% 0.000% 0.000% 10% 0.000% 0.000% 10% -0.004% 0.000%
20% 0.000% 0.000% 20% 0.000% 0.000% 20% 0.000% 0.001%
30% 0.000% 0.000% 30% 0.000% 0.000% 30% 0.002% 0.054%
40% 0.000% 0.000% 40% 0.000% 0.000% 40% 0.164% 0.282%
50% 0.001% 0.000% 50% 0.000% 0.000% 50% 0.936% 0.852%
60% 0.197% 0.002% 60% 0.002% 0.000% 60% 2.806% 1.928%
70% 1.681% 0.081% 70% 0.310% 0.000% 70% 7.644% 4.020%
80% 6.862% 0.925% 80% 3.002% 0.004% 80% 17.188% 7.569%
90% 21.244% 5.191% 90% 13.707% 0.273% 90% 34.410% 11.534%
95% 36.824% 9.767% 95% 27.255% 1.829% 95% 48.125% 13.906%

Mean 5.779% 1.287% Mean 4.109% 0.330% Mean 9.455% 3.393%
Standard 
Deviation 13.405% 3.747% Standard 

Deviation 11.173% 1.801% Standard 
Deviation 16.757% 5.601%

Absolute 
Difference      

<0.1% 55.166% 68.382% <0.1% 65.772% 87.081% <0.1% 31.822% 27.226%
<0.5% 61.851% 75.471% <0.5% 70.936% 91.023% <0.5% 41.855% 41.239%
<1% 65.754% 79.336% <1% 74.012% 93.018% <1% 47.579% 49.220%
<5% 77.157% 89.431% <5% 82.802% 97.204% <5% 64.731% 72.323%
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Table 13 The Effect of Default Barriers in Terms of the Default Probabilities (One-Year Out-of-Sample Test) 

Difference of Default Probabilities BT: PDef(BT)-PDef(Merton) BC: PDef(BC)-PDef(Merton) 
 All   Survival   Default  
Percentile BT BC Percentile BT BC Percentile BT BC 

5% -0.001% 0.000% 5% 0.000% 0.000% 5% -0.026% -0.002%
10% 0.000% 0.000% 10% 0.000% 0.000% 10% -0.001% 0.000%
20% 0.000% 0.000% 20% 0.000% 0.000% 20% 0.000% 0.000%
30% 0.000% 0.000% 30% 0.000% 0.000% 30% 0.000% 0.006%
40% 0.000% 0.000% 40% 0.000% 0.000% 40% 0.055% 0.082%
50% 0.002% 0.000% 50% 0.000% 0.000% 50% 1.160% 0.389%
60% 0.210% 0.003% 60% 0.014% 0.000% 60% 4.384% 1.239%
70% 1.957% 0.064% 70% 0.435% 0.001% 70% 12.333% 2.900%
80% 8.712% 0.774% 80% 3.309% 0.022% 80% 24.328% 5.991%
90% 28.719% 4.472% 90% 17.572% 0.668% 90% 41.073% 10.129%
95% 45.118% 8.937% 95% 37.494% 3.165% 95% 54.392% 12.344%

Mean 2.137% 0.140% Mean 5.095% 0.488% Mean 11.752% 2.797%
Standard 
Deviation 8.053% 1.180% Standard 

Deviation 13.467% 2.298% Standard 
Deviation 18.977% 5.387%

Absolute 
Difference     

<0.1% 55.530% 69.856% <0.1% 63.474% 83.543% <0.1% 36.888% 37.740%
<0.5% 61.940% 76.979% <0.5% 69.783% 88.627% <0.5% 43.535% 49.647%
<1% 65.221% 80.348% <1% 72.990% 90.661% <1% 46.993% 56.148%
<5% 75.662% 90.403% <5% 82.090% 96.223% <5% 60.579% 76.747%
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5.3.2 Testing Results of Default Definition II 

In this section, we regroup our survival and default groups using the definition of bankruptcy 
similar to that adopted by Chen, Hu, and Pan (2006). Following their approach, we collect 
default firms from the BankruptcyData.com database, which includes over 2,500 public and 
major company filings dating back to 1986. Next, we match the performance delisted samples 
with companies collected from BankruptcyData.com, and add back the liquidated firms (with 
delisting code 400) to form our default group. All of the remaining firms are classified as 
survival firms. Note that a difference between our classification and Chen, Hu, and Pan 
(2006) is that some of the companies that filed bankruptcy petitions but were later acquired by 
(or merged with) other companies (Delisting code: 200) are classified in the survival group. 
The numbers of default firms following this approach greatly reduce from 4,871 to 1,325 for 
the in-sample test and from 4,533 to 1,260 (4,107 to 1,183) for the six-month (one-year) out-
of-sample tests.  

