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Abstract. Advances in networking and storage technology have made it possible to deliver on-demand services
over networks such as the emerging video-on-demand (VOD) applications. A variety of studies have been focused
on designing a video server suitable for VOD applications. However, the number of concurrent on-demand services
supported by the server is often limited by the I/O bandwidth of the storage systems. This paper describes adiscrete
buffer sharing modelwhich uses batching and buffer sharing techniques in video servers to support a large number
of VOD services. Two operations, splitting and merging, enable the model to fully utilize system resources such as
buffers and disk bandwidths. Moreover, this paper also introduces the concept ofimprecise video viewingwhich
assumes that a limited amount of quality loss is acceptable during video playback. Based upon this assumption,
three shrinking strategies are explored to reduce buffer requirements. Finally, the results of experiments show that
our methods perform better than traditional buffer management techniques for VOD systems.
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1. Introduction

Advances in networking and storage technology have made it possible to deliver on-demand
services, such as catalog shopping, distance learning, and general information browsing
[4, 5], over networks. Recently, emerging video-on-demand (VOD) applications have re-
ceived enormous attention from telecommunications, entertainment, and computer indus-
tries. A variety of studies have focused on the design of high-performance VOD systems
capable of handling large numbers of services simultaneously [7, 9]. A typical VOD system
consists of avideo archiveand a set ofvideo servers[10, 15]. The video archive maintains
a collection of all available video files and the video servers maintain a small set of fre-
quently requested videos. This paper focuses on the design of a video server suitable for
VOD applications.

The characteristics of digital video files and video traffic differ substantially from those
of conventional applications with regard tocontinuityandhigh bandwidthrequirements.
Continuity means that client stations must acquire the needed video data on time, namely,
the components of a VOD system, including the server storage and the interconnection
network, must support enough bandwidths to accommodate all the video streams so that
they can be continuously displayed. Due to finite I/O bandwidths in the storage and the
network, the number of concurrent on-demand services supported by the VOD system is
often limited. The bottleneck in network bandwidth can be reduced by employing multi-
casting techniques which is available in most current networks. If a single video stream is
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being accessed by multiple viewers, the server retrieves the data exactly once from the server
buffer and multi-casts it to all the viewers. This technique enables networks to support more
services for more users. To cope with the I/O bottleneck in storage, a variety of studies
have been focused on different techniques of data placement and scheduling policy in the
storage system [1, 12, 13, 17]. However, the I/O problem has not been solved yet.

Recently, the studies of solving I/O problems tend to reduce I/O demands on the video
server throughbatching, adaptive piggy-backing, andbuffer sharing. Batchingdelays the
start time of video playback in order to service multiple viewers by using a single I/O
stream [2].Adaptive piggy-backingadjusts display rates of the videos in progress, for the
purpose of merging their respective I/O streams into a single stream [8].Buffer sharing
techniques reduce I/O demands by preserving the recently used data in memory such that
it can be reused by subsequent viewers [3, 14, 16]. Although these approaches may incur
problems when providing VCR functionality, several approaches have been proposed. Dan
et al. solved the problem in the context of batching by usingreserved channels[2], while
Yu et al. solved the similar problem by usinglook-ahead scheduling[18].

This paper describes adiscrete buffer sharing modelwhich uses batching and buffer
sharing techniques in VOD systems to support a large number of services. Two operations,
splitting and merging, used in the model enable a video server to fully utilize system re-
sources such as buffers and disk bandwidths. This paper also introduces the concept of
imprecise video viewingwhich assumes that a limited amount of quality loss is acceptable
during the playback of a video. The quality loss can be resulting from inserting advertise-
ments or skipping some video contents during the playback. Based on this assumption,
three shrinking strategies which includebackward shrinking, forward shrinkingandtwo-
way shrinking, are explored to reduce buffer requirements in the system. The idea behind
the shrinking strategies is similar to that used in adaptive piggy-backing. Finally, the results
of experiments show that our methods perform better than traditional buffer management
techniques for VOD systems.

2. Buffer management for continuous video data

For a video server, buffers are used as an intermediate to cache and deliver video data from
the storage to the network interface. In order to support continuous playback, the technique
of double-bufferingis often employed in a typical video server for buffer management.
With double-buffering, each video stream requires two buffers: aconsuming bufferand
a producing buffer. A consuming process empties the consuming buffer by transferring
video data from the buffer to the network. A producing process fills the producing buffer
with video data retrieved from the storage. The two operations are performed in parallel.
Whenever the consuming buffer is empty and the producing buffer is full, the two buffers
exchange their roles. The process is repeated until the end of the playback. Let asession
represent the disk bandwidth necessary to support the real-time delivery of a single video.
With double-buffering, the maximum number of concurrent streams supported in the system
is often limited to the number of sessions offered in the storage subsystem. The following
discrete buffer sharing modelis proposed to accommodate more concurrent streams in the
system.
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2.1. Discrete buffer sharing model

In discrete buffer sharing model,n buffers (n ≥ 2) will be reserved whenever a new session
is created. Amongn buffers, one buffer is used for the producing process and the other
n − 1 buffers are used for the consuming process, that is,n − 1 consuming buffers will
share a single producing buffer for data refreshing. Such a technique is calledn-buffering.
With n-buffering, each of then allocated buffers serves, in turn, as the producing buffer in
a different cycle. For example, if thekth buffer acts as the producing buffer in thei th cycle,
then the((k + 1) mod n)th buffer will serve as the producing buffer in the(i + 1)th cycle.
In this way, the video data in each buffer would remain unchanged forn − 1 cycles so that
they can be reused by subsequent streams that display the same video. By using such a
technique, calledbuffer sharing, multiple streams can be served by a single disk session. We
also distinguishstreamsfrom viewersbecause multiple viewers can participate in a single
stream. If a stream is being accessed by multiple viewers, the video data is fetched from
the server buffer exactly once and broadcasted to all the viewers by using multi-casting
techniques in the network. The relationship between the viewer, stream and session in
our model is illustrated in figure 1. LetnViewer, nStreamandnSessionrespectively denote the
number of viewers, streams, and sessions supported in a VOD system. Figure 1 indicates
that we have advantages ofnViewer > nStreamby employing multi-casting techniques in the
network andnStream> nSessionby using buffer sharing techniques in the video server.

We operate buffer sharing in agatedmanner which means the retrieval of the data in
each consuming buffer must be time-aligned and be completed before the end of each cycle.
The gated operations prevent starvation in any consuming process such that continuity is
guaranteed for each video stream. Figure 2 illustrates the buffer sharing scenario in the
proposed model, where six buffers(b1, b2, . . . , b6) are reserved for a single session. In this
figure, bufferbi serves as the producing buffer, represented by shaded rectangles, in the
cycle(i mod 6), and all other buffers serve as consuming buffers which are represented by
plain rectangles. For the purpose of gated operations, the viewers that arrive within a cycle
must be grouped together (called aviewer group) to share a single stream. In figure 2, the
viewers that arrive within cyclei form the viewer groupVi . This group will share stream

Figure 1. The relation between viewer, stream and session.
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Figure 2. Buffer sharing scenario for a six-buffering system.

sti and join the session in cyclei + 1. If no viewer arrives within cyclei , thensti will
not be created. Each video stream starts from the consuming bufferb1 and all the streams
synchronouslymove to the next buffer at the beginning of each cycle.

