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Abstract: Process capability indices (PCIs) have been proposed in the manufacturing
industry to provide numerical measures on process capability, which are effective tools
for quality assurance and guidance for process improvement. PCIs are calculated under
the assumption that the process is stable (the process mean and variation will not
change). But, in practice, the process is dynamic. If the process parameters have a small
shift, the control chart not be able to detect immediately. PCIs, in this case, will
overestimate the true process capability. For this reason, the PCIs have to be adjusted.
Bothe (2002) provided the adjustment method for normal processes with mean shift. In
practice, the variance could change as well. In this project, we provide capability
adjustment for normal processes with standard deviation change. The magnitude of
adjustment is correlated to the detection power of the control chart used. We first
investigate the detection powers of 2S and S control charts under various sample
subgroup sizes, and derive the magnitude of the adjustment. We add the adjustment to
the formula of process capability index Cpk for normal processes. For illustration purpose,
an application example is presented.

Keywords: Dynamic Cpk, Variance change, Process capability index, Normal distribution,
Chi-square distribution, 2S control chart, S control chart

1. Introduction

Process capability indices are important for any successful quality
improvement activities and quality program implementation. They have been
the focus of recent research in quality assurance and process capability analysis.
Process capability indices establish the relationship between the actual
performance and the manufacturing specifications, which provide management
with a single-number summary of the process capability in a format that is easy
to use and understand. Thus, the capability indices have been widely used in the
manufacturing industry. The two basic, most commonly used indices for
assessing process potential and performance, Cp and Cpk were discussed in Kane
(1986). The more advanced index Cpm was formalized by Chan et al. (1988) to
offset the weakness of the first-generation indices, taking the target value of the
process into account. The third-generation index Cpmk was introduced by Pearn et
al. (1992), which is more restrictive regarding to process mean deviation from the
target value than the other two indices. Those PCIs defined as:
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where USL and LSL are the upper and lower specification limits, respectively. 
is the process mean,  is the process standard deviation, and T is the target
value. The index Cp simply measures the spread of the specifications relative to
the six-sigma spread in the process. The magnitude of Cpk relative to Cp is a direct
measure of how off-center the process is operating. For a Cpk level of 1,
statistically one would expect that the product’s fraction of defectives is no more
than 2700 parts per million (PPM) fall outside the specification limits. At Cpk
=1.33, the defect rate drops to 66 PPM. To attain less than 0.544 PPM defect rate,
a Cpk level of 1.67 is required. At a Cpk level of 2.0, the defective rate reduced to
0.002 PPM. Note that the PCIs are absolutely critical to the assumptions that the
process is stable and their usual interpretation is based on normal distribution of
process output. Unfortunately, it is fairly common practice to compute a PCI
from a sample or historical process data without checking whether the process is
under those assumptions. If they are not valid, then the statements about the
expected process fallout attributed to a particular value of PCIs may be seriously
in error. In this situation, we need to modify the PCIs to have a more accurate
calculation and interpretation.

However, no process is ever truly stable. The concept of the six-sigma
process is one way to accommodate the process behavior. The six-sigma quality
improvement process was proposed by Motorola Inc. in 1986. Through years of
process experience and data collection, Motorola Inc. has determined that
processes will drift over time. Almost since that time, followers of this
philosophy asserted that adding a shift to the average before estimating process
capability is necessary. The range of shift typically falls between 1.4 and 1.6.
Acknowledging that processes will experience shifts in  of various
magnitudes. To have proper and to improve the process performance, adjusted
PCIs are proposed. Bothe (2002) has provided a statistical reason to this issue,
modifying the capability assessment. Since the processes are dynamic. The 
also undergoes some changes. In this project, we provide capability adjustment
for normal processes with standard deviation change. The magnitude of
adjustment is correlated to the detection power of the control chart used. We first
investigate the detection powers of 2S and S control charts under various
sample subgroup sizes, and derive the magnitude of the adjustment. We add the
adjustment to the formula of process capability index Cpk for normal processes.
For illustration purpose, an application example is presented.

2. Literature Review

The six-sigma advocates claim it is necessary to add a 1.5 shift to the
average for most processes, with only personal experiences and three dated
empirical studies as justification (see Bender (1975), Evans (1975), Gilson (1951)).
In this chapter, we provide Bothe’s statistical rationale regarding this issue. The 
data in Bothe’s study was assumed to be close to normal distributions. For the 
process output having non-normal distributions, we also conduct some studies
here.

