Multimedia Tools and Applications 6, 61-83 (1998)
(© 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

Dynamic Buffer Management for Near
Video-On-Demand Systems

WEN-JIIN TSAI AND SUH-YIN LEE wjtsai@infol.csie.nctu.edu.tw
Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan,
R.O.C.

Abstract. Advances in networking and storage technology have made it possible to deliver on-demand services
over networks such as the emerging video-on-demand (VOD) applications. A variety of studies have been focuse
on designing a video server suitable for VOD applications. However, the number of concurrent on-demand service
supported by the server is often limited by the I/O bandwidth of the storage systems. This paper dedisteza

buffer sharing modekhich uses batching and buffer sharing techniques in video servers to support a large number
of VOD services. Two operations, splitting and merging, enable the model to fully utilize system resources such a
buffers and disk bandwidths. Moreover, this paper also introduces the condepretise video viewinghich
assumes that a limited amount of quality loss is acceptable during video playback. Based upon this assumptiol
three shrinking strategies are explored to reduce buffer requirements. Finally, the results of experiments show th:
our methods perform better than traditional buffer management techniques for VOD systems.

Keywords: video-on-demand, buffer management, buffer sharing, scheduling

1. Introduction

Advances in networking and storage technology have made it possible to deliver on-deman
services, such as catalog shopping, distance learning, and general information browsin
[4, 5], over networks. Recently, emerging video-on-demand (VOD) applications have re-
ceived enormous attention from telecommunications, entertainment, and computer indus
tries. A variety of studies have focused on the design of high-performance VOD systems
capable of handling large numbers of services simultaneously [7, 9]. A typical VOD system
consists of avideo archiveand a set ofideo server$l0, 15]. The video archive maintains

a collection of all available video files and the video servers maintain a small set of fre-
quently requested videos. This paper focuses on the design of a video server suitable f
VOD applications.

The characteristics of digital video files and video traffic differ substantially from those
of conventional applications with regard ¢ontinuityand high bandwidthrequirements.
Continuity means that client stations must acquire the needed video data on time, namel
the components of a VOD system, including the server storage and the interconnectiol
network, must support enough bandwidths to accommodate all the video streams so th:
they can be continuously displayed. Due to finite I/O bandwidths in the storage and the
network, the number of concurrent on-demand services supported by the VOD system i
often limited. The bottleneck in network bandwidth can be reduced by employing multi-
casting techniques which is available in most current networks. If a single video stream is

62 TSAI AND LEE

being accessed by multiple viewers, the server retrieves the data exactly once fromthe serv
buffer and multi-casts it to all the viewers. This technique enables networks to support more
services for more users. To cope with the I/O bottleneck in storage, a variety of studies
have been focused on different techniques of data placement and scheduling policy in th
storage system [1, 12, 13, 17]. However, the 1/O problem has not been solved yet.

Recently, the studies of solving I/O problems tend to reduce 1/0 demands on the videc
server througlbatching adaptive piggy-backingandbuffer sharing Batchingdelays the
start time of video playback in order to service multiple viewers by using a single 1/O
stream [2]. Adaptive piggy-backingdjusts display rates of the videos in progress, for the
purpose of merging their respective 1/0 streams into a single streanB[#fer sharing
techniques reduce 1/0O demands by preserving the recently used data in memory such th
it can be reused by subsequent viewers [3, 14, 16]. Although these approaches may inct
problems when providing VCR functionality, several approaches have been proposed. Da
et al. solved the problem in the context of batching by usesgrved channel?], while
Yu et al. solved the similar problem by usita@pk-ahead schedulinid 8].

This paper describes discrete buffer sharing modebhich uses batching and buffer
sharing techniques in VOD systems to support a large number of services. Two operations
splitting and merging, used in the model enable a video server to fully utilize system re-
sources such as buffers and disk bandwidths. This paper also introduces the concept |
imprecise video viewinghich assumes that a limited amount of quality loss is acceptable
during the playback of a video. The quality loss can be resulting from inserting advertise-
ments or skipping some video contents during the playback. Based on this assumptior
three shrinking strategies which inclutdackward shrinkingforward shrinkingandtwo-
way shrinking are explored to reduce buffer requirements in the system. The idea behind
the shrinking strategies is similar to that used in adaptive piggy-backing. Finally, the results
of experiments show that our methods perform better than traditional buffer managemen
techniques for VOD systems.

2. Buffer management for continuous video data

For a video server, buffers are used as an intermediate to cache and deliver video data fro
the storage to the network interface. In order to support continuous playback, the techniqu
of double-bufferings often employed in a typical video server for buffer management.
With double-buffering, each video stream requires two buffersprassuming buffeand

a producing buffer A consuming process empties the consuming buffer by transferring
video data from the buffer to the network. A producing process fills the producing buffer
with video data retrieved from the storage. The two operations are performed in parallel.
Whenever the consuming buffer is empty and the producing buffer is full, the two buffers
exchange their roles. The process is repeated until the end of the playbacksdssi@n
represent the disk bandwidth necessary to support the real-time delivery of a single videc
With double-buffering, the maximum number of concurrent streams supported in the systen
is often limited to the number of sessions offered in the storage subsystem. The following
discrete buffer sharing modéd proposed to accommodate more concurrent streams in the
system.

DYNAMIC BUFFER MANAGEMENT FOR NEAR VOD SYSTEMS 63

2.1. Discrete buffer sharing model

In discrete buffer sharing model buffers > 2) will be reserved whenever a new session

is created. Among buffers, one buffer is used for the producing process and the other
n — 1 buffers are used for the consuming process, that is,1 consuming buffers will
share a single producing buffer for data refreshing. Such a technique is cailgftering

With n-buffering, each of tha allocated buffers serves, in turn, as the producing buffer in

a different cycle. For example, if theh buffer acts as the producing buffer in il cycle,

then the((k + 1) mod n)th buffer will serve as the producing buffer in tkie+ 1)th cycle.

In this way, the video data in each buffer would remain unchangeal fol cycles so that

they can be reused by subsequent streams that display the same video. By using suct
technique, calletuffer sharingmultiple streams can be served by a single disk session. We
also distinguiststreamdrom viewersbecause multiple viewers can participate in a single
stream. If a stream is being accessed by multiple viewers, the video data is fetched fron
the server buffer exactly once and broadcasted to all the viewers by using multi-casting
techniques in the network. The relationship between the viewer, stream and session i
our model is illustrated in figure 1. L&kjewer, Nstream@Ndnsessionf€Spectively denote the
number of viewers, streams, and sessions supported in a VOD system. Figure 1 indicate
that we have advantagesmfiewer > Nsireamby €mploying multi-casting techniques in the
network anthsyeam> Nsessiondy USiNg buffer sharing techniques in the video server.

We operate buffer sharing ingatedmanner which means the retrieval of the data in
each consuming buffer must be time-aligned and be completed before the end of each cycl
The gated operations prevent starvation in any consuming process such that continuity |
guaranteed for each video stream. Figure 2 illustrates the buffer sharing scenario in thi
proposed model, where six buffels, by, . .., bg) are reserved for a single session. In this
figure, bufferb; serves as the producing buffer, represented by shaded rectangles, in the
cycle(i mod 6), and all other buffers serve as consuming buffers which are represented by
plain rectangles. For the purpose of gated operations, the viewers that arrive within a cycl
must be grouped together (callediawer group) to share a single stream. In figure 2, the
viewers that arrive within cycle form the viewer group/;. This group will share stream

t':l "2‘ n oW oW Fr.“"' T
Mulb-casting —_— e —
=II'I-I L ﬁl_ "ﬂ-.] ass ﬂ.