With n-buffering, only the viewers that subscribe to the same video within the first
(n−1)th cycle can share thesen buffers and use the common disk session. If the cycle time
is Tcycle, then only the viewers who arrive within time interval [tc, tc + (n − 1)Tcycle] are
admitted tojoin the session created at timetc. To “join” a session means to share common
disk bandwidth for video data delivery. In figure 2, the joining process can last through
cycle 5 because the viewers that arrive during cycle 6 must join the session in cycle 7.
Unfortunately, in cycle 7, bufferb1 serves as the producing buffer again and the data inb1

gets flushed. Thus, at most five streams are allowed to share the session in figure 2. To save
buffer resources, if there are no viewers arriving during cycle 4 and cycle 5, and streams
st4 andst5 are not created, then bufferb3 (instead ofb1) can serve as the producing buffer
in cycle 7 and two buffersb1 andb2, can be released.

2.1.1. Admission control. Many types of videos may be archived in a video database in
terms of their playback rates [6]. In general, the video server should be capable of offering
concurrent sessions to support videos with distinct playback rates. Assuming that a video
file is made up ofsegmentswhere each segment (a sequence of video frames) denotes the
data required for playback per cycle, then when a common cycle timeTcycle is used, the
segment size for a video with playback raterd is equal tord × Tcycle. Choosing the buffer
block size for a session means determining the segment size of the video served by this
session. However, due to variable bit rates in compression, the segment size in a video file
may not be constant. To accommodate the data retrieved by a session per cycle, the buffer
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block size used by this session must be equal to the maximum segment size. Letbi denote
the buffer block size used by sessioni , andrt denote the disk transfer rate (bytes/sec). To
ensure continuous playback fork concurrent sessions in the system, the following inequality
must be satisfied:∑k

i =1 bi

rt
+ k × tmax

s ≤ Tcycle (1)

where
∑k

i =1 bi

rt
means the time for transferring data to fill thek producing buffers, andtmax

s
represents the maximal seek and latency times on the disk. Assuming thatni denotes the
number of buffer blocks used by sessioni , the following inequalities must also hold to meet
the buffer requirement:

k∑
i =1

ni bi ≤ M (2)

whereni ≥ 2 for ∀i and M is the total buffer size in the system. Note that, inequality
(1) corresponds to the constraints imposed by the disk bandwidth and inequality (2) by
the available buffer resources in the system. In the following, we shall address how to
determine a properni for a sessioni .

2.2. Resource adjusting operations

A simple way for sizingni is to give all sessions a fixed, equal number of buffer blocks.
Assuming that the server storage is capable of offeringnsessionsessions, the number of buffer
blocks assigned to each session is measured asni = bM/(

∑nsession
j =1 bj )c for ∀i . This method,

calledstatic buffer sharing, while simple and easy to implement, wastes system resources as
illustrated in figure 3. In this figure, each session is assigned 15 buffers which are represented
by rectangles with denoted segment numbers. All the sessions display the same video. In
figure 3, nine buffers are unused per cycle in session 2 because viewers subscribe the video
sporadically. In session 3, there are eight free buffers because viewers only subscribe during
the first six cycles. These two cases indicate buffer is wasted due to fixed buffer assignment.
Moreover, the streams which are created nearly of the same time and served by different

Figure 3. A snapshot of static buffer sharing.
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sessions waste disk bandwidths. For example,st15 andst16 do not share a common session,
even though there are only three cycles between them. The inadequate utilization of buffers
and disk sessions may prevent the system from supporting more services. To overcome the
problem, two operations,splitting andmerging, are explored to dynamically adjustni to
improve resource utilization.

2.2.1. Splitting. Splitting subdivides a stream group into several smaller groups in order
to release the unused buffers. We first define the segment that streamsti consumes in the
current cycle as theplayback offsetof sti , denoted byδ(sti ). In figure 3, for example,δ(st1)
is equal to 53. The set of streams that share a session are called astream group, denoted by
G. In figure 3, we can subdivide the stream groupG2 = {st11, st12, st13, st14, st15}, which
is served by session 2, into two subgroups,G21 = {st11, st12} andG22 = {st13, st14, st15}.
Since each subgroup needs a producing buffer for data refreshing, seven buffers (filled with
segments 28, 29, . . . , 34) can be released. LetGx denote a stream group and sort all the
streams inGx in an ascending order of their playback offsets, i.e.,δ(sti ) > δ(stj ) for i < j .
Let SpareGx

denote the maximal playback distance between any two consecutive streams in
Gx, which is defined by SpareGx

= max(|δ(sti ) − δ(sti +1)| − 1) for anysti , sti +1 ∈ Gx. In
figure 3, for example, SpareG1

= 2, SpareG2
= 8 and SpareG3

= 1. Note that, to perform a
splitting operation on a stream groupGx , at most SpareGx

−1 buffer blocks can be released,
where the “1” refers to the producing buffer. Thus, to release more buffers in splitting, the
stream groupGi with larger SpareGx

is preferred. More buffers can be released, of course,
if we perform splitting operations recursively on each of the resulting subgroups. However,
splitting, while releases buffers, consumes more disk sessions. In figure 3, although seven
buffers can be released by splitting session 2, four sessions (instead of three) are required
because one additional producing buffer must be filled per cycle. Thus, to split a stream
groupGx, inequality (3) must be satisfied to meet disk bandwidth requirements.bx denotes
the buffer block size used forGx.(∑k

i =1 bi
) + bx

rt
+ (k + 1)tmax

s ≤ Tcycle (3)

2.2.2. Merging. Merging combines multiple stream groups into a single group in order
to save disk sessions but can only be performed when these groups display the same video.
Let Gx andGy denote two stream groups of the same video withGx leadingGy, i.e., all
the playback offsets inGx are greater than that inGy. MergingGx andGy can be achieved
by preserving the data ofGx in memory until it can be reused byGy. Namely, we need
another buffers to bridge the gap betweenGx andGy such that continuous playback will
not be disturbed after the disk session used byGy is released. As an example, to mergeG1

andG2 in figure 3, we need to allocate another two buffers toG1 to hold the segments 55
and 56 retrieved in the next two cycles. After session 2 has filled its producing buffer with
segment 39,G1 andG2 are merged and then served by session 1. Afterwards session 2
is released to complete the merging process. Let GapGx,Gy

denote the minimal playback
distance betweenGx andGy, which is defined by GapGx,Gy

= min(|δ(sti ) − δ(stj )| − 1)

for ∀sti ∈ Gx and∀stj ∈ Gy. MergingGx andGy needs additional GapGx,Gy
− 1 buffers

to bridge the gap betweenGx andGy, where the “1” refers to the producing buffer ofGy.
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The merging algorithm for two stream groupsGx andGy is described as follows:

1. Allocate GapGx,Gy
−1 free buffers toGx, where each buffer acts in turn as the producing

buffer of Gx and holds the segments retrieved in the next GapGx,Gy
− 1 cycles.