To conserve space, ROC curves are not reported. The decile-based analysis as well as the 
accuracy ratios and z statistics are reported in Table 14 and Table 15, respectively. From 
Table 15, our results still show that the Merton model outperforms the flat barrier model, and 
the difference of default prediction capability is statistically significant as that in Section 
5.3.1. The prediction capabilities of the Merton and the Black and Cox model are similar as 
well.  

In addition, one can observe that all these models perform slightly worse than the broad 
definition of bankruptcy. The differences are around 2% across different models and tests. 
The reason may be the uncertainty of bankruptcy filings of companies been delisted from the 
stock exchange. One can use the MLE approach to capture information from the market 
equity values of those poorly performed and delisted firms, and obtain default probabilities of 
these firms. However, if those firms will eventually file bankruptcy may be subject to a lot of 
firm-specific human and company potential issues. These issues may not easily be captured 
just by the dynamics of the firms’ market equity values.  

In Table 16 and Table 17, the financial versus non-financial sector analysis are reported. The 
performances among models are also similar to those of the broad definition of bankruptcy in 
Section 5.2.1. Unlike the performances in broad definition of default, not only the Brockman 
and Turtle model performs much better in the finance sector, but the Merton, the Black and 
Cox, as well as the Leland models also perform better in the financial sector. However, the 
accuracy ratios of the flat barrier are even higher than those of the Merton and the Black and 
Cox models in the finance sector, although the differences are not statistically significant. In 
the non-financial sector, the Leland model still performs better than Merton’s model, but a 
difference is that the Leland model no longer significantly outperforms the Merton model in 
six-month out-of-sample test.  
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Table 14 Percentages of Default Firms in Each Decile (Default Definition II) 

In Sample Test One Week     
15,598 firms – 14,273 survival and 1,325 default firms 

Decile ( DefP ) Merton Brockman and Turtle Black and Cox Leland (TC=20%) Leland (TC=35%) 
1 (Large) 56.98% 52.53% 56.38% 58.87% 58.94%
2 26.42% 26.64% 26.26% 24.30% 24.38%
3 9.36% 12.23% 9.96% 9.06% 9.06%
4 3.40% 3.62% 3.32% 3.32% 3.17%
5 0.98% 1.74% 1.21% 1.13% 1.21%
6-10 (Small) 2.87% 3.25% 2.87% 3.32% 3.25%
Out of Sample Test Six Months     
14,765 firms - 13,498 survival and 1,267 default firms 
Decile ( DefP ) Merton Brockman and Turtle Black and Cox Leland (TC=20%) Leland (TC=35%) 
1 (Large) 44.20% 37.73% 43.25% 46.25% 46.41%
2 24.07% 23.60% 23.52% 22.81% 22.73%
3 14.13% 15.47% 15.47% 13.81% 13.81%
4 7.73% 9.71% 8.05% 6.08% 6.08%
5 4.26% 6.08% 4.10% 4.81% 4.89%
6-10 (Small) 5.60% 7.42% 5.60% 6.24% 6.08%
Out of Sample Test 1 Year     
14,744 firms – 12,561 survival and 1,183 performance delisting firms 
Decile ( DefP ) Merton Brockman and Turtle Black and Cox Leland (TC=20%) Leland (TC=35%) 
1 (Large) 36.01% 30.35% 35.42% 37.95% 37.79%
2 21.98% 20.20% 21.56% 20.88% 20.80%
3 14.88% 17.41% 16.74% 16.40% 16.40%
4 12.09% 12.00% 10.99% 9.72% 10.14%
5 6.34% 8.12% 6.59% 6.76% 6.51%
6-10 (Small) 8.71% 11.92% 8.71% 8.28% 8.37%
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Table 15 Accuracy Ratios and z Statistics of Physical Probabilities (Default Definition II; All Sample) 

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.9152 0.9006 (-5.3136)* 0.9121 (-1.5613) 0.9145 (-0.2014) 0.9147 (-0.1159) 