Buffer-shanng

j‘:l & B & /_';E
¥ o2 viewer

tfj ----- Ej st ; stream

£5 ¢ BEE5100

Horage Subsystem

Figure L The relation between viewer, stream and session.

64 TSAI AND LEE

Viewers Buffer Blocks
bl b2 b3 b4 b5 b6
VI Y
Cycle ! \ 4
yete ~= o]
2 Y2 g
St 51D st]

3 V3 C 1 ez

SN st3 st2 sl
V4 I

¢ 4 1 =1 = B2
v Sem ootd st3 st2 sl
5 5 COC O e
S st5 st4 st3 st2 stl
6 I I I N e
st st4 st3 st2 st
7 AL 11111 dnci
i B
stl st5 std st3 st (zh: Producing
8 COeEAa I =11 bufferl
. B : consummg
. . buffer

Figure 2 Buffer sharing scenario for a six-buffering system.

st and join the session in cycie+ 1. If no viewer arrives within cyclé, thenst will
not be created. Each video stream starts from the consuming bufexd all the streams
synchronouslynove to the next buffer at the beginning of each cycle.

With n-buffering, only the viewers that subscribe to the same video within the first
(n—1)th cycle can share thesduffers and use the common disk session. If the cycle time
is Teycle, then only the viewers who arrive within time intervad, ftc + (n — 1) Teyele] are
admitted tgoin the session created at tirhe To “join” a session means to share common
disk bandwidth for video data delivery. In figure 2, the joining process can last through
cycle 5 because the viewers that arrive during cycle 6 must join the session in cycle 7
Unfortunately, in cycle 7, buffdn; serves as the producing buffer again and the dala in
gets flushed. Thus, at most five streams are allowed to share the session in figure 2. To sa
buffer resources, if there are no viewers arriving during cycle 4 and cycle 5, and stream:
sty andsts are not created, then buffbg (instead ofb;) can serve as the producing buffer
in cycle 7 and two bufferb; andby,, can be released.

2.1.1. Admission control. Many types of videos may be archived in a video database in
terms of their playback rates [6]. In general, the video server should be capable of offering
concurrent sessions to support videos with distinct playback rates. Assuming that a vide«
file is made up osegmentsvhere each segment (a sequence of video frames) denotes the
data required for playback per cycle, then when a common cycle Tigag is used, the
segment size for a video with playback raggs equal torg x Teyele. Choosing the buffer
block size for a session means determining the segment size of the video served by th
session. However, due to variable bit rates in compression, the segment size in a video fil
may not be constant. To accommodate the data retrieved by a session per cycle, the buff

DYNAMIC BUFFER MANAGEMENT FOR NEAR VOD SYSTEMS 65

block size used by this session must be equal to the maximum segment sibedérote
the buffer block size used by sessigrandr; denote the disk transfer rate (bytes/sec). To
ensure continuous playback foconcurrent sessions in the system, the following inequality
must be satisfied:

k
S b
Z'r—tll + k X tsmax S Tcycle (1)

where%{lb' means the time for transferring data to fill tkg@roducing buffers, ant{"®*
represents the maximal seek and latency times on the disk. Assuming thextotes the
number of buffer blocks used by sessigthe following inequalities must also hold to meet
the buffer requirement:

k
Zni b <M (2)
i—1

wheren; > 2 for Vi and M is the total buffer size in the system. Note that, inequality
(1) corresponds to the constraints imposed by the disk bandwidth and inequality (2) by
the available buffer resources in the system. In the following, we shall address how to
determine a propar; for a session.

2.2. Resource adjusting operations

A simple way for sizingn; is to give all sessions a fixed, equal number of buffer blocks.
Assuming that the server storage is capable of offariggi,rsessions, the number of buffer
blocks assigned to each session is measuradasLM/(ZTi?f"’”bj)| for Vi. This method,
calledstatic buffer sharingwhile simple and easy to implement, wastes system resources as
illustrated in figure 3. Inthisfigure, each sessionis assigned 15 buffers which are represente
by rectangles with denoted segment numbers. All the sessions display the same video. |
figure 3, nine buffers are unused per cycle in session 2 because viewers subscribe the vid
sporadically. In session 3, there are eight free buffers because viewers only subscribe durir
the first six cycles. These two cases indicate buffer is wasted due to fixed buffer assignmen
Moreover, the streams which are created nearly of the same time and served by differer

‘Sth ‘stQ ‘StS ‘st’i ‘sté ‘StS ‘SM ‘St3 ‘St’.’ ‘Stl
43} {aa {45} a6] a7] 49

session 1

session 2

Lt gstts Lstig Lsti? Lstis
OOOOO0O0O00O 16] 15 /5. session 3

Figure 3 A snapshot of static buffer sharing.

66 TSAI AND LEE

sessions waste disk bandwidths. For examgile andst;g do not share a common session,
even though there are only three cycles between them. The inadequate utilization of buffer
and disk sessions may prevent the system from supporting more services. To overcome tt
problem, two operationsplitting and merging are explored to dynamically adjust to
improve resource utilization.

2.2.1. Splitting. Splitting subdivides a stream group into several smaller groups in order
to release the unused buffers. We first define the segment that sttezonsumes in the
current cycle as thelayback offsedf s, denoted by (st). In figure 3, for examplej(st;)

is equal to 53. The set of streams that share a session are caliedm groupdenoted by

G. In figure 3, we can subdivide the stream grdbyp= {St1, Stio, St 3, Sti4, Sti5}, which

is served by session 2, into two subgroups; = {sti1, Stio} and Gy, = {St3, Sti4, Stis5}.

Since each subgroup needs a producing buffer for data refreshing, seven buffers (filled wit|
segments 289, ..., 34) can be released. L&y denote a stream group and sort all the
streams irGy in an ascending order of their playback offsets, 8st) > §(st;) fori < j.

Let Sparg denote the maximal playback distance between any two consecutive streams i
Gx, which is defined by Spage = max(|5(st) — 8(st+1)| — 1) for anyst, st ;1 € Gx. In

figure 3, for example, Spage = 2, Sparg, = 8 and Sparg, = 1. Note that, to perform a
splitting operation on a stream groGy , at most Sparg, — 1 buffer blocks can be released,
where the “1” refers to the producing buffer. Thus, to release more buffers in splitting, the
stream groufs; with larger Sparg, is preferred. More buffers can be released, of course,

if we perform splitting operations recursively on each of the resulting subgroups. However,
splitting, while releases buffers, consumes more disk sessions. In figure 3, although seve
buffers can be released by splitting session 2, four sessions (instead of three) are require
because one additional producing buffer must be filled per cycle. Thus, to split a strean
groupGy, inequality (3) must be satisfied to meet disk bandwidth requirembgtienotes

the buffer block size used fd@B,.

k
w + (K + D™ < Teycle ®)

t
2.2.2. Merging. Merging combines multiple stream groups into a single group in order
to save disk sessions but can only be performed when these groups display the same vide
Let Gx andGy denote two stream groups of the same video WthleadingGy, i.e., all
the playback offsets i, are greater than that @,. MergingGy andG, can be achieved
by preserving the data @, in memory until it can be reused l&,. Namely, we need
another buffers to bridge the gap betwe&gpandGy such that continuous playback will
not be disturbed after the disk session use®hys released. As an example, to me@e
andG; in figure 3, we need to allocate another two buffer&toto hold the segments 55
and 56 retrieved in the next two cycles. After session 2 has filled its producing buffer with
segment 39(; andG, are merged and then served by session 1. Afterwards session 2
is released to complete the merging process. LeTGGgpdenote the minimal playback
distance betweey andGy, which is defined by Gap G, = = min(|§(st) — &(st;))| — 1)
for Vst € Gy andvst; € Gy. MergingGy andGy needs addltlonal G@oG — 1 buffers
to bridge the gap betwedd, andGy, where the “1” refers to the producmg buffer Gf,.