2. At the end of the(GapGx,Gy
− 1)th cycle, the links inGx andGy are updated as follows,

wherebi
producingrepresents the producing buffer ofGi .

temp= bx
producing→ next

bx
producing→ next= by

producing→ next

by
producing→ next= temp

3. The session reserved forGy is released and the merging process is completed.

To merge stream groupsGx andGy in the system, inequality (4) must be satisfied to meet
the buffer requirements, whereby stands for the buffer block size used inGy. Note that,
to release a session by sacrificing less buffers in merging, two stream groups with smaller
playback distances are preferred.

k∑
i =1

ni bi + (
GapGx,Gy

− 1
) ≤ M (4)

2.2.3. Admission control with splitting and merging.Both splitting and merging dy-
namically alter the amount of buffers used for a session to fully utilize buffers and disk
bandwidths, such that more services can be provided within the system. Figure 4 shows
the benefits yielded from performing both splitting and merging on the stream groups from
figure 3. In figure 4, a splitting operation is performed to subdivideG2 into two subgroups,
G21 andG22. Then two merging operations are performed on the resulting four groups,
G1, G21, G22 andG3, to combine them into two stream groups,G′

1 andG′
2. As a result as

figure 4 shows, only two sessions are required. That is, one session is saved in this case.
Moreover, since seven buffers are released through splitting and three buffers are required
for merging (two for the merging ofG1 andG21 and one for the merging ofG22 andG3),
four buffers can be released in total. The result in figure 4 reveals that, by using splitting

Figure 4. Dynamic buffer sharing with splitting and merging.
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and merging, one session and four buffers are saved and these resources can be utilized to
create more streams offer more services.

Performing splitting and merging operations involves buffers and sessions trade-offs.
Splitting releases buffers by using more disk sessions, while merging saves disk sessions
at the cost of consuming more buffers. This means that, it is beneficial to perform splitting
when buffer space is insufficient in the system, i.e., inequality (2) is not satisfied for creating
a new session. Similarly, it is beneficial to perform merging when disk sessions are insuffi-
cient, i.e., inequality (1) is not satisfied for creating a new session. The following admission
control algorithm for creating a new session is capable of supporting more services through
splitting and merging. It is assumed thatk − 1 sessions are already in progress.

1. Admission Control with Splitting and Merging
2. Begin
3. Caseboth inequality (1) and (2) hold:
4. return sessionk is admitted;
5. Caseboth inequality (1) and (2) are not satisfied:
6. return reject sessionk;
7. Caseinequality (1) holds, but inequality (2) is not satisfied:
8. if ( there is aGx in the system such that inequality (3) holds )
9. perform a splitting onGx;

10. return sessionk is admitted;
11. else
12. return reject sessionk;
13. Caseinequality (2) holds, but inequality (1) is not satisfied:
14. if ( there areGx andGy in the system so that inequality (4) holds )
15. perform a merging onGx andGy;
16. return sessionk is admitted;
17. else
18. return reject sessionk;
19. End

Although splitting and merging operations are performed only upon the arrival of new
requests when the system lacks sufficient resources (buffers or disk sessions), they may
impose large computation overheads on the system if we need to search the entire system to
find the best candidate for performing such operations. One solution to reduce the overheads
is to maintain candidate lists for both splitting and merging. Thesplitting candidate list,
say S-list, maintains all stream groups in a descending order of their maximal playback
distances (Spare), and themerging candidate list, say M-list, maintains all stream groups
in an ascending order of their minimal playback distances from other groups (Gap). With
S-list and M-list, we can easily find a stream group for splitting or merging, even when
there are a large number of sessions and several videos in the system. The computation
overhead by using this method is that, each time a new stream group is formed, we need to
locate this stream group in both S-list and M-list. The new stream group can be the newly
created group or the groups resulting from splitting and merging.
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3. Imprecise buffer management

In this section, we further reduce buffer requirements in the discrete buffer sharing model
by introducing a concept calledimprecise video viewingwhich assumes that a limited
amount of quality loss resulting from inserting advertisements (external data) or skipping
video segments (optional data) is acceptable during the playback of a video. Based on
this assumption, threeshrinking strategieswere explored in Section 3.2 which dynamically
handle data during the video playback to reduce buffer requirements.

3.1. Imprecise viewing model

In the imprecise viewing model, each video (V) on the system is characterized by{α-set,
β-set,MaxTotalα, MaxTotalβ , MinIntervalα, MinIntervalβ}, where the description of each
parameter is given in Table 1. In this table, we refer toα as aninsertable offsetwhere the
insertion of external data is allowed, and refer toβ as anoptional offsetwhere the skipping
of optional data is allowed during video playback. Bothα andβ are calledimprecise offsets.
All these parameters are video dependent. We assume that all video files are preprocessed to
find proper parameters, and external data are inserted only in the video of the same format to
simplify the decompression in client stations. Let SIZE(α) and SIZE(β) respectively denote
the amount of inserted data and skipped data at each imprecise offset. To simplify the model,
both SIZE(α) and SIZE(β) are assumed to be constant and a multiple of segments, even
though it is easy to release such constraints. In the imprecise viewing model, the streams
that display the same video may have differentcontent progressing rates. The content
progressing rate of a stream is defined as the number of segments in a video file divided
by the time forsti to complete its playback. Note that, external data insertion will increase
the playback time and hence lead to a slower content progressing rate, while optional data
skipping will decrease the playback time and result in an accelerated content progressing
rate. The content progressing rate is different fromplayback ratewhich is fixed during
playback, e.g., 30 frames/sec, no matter whether insertion or skipping is performed or not.

Let `G denote the maximal playback distance in a stream group G, which is defined by
`G = |δ(stfirst) − δ(stlast)| + 1, wherestfirst andstlast respectively denote the earliest and the

Table 1. Parameters of the imprecise viewing model.

Notations Descriptions

α-set Set of insertable offsets (denoted byα) available in video V

β-set Set of optional offsets (denoted byβ) available in V

αmax Maximum amount of external data which can be inserted into V

βmax Maximum amount of optional data which can be skipped in V

αmin Minimum distance between any two consecutive insertions of external
data during the playback of V

βmin Minimum distance between any two consecutive skips of optional data
during the playback of V
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latest streams created in G. In figure 4 for example,`G′2 = 12,stfirst = st13 andstlast = st20.
For the buffer sharing model proposed in Section 2.1,`G + 1 buffers are required for G,
i.e., `G consuming buffers and one producing buffer. Thus, the buffer requirements for G
can be reduced if̀G is reduced. In the following subsections,`G is reduced by using three
different strategies.