Six Months  
(Out of Sample) 0.8574 0.8278 (-7.5183) 0.8561 (-0.6197) 0.8587 (0.2765) 0.8589 (0.3166) 

One Year     (Out 
of Sample) 0.8166 0.7811 (-7.6036) 0.8147 (-0.7825) 0.8242 (1.5007) 0.8243 (1.4354) 

In-Sample One-Week (15,598 firms – 14,273 survival and 1,325 default firms) 
Out-of-Sample 6-Month (14,765 firms – 13,498 survival and 1,267 default firms) 
Out-of-Sample 1-Year (13,744 firms – 12,561 survival and 1,183 default firms) 

* Numbers in the parentheses are the Z-statistic of each model compared with the Merton model  
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Table 16 Accuracy Ratios and z Statistics of Physical Probabilities (Default Definition II; Financial Firms) 

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.8969 0.8999 (0.3203) 0.8879 (-1.2743) 0.8814 (-.14651) 0.8814 (-1.3993) 

Six Months  
(Out of Sample) 0.8669 0.8712 (0.3806) 0.8695 (0.3352) 0.8523 (-1.2010) 0.8515 (-1.1895) 

One Year     (Out 
of Sample) 0.8582 0.8600 (0.1276) 0.8595 (0.1715) 0.8460 (-0.9036) 0.8444 (-0.9682) 

In-Sample One-Week (2,809 firms – 2,698 survival and 111 default firms) 
Out-of-Sample 6-Month (2,694 firms – 2,588 survival and 106 default firms) 
Out-of-Sample 1-Year (2,556 firms – 2,453 survival and 103 default firms) 

 

Table 17 Accuracy Ratios and z Statistics of Physical Probabilities (Default Definition II; Non-Financial Firms) 

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.9117 0.8945 (-5.8440) 0.9088 (-1.4072) 0.9133 (0.4425) 0.9137 (0.5129) 

Six Months  
(Out of Sample) 0.8482 0.8128 (-8.2882) 0.8457 (-1.0880) 0.8556 (1.5270) 0.8561 (1.5317) 

One Year     (Out 
of Sample) 0.8041 0.7614 (-8.4366) 0.8012 (-1.1194) 0.8209 (3.0848) 0.8215 (3.0167) 

In-Sample One-Week (12,789 firms – 11,575 survival and 1,214 default firms) 
Out-of-Sample 6-Month (12,071 firms - 10,910 survival and 1,161 default firms) 
Out-of-Sample 1-Year (11,188 firms – 10,108 survival and 1,080 default firms) 
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5.4 Robustness Test  

In this section, we conduct a similar analysis using risk-neutral default probabilities instead of 
physical default probabilities. To conserve space, we report only Accuracy Ratios and z 
statistics. The results from Table 18 to Table 23 show that the default prediction capabilities 
of the four models we tested are still preserved: the Brockman and Turtle model is inferior to 
the Merton model in all tests. The Black and Cox model performs no statistically different 
from the Merton model. The Leland model is superior to the Merton model in one-year out-
of-sample prediction of non-financial sector.  

We next examine the default probability estimates of physical versus risk-neutral probability 
measures. Duan et al. (2003) claim that the transformed-data MLE approach can estimate the 
default probability under physical probability measurexiii. From our empirical results, we do 
observe higher ARs for all the models of in-sample test under two alternative definitions of 
default. In out-of-sample tests, the ARs are in general higher under physical default 
probabilities in the default definition II. Those of the Brockman and Turtle model are the 
exceptions. However, for default definition I of out-of-sample test, the ARs show an entirely 
opposite pattern in the common sample and non-financial sectors – the ARs of physical 
default probabilities are lower than those of risk-neutral probabilities. We should note that the 
only difference of survival and default group classification in two alternative settings is that 
those firms being delisted without filing Chapter 11 are assumed to be default firms by 
Brockman and Turtle (2003). In other words, the drift estimates using equity time series a 
certain period of time before delisting date cannot help improve default prediction for those 
firms being delisted without filing Chapter 11. 