2.1. Process Capability Adjustment for Normal Processes with Mean Shift
Shewhart control charts are very useful in phase I implementation of SPC,

where the process is likely to be out of control and experiencing assignable



causes that result in large shifts in the monitored parameters. Nevertheless, a
major disadvantage of a Shewhart control chart is that it uses only the
information about the process contained in the last sample observation and it
ignores any information given by the entire sequence of points. This feature
makes the Shewhart control chart relatively insensitive to small process shift.
This potentially makes Shewhart control charts less useful in phase II monitoring
problems, where the process tends to operate in control, reliable estimates of the
process parameters (such as the mean and standard deviation) are available, and
assignable causes do not typically result in large process upsets or disturbances.
This is demonstrated in Table 1, displays the probabilities of detecting changes in
 versus subgroup size for shift 0.5(0.1)3 with 3, 4 and 5n  . The
probabilities of detecting small shifts in  are close to zero. As the size of the
shift increases, so does the detection power of the X control chart to detect it,
with sample subgroup sizes 3, 4 and 5n  eventually close to 100 percent for
shifts in excess of 3.

Table 1. Probabilities of detection the mean shift versus subgroup size n.
Subgroup SizeMean Shift Size

3 4 5
0.5 0.0164 0.0228 0.0299

1 0.1024 0.1587 0.2225
1.5 0.3439 0.5000 0.6384

2 0.6787 0.8413 0.9295
2.5 0.9083 0.9772 0.9952

3 0.9860 0.9986 0.9999

In studying the properties of control charts, the emphasis has been on
determining the detection power and ARL (Average Run Length) of the chart.
The ARL of a chart is the expected number of samples to be taken before the
chart detects a shift in the process characteristic. The ARL should be large when
there has been no change in the process, but the ARL should be small when the
process having undergone a change. The value of the ARL is depending on the
purpose being studied. For any Shewshart control chart, we have noted that the
ARL can also be expressed as
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that is, the probability of the control chart to detect the small shift immediately
within two samples is 50 percent. By this idea, Bothe set the detection power to
be 50 percent and computed the several magnitude of adjustments for various
sample subgroup sizes. The results are shown in Table 2, which displays shift
sizes that have a 50 percent chance of failing to detect the change in , which
we refer to as , for various sample subgroup sizes from 1 to 6.

Table 2. 50S values for normal distribution with various subgroup sizes.

Subgroup Size 50S
1 3.00
2 2.12
3 1.73
4 1.50
5 1.34
6 1.22

Because shifts ranging in size from 0 up to 50S are likely to remain
undetected, a conservative approach is to assume that every missed shift is as
large as 50S . And Bothe made the modifications into the Cpk formula, called the
dynamic Cpk, defined as follow:
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2.2. Process Capability Adjustment for Non-normal Processes with Mean Shift
However, for the majority of cases, normal data seem impossible to be found

in real-world situations. Pyzdek (1992) has mentioned the distributions of certain
chemical processes such as zinc plating thickness of a hot-dip galvanizing
process are very quite often skewed. Choi (1996) presents an example of a
skewed distribution in the “active area” shaping stage of the wafer’s production 
processes. The abundance of outputs from skewed distributions, the censoring
effects induced by the finite precision of actual measurements, stratification, etc.,
makes the normal assumption often unreasonable. Thus, there should be more
concern about how the indexes are applied.

In the recent years, several approaches to dealing with problems of PCIs for
the non-normal populations have been suggested (see e.g. pal (2005), Ding (2004),
Pearn and Chen (1997), Kotz and Lovelace (1998), Somerville and Montgomery
(1996), Kocherlakota et al.(1992)). One approach to dealing with this situation is
to transform the data so that in the new, transformed metric the data have
normal distribution appearance. There are various graphical and analytical
approaches to selecting a transformation, such as Box-Cox power transformation
and Johnson’s transformations. And some authors replaced the unknown 
distribution by a known three or four-parameter distribution. Examples include
Clements (1989), Franklin and Wasserman (1992), Shore (1998) and Polansky
(1998).

There have also been attempts to modify the usual capability indices so that
they are appropriate for both normal and non-normal distributions. The general



idea is to use appropriate quantiles of the process distribution, x0.00135 and x0.99865,
to define a quantile-based PCIs. Good discussions of these approaches are in
Kotz and Lovelace (1998).

Hsu et al. (2007) examine Bothe’s study and find the detection power was 
less than 0.5 when data came from Gamma distributions, showing that Bothe’s 
statistical rationales are inadequate when we had Gamma processes. Then, Hsu
et al. (2007) calculate the magnitude of adjustments which called 50AS under
various sample subgroup sizes n and Gamma parameter N , with power fixed to
0.5. Table 3 displays the magnitude of adjustments 50AS which Hsu et al.
provided and data come from Gamma( ,1)N with various values of N =1(1)10
and n =2(1)6.