3.2. Buffer shrinking strategies

This section describes three shrinking strategies for reducing buffer requirements. All the
strategies aim at reducing̀G by taking advantage of different content progressing rates.

3.2.1. Backward shrinking. Backward shrinking strategy slows down the content pro-
gressing rate of the streams created earlier in G to reduce`G. Slowing content progressing
rate of a stream can be achieved by inserting external data during the playback. Letstfirst

denote the earliest stream created in G. With backward shrinking, the producing process
starts to retrieve external data instead of video data for buffer refreshing at eachα offset
allowed forstfirst and will resume to retrieve video data after external data of SIZE(α) − 1
segments has been consumed bystfirst. We refer to the state in which a stream is consuming
external data as theinsertion mode. Each of the other streams in G then, based upon the
desired the content progressing rate, may enter insertion mode at the sameα offset with
stfirst or proceed through the playback without insertion. To meet the proposed imprecise
viewing model, the constraints defined in Table 1 must not be violated, and, to prevent
stream starvation, we must ensure that the inequalityδ(stlast) ≤ δ(sti ) ≤ δ(stfirst) is always
satisfied for any stream in G during playback. LetP(sti ) denote the set of the imprecise
offsets allowed for streamsti during its playback. With backward shrinking, we derive each
P(sti ) based upon the following rules:

Rule A-1: Lete1, e2, . . . , enb denote the imprecise offsets inP(stfirst), in an ascending order,
andnb denote the number of elements. For eachei in P(stfirst), the following conditions
must hold:

C1: ei ∈ α-set
C2: |ei − ej | + SIZE(α) ≥ MinIntervalα for i 6= j
C3: nb × SIZE(α) ≤ min(`G − SIZE(α), MaxTotalα)

Rule A-2: For a streamsti in G, the correspondingP(sti ) = P(stfirst) − {e1, e2, . . . , eqi },
whereqi = min(b(δ(stfirst) − δ(sti ))/SIZE(α)c, nb).

Example 3.1. Assume the imprecise viewing model of the video file in figure 4 to be:α-set
= {26, 30, 44, 53, 58, 65, 72, . . .}, β-set= {16, 22, 30, 46, 52, 65, 80, 88, . . .}, MaxTotalα
= 15, MaxTotalβ = 15, MinIntervalα = 18, MinIntervalβ = 12, SIZE(α) = 3 and
SIZE(β) = 2. All the parameters are measured in segments.

Consider the stream groupG′
2 in figure 4 for backward shrinking, wherèG′

2
= 13 and

stfirst = st13. Note that in order to have more reduction in`G′
2
, as much external data must be
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Table 2. The backward shrinking process.

Cycle .. 54 55 56 57 58 59 .. 75 76 77 78 79 80 .. 99 100 101 102 103 104 105 ..

δ(st13) .. 26d1 d2 d3 27 28 .. 44d1 d2 d3 45 46 .. 65 d1 d2 d3 66 67 68 ..

δ(st14) .. 25 26d1 d2 d3 27 .. 43 44d1 d2 d3 45 .. 64 65 d1 d2 d3 66 67 ..

δ(st15) .. 23 24 25 26 27 28 .. 44d1 d2 d3 45 46 .. 65 d1 d2 d3 66 67 68 ..

δ(st16) .. 20 21 22 23 24 25 .. 41 42 43 44 45 46 .. 65d1 d2 d3 66 67 68 ..

δ(st17) .. 19 20 21 22 23 24 .. 40 41 42 43 44 45 .. 64 65d1 d2 d3 66 67 ..

δ(st18) .. 18 19 20 21 22 23 .. 39 40 41 42 43 44 .. 63 64 65d1 d2 d3 66 ..

δ(st19) .. 16 17 18 19 20 21 .. 37 38 39 40 41 42 .. 61 62 63 64 65 66 67 ..

δ(st20) .. 15 16 17 18 19 20 .. 36 37 38 39 40 41 .. 60 61 62 63 64 65 66 ..

δ(st21) .. 14 15 16 17 18 19 .. 35 36 37 38 39 40 .. 59 60 61 62 63 64 65 ..

`G′2 13 10 7 4 ..

inserted into streamstfirst as possible to slow down its content progressing rate. For example,
we can choosenb = 3 andP(stfirst) = {26, 44, 65} in this case based on rule A-1. According
to rule A-2, we can easily deriveP(st14) = P(stfirst) − φ = {26, 44, 65} sinceq14 =
min(b(26− 25)/3c, 3) = 0 andP15 = P(stfirst)−{26} = {44, 65} sinceq15 = min(b(26−
23)/3c, 3) = 1. Similarly, all the otherP(sti ) are derived as follows:P(st16) = P(st17) =
P(st18) = {65} and P(st19) = P(st20) = P(st21) = φ. Table 2 illustrates the backward
shrinking process from cycle 54 to cycle 105, wheredi denote thei th segment of the external
data. Table 2 shows that two streams,st13 andst14, will enter the insertion mode at the
end of segment 26, while three streams(st13, st14, st15) and six streams(st13, . . . , st18) will
respectively enter insertion mode at the end of segment 44 and 65. Note that, in Table 2, each
time streamst13 enters the insertion mode, a stream,sti , with |δ(st13) − δ(sti )| < SIZE(α)

will also enter insertion mode at the sameα offset. Thus, streamst13 always precedes
all the other streams inG′

2 and starvation never occurs even when producing process stops
retrieving video data (i.e., whenst13 stays in the insertion mode). With backward shrinking,
the maximal viewing distancèG can be reduced bynb × SIZE(α). As an example, in
Table 2`G′

2
equals 13 in cycle 54, and 4 in cycle 105. Consequently,`G′

2
is reduced by nine

in total and nine buffers can be released for the stream groupG′
2 shown in figure 4.

3.2.2. Forward shrinking. Forward shrinking strategy speeds up the content progressing
rate of the streams created lately in a stream group G to reduce its maximal playback
distancè G. Speeding up the content progressing rate of a stream means skipping some
optional data during the playback. With forward shrinking, although optional data will
be skipped in some streams, the producing process refreshes buffers with a full video file
such that this single version is capable of satisfying various content progressing rates for
different streams. Each stream in G then, based upon the desired the content progressing
rate, dynamically consume data in the adequate consuming buffers for playback. Letblast

denote the buffer that the last streamstlast is consuming. Each timestlast skips optional data,
the producing process will wrap data refresh to the buffer next toblast in order to release
buffers. To prevent starvation for any stream, we also need to ensure that the inequality
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δ(stlast) ≤ δ(sti ) ≤ δ(stfirst) is always satisfied for any streamsti in G during playback. Let
P(sti ) denote the set of imprecise offsets allowed for streamsti . With forward shrinking,
we derive eachP(sti ) based on the following rules:

Rule B-1: Lete1, e2, . . . , en f denote the imprecise offsets inP(stlast), in an ascending order,
andn f denote the number of elements. For eachei in P(stlast), the following conditions
must hold:

C4: ei ∈ β-set
C5: |ei − ej | − SIZE(β) ≥ MinIntervalβ for i 6= j
C6: n f × SIZE(β) ≤ min(`G − SIZE(β), MaxTotalβ)

Rule B-2: For a streamsti in G, the correspondingP(sti ) = P(stlast) − {e1, e2, . . . , eqi },
whereqi = min(b(δ(sti ) − δ(stlast))/SIZE(β)c, n f ).