DYNAMIC BUFFER MANAGEMENT FOR NEAR VOD SYSTEMS 67

The merging algorithm for two stream grou@s andGy, is described as follows:

1. Allocate Gap, ¢ — 1 free buffers tds,, where each buffer acts in turn as the producing
buffer of Gy and holds the segments retrieved in the nextGap — 1 cycles.
2. Atthe end of theGap;, ¢, — Dth cycle, the links irGx andG, are updated as follows,

whereb;)roducmgrepresents the producing buffer Gf.

temp= b}
bproducing
by

producing

3. The session reserved fG¥, is released and the merging process is completed.

producmg_) next
— next= bproducmg
— hext= temp

— next

To merge stream groufis, andGy in the system, inequality (4) must be satisfied to meet
the buffer requirements, whebg stands for the buffer block size used@y. Note that,

to release a session by sacrificing less buffers in merging, two stream groups with smalle
playback distances are preferred.

k
Zni bi + (Gaps, 6, —1) <M 4)
i=1

2.2.3. Admission control with splitting and merging.Both splitting and merging dy-
namically alter the amount of buffers used for a session to fully utilize buffers and disk
bandwidths, such that more services can be provided within the system. Figure 4 show
the benefits yielded from performing both splitting and merging on the stream groups from
figure 3. In figure 4, a splitting operation is performed to subdiwdento two subgroups,

G,1 andGy,. Then two merging operations are performed on the resulting four groups,
G1, Ga1, G2 andGg, to combine them into two stream grouf®, andG5,. As a result as
figure 4 shows, only two sessions are required. That is, one session is saved in this cas
Moreover, since seven buffers are released through splitting and three buffers are require
for merging (two for the merging db; andG»; and one for the merging @,, andG3),

four buffers can be released in total. The result in figure 4 reveals that, by using splitting

olalalalolalolalsfziolofalal oM

'l
Jr— Lot =1

&* E Lo fattd I:l I:l I:l I:l I:l I:I I:l El &
e Latls LEbiE Labid Letid
6] {i7] Jig] fio |

OOoOOoOooOon

Figure 4 Dynamic buffer sharing with splitting and merging.

68 TSAI AND LEE

and merging, one session and four buffers are saved and these resources can be utilized
create more streams offer more services.

Performing splitting and merging operations involves buffers and sessions trade-offs.
Splitting releases buffers by using more disk sessions, while merging saves disk sessior
at the cost of consuming more buffers. This means that, it is beneficial to perform splitting
when buffer space is insufficient in the system, i.e., inequality (2) is not satisfied for creating
a new session. Similarly, it is beneficial to perform merging when disk sessions are insuffi-
cient, i.e., inequality (1) is not satisfied for creating a new session. The following admission
control algorithm for creating a new session is capable of supporting more services throug|
splitting and merging. Itis assumed that 1 sessions are already in progress.

1. Admission Control with Splitting and Merging
2. Begin

3 Caseboth inequality (1) and (2) hold:

4 return sessiok is admitted;

5. Caseboth inequality (1) and (2) are not satisfied:

6. return reject sessidqg

7 Caseinequality (1) holds, but inequality (2) is not satisfied:

8 if (there is aGy in the system such that inequality (3) holds)
9 perform a splitting or@&y;

10. return sessiork is admitted;

11. else

12. return reject sessioR;

13. Caseinequality (2) holds, but inequality (1) is not satisfied:

14. if (there areG, andGy in the system so that inequality (4) holds)
15. perform a merging oG, andGy;

16. return sessiork is admitted;

17. else

18. return reject sessioR;

19. End

Although splitting and merging operations are performed only upon the arrival of new
requests when the system lacks sufficient resources (buffers or disk sessions), they me
impose large computation overheads on the system if we need to search the entire system
find the best candidate for performing such operations. One solution to reduce the overheac
is to maintain candidate lists for both splitting and merging. $piting candidate list
say S-list, maintains all stream groups in a descending order of their maximal playback
distances$parg, and themerging candidate listsay M-list, maintains all stream groups
in an ascending order of their minimal playback distances from other gr@ags. (With
S-list and M-list, we can easily find a stream group for splitting or merging, even when
there are a large number of sessions and several videos in the system. The computatic
overhead by using this method is that, each time a new stream group is formed, we need t
locate this stream group in both S-list and M-list. The new stream group can be the newly
created group or the groups resulting from splitting and merging.

DYNAMIC BUFFER MANAGEMENT FOR NEAR VOD SYSTEMS 69

3. Imprecise buffer management

In this section, we further reduce buffer requirements in the discrete buffer sharing mode
by introducing a concept calleidnprecise video viewingvhich assumes that a limited
amount of quality loss resulting from inserting advertisemeex$efnal data or skipping

video segmentsoptional datd is acceptable during the playback of a video. Based on
this assumption, threshrinking strategiesvere explored in Section 3.2 which dynamically
handle data during the video playback to reduce buffer requirements.

3.1. Imprecise viewing model

In theimprecise viewing modeéach video (V) on the system is characterized dset,
B-set,MaxTota),, MaxTotak, MinInterval,, Minintervals}, where the description of each
parameter is given in Table 1. In this table, we refew tas aninsertable offsetvhere the
insertion of external data is allowed, and refeptas anoptional offsetvhere the skipping
of optional data is allowed during video playback. Bethndg are calledmprecise offsets
Allthese parameters are video dependent. We assume that all video files are preprocessec
find proper parameters, and external data are inserted only in the video of the same format
simplify the decompression in client stations. Let SIZE{nd SIZE) respectively denote
the amount of inserted data and skipped data at each imprecise offset. To simplify the mode
both SIZE{) and SIZE@) are assumed to be constant and a multiple of segments, even
though it is easy to release such constraints. In the imprecise viewing model, the stream
that display the same video may have differeahtent progressing ratesThe content
progressing rate of a stream is defined as the number of segments in a video file divide
by the time forst to complete its playback. Note that, external data insertion will increase
the playback time and hence lead to a slower content progressing rate, while optional dat
skipping will decrease the playback time and result in an accelerated content progressin
rate. The content progressing rate is different frplayback ratewhich is fixed during
playback, e.g., 30 frames/sec, no matter whether insertion or skipping is performed or not
Let ¢ denote the maximal playback distance in a stream group G, which is defined by
e = |8(Stirst) — 8 (Stiasy| + 1, Wherestist andst,si respectively denote the earliest and the

Table 1 Parameters of the imprecise viewing model.

Notations Descriptions

a-set Set of insertable offsets (denotedd)yavailable in video V

B-set Set of optional offsets (denoted Byavailable in V

Omax Maximum amount of external data which can be inserted into V

Bmax Maximum amount of optional data which can be skipped in V

Omin Minimum distance between any two consecutive insertions of external
data during the playback of V

Bmin Minimum distance between any two consecutive skips of optional data

during the playback of V

70 TSAI AND LEE

latest streams created in G. In figure 4 for examfde, = 12, Stirst = Stiz andstzst = Stoo.