We conclude that estimating asset drift can improve default prediction, which can be seen 
from the in-sample testing results. Nonetheless, the out-of-sample drift estimate itself, using 
equity time series 6 months or one year before the delisting date, may not help improve 
default prediction, especially for those firms delisted without filing Chapter 11. The effect of 
asset drift estimation in default prediction may be confined to a relatively short forecasting 
horizon. 
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Table 18 Accuracy Ratios and z Statistics of Risk-Neutral Probabilities (Default Definition I; All Sample)  

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.9323 0.9295 (-1.7646) 0.9327 (0.3760) 0.9294 (-1.5612) 0.9286 (-1.8842) 

Six Months  
(Out of Sample) 0.8802 0.8720 (-3.5490) 0.8812 (0.7942) 0.8775 (-1.0479) 0.8764 (-1.4379) 

One Year     (Out 
of Sample) 0.8500 0.8349 (-5.5357) 0.8498 (-0.1482) 0.8561 (2.0522) 0.8548 (1.5248) 

In-Sample One-Week (15,598 firms – 10,727 survival and 4,871 performance delisting firms) 
Out-of-Sample 6-Month (14,765 firms - 10,232 survival and 4,533 performance delisting firms) 
Out-of-Sample 1-Year (13,744 firms - 9,637 survival and 4,107 performance delisting firms) 
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 Table 19 Accuracy Ratios and z Statistics of Risk-Neutral Probabilities (Default Definition I; Financial Firms)  

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.8842 0.8858 (0.2952) 0.8824 (-0.3354) 0.8717 (-1.6515) 0.8694 (-1.9267) 

Six Months  
(Out of Sample) 0.8424 0.8550 (1.7231) 0.8422 (-0.0427) 0.8271 (-1.6603) 0.8242 (-1.9525) 

One Year     (Out 
of Sample) 0.8310 0.8328 (0.2221) 0.8188 (-1.8348) 0.8187 (-1.2027) 0.8147 (-1.5616) 

In-Sample One-Week (2,809 firms – 2,409 survival and 400 performance delisting firms) 
Out-of-Sample 6-Month (2,694 firms – 2,313 survival and 381 performance delisting firms) 
Out-of-Sample 1-Year (2,556 firms – 2,195 survival and 361 performance delisting firms) 

 

 

Table 20 Accuracy Ratios and z Statistics of Risk-Neutral Probabilities (Default Definition I; Non-Financial Firms)  

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.9340 0.9302 (-2.2255) 0.9341 (0.1072) 0.9332 (-0.3717) 0.9330 (-0.4715) 

Six Months  
(Out of Sample) 0.8787 0.8651 (-5.4658) 0.8777 (-0.7374) 0.8812 (0.9294) 0.8813 (0.9283) 

One Year     (Out 
of Sample) 0.8467 0.8253 (-7.2235) 0.8440 (-1.9933) 0.8603 (4.3644) 0.8605 (4.2420) 

In-Sample One-Week (12,789 firms – 8,318 survival and 4,471 performance delisting firms) 
Out-of-Sample 6-Month (12,071 firms – 7,919 survival and 4,152 performance delisting firms) 
Out-of-Sample 1-Year (11,188 firms – 7,442 survival and 3,746 performance delisting firms) 



 40

Table 21 Accuracy Ratios and z Statistics of Risk-Neutral Probabilities (Default Definition II; All Sample)  

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.9017 0.8980 (-1.3487) 0.9030 (0.5618) 0.9009 (-0.2301) 0.9012 (-0.1218) 

Six Months  
(Out of Sample) 0.8483 0.8308 (-4.6383) 0.8464 (-0.7817) 0.8513 (0.6300) 0.8512 (0.5894) 

One Year     (Out 
of Sample) 0.8140 0.7885 (-5.7531) 0.8094 (-1.6651) 0.8237 (1.8650) 0.8231 (1.6810) 

In-Sample One-Week (15,598 firms – 14,273 survival and 1,325 default firms) 
Out-of-Sample 6-Month (14,765 firms – 13,498 survival and 1,267 default firms) 
Out-of-Sample 1-Year (13,744 firms – 12,561 survival and 1,183 default firms) 
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Table 22 Accuracy Ratios and z Statistics of Risk-Neutral Probabilities (Default Definition II; Financial Firms)  

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.8894 0.9026 (1.6017) 0.8921 (0.2569) 0.8811 (-0.6130) 0.8794 (-0.7295) 

Six Months  
(Out of Sample) 0.8554  0.8738 (1.7844) 0.8405 (-1.2319) 0.8485 (-0.4297) 0.8469 (-0.5182) 

One Year     (Out 
of Sample) 0.8433 0.8548 (0.9589) 0.8109 (-2.5509) 0.8342 (-0.5323) 0.8307 (-0.7190) 