Consider the imprecise viewing model in Example 3.1 and the stream groupG′
2 in fig-

ure 4 for forward shrinking. Note that, in this case,`G′
2
= 13 andstlast = st21. According

to rule B-1, we can choosen f = 5 andP(stlast) = {16, 30, 46, 65, 80} and, according
to tule B-2, we can easily deriveP(st13) = P(stlast) − {16, 30, 46, 65, 80} = φ since
q13 = min(b(26 − 14)/2c, 5) = 5. All the otherP(sti ) can also be derived as follows:
P(st14) = φ, P(st15) = {80}, P(st16) = {65, 80}, P(st17) = P(st18) = {46, 65, 80},
P(st19) = {30, 46, 65, 80} andP(st20) = P(st21) = {16, 30, 46, 65, 80}. Table 3 illus-
trates the forward shrinking process from cycle 54 to cycle 114. In Table 3, two streams (i.e.,
st20 andst21) will skip optional data at the end of segment 16, while three, five, six and seven
streams will respectively skip optional data at the end of segment 30, 46, 65 and 80. Note
that, each time streamst21 skips optional data, a streamsti with |δ(sti )−δ(st12)| < SIZE(β)

will also skip the same optional data at the sameβ offset. Thus,st21 always runs behind all
the other streams inG′

2 and starvation never occurs even though those buffers behindst21

will be released. With forward shrinking, the maximal viewing distance`G can be reduced
by n f ×SIZE(β). As an example, in Table 3 we have`G′

2
= 13 for cycle 54, whilè G′

2
= 3

Table 3. The forward shrinking process.

Cycle .. 54 55 56 57 .. 67 68 69 .. 81 82 83 .. 98 99 100 .. 111 112 113 114 ..

δ(st13) .. 26 27 28 29 .. 39 40 41 .. 53 54 55 .. 70 71 72 .. 83 84 85 86 ..

δ(st14) .. 25 26 27 28 .. 38 39 40 .. 52 53 54 .. 69 70 71 .. 82 83 84 85 ..

δ(st15) .. 23 24 25 26 .. 36 37 38 .. 50 51 52 .. 67 68 69 .. 80 83 84 85 ..

δ(st16) .. 20 21 22 23 .. 33 34 35 .. 47 48 49 .. 64 65 68 .. 79 80 83 84 ..

δ(st17) .. 19 20 21 22 .. 32 33 34 .. 46 49 50 .. 65 68 69 .. 80 83 84 85 ..

δ(st18) .. 18 19 20 21 .. 31 32 33 .. 45 46 49 .. 64 65 68 .. 79 80 83 84 ..

δ(st19) .. 16 17 18 19 .. 29 30 33 .. 45 46 49 .. 64 65 68 .. 79 80 83 84 ..

δ(st20) .. 15 16 19 20 .. 30 33 34 .. 46 49 50 .. 65 68 69 .. 80 83 84 85 ..

δ(st21) .. 14 15 16 19 .. 29 30 33 .. 45 46 49 .. 64 65 68 .. 79 80 83 84 ..

`G′2 13 11 9 7 5 3 ..
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for cycle 113. Thus,̀G′
2

is reduced by 10 in total and ten buffer blocks can be released for
the stream groupG′

2 shown in figure 4.

3.2.3. Two-way shrinking. Note that, there is an unbalanced quality loss among streams
for backward and forward shrinking. For backward shrinking, those streams created earlier
in a stream group suffer from more quality loss due to more external data insertion. In
Table 2, for example, streamst13 incurs three insertions of external data during its playback
but st21 proceeds its playback without any insertion. For backward shrinking, the lately
created streams also suffer from more quality loss due to more optional data skipping as
Table 3 shows. Two-way shrinking compromises these two shrinking strategies. For a
stream group G, we not only slow down the content progressing rate of the streams created
earlier in G and but also speed up the content progressing rate of the streams created lately.
To prevent starvation during playback, in addition to rules A-1, A-2 and B-1, B-2, the
following rule must be satisfied for two-way shrinking strategy:

Rule C-1: nb × SIZE(α) + n f × SIZE(β) ≤ `G − max(SIZE(α), SIZE(β)),

wherenb andn f respectively denote the element number inP(stfirst) andP(stlast). Consider
the imprecise viewing model in Example 3.1 and the stream groupG′

2 in figure 4 for two-
way shrinking. In this casèG′

2
= 13,stfirst = st13 andstlast = st21. To reducè G′

2
as much

as possible, we can choosenb = bf = 2 based on rule C-1 and, to release buffers as soon
as possible, we can chooseP(st13) = {16α, 44α} andP(st21) = {16β, 30β} based on rules
A-1 and B-1 (The element with subscriptα denotes anα offset andβ denotes aβ offset).
According to rules A-2 and B-2, all the otherP(sti ) are derived as follows:P(st14) =
{26α, 44α}, P(st15) = {44α}, P(st16) = P(st17) = P(st18) = φ, P(st19) = {30β} and
P(st20) = {P(st21) = {16β, 30β}. Table 4 shows the two-way shrinking process ofG′

2
from cycle 54 to 80. Compared with Table 2 (backward shrinking) and Table 3 (forward
shrinking), Table 4 indicates a more balanced quality loss among streams. We also observe

Table 4. The two-way shrinking process.

Cycle .. 54 55 56 57 58 59 .. 67 68 69 70 .. 75 76 77 78 79 80 ..

δ(st13) .. 26d1 d2 d3 27 28 .. 36 37 38 39 .. 44d1 d2 d3 45 46 ..

δ(st14) .. 25 26d1 d2 d3 27 .. 35 36 37 38 .. 43 44d1 d2 d3 45 ..

δ(st15) .. 23 24 25 26 27 28 .. 36 37 38 39 .. 44d1 d2 d3 45 46 ..

δ(st16) .. 20 21 22 23 24 25 .. 33 34 35 36 .. 41 42 43 44 45 46 ..

δ(st17) .. 19 20 21 22 23 24 .. 32 33 34 35 .. 40 41 42 42 44 45 ..

δ(st18) .. 18 19 20 21 22 23 .. 31 32 33 34 .. 39 40 41 42 43 44 ..

δ(st19) .. 16 17 18 19 20 21 .. 29 30 33 34 .. 39 40 41 42 43 44 ..