For the buffer sharing model proposed in Section 2£l+ 1 buffers are required for G,
i.e., £g consuming buffers and one producing buffer. Thus, the buffer requirements for G
can be reduced i is reduced. In the following subsections, is reduced by using three
different strategies.

3.2. Buffer shrinking strategies

This section describes three shrinking strategies for reducing buffer requirements. All the
strategies aim at reducirfg by taking advantage of different content progressing rates.

3.2.1. Backward shrinking. Backward shrinking strategy slows down the content pro-
gressing rate of the streams created earlier in G to retiic8lowing content progressing
rate of a stream can be achieved by inserting external data during the playbachsl et
denote the earliest stream created in G. With backward shrinking, the producing proces
starts to retrieve external data instead of video data for buffer refreshing atvezftdet
allowed forstss; and will resume to retrieve video data after external data of SIXE 1
segments has been consumedtyy;. We refer to the state in which a stream is consuming
external data as thiasertion mode Each of the other streams in G then, based upon the
desired the content progressing rate, may enter insertion mode at thexsaffset with

Stirst OF proceed through the playback without insertion. To meet the proposed imprecise
viewing model, the constraints defined in Table 1 must not be violated, and, to prevent
stream starvation, we must ensure that the inequa(ftissp < 5(St) < §(Stirst) iS always
satisfied for any stream in G during playback. IRst) denote the set of the imprecise
offsets allowed for streamst; during its playback. With backward shrinking, we derive each
P(st) based upon the following rules:

Rule A-1: Letey, e, .. ., &, denote the imprecise offsetsi(stist), in an ascending order,
andn, denote the number of elements. For each P(st;s), the following conditions
must hold:

Cl: e € a-set
C2: | — €j| + SIZE(«) = Mininterval, fori # |
C3: np x SIZE(x) < min(¢g — SIZE(«), MaxTota),)

Rule A-2: For a streanst; in G, the correspondin® (st) = P(stirst) — {€1, €2, ..., €4}
whereq; = min((3(Stirst) — 8(St))/SIZE(«)], Np).

Example 3.1 Assume the imprecise viewing model of the video file in figure 4 tabeset
={26, 30,44, 53,58, 65,72, ...}, B-set= {16, 22, 30, 46, 52, 65, 80, 88, ...}, MaxTota),
=15, MaxTotap = 15, Mininterval, = 18, Minintervaly = 12, SIZH«) = 3 and
SIZE(B) = 2. All the parameters are measured in segments.

Consider the stream groug, in figure 4 for backward shrinking, wherg, = 13 and
Stirst = Sti3. Note thatin order to have more reductiortig), as much external data must be

DYNAMIC BUFFER MANAGEMENT FOR NEAR VOD SYSTEMS

Table 2 The backward shrinking process.

71

Cycle 54 5556 57 58 59 757677787980 99 100 101 102 103 104 105
8(st13) 26d; d d3 27 28 44d, dp d3 45 46 65d; dy d3 66 67 68
5(stya) 25 26d; dy d3 27 43 44d; dy d3 45 64 65d; d» d3 66 67
8(stys) 232425262728 4 dp d3 45 46 65d; dy d3 66 67 68
5(stye) 202122232425 4142 43 44 45 46 @h dy d3 66 67 68
8(sty7) 192021222324 4041424344 45 64 @b d» d3 66 67
5(st1g) 1819 20 21 22 23 394041424344 63 64 65 dy d3 66
5(sty9) 161718192021 373839404142 61 62 63 64 65 66 67
8(stxo) 151617181920 36 3738394041 60 61 62 63 64 65 66
8(str1) 141516171819 3536 37 38 39 40 59 60 61 62 63 64 65
e 13 10 7 4

inserted into strearstk;; as possible to slow down its content progressing rate. For example,
we can choose, = 3andP (stis) = {26, 44, 65} in this case based onrule A-1. According

to rule A-2, we can easily deriv@(stis) = P(Skis)) — ¢ = {26, 44, 65} sinceqis =
min([(26—25)/3], 3) = 0 andPi5 = P(styst) — {26} = {44, 65} sinceq;s = min([(26—
23)/3], 3) = 1. Similarly, all the othelP (st) are derived as followsP (stjg) = P(sti7) =
P(stig) = {65} and P(stjg) = P(stg) = P(st1) = ¢. Table 2 illustrates the backward
shrinking process from cycle 54 to cycle 105, whetrdenote théth segment of the external
data. Table 2 shows that two strearsz andsty4, will enter the insertion mode at the
end of segment 26, while three streafsiss, St14, St;s) and six streaméstys, . . ., Stig) will
respectively enter insertion mode at the end of segment 44 and 65. Note that, in Table 2, eac
time streanst; 3 enters the insertion mode, a streat, with |5 (st13) — 5(st)| < SIZE(x)

will also enter insertion mode at the sameoffset. Thus, streamst;; always precedes

all the other streams i@/, and starvation never occurs even when producing process stops
retrieving video data (i.e., whesty 3 stays in the insertion mode). With backward shrinking,
the maximal viewing distancés can be reduced by, x SIZE(x). As an example, in
Table 2¢g, equals 13 in cycle 54, and 4 in cycle 105. Consequetilyis reduced by nine

in total and nine buffers can be released for the stream gBughown in figure 4.

3.2.2. Forward shrinking. Forward shrinking strategy speeds up the content progressing
rate of the streams created lately in a stream group G to reduce its maximal playbacl
distancels. Speeding up the content progressing rate of a stream means skipping som
optional data during the playback. With forward shrinking, although optional data will
be skipped in some streams, the producing process refreshes buffers with a full video fil
such that this single version is capable of satisfying various content progressing rates fo
different streams. Each stream in G then, based upon the desired the content progressi
rate, dynamically consume data in the adequate consuming buffers for playbadigsl et
denote the buffer that the last streatgs;is consuming. Each tims,s; skips optional data,

the producing process will wrap data refresh to the buffer nekt,tpin order to release
buffers. To prevent starvation for any stream, we also need to ensure that the inequalit

72 TSAI AND LEE

8 (Stast) < 8(st) < 8(Stirst) is always satisfied for any streat in G during playback. Let
P(st) denote the set of imprecise offsets allowed for straamwith forward shrinking,
we derive eachP (st) based on the following rules:

Rule B-1: Letey, e, ..., e, denote the imprecise offsetsi(Stasy), in an ascending order,
andn; denote the number of elements. For eacn P(st,s), the following conditions
must hold:

C4: g € B-set
C5: |& —ej| — SIZE(B) > MinIntervalg for i # |
C6: nf x SIZE(B) < min({c — SIZE(B), MaxTotak)

Rule B-2: For a streanst; in G, the correspondin® (st) = P(Stas) — {€1, €, ..., &},
whereq; = min([(§(st) — 8(Stas)/SIZE(B)], Nt).