Table 3. 50AS values for various subgroup sizes n and various of Gamma( ,1)N .

n 1 2 3 4 5 6 7 8 9 10 N(0,1)
2 3.611 3.185 2.992 2.876 2.797 2.738 2.692 2.655 2.625 2.599 2.12
3 2.732 2.443 2.313 2.236 2.182 2.143 2.113 2.088 2.067 2.050 1.73
4 2.252 2.034 1.936 1.878 1.838 1.808 1.785 1.767 1.752 1.738 1.50
5 1.944 1.769 1.690 1.644 1.612 1.588 1.570 1.555 1.543 1.532 1.34
6 1.727 1.581 1.515 1.476 1.450 1.430 1.415 1.403 1.392 1.384 1.22
7 1.565 1.439 1.383 1.350 1.327 1.310 1.297 1.286 1.278 1.270 1.13
8 1.438 1.328 1.279 1.249 1.229 1.215 1.203 1.194 1.186 1.180 1.06
9 1.336 1.237 1.194 1.168 1.150 1.137 1.127 1.118 1.112 1.106 1.00

10 1.251 1.162 1.123 1.100 1.084 1.072 1.063 1.055 1.049 1.044 0.95

Then, Hsu et al. (2007) used the quantile estimation to modify Cpk as:
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To consider the undetected process mean shift, Hsu et al. (2007) obtained
Dynamic Cpk index for non-normal processes bymodifying Bothe’s Dynamic Cpk :
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3. Normal Process

Normal process is applicable in many fields. Many phenomena generate
random variables with probability distributions that are very well approximated
by normal distribution. In this chapter, we introduce normal distribution and the
sampling distributions of the statistics.

3.1. Normal Distribution
Undoubtedly, the most widely used model for the distribution of a random



variable is normal distribution. There are three reasons why normal distribution
plays a very important role in both the theory and application of statistics. First,
normal distributions are good descriptions for some distributions of real data.
Distributions that are often close to normal include scores on tests taken by many
people, repeated careful measurements of the same quantity, and characteristics
of biological populations. Second, normal distributions are good approximations
to the results of many kinds of chance outcomes, such as the proportion of heads
in many tosses of a coin. Third, we will see that many statistical inference
procedures based on normal distributions work well for other roughly
symmetric distributions. Normal distribution is also referred to as the Gaussian
distribution.

Random variables with different means and variances can be modeled by
normal probability density functions with appropriate choices of the center and
width of the curve. The exact density curve for a particular normal distribution is
described by giving its mean  and its standard deviation . The value of

( )E X determines the center of the probability density function. Changing
 without changing  moves the normal curve along the horizontal axis
without changing its spread. The value of  2( )V X determines the width,
controlling the spread of the normal curve.

The probability density function of the normal random variable X with
mean  and standard deviation  is given by
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This distribution is commonly denoted by 2( , )N   . The cumulative
distribution function is
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Since the mean  is the location parameter, and the standard deviation  is
the scale parameter. See Figures 1 and 2. The visual appearance of normal
distribution is a symmetric, single-peaked, and bell-shaped curve.

Figure 1. Normal p.d.f.s with 0 .



Figure 2. Normal p.d.f.s with 1 .

3.2. Statistics and Sampling Distributions
An important sampling distribution defined in terms of normal distribution

is the Chi-square or 2 distribution. Let 1 2, , ......, nX X X are normally and
independently distributed random variables with (0,1)N . Then the random
variable

2
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i
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is called the Chi-square distribution with degrees of freedom (df) n , and its
probability density function is given by
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The mean and variance are given, respective, by

,n (5)

and
2 2 ,n  (6)

The Chi-square random variable with df n is denoted by 2
n . The

Chi-square distribution is a continuous asymmetrical theoretical probability
distribution. The Chi-square value must fall within the range 20  , and
thus can never be a negative number. The coefficient of skewness and kurtosis of
Chi-square are given by
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Table 4 presents the values of skewness and kurtosis of the Chi-square
distribution. It is reveal that 2

a is stochastically larger than 2
b for a b .

Plots in Figure 3 indicate that, the Chi-square distribution is a right-tail
distribution and it can be found that for large degrees of freedom n , the
Chi-square distribution is symmetric about its mean.

Figure 3. Chi-square distribution with various degrees of freedom n .