In-Sample One-Week (2,809 firms – 2,698 survival and 111 default firms) 
Out-of-Sample 6-Month (2,694 firms – 2,588 survival and 106 default firms) 
Out-of-Sample 1-Year (2,556 firms – 2,453 survival and 103 default firms) 

 

Table 23 Accuracy Ratios and z Statistics of Risk-Neutral Probabilities (Default Definition II; Non-Financial Firms)  

Accuracy Ratio Merton Brockman and Turtle Black and Cox Leland (TC=0.2) Leland (TC=0.35) 

One Week  
(In Sample) 0.8963 0.8909 (-1.7799) 0.8975 (0.5070) 0.8963 (-0.0183) 0.8970 (0.1638) 

Six Months  
(Out of Sample) 0.8377 0.8141 (-5.7225) 0.8357 (-0.8163) 0.8441 (1.3148) 0.8447 (1.3744) 

One Year     (Out 
of Sample) 0.8013 0.7683 (-6.8383) 0.7974 (-1.4218) 0.8165 (2.7452) 0.8171 (2.7272) 

In-Sample One-Week (12,789 firms – 11,575 survival and 1,214 default firms) 
Out-of-Sample 6-Month (12,071 firms - 10,910 survival and 1,161 default firms) 
Out-of-Sample 1-Year (11,188 firms – 10,108 survival and 1,080 default firms) 
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5. Summary and Conclusions 
 
In our empirical investigation, we adopt the Maximum Likelihood Estimation method 
proposed by Duan (1994) and Duan et al. (2004), which views the observed equity time series 
as a transformed data set of unobserved firm values with the theoretical equity pricing 
formula serving as the transformation. This method has been shown by Ericsson and Reneby 
(2005) through simulation experiments to be superior to the commonly adopted volatility 
restriction approach in the literature. Since the default boundary is unknown, the barrier 
model shall have three unknown parameters – asset drift, asset volatility, and a level of 
default boundary. One of the advantages of the MLE approach is that it can estimate these 
three model parameters simultaneously.  
 
In our simulation experiment, we uncover the limitation of the MLE method. The MLE 
method cannot pin down the barrier using the equity time series when the default boundary, 
relative to the firm value, is low (or the low hitting probability of the default boundary). This 
is what the statistical theory precisely predicts since the value of likelihood function is flat 
and not sensitive to the change of the boundary level. However, for default prediction, this 
should present no practical difficulties. The bias of low barrier cases could hardly affect the 
default probabilities of sample firms, even when the barrier estimates vary for a wide range.  

Our empirical results surprisingly show that the simple Merton model has a similar capability 
in default prediction as that of the Black and Cox model. The Merton model even outperforms 
the Brockman and Turtle model, and the difference of predictive ability is statistically 
significant. The results are held for the in-sample, six-month and one-year out-of-sample tests 
for both the broad definition of bankruptcy as in Brockman and Turtle (2003) as well as the 
similar definition to Chen, Hu, and Pan (2006). In addition, we also find that the inferior 
performance of the Brockman and Turtle model may be the result of its unreasonable 
assumption that the flat barrier itself can be over the face value of debt. In the one-year out-
of-sample test, the Leland model outperforms the Merton model in non-financial sector and 
the results hold for two alternative definitions of default. These results are still preserved in 
our robustness test as we use risk-neutral default probabilities instead of physical default 
probabilities.  

In addition, in terms of the differences of default probabilities between barrier models and 
Merton’s model, our results indicate that the introduction of default barriers has little 
influence on default probabilities for a large portion of the survival firms and as many as 30% 
of the firms in default group. This is consistent with the results by Wong and Choi (2009) and 
does not support the finding by Brockman and Turtle (2003) that default barriers are 
significantly positive. We should note that the models investigated in our study incorporate 
only net-worth covenant, and firms default only when the market value of its assets fall below 
a certain boundary. A recent empirical study by Davydenko (2007) finds a much more 
complex picture of financial distress. Default of distressed firms may be triggered by either 
low asset value or liquidity shortage xiv , and the importance of liquidity varies cross-
sectionally depending on costs of external financing. Moreover, there are many low-value and 
low-liquidity firms that are able to avoid default. 