Consider the imprecise viewing model in Example 3.1 and the stream @bupfig-
ure 4 for forward shrinking. Note that, in this cagg, = 13 andstast = St1. According
to rule B-1, we can choose; = 5 andP(stas) = {16, 30, 46, 65, 80} and, according
to tule B-2, we can easily derivB(st;3) = P(stas) — {16, 30, 46, 65, 80} = ¢ since
013 = min([(26 — 14)/2],5) = 5. All the otherP(st) can also be derived as follows:
P(stis) = ¢, P(stis) = {80}, P(stie) = {65, 80}, P(sti7) = P(stis) = {46, 65, 80},
P(stig) = {30, 46, 65, 80} andP(styg) = P(st1) = {16, 30, 46, 65, 80}. Table 3 illus-
trates the forward shrinking process from cycle 54 to cycle 114. In Table 3, two streams (i.e.
sty andsty;) will skip optional data at the end of segment 16, while three, five, six and seven
streams will respectively skip optional data at the end of segmemt&065 and 80. Note
that, each time streagty; skips optional data, a streafiwith |5(st) —8(St12)| < SIZE(B)
will also skip the same optional data at the sg¢afset. Thussty; always runs behind all
the other streams i/, and starvation never occurs even though those buffers behind
will be released. With forward shrinking, the maximal viewing distafigean be reduced
byn¢ x SIZE(B). As an example, in Table 3 we hatig, = 13 for cycle 54, whileg, = 3

Table 3 The forward shrinking process.

Cycle .. 54555657 .. 676869 . 818283 . 9899100 . 111112113114
8(stz) .. 26272829 .. 394041 .. 535455 .. 707172 . 83 84 85 86
S(stsy) .. 25262728 .. 383940 .. 525354 .. 6970 71 .. 82 83 84 85
s(sts) .. 23242526 .. 363738 .. 505152 .. 6768 69 .. 80 83 84 85
S(stg) .. 20212223 .. 333435 .. 474849 .. 6465 68 .. 79 80 83 84
s(st;7) .. 19202122 .. 323334 .. 464950 .. 6568 69 .. 80 83 84 85
S(stig) .. 18192021 .. 313233 .. 454649 .. 6465 68 . 79 80 83 84
S(stg) .. 16171819 .. 293033 .. 454649 .. 6465 68 . 79 80 83 84
8(sp) .. 15161920 .. 303334 .. 464950 .. 6568 69 .. 80 83 84 85
8(skby) .. 14151619 .. 293033 .. 454649 .. 6465 68 . 79 80 83 84

lor2 13 11 9 7 5 3

DYNAMIC BUFFER MANAGEMENT FOR NEAR VOD SYSTEMS 73

for cycle 113. Thus(g, is reduced by 10 in total and ten buffer blocks can be released for
the stream grouf, shown in figure 4.

3.2.3. Two-way shrinking. Note that, there is an unbalanced quality loss among streams
for backward and forward shrinking. For backward shrinking, those streams created earlie
in a stream group suffer from more quality loss due to more external data insertion. In
Table 2, for example, streast s incurs three insertions of external data during its playback
but sty; proceeds its playback without any insertion. For backward shrinking, the lately
created streams also suffer from more quality loss due to more optional data skipping a
Table 3 shows. Two-way shrinking compromises these two shrinking strategies. For &
stream group G, we not only slow down the content progressing rate of the streams create
earlier in G and but also speed up the content progressing rate of the streams created late
To prevent starvation during playback, in addition to rules A-1, A-2 and B-1, B-2, the
following rule must be satisfied for two-way shrinking strategy:

Rule C-1: ny x SIZE(a) + ns x SIZE(B) < £c — max(SIZE(a), SIZE(B)),

whereny, andn; respectively denote the element numbéePiistis;) andP (stas). Consider

the imprecise viewing model in Example 3.1 and the stream g@in figure 4 for two-

way shrinking. In this caség, = 13, Stirst = St13 andStast = St1. To reducelc, as much

as possible, we can choosg = b = 2 based on rule C-1 and, to release buffers as soon
as possible, we can chooBest 3) = {16,, 44,} andP(sty) = {165, 303} based on rules
A-1 and B-1 (The element with subscriptdenotes am offset and8 denotes & offset).
According to rules A-2 and B-2, all the oth&(st) are derived as followsP(sti4) =

{26, 44,}, P(sti5) = {44,}, P(sty) = P(sti7) = P(stig) = ¢, P(stig) = {304} and
P(sto) = {P(sty) = {165, 30s}. Table 4 shows the two-way shrinking processaif
from cycle 54 to 80. Compared with Table 2 (backward shrinking) and Table 3 (forward
shrinking), Table 4 indicates a more balanced quality loss among streams. We also obsen

Table 4 The two-way shrinking process.

Cycle .. 545556575859 .. 67686970 . 757677787980
§(styz) .. 26d; dy d3 27 28 .. 36373839 .. 4d; dy d3 45 46

S(sta) .. 25 26d; dy d3 27 .. 35363738 .. 434d;dyd345

S(sys) .. 232425262728 .. 36373839 .. dddyd34546

S(stig) .. 202122232425 .. 33343536 .. 414243444546
S8(sty7) .. 192021222324 .. 32333435 .. 404142424445
S(stig) .. 181920212223 .. 31323334 .. 394041424344
S8(stig) .. 161718192021 .. 29303334 .. 394041424344
8(stp) .. 151619202122 .. 30333435 .. 404142434445
8(st)) .. 141516192021 .. 29303334 .. 394041424344

a2 . 13 8 6 3

74 TSAI AND LEE

that two-way shrinking reduce&s, more quickly than backward shrinking and forward

shrinking do because, with two-way shrinking, external data insertion and optional data
skipping can be performed in parallel without interference as shown in Table 4. Thus,
buffers can be released quickly when two-way shrinking is used. As an example, in Table ¢
ten buffers are released after cycle 80, butin Table 3 they can be released only after cycle 11

3.3. Remarks

In this section, three shrinking strategies were explored to reduce buffer requirement:
for VOD systems where buffer sharing is employed. Note that, in addition to buffers,
network channel requirements can also be reduced when shrinking strategies are use
because shrinking may create multiple streams of the same playback offset. These distin
streams with the same offset can form a single multi-casting group without disturbing the
continuity in playback and hence share a network channel for the delivery of video data.
In figure 4, for example, there are initially eight multi-casting groups (one for each stream)
but only three in the end{$ts, sts}, {Sb, St5, St7, Stg} and {sty, st4}). Thus, five network
channels can be saved in total. For a stream group G, the number of multi-casting groups |
bounded by, the maximum playback distance in G. By using shrinking operations and
reducinglg, fewer multi-casting groups are required and network channels can be saved.
However, shrinking strategies suffer from the overheads of maintaining imprecise offsets
for each stream, especially when there are a large number of streams in the system. Or
solution to reduce the overhead is to maintain the imprecise offsets in terms of strean
groups rather than individual streams. [Rsstis)) and P (St respectively denote the set
of imprecise offsets (sorted in an ascending order) allowed for the first stggmand the
last streamnst,g; in stream group G. According to rule A-2, theoffsets allowed for any
stream in G must consist of consecutive elementB (st;s) and end with the last one in
P (stirst). Similarly, according to rule B-2, thg offsets allowed for any stream in G must
consist of consecutive elementsRrist,s) and end with the last one R(stzsp. Therefore,
for a stream group G, we only need to maint&(st;s;) and P(St,s) together with the
starting element for each stream in G. By using this method, the overheads for maintaining
imprecise offsets can be largely reduced. Te show the correctness of all the shrinking
strategies, four theorems are presented in the Appendix. Theorems 1, 2 and 3 show th,
streams never incur starvation during playback when shrinking strategies are employec
and Theorem 4 shows that all the shrinking strategies meet the imprecise viewing mode
defined in Section 3.1.