δ(st20) .. 15 16 19 20 21 22 .. 30 33 34 35 .. 40 41 42 43 44 45 ..

δ(st21) .. 14 15 16 19 20 21 .. 29 30 33 34 .. 39 40 41 42 43 44 ..

`G′2 .. 13 8 6 3 ..
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that two-way shrinking reduces̀G′
2

more quickly than backward shrinking and forward
shrinking do because, with two-way shrinking, external data insertion and optional data
skipping can be performed in parallel without interference as shown in Table 4. Thus,
buffers can be released quickly when two-way shrinking is used. As an example, in Table 4
ten buffers are released after cycle 80, but in Table 3 they can be released only after cycle 114.

3.3. Remarks

In this section, three shrinking strategies were explored to reduce buffer requirements
for VOD systems where buffer sharing is employed. Note that, in addition to buffers,
network channel requirements can also be reduced when shrinking strategies are used
because shrinking may create multiple streams of the same playback offset. These distinct
streams with the same offset can form a single multi-casting group without disturbing the
continuity in playback and hence share a network channel for the delivery of video data.
In figure 4, for example, there are initially eight multi-casting groups (one for each stream)
but only three in the end ({st3, st6}, {st2, st5, st7, st8} and {st1, st4}). Thus, five network
channels can be saved in total. For a stream group G, the number of multi-casting groups is
bounded bỳ G, the maximum playback distance in G. By using shrinking operations and
reducing̀ G, fewer multi-casting groups are required and network channels can be saved.

However, shrinking strategies suffer from the overheads of maintaining imprecise offsets
for each stream, especially when there are a large number of streams in the system. One
solution to reduce the overhead is to maintain the imprecise offsets in terms of stream
groups rather than individual streams. LetP(stfirst) andP(stlast) respectively denote the set
of imprecise offsets (sorted in an ascending order) allowed for the first streamstfirst and the
last streamstlast in stream group G. According to rule A-2, theα offsets allowed for any
stream in G must consist of consecutive elements inP(stfirst) and end with the last one in
P(stfirst). Similarly, according to rule B-2, theβ offsets allowed for any stream in G must
consist of consecutive elements inP(stlast) and end with the last one inP(stlast). Therefore,
for a stream group G, we only need to maintainP(stfirst) and P(stlast) together with the
starting element for each stream in G. By using this method, the overheads for maintaining
imprecise offsets can be largely reduced. Te show the correctness of all the shrinking
strategies, four theorems are presented in the Appendix. Theorems 1, 2 and 3 show that
streams never incur starvation during playback when shrinking strategies are employed,
and Theorem 4 shows that all the shrinking strategies meet the imprecise viewing model
defined in Section 3.1.

4. Simulation

In our simulations, six buffer management schemes described in Table 5 were examined,
where schemes S4, S5, and S6 assume that the imprecise viewing model is available in
the system. The average waiting time is used as the criterion to compare the performance
of various buffer management schemes. Upon viewer arrival, the viewer joins an active
session if buffer sharing is possible, or creates a new session if it is not. When there are not
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Table 5. The six buffer management approaches.

Scheme Description

S1 Double buffering

S2 Discrete buffer sharing model 1 (without splitting and merging)

S3 Discrete buffer sharing model 2 (with splitting and merging)

S4 Scheme S3 with two-way shrinking

S5 Scheme S3 with backward shrinking

S6 Scheme S3 with forward shrinking

enough resources for creating a new session, the viewer is placed in a waiting queue. The
waiting time is measured as the time the viewer stays in the waiting queue.

4.1. Simulation model

Two sets of experiments were conducted. For the first set (Set1), we assume there is a
single video file in the system so that all the buffers and disk bandwidths are dedicated
to this video only. Schemes S1, S2, S3 and S4 were examined for different buffer sizes,
disk bandwidths, and mean interarrival times. Schemes S4, S5 and S6 were examined for
different amounts of quality loss, defined as the summation of the inserted external data
and the skipped optional data during the playback of a video. For the second set (Set2),
we assume there are several video topics in the system. Schemes S1, S2, S3 and S4 were
examined for different numbers of video topics. The default values of parameters used for
the simulations are given in Table 6. Moreover, all the experiments ran for 18000 sec (i.e.,
five hours) with a cycle time of 1 sec. The viewer arrivals were modeled using a Poisson
process. In our simulations, MPEG-1 format is used. Due to variable bit rates in MPEG-1
(in general, from 1.5 Mb/sec to 2 Mb/sec), the buffer block size is chosen as 2 Mb (i.e.,
250 KB), which means 450 MB buffer and 900 MB buffer can respectively accommodate
about 30 and 60 minutes of MPEG-1 streams. Both external data size and optional data
size are 1.5 minutes of MPEG-1 stream.

Table 6. The default value of parameters used in simulations.

Symbol Set 1 Set 2 Description

B 450 MB 900 MC Buffer size

D 10 sessions 30 sessions Disk bandwidth

tinterval 60 sec 60 sec Mean interarrival time of viewers

M 100 min 100 min Mean movie length

αmaxTotal 9 min 9 min Max total amount of inserted external data

βmaxTotal 9 min 9 min Max total amount of removed optional data
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4.2. Simulation results and discussion

For the first set of experiments, figure 5 shows the average waiting time of schemes S1,
S2, S3 and S4 as a function of buffer size, disk bandwidth and mean interarrival time,
respectively. Figure 6 shows the performance of schemes S4, S5 and S6, parameterized by
the amounts of quality loss during the video playback. After comparing the results, we can
make the following observations.

(1) Schemes S2, S3 and S4 perform well in comparison with scheme S1 over most of the
parameters, showing that the buffer sharing technique improves the performance of a
VOD system. The result also indicates that splitting and merging operations do work in
most cases, as shown by comparing schemes S3 with S2, and that the imprecise viewing
model leads to better results, as shown by comparing schemes S4 with S3. To show
the viewing quality in scheme S4, Table 7 lists the average size of quality loss during
playback for figure 5(a). In the case when the buffer size equals 300 MB, for example,
although the average quality loss is 48.21 sec for each viewer, the average waiting time

Figure 5. Simulation result.
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Figure 6. The effects caused by varying numbers of video topics.

is reduced by more than 700 sec as shown in figure 5(a). (Note she difference between
S3 and S4.)

(2) Figure 5(a) shows that, as the buffer size increases, the average waiting time drops for
schemes S2, S3 and S4 with S4 dropping the fastest followed by S3 and S2, respectively.
The result reveals that large size buffers can help overcome the I/O bottleneck in VOD
systems. Figure 5(a) also shows that scheme S1, the conventional double-buffering
technique, is insensitive to buffer size. An increase in buffer size is useless for S1
because only two buffers are assigned for each video stream.