In summary, our empirical results indicate that exogenous default barriers, flat or exponential, 
are not crucial in default prediction. In contrast, endogenous barrier modeling has significant 
improvement in long term prediction for non-financial firms. However, we should note that 
the performance of the Leland model compared to the Merton model is weakened as the 
default prediction horizon shortened. 



 43

Appendix. The Models 

In Appendix, we summarize the model to be tested in our empirical study. Next, we present 
the default probability of risky debt of these models.  

A.1 The Merton Model  

In the Merton (1974) model, the firm’s assets are assumed to be financed by equity and a 
zero-coupon bond with a face value of K and maturityT . Following the accounting identity, 
the firm’s asset value equals the sum of equity and debt, i.e., ttt DSV += , and it holds for 
every time point. Since equity can be treated as the call option with strike price K , the value 
of equity at time Tt ≤ can be expressed as call option value under Black-Scholes framework: 
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Therefore, the value the risky debt at time t is ttt SVD −= . 

Default Probability of Risky Debt 

The default probability of the risky debt at timeT is the probability that the firm value at 
timeT is lower than the face value of bond K , i.e., )( KVPP Tdef ≤= . Note that an implicit 
assumption of Merton’s model is that the firm can only default at timeT . Since the firm’s 
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A.2 The Flat Barrier Model: The Brockman and Turtle Model 

Brockman and Turtle (2003) adopt the barrier option formula as a tool to understand the 
Down-and-Out call (DOC) approach to the corporate security valuation. In the context of 
structural model, the market value of firm’s equity, S , can be express as 
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where V is the market value of the firm’s assets; K is the promised future debt payment 
required on the pure discount bonds issued by the corporation and due at timeT ; H is the 
value of the firm’s assets that triggers bankruptcy (default barrier); R is the rebate paid to the 
firm’s owners if the firm’s asset value reaches the barrier; tT − is the time until the option 
expires; r is the continuously compounded riskless rate of return; and )(⋅N is the standard 
normal cumulative distribution function.  
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where Hh ln= and Vv ln= xv 

A.3 The Exponential Barrier Model: The Black and Cox Model  

Black and Cox (1976) were the first to propose a barrier option model for default. Instead of 
only the maturity date of debt, they assume a continuous barrier function over time. Black and 
Cox (1976) assume that the contractual provisions allow the stockholders to receive a 
continuous dividend payment, gV , proportional to the value of the firm. In addition, they let 
the time dependence of specified bankruptcy level, C , of the safety covenant to take the 
exponential form )( tTCe −−γ . The closed-form solution of corporate risky bond value with safety 
covenants as 
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This formula holds for all )()( tTrtT FeCe −−−− ≤γ . 

An interesting choice by Black and Cox (1976) is )()( tTrtT FeCe −−−− = αγ , with 10 ≤≤ α , so that 
the reorganization value specified in the safety covenant is a constant fraction of the present 
value of the promised final payment.  
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Default Probability of Risky Debt 

The probability that KV ≥)(τ and has not reached the boundary is given as 
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where )(⋅N is the standard normal distribution function. Setting )( tTCeK −−= γ gives the 
probability in a risk neutral world that has not been reorganized or defaulted. Thus, the default 
probability is just one minus the survival probability in (A.6). 

A.4 The Leland Model 

In the Leland (1994) model, financial distress is triggered when shareholders no longer find 
that running a company is profitable, given the revenue produced by the assets, to continue 
servicing debt. Bankruptcy is determined endogenously rather than by the imposition of a 
positive net worth condition or by a cash flow constraint.  

Denote any claim ),( tVF on the firm that continuously pays a nonnegative coupon, C , per 
instant of time when the firm is solvent. Leland (1994) provides the solution of the perpetual 
debt. Let BV denote the constant level of asset value at which bankruptcy is declared. If 
bankruptcy occurs, a fraction 10 ≤≤α of asset value will be lost to bankruptcy cost. The 
closed-form solution of risky debt is 
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Next, Leland (1994) derives the total value of the firm, )(Vv , which reflects three terms: the 
firm’s asset value, plus the value of the tax deduction of coupon payments, less the value of 
bankruptcy costs.  
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The value of equity is the total value of the firm less the value of debt as follows: 
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By maximize the value of equity at any level ofV , the equilibrium bankruptcy-triggering 
asset value BV is determined endogenously by the smooth-pasting 
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 )5.0/()1()]1/(][/)1[( 2σ+−=+−= rCTXXrCTV CCB    (A.10) 

Note that BV  in (A.10) is independent of time and it confirms the assumption of the constant 
bankruptcy-triggering asset level BV . 