4. Simulation

In our simulations, six buffer management schemes described in Table 5 were examinec
where schemes S4, S5, and S6 assume that the imprecise viewing model is available
the system. The average waiting time is used as the criterion to compare the performanc
of various buffer management schemes. Upon viewer arrival, the viewer joins an active
session if buffer sharing is possible, or creates a new session if it is not. When there are nc

DYNAMIC BUFFER MANAGEMENT FOR NEAR VOD SYSTEMS 75

Table 5 The six buffer management approaches.

Scheme Description

S1 Double buffering

S2 Discrete buffer sharing model 1 (without splitting and merging)
S3 Discrete buffer sharing model 2 (with splitting and merging)
S4 Scheme S3 with two-way shrinking

S5 Scheme S3 with backward shrinking

S6 Scheme S3 with forward shrinking

enough resources for creating a new session, the viewer is placed in a waiting queue. Tt
waiting time is measured as the time the viewer stays in the waiting queue.

4.1. Simulation model

Two sets of experiments were conducted. For the first set (Setl), we assume there is
single video file in the system so that all the buffers and disk bandwidths are dedicatec
to this video only. Schemes S1, S2, S3 and S4 were examined for different buffer sizes
disk bandwidths, and mean interarrival times. Schemes S4, S5 and S6 were examined ft
different amounts of quality loss, defined as the summation of the inserted external dat:
and the skipped optional data during the playback of a video. For the second set (Set2)
we assume there are several video topics in the system. Schemes S1, S2, S3 and S4 wi
examined for different numbers of video topics. The default values of parameters used fol
the simulations are given in Table 6. Moreover, all the experiments ran for 18000 sec (i.e.
five hours) with a cycle time of 1 sec. The viewer arrivals were modeled using a Poisson
process. In our simulations, MPEG-1 format is used. Due to variable bit rates in MPEG-1
(in general, from 1.5 Mb/sec to 2 Mb/sec), the buffer block size is chosen as 2 Mb (i.e.,
250 KB), which means 450 MB buffer and 900 MB buffer can respectively accommodate
about 30 and 60 minutes of MPEG-1 streams. Both external data size and optional dat
size are 1.5 minutes of MPEG-1 stream.

Table 6 The default value of parameters used in simulations.

Symbol Setl Set2 Description

B 450 MB 900 MC Buffer size

D 10 sessions 30 sessions Disk bandwidth

tinterval 60 sec 60 sec Mean interarrival time of viewers

M 100 min 100 min Mean movie length

OmaxTotal 9 min 9 min Max total amount of inserted external data

BmaxTotal 9 min 9 min Max total amount of removed optional data

76 TSAI AND LEE

4.2. Simulation results and discussion

For the first set of experiments, figure 5 shows the average waiting time of schemes S1
S2, S3 and S4 as a function of buffer size, disk bandwidth and mean interarrival time,
respectively. Figure 6 shows the performance of schemes S4, S5 and S6, parameterized
the amounts of quality loss during the video playback. After comparing the results, we can
make the following observations.

(1) Schemes S2, S3 and S4 perform well in comparison with scheme S1 over most of the
parameters, showing that the buffer sharing technique improves the performance of
VOD system. The result also indicates that splitting and merging operations do work in
most cases, as shown by comparing schemes S3 with S2, and that the imprecise viewir
model leads to better results, as shown by comparing schemes S4 with S3. To sho\
the viewing quality in scheme S4, Table 7 lists the average size of quality loss during
playback for figure 5(a). In the case when the buffer size equals 300 MB, for example,
although the average quality loss is 48.21 sec for each viewer, the average waiting tim¢

(a) The effect of buffer size (b) The effect of disk bandwidth
2500 2500 f--m---mmmmmmmmmm—mmmme e e
< 2000 & 2000 |- oo omeom oo 31
8 g 2
wp 1500 21500 - - N = - e e oo o 3
3‘% :g —¢—354
s 1000 #1000 oo - -
= 500 g 11 AW N
= o o
® 0 * 0 ., - o 2
5 75 150 300 450 600 750 900 10 20 30 40 50 60 70 80 90 100
buffer size (MB) disk bandwidth (rrember of sessions)
() The effect of mean interarrival time (d) The effect of insertion and skipping
0
g g o =
g & a0 mss
bD
g ol [| e o os6
& &
= ol | I e e
o9 b
3 & 100 ik
& 5
1 3 5 7 3111315 17 18 21 123456783100
mean interarrival time (min) max inserted and removed data (tnin)

Figure 5 Simulation result.

DYNAMIC BUFFER MANAGEMENT FOR NEAR VOD SYSTEMS 77

average waiting time (sec)

Figu

&)

®)

(4)

(a) Uniform distribution (b) Zipf's distribution
2500
& 2000
g 1500 4
3
§ 1000
]
g 500
g
0
5 10 20 30 40 50
number of video topics number of video topics

re 6 The effects caused by varying numbers of video topics.

is reduced by more than 700 sec as shown in figure 5(a). (Note she difference betwee
S3and S4.)

Figure 5(a) shows that, as the buffer size increases, the average waiting time drops fc
schemes S2, S3 and S4 with S4 dropping the fastest followed by S3 and S2, respectivel
The result reveals that large size buffers can help overcome the 1/O bottleneck in VOD
systems. Figure 5(a) also shows that scheme S1, the conventional double-bufferin
technique, is insensitive to buffer size. An increase in buffer size is useless for S1
because only two buffers are assigned for each video stream.

Schemes S2, S3 and S4 perform much better than S1 when fewer sessions are suppor
by the storage. In figure 5(b), the performance of scheme S1 can catch up with other:
if the storage can support more than 80 sessions of MPEG-1 video. That is, for schem
S1, multiple disks must be employed owing to current storage technology which only
supports about 4 to 10 sessions for a single disk. However, the number of session
supported by the storage does not increase linearly with the number of disks due t
the limitation of bus bandwidth and the problem of video file placement. The results

in figure 5(b) reveal that, by using buffer sharing techniques, schemes S2, S3 and S
overcome the 1/O bottleneck to perform better.

Figure 5(c) shows that average waiting time is improved for schemes S2, S3 and S:
more so than with scheme S1 over the range of mean interarrival times which are les
than 21 minutes. The improvement is significant especially when the mean interarrival
time is less than five minutes. The result shows that buffer sharing performs well when
the mean interarrival time is small.

Table 7 The average quality loss of scheme S4 in figure 5(a).

Buffer size (MB) 5 75 150 300 450 600 750 900
Inserted data (sec) 0 0 21.66 20.75 41.80 100.37 142.48 97.93
Skipped data (sec) 0 0 1.53 27.46 110.75 136.98 129.36 175.42

Quialitf Loss (sec) 0 0 23.19 48.21 152.55 237.35 271.84 273.35

78 TSAI AND LEE

(5) Schemes S4, S5 and S6 have similar performances because the differences betwe
their average waiting times are less than 60 sec over most cases in figure 5(d). Sinc
S4 performs much better than S1, S2 and S3 as shown in figures 5(a)—(c), we cal
conclude that the shrinking strategies (i.e., S4, S5 and S6) perform better than the
schemes without shrinking (i.e., S1, S2 and S3). Figure 5(d) also indicates that shrinking
strategies reduce the average waiting time to a greater degree when more quality loss
allowed.