(3) Schemes S2, S3 and S4 perform much better than S1 when fewer sessions are supported
by the storage. In figure 5(b), the performance of scheme S1 can catch up with others
if the storage can support more than 80 sessions of MPEG-1 video. That is, for scheme
S1, multiple disks must be employed owing to current storage technology which only
supports about 4 to 10 sessions for a single disk. However, the number of sessions
supported by the storage does not increase linearly with the number of disks due to
the limitation of bus bandwidth and the problem of video file placement. The results
in figure 5(b) reveal that, by using buffer sharing techniques, schemes S2, S3 and S4
overcome the I/O bottleneck to perform better.

(4) Figure 5(c) shows that average waiting time is improved for schemes S2, S3 and S4
more so than with scheme S1 over the range of mean interarrival times which are less
than 21 minutes. The improvement is significant especially when the mean interarrival
time is less than five minutes. The result shows that buffer sharing performs well when
the mean interarrival time is small.

Table 7. The average quality loss of scheme S4 in figure 5(a).

Buffer size (MB) 5 75 150 300 450 600 750 900

Inserted data (sec) 0 0 21.66 20.75 41.80 100.37 142.48 97.93

Skipped data (sec) 0 0 1.53 27.46 110.75 136.98 129.36 175.42

Qualitf Loss (sec) 0 0 23.19 48.21 152.55 237.35 271.84 273.35
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(5) Schemes S4, S5 and S6 have similar performances because the differences between
their average waiting times are less than 60 sec over most cases in figure 5(d). Since
S4 performs much better than S1, S2 and S3 as shown in figures 5(a)–(c), we can
conclude that the shrinking strategies (i.e., S4, S5 and S6) perform better than the
schemes without shrinking (i.e., S1, S2 and S3). Figure 5(d) also indicates that shrinking
strategies reduce the average waiting time to a greater degree when more quality loss is
allowed.

For the second set of experiments, figure 6 shows the average waiting time of scheme S1,
S2, S3 and S4, parameterized by the number of video topics in the system. The selection
of video topics is modeled usinguniform distributionin figure 6(a) andZipf ’s distribution
in figure 6(b). Let the topics 1, 2, . . . , n be sorted in a descending order of popularity, that
is, p1 ≥ p2 ≥ · · · ≥ pn where pi denotes the probability that a viewer choose topici .
According to Zipf’s law [19], we havepi = c/ i wherec is a normalizing constant such
that

∑
pi = 1. In figure 6, we observe that, no matter what type of distribution is used

in topic selection, the average waiting time for all the schemes increases as the number
of video topics increases. However, in most cases schemes S2, S3 and S4 still perform
much better than scheme S1 especially when Zipf’s distribution is employed. Since Zipf’s
distribution has been shown to closely approximate real-world user viewing behavior, the
result demonstrates that our buffer management significantly improves in the performance
of a VOD system.

5. Conclusion

Recently, advances in RAM technology have made it feasible to design a video server
equipped with large size buffers. In this paper, we examined the issues of buffer management
in video-on-demand (VOD) systems. First, we proposed a discrete buffer sharing model
which employs batching and buffer sharing techniques in video servers to support a large
number of concurrent services. Two operations, splitting and merging, were used in the
model to fully utilize system resources such as buffers and disk bandwidths. Second,
we introduced the concept of imprecise video viewing which assumes that certain degree
of quality loss is allowed during the video playback. Based upon this assumption, three
strategies which include backward shrinking, forward shrinking and two-way shrinking,
were explored to further reduce the buffer requirements. Four theorems were proven in
the Appendix to show the correctness of all the shrinking strategies. Besides, we also
conducted several experiments to compare the performance of various buffer management
schemes. The results demonstrate that our discrete buffer sharing model performs better
than traditional buffer management techniques over most parameters and that resource
adjusting operations, splitting and merging, significantly improve the reduction of average
waiting times in the system. We also observe that, with concept of imprecise viewing, the
proposed shrinking strategies can save much waiting time at minimal quality loss in video
viewing. In conclusion, we believe that the proposed buffer management schemes help
solve the I/O problems in VOD systems.
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Appendix

In this appendix, four theorems were proven to show the correctness of the proposed shrink-
ing strategies. Without loss of generality, we assume thatP(stfirst) = {α1, α2, . . . , αnα

} and
P(stlast) = {β1, β2, . . . , βnβ

}, wherenα andnβ respectively denote the number of elements
in P(stfirst) andP(stlast). Note that,nβ = 0 for backward shrinking andnα = 0 for forward
shrinking based on rules A-1 and B-1. For illustration purposes, the following notations
and definitions are used.

ᾱ : denotes the size of external data, in terms of number of segments.
β̄ : denotes the size of optional data, in terms of number of segments.
round(ei ) : denotes the time interval for all the streams associated with the imprecise

offsetei to complete data insertion or skipping atei .
stki : denotes a streamsti that has completed itskth external data insertion or op-

tional data skipping during video playback. Note that, we have 0≤ k ≤ nα

for stkfirst and 0≤ k ≤ nβ for stklast.
δ̄(stki ) : denotes the playback offset distance betweenstki and st0last, i.e., δ̄(stki ) −

δ(stki ) − δ(st0last) + 1. According to this definition, we havēδ(stki ) =
δ̄(stk−1

i )− ᾱ for external data insertion andδ̄(stki ) = δ̄(stk−1
i )+ β̄ for optional

data skipping.

Lemma 1. With backward shrinking, a stream sti in G with δ(stfirst) − δ(sti ) < ᾱ at the
end of round(αk−1) will enter insertion mode in round(αk), where0 ≤ k ≤ nα.

Proof: A streamsti with δ(stfirst) − δ(sti ) < ᾱ at the end of round(αk−1) means that the
following inequality is satisfied, wherey denotes the number of external data insertions
incurred insti during the firstk − 1 rounds, i.e., 0≤ y ≤ k − 1.

δ̄
(
stk−1

first

) − δ̄
(
styj

)
< ᾱ

By adding(k − y − 1)ᾱ to each side of the inequality above, we will have[
δ̄
(
stk−1

first

) + (k − 1)ᾱ
] − [

δ̄
(
styi

) + yᾱ
]

< (k − y)ᾱ.

With backward shrinking, we can obtain the following inequality by substitution.

δ̄
(
st0first

) − δ̄
(
st0i

)
< (k − y)ᾱ

Now, according to the definition ofqi in rule A-2, we will have

qi = ⌊(
δ̄
(
st0first

) − δ̄
(
st0i

))/
ᾱ
⌋ ≤ k − y − 1.

Since 0≤ y ≤ k − 1, we can easily derive 0≤ qi ≤ k − 1 which impliesαk ∈ P(sti ) (rule
A-2). Thus,sti will enter insertion in round(αk). 2
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Lemma 2. With backward shrinking, a stream styi with y 6= 0 at the end of round(αnα
)

must have0 ≤ δ̄(stnα

first) − δ̄(styi ) < ᾱ.