Default Probability of Risky Debt 

The cumulative probability of the firm going bankrupt over the period ],( Tt is 
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i See Section 2 for the summary of these empirical studies. 

ii For the comprehensive analysis of these models, see Crouhy, Galai, and Mark (2000) and Saunders and Allen 
(2002).  

iii See Lando (2004) for the review of reduced-form models. 

iv There exists an extensive literature on default or bankruptcy prediction, readers who are interested in this 
subject can refer to the papers by Shumway (2001) and Duffie, Saita, and Wang (2007). In this paper, we have 
no intension to incorporate those previously identified variables, such as firm’s trailing stock return, trailing S&P 
500 returns, and U.S. interest rates, into our analysis but rather focus on various default boundary assumptions in 
the structural models.  

v Campbell, J. Y., J. Hilscher, and J. Szilagyi (2004) also show similar results that failure risk cannot be 
adequately summarized by a measure of distance to default by the KMV-Merton model.  

vi In the context of structural credit risk modeling, the equity value is an option of asset value tV . Therefore, for 

example, under Merton’s model, )()( TdNKedNVS vt
rT

ttt σ−−= − . Also by Itô’s Lemma,   

vS
V

V
S

S t

t

t

t σσ ∂
∂= . Since );( vtt VgS σ= is a one to one function of tV , the inverse exists. One can then first estimate 

the equity volatility Sσ using historical data, and the two unknown variables asset value tV and asset volatility vσ  
left can be solved by the above two-equation system.  

vii Duan and Simonato (2002) further develop a MLE method for the two unobserved variables, namely, the firm 
value tV and the instantaneous interest rate tr . In this case,θ also contains parameters of interest process and its 
correlation with firm value process. Thus, one needs to modify the log-likelihood function in Step 2 to 
incorporate this change. 

viii See Bruche (2005) for the issues of some other estimation methods not presented here. 

ix The KMV method is a simple two-step iterative algorithm which begins with an arbitrary value of the asset 
volatility and repeats the two steps until the convergent criterion is reached. The default barrier of the KMV 
method is assumed as the sum of short-term liabilities plus one-half long-term liabilities. See Crosbie and Bohn 
(2003) and Vasslou and Xing (2004) for details.  

x A similar approach is adopted by Chen, Hu, and Pan (2006) using distant to default (DD) instead of default 
probability. However, this relationship cannot be applied in the barrier option framework since the default 
probability is not merely a transformation of distant of default. Therefore, we use the default probability directly 
in our study. The same argument is also addressed by Leland (2004).  

xi There are several reasons choosing this “default point”: First, KMV has observed from a large sample of 
several hundreds companies that firms default when the asset value reaches a level somewhere between the value 
of total liabilities and the value of short-term debt. Therefore, as argued in Crouhy, et al. (2000), the probability 
of the asset value falling below the total face value may not be an accurate measure of the actual default 
probability. Secondly, as pointed out by Vassalou and Xing (2004), it is important to include long-term debt in 
the calculation because firms need to service the long-term debt, and these interest payments are part of the 
short-term liabilities. Furthermore, the size of the long-term debt may affect the ability of a firm to roll over its 
short-term debt, and in turn affect the default risk 
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xii We lost some samples due to convergent issue in the MLE maximization process of the Brockman and Turtle, 
the Black and Cox, and the Leland models. We lost 9, 10, and 6 firms of the in-sample, six-month out-of-sample, 
and one-year out-of-sample tests, respectively.  

xiii The physical default probability here is under the assumption of constant asset risk premium. 

xiv See Kim, Ramaswamy, and Sundaresan (1993) and Anderson and Sundaresan (1996) for the models assuming 
cash-flow or liquidity covenant.  

xv Note that for the Brockman and Turtle and the Black and Cox models, a firm can default either before maturity 
or at maturity. Therefore, we also need to use incorporate the default probability at maturity for each firm. 

xvi See Lin (2006) for the correction of the typographical error in this formula. The corrected formula is presented 
in (A.5).  

xvii To incorporate payout, one needs to modify x as
2

2222 2)2/()2/(

σ

σσσ rgrgr +−−+−−
in (A.7) 

and λ as
2

2
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V g
σ

µ −− in (A.11). 