For the second set of experiments, figure 6 shows the average waiting time of scheme S
S2, S3 and S4, parameterized by the number of video topics in the system. The selectic
of video topics is modeled usingniform distributionin figure 6(a) anZipf’s distribution
in figure 6(b). Let the topics,, ..., n be sorted in a descending order of popularity, that
is, pr = p2 > --- > py Wherep; denotes the probability that a viewer choose tapic
According to Zipf’'s law [19], we havey, = c/i wherec is a normalizing constant such
that)_ p; = 1. In figure 6, we observe that, no matter what type of distribution is used
in topic selection, the average waiting time for all the schemes increases as the numbe
of video topics increases. However, in most cases schemes S2, S3 and S4 still perfort
much better than scheme S1 especially when Zipf’'s distribution is employed. Since Zipf's
distribution has been shown to closely approximate real-world user viewing behavior, the
result demonstrates that our buffer management significantly improves in the performanc
of a VOD system.

5. Conclusion

Recently, advances in RAM technology have made it feasible to design a video serve
equipped with large size buffers. Inthis paper, we examined the issues of buffer managemeil
in video-on-demand (VOD) systems. First, we proposed a discrete buffer sharing mode
which employs batching and buffer sharing techniques in video servers to support a large
number of concurrent services. Two operations, splitting and merging, were used in the
model to fully utilize system resources such as buffers and disk bandwidths. Second
we introduced the concept of imprecise video viewing which assumes that certain degre:
of quality loss is allowed during the video playback. Based upon this assumption, three
strategies which include backward shrinking, forward shrinking and two-way shrinking,
were explored to further reduce the buffer requirements. Four theorems were proven ir
the Appendix to show the correctness of all the shrinking strategies. Besides, we als
conducted several experiments to compare the performance of various buffer manageme
schemes. The results demonstrate that our discrete buffer sharing model performs bett
than traditional buffer management techniques over most parameters and that resoure
adjusting operations, splitting and merging, significantly improve the reduction of average
waiting times in the system. We also observe that, with concept of imprecise viewing, the
proposed shrinking strategies can save much waiting time at minimal quality loss in video
viewing. In conclusion, we believe that the proposed buffer management schemes hel|
solve the I/O problems in VOD systems.

DYNAMIC BUFFER MANAGEMENT FOR NEAR VOD SYSTEMS 79

Appendix

In this appendix, four theorems were proven to show the correctness of the proposed shrin}
ing strategies. Without loss of generality, we assumematis;) = {«1, a2, ..., an,} and
P(stas) = {B1. B2. - . ., Bn,}, Wheren, andn, respectively denote the number of elements

in P (stist) and P (stasp). Note thatng = 0 for backward shrinking and, = O for forward
shrinking based on rules A-1 and B-1. For illustration purposes, the following notations
and definitions are used.

: denotes the size of external data, in terms of number of segments.

: denotes the size of optional data, in terms of number of segments.

ounde) :denotes the time interval for all the streams associated with the imprecise
offsetg to complete data insertion or skippingeat

st : denotes a streast; that has completed itgh external data insertion or op-
tional data skipping during video playback. Note that, we havelo < n,
for st and 0< k < ng for st

HEW) : denotes the playback offset distance betwetnand st), i.e., 3(st) —

8(st) — s(stly) + 1. According to this definition, we havé(st) =

5(st*") — & for external data insertion andst‘) = §(st*"*) + j for optional

data skipping.

= ™ Rl

Lemma 1. With backward shrinkinga stream stin G with §(styrst) — §(Stj) < @ at the
end of rounda_1) will enter insertion mode in roundy), where0 < k < n,.

Proof: A streamst with §(Stist) — 8(S) < & at the end of round{_;) means that the
following inequality is satisfied, wherg denotes the number of external data insertions
incurred inst during the firskk — 1 rounds, i.e., 6x y <k — 1.

5(stist) —3(st)) <@
By adding(k — y — 1)a to each side of the inequality above, we will have

[5(sthd) + (k= 1] = [5(st) +ya] < k- y)a.
With backward shrinking, we can obtain the following inequality by substitution.

8(sthe) — 3(sP) < (k— y)
Now, according to the definition @jf in rule A-2, we will have

o = [(5(stis) —5(s¥)) /@] <k —y—1.

Since 0< y < k— 1, we can easily derive 8 g < k — 1 which impliesy, € P(st) (rule
A-2). Thus,st will enter insertion in roundyy). O

80 TSAI AND LEE

Lemma 2. With backward shrinkinga stream st with y # 0 at the end of roun@n,)
must haved < §(stie,) — 8(st)) < a.

Proof: According to sule A-2, a streast’ with y # 0 at the end of roundg,) must
have itsP(st) starting withon,—y+1 , i.e., P(st) = {an,—y+1. - ... an,}. Based upon the
definition ofg; in rule A-2, we have

o = [(5(sisr) —5(sF)) /@] =na -y

By expanding this equation, we can obtain the following inequality:
Ny —)& < §(sg) — 3(sP) < (n, —y+ Da

With backward shrinking, we can derive the following inequality by substitution:
(ng — y)a < [8(stie) + ne@] — [8(st)) +ya] < (ny —y + Da

By subtractingn,, — y)& from all the components above, we have G (st 1) —5(st') < @
O

Theorem 1. With backward shrinkingthe inequalitys (Stas) < 3(St) < &(Stirst) always
holds for any streansay st, in stream group G during the video playback.

Proof: According to Lemma 1stjs; always proceedst; for backward shrinking since
each time whest;s; enters the insertion modsg; will also enter the insertion mode at the
same offset i (Stirs) —3(St) < a. Thus,8(st) < §(stirst) is always satisfied for backward
shrinking. To shows(st) > &(Stas), We only need to ensure thétst’) > 0 holds at the
end of roundg¢,,), wherey is the element number iR(st). Note that, this must be true for
with y = 0 since there is no external data is inserted sttoConsidery # 0. According
to Lemma 2, we can easily derive

5(st’) > 8(stii) —

[(Sﬁ)rst) - a&] —a
= §(ss) — (N + Dax
ls — (Ng + D

for backward shrin_king. Since we hatg > (n, + 1)a based upon condition C3 in rule
A-1, the inequalitys (st’) > 0 is true forst’ with y # 0. Accordingly,8(st) > 8(Stas) iS
also satisfied for the backward shrinking strategy. O

Theorem 2. With forward shrinking the inequalityd (Stas) < §(St) < 8(styst) always
holds for any stream stn G during the video playback.

DYNAMIC BUFFER MANAGEMENT FOR NEAR VOD SYSTEMS 81

Proof: Due to space limitations, we omit this proof here. The proof of Theorem 2 is
similar to the case of backward shrinking in Theorem 1. O

Theorem 3. With two-way shrinkingthe inequalitys (Stasp < 8(St) < 3(Stirst) always
holds for any stream stn G during the video playback.