Proof: According to sule A-2, a streamstyi with y 6= 0 at the end of round(αnα
) must

have itsP(sti ) starting withαnα−y+1 , i.e., P(sti ) = {αnα−y+1, . . . , αnα
}. Based upon the

definition ofqi in rule A-2, we have

qi = ⌊(
δ̄
(
st0first

) − δ̄
(
st0i

))/
ᾱ
⌋ = nα − y.

By expanding this equation, we can obtain the following inequality:

(nα − y)ᾱ ≤ δ̄
(
st0first

) − δ̄
(
st0i

)
< (nα − y + 1)ᾱ

With backward shrinking, we can derive the following inequality by substitution:

(nα − y)ᾱ ≤ [
δ̄
(
stnα

first

) + nαᾱ
] − [

δ̄
(
styi

) + yᾱ
]

< (nα − y + 1)ᾱ

By subtracting(nα−y)ᾱ from all the components above, we have 0≤ δ̄(stk−1
first )−δ̄(styi ) < ᾱ

2

Theorem 1. With backward shrinking, the inequalityδ(stlast) ≤ δ(sti ) ≤ δ(stfirst) always
holds for any stream, say sti , in stream group G during the video playback.

Proof: According to Lemma 1,stfirst always proceedssti for backward shrinking since
each time whenstfirst enters the insertion mode,sti will also enter the insertion mode at the
same offset ifδ(stfirst)−δ(sti ) < ᾱ. Thus,δ(sti ) ≤ δ(stfirst) is always satisfied for backward
shrinking. To showδ(sti ) ≥ δ(stlast), we only need to ensure thatδ̄(styi ) ≥ 0 holds at the
end of round(αnα

), wherey is the element number inP(sti ). Note that, this must be true for
with y = 0 since there is no external data is inserted intosti . Considery 6= 0. According
to Lemma 2, we can easily derive

δ̄
(
styi

)
> δ̄

(
stnα

first

) − ᾱ

= [
δ̄
(
st0first

) − nαᾱ
] − ᾱ

= δ̄
(
st0first

) − (nα + 1)ᾱ

= `G − (nα + 1)ᾱ

for backward shrinking. Since we have`G > (nα + 1)ᾱ based upon condition C3 in rule
A-1, the inequalityδ̄(styi ) ≥ 0 is true forstyi with y 6= 0. Accordingly,δ(sti ) ≥ δ(stlast) is
also satisfied for the backward shrinking strategy. 2

Theorem 2. With forward shrinking, the inequalityδ(stlast) ≤ δ(sti ) ≤ δ(stfirst) always
holds for any stream sti in G during the video playback.
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Proof: Due to space limitations, we omit this proof here. The proof of Theorem 2 is
similar to the case of backward shrinking in Theorem 1. 2

Theorem 3. With two-way shrinking, the inequalityδ(stlast) ≤ δ(sti ) ≤ δ(stfirst) always
holds for any stream sti in G during the video playback.

Proof: Let y denote the element number inP(sti ). For y = 0, the inequalityδ(stlast) ≤
δ(sti ) ≤ δ(stfirst) must always be true because there is no data insertion and data skipping for
sti . For y 6= 0, considerP(sti ) ∩ P(stfirst) 6= φ. According to Theorem 1,δ(sti ) ≤ δ(stfirst)

is always satisfied during video playback based upon Lemma 1. To showδ(sti ) ≥ δ(stlast),
we only need ensure that the boundary conditionδ̄(styi ) ≥ δ̄(st

nβ

last) holds after all the insertion
and skipping rounds have been completed. Sincey 6= 0, we can derive the inequality
δ̄(styi ) > δ̄(stnα

first) − ᾱ based upon Lemma 2, that is,

δ̄
(
styi

) − δ̄
(
st

nβ

last

) ≥ [
δ̄
(
stnα

first

) − ᾱ
] − δ̄

(
st

nβ

last

)
= [

δ̄
(
st0first

) − nαᾱ − ᾱ
] − [

δ̄
(
st0last

) + nββ̄
]

= [
δ̄
(
st0first

) − δ̄
(
st0last

)] − ᾱ − (nαᾱ + nββ̄)

= `G − ᾱ − (nαᾱ + nββ̄)

≥ `G − max(ᾱ, β̄) − (nαᾱ + nββ̄).

Owing to`G > max(ᾱ, β̄) − (nαᾱ + nββ̄) based upon rule C-1, the inequalityδ̄(styi ) ≥
δ̄(st

nβ

last)would be true. Thus,δ(sti ) ≥ δ(stlast) is also satisfied for the caseP(sti )∩P(stfirst) 6=
φ. Now, considerP(sti )∩ P(stlast) 6= φ. According to Theorem 2,δ(stlast) ≤ δ(sti ) always
holds during video playback. To showδ(sti ) ≤ δ(stfirst), we only need to ensure that the
boundary condition̄δ(styi ) ≤ δ̄(stnα

first) is also satisfied after all the insertion rounds and
skipping rounds have been completed. Sincey 6= 0, we can easily derive the inequality
δ̄(styi ) < δ̄(st

nβ

last) + β̄, that is

δ̄
(
styi

) − δ̄
(
stnα

first

)
<

[
δ̄
(
st

nβ

last

) + β̄
] − δ̄

(
stnα

first

)
= [

δ̄
(
st0last

) + nββ̄ + β̄
] − [

δ̄
(
st0first

) − nαᾱ
]

= (nαᾱ + nββ̄) + β̄ − [
δ̄
(
st0first

) − δ̄
(
st0last

)]
= (nαᾱ + nββ̄) + β̄ − `G

≤ (nαᾱ + nββ̄) + max(ᾱ, β̄) − `G

Owing to`G > max(ᾱ, β̄) − (nαᾱ + nββ̄) based on rule C-1,̄δ(styi ) ≤ δ̄(stnα
first) would be

true which implies thatδ(sti ) ≤ δ(stfirst) is always satisfied during playback. Accordingly,
with two-way, the inequalityδ(stlast) ≤ δ(sti ) ≤ δ(stfirst) is always satisfied for anysti
during playback. 2

Theorem 4. All the proposed shrinking strategies meet imprecise viewing model.

Proof: With backward shrinking, it can be seen thatstfirst meets imprecise viewing model
because, according to rule A-1, all the elements inP(stfirst) meet the constraints defined in
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Table 1. For any streamsti in G, since we haveP(sti ) ⊆ P(stfirst) based on rule A-2, all
the elements inP(sti ) also meet the constraints in Table 1. Thus, with backward shrinking,
all the streams meet imprecise viewing model. Similarly, with forward shrinking, all the
streams also meet imprecise viewing model because we haveP(sti ) ⊆ P(stlast) for any
streamsti in G (by rule B-2) and that all the elements inP(stlast) meet the constraints in
Table 1 (by rule B-1). Two-way shrinking also meet imprecise viewing model because
P(sti ) ⊆ P(stfirst) ∪ P(stlast) holds for any streamsti in G. Consequently, all the shrinking
strategies meet imprecise viewing model. 2
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