Proof: Lety denote the element numberist). Fory = 0, the inequalitys (Stas) <

3(st) < &(stirs) must always be true because there is no datainsertion and data skipping fol
st. Fory # 0, considerP(st) N P(Stist) # ¢. According to Theorem B,(st) < &(Stirst)

is always satisfied during video playback based upon Lemma 1. To&ts¢Ww> §(Stasp,

we only need ensure that the boundary condiliaty) > 3(s{’.) holds after all the insertion

and skipping rounds have been completed. Sipcg 0, we can derive the inequality
8(st') > 8(sti,) — @ based upon Lemma 2, that is,

5(st) — 8(stasd) = [5(sthiee) — @] — 3(sti)

= [8(sfirst) — Natt — &] — [5(sths) + npB]
[g(S'?rst) (SII%SI)] —a— (Nya + nﬂﬂ_)
= (g
> (g

(o2

—a — (Ng@ + ngpP)
—max@,) — (Nu@ + NgB).
meg tolg > max@, B) — (N,a + n,gﬂ) based upon rule C-1, the mequalﬁgsq) >
B(Sqast) would be true. Thus(st) > §(stiasp is also satisfied for the caggst) NP (Stirst) #
¢. Now, considelP (st) N P(Stas) # ¢. According to Theorem Z,(Stas) < 3(St) always
holds during video _playback._ To shaist) < §(Stirst), We only need to ensure that the
boundary conditiors(st’) < §(stis,) is also satisfied after all the insertion rounds and

sklpplng rounds have been completed. Sigcg 0, we can easily derive the inequality
3(st) < 8(str) + B, thatis

5(st) — 8(stie) < [3(sta) + A] — &(stir)
= [S(Sq%st) + nﬂ/g + :3_] - [S(S'grst) - na&]
= (N + N) + B — [5(Sst) — 3(Stisd)]
= (Ne@ +ngf) + B — g
< (Ne@ + Ny f) + max@, B) — £
owing tofg > max@, B) — (n,& + ngB) based on rule C-B(st’) < §(st1%,) would be
true which implies thag(st) < §(styst) is always satisfied during playback. Accordingly,

with two-way, the inequalitys (Stas) < 3(St) < 8(Skirst) is always satisfied for ang;
during playback. |

Theorem 4. All the proposed shrinking strategies meet imprecise viewing model.

Proof: With backward shrinking, it can be seen this; meets imprecise viewing model
because, according to rule A-1, all the elementB {8t;st) meet the constraints defined in

82 TSAI AND LEE

Table 1. For any streast; in G, since we havé (st) C P(stjst) based on rule A-2, all

the elements ifP (st) also meet the constraints in Table 1. Thus, with backward shrinking,
all the streams meet imprecise viewing model. Similarly, with forward shrinking, all the
streams also meet imprecise viewing model because we Ré&te C P(st,sp for any
streamst; in G (by rule B-2) and that all the elements R{st,s) meet the constraints in
Table 1 (by rule B-1). Two-way shrinking also meet imprecise viewing model because
P(st) C P(styst) U P(stias) holds for any strearst; in G. Consequently, all the shrinking
strategies meet imprecise viewing model. a

References

1. S. Berson, S. Ghandeharizdeh, R.R. Muntz, and X. Ju, “Staggered stripping in multimedia information
systems,” ACM SIGMOD, pp. 79-90, 1994.
2. A. Dan, P. Shahabuddin, D. Sitaram, and D. Towsley, “Channel allocation under batching and VCR control
in Movie-On-Demand servers,” IBM Research Report, pp. 1-19, May 1994.
3. W. Effelsberg and T. Haerder, “Principles of database buffer management,” ACM Transactions on Database
Systems, Vol. 9, No. 4, pp. 560-595, Dec. 1984.
4. E.A. Fox, “The coming revolution of interactive digital video,” Commun. ACM, Vol. 32, pp. 794-801,
1989.
5. E.A. Fox, “Standards and emergence of digital multimedia systems,” Commun. ACM, Vol. 34, pp. 26-30,
1991.
6. D. Le Gall, “"MPEG: A video compression standard for multimedia applications,” Commun. of ACM, Vol. 34,
No. 4, pp. 46-58, 1991.
7. A.D. Gelman, H. Kobrinski, L.S. Smoot, and S.B. Weinstein, “A store-and-forward architecture for video-
on-demand service,” in Proc. of Intl. Conf. on Commun. (ICC), 1991, pp. 27.3.1-27.3.5.
8. L. Golubchik, J.C.S. Lui, and R. Muntz, “Reducing 1/0 demand in Video-On-Demand storage servers,”
in Proc. of Intl. Conf. on Measurement and Modeling of Comp. Syst. (SIGMETRICS’95), 1995, pp. 25—
36.
9. T.D.C. Little and D. Venkatesh, “Popularity-based assignment of movies to storage devices in a video-on-
demand system,” Multimedia Systems, Vol. 2, No. 6, pp. 180-287, Jan. 1995.
10. K.K. Ramakrishnan, L. Vaitzblit, C. Gray, U. Vahalia, D. Ting, P. Tzelnic, S. Glaser, and W. Duso, “Operating
system support for a video-on-demand file service,” Multimedia Syst., Vol. 3, pp. 53-65, 1995.
11. P.V. Rangan, H.M. Vin, and S. Ramanathan, “Designing an on-demand multimedia service,” [IEEE Commun.
Magazine, Vol. 30, pp. 56—64, July 1992.
12. P.V. Rangan and H.M. Vin, “Efficient storage techniques for digital continuous multimedia,” IEEE Trans.
Knowl. Data Eng., Vol. 5, No. 4, pp. 564-573, Aug. 1993.
13. A.L.N. Reddy and J. Wyllie, Scheduling in a Multimedia 1/0O System, in Proc. of ACM Multimedia Conf.,
ACM Press: New York, 1992.
14. D. Rotem and J.L. Zhao, “Buffer management for video database systems,” IEEE Intl. Conf. on Data Engi-
neering, pp. 439-448, 1995.
15. W.D. Sincoskie, “System architecture for a large scale video on demand service,” Comput. Networks ISDN
Syst., Vol. 22, pp. 155-162, 1991.
16. A.J. Smith, “Sequentiality and prefetching in database systems,” ACM Trans. on Database Systems, Vol. 3
No. 3, pp. 223-247, Sept. 1978.
17. W.J. Tsai and S.Y. Lee, “Storage design and retrieval of continuous multimedia data using multi-disks,” in
Proc. of Intl. Conf. on Parallel and Distributed Syst., Taipei, 1994, pp. 148-153.
18. P.S. Yu, J.L. Wolf, and H. Shachnai, “Design and analysis of a look-ahead scheduling scheme to suppor
pause-resume for video-on-demand applications,” Multimedia Systems, Vol. 3, pp. 137-149, 1995.
19. G.K. Zipf, Human Behaviour and the Principles of Least Effort, Addison-Wesley: Reading, MA, 1949.

DYNAMIC BUFFER MANAGEMENT FOR NEAR VOD SYSTEMS 83

Wen-Jiin Tsai received her BS degree in Computer Science and Information Engineering from the National Chiao
Tung University, Taiwan, in 1992. She is currently a Ph.D. candidate at the same university. Her research interest
include multimedia information systems, video-on-demand, and server storage design.

Suh-Yin Lee received her BSEE degree from the National Chiao Tung University, Taiwan, in 1972, and her
MS degree in Computer Science from the University of Washington, Seattle, in 1975. She joined the faculty
of the Department of Computer Engineering at Chiao Tung University in 1976 and received the Ph.D. degree ir
Electronic Engineering there in 1982. Dr. Lee is now a professor in the Department of Computer Science anc
Information Engineering at Chiao Tung University. She chaired the department from 1991 to 1993. Her current
research interests include multimedia information systems, object-oriented databases, image/spatial databas
and computer networks. Dr. Lee is a member of Phi Tau Phi, the ACM, and the IEEE Computer Society.