The Chi-square distribution is also called the variance distribution by some authors,
because the variance of a random sample from normal distribution follows a Chi-square
distribution. Specifically, if 1 2, ,......, nX X X is a random sample from an 2( , )N  
distribution. Then the probability density function of the sample

Table 4. Values of skewness and kurtosis
for various Chi-square distributions.
Distribution Skewness Kurtosis

N(0,1) 0.0000 3.0000
2
5 1.2649 5.4000
2
10 0.8944 4.2000
2
20 0.6325 3.6000
2
30 0.5164 3.4000
2
40 0.4472 3.3000
2
50 0.4000 3.2400
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and the sampling distribution of the sample standard deviation 2
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3.3. Point Estimation of Normal Processes Parameters
Suppose that the variance 2 and standard deviation  of normal

distribution are both unknown. If a random sample of n observations is taken,
then the sample variance 2S and sample standard deviation 4/S c are point
estimators of the population variance 2 and population standard deviation ,
respectively. It can be shown that
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Furthermore, the standard deviation of S is 2
41 C  .

4. Process Variance Change Investigation for Normal Processes Using
2S

Control Chart

The major purpose of individuals control chart is assisting on identifying
shifts and drifts in processes and it is easily to be implemented. But some
assumptions should be satisfied before control charts are used. The assumptions
include that the process must in stationary. In practice, process is not stable. Due
to above-mentioned statements, the steps in calculating the probabilities for
catching various magnitude of change under various sample subgroup sizes n of

2S control chart are as followings.

4.1. Detection Power of 2S Control Chart for Normal Processes
STEP 1: Construct the limits. The parameters of the 2S control chart are
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where 2
0.00135, 1n  and 2

0.99865, 1n  denote the 0.00135 and 0.99865 percentage
points of the Chi-square distribution with n-1 degrees of freedom, and the
statistic 2S is an average sample variance obtained from the analysis of
preliminary data.

STEP 2: Consider the detection power for an 2S control chart. If 
changes from the in-control value to another value 0k . The probability of
detecting this change is
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where ( )f u denotes the sampling distribution of the sample variance and 1 is
the standard deviation after variance change ( 0 is the standard deviation of the
original process).

Table 5 presents the detection power with various magnitude of standard
deviation change when data come from normal distribution under various
sample subgroup sizes 10(1)20n  . For an 2S control chart with sample
subgroup size 10n  ,  changes greater than 02 have more than a 66.1
percent chance of detecting the standard deviation changes. However, the chance
of catching a 01.5 change being only 21.1 percent. Such low probabilities mean
that small changes to standard deviation may come and go, without us ever
being aware they have negatively impacted our process.

Table 5. The detection power of the 2S control chart
for normal processes with various sample subgroup sizes.

variance change size( k)
n

k=1.0 k=1.5 k=2.0 k=2.5 k=3.0 k=3.5

10 0.00270 0.21103 0.66071 0.88802 0.96388 0.98766

11 0.00270 0.23550 0.70680 0.91592 0.97636 0.99289

12 0.00270 0.26014 0.74771 0.93727 0.98465 0.99594

13 0.00270 0.28486 0.78377 0.95346 0.99009 0.99769

14 0.00270 0.30956 0.81536 0.96565 0.99365 0.99870

15 0.00270 0.33417 0.84288 0.97477 0.99595 0.99927

16 0.00270 0.35861 0.86673 0.98155 0.99743 0.99959

17 0.00270 0.38281 0.88730 0.98656 0.99838 0.99978

18 0.00270 0.40671 0.90497 0.99025 0.99898 0.99988

19 0.00270 0.43026 0.92009 0.99296 0.99936 0.99993

20 0.00270 0.45340 0.93297 0.99493 0.99960 0.99996



One way to improve the odds of catching small changes in  is to increase
the sample subgroup size. The chance of detecting a 33.4 percent when 15n  , to
almost 43 percent when 19n  . However, this chance falls to only 21.1 percent if

10n  .

4.2. Modified Variance Adjustments for Normal Processes
The probabilities in Table 5 are plotted on the graph displayed in Figure 4,

with one curve for each sample subgroup size. Those curves are power curves,
these lines portray the chances of detecting a change in standard deviation of a
given size (expressed in  units on the horizontal axis). For small change in
standard deviation, all three curves are close to zero. As the size of the change
increases, so does the detection power of the chart, with all three curves
eventually leveling off close to 100% for shifts exceeding 3.5. The horizontal
lines in Figure 4 show that there is a 50% chance of missing a 1.72 change in
standard deviation when 12n  for 2S control chart, whereas  must move
by 1.80 to have this same probability when 10n  .

Figure 4. Power curves of 2S control chart for subgroup sizes 10, 11 and 12.

The necessary adjustment due to the undetected standard deviation change
is called powerAS which is the magnitude of change we need to adjust based on
designated detection power and process data come from normal distributions.
We develop a Matlab program to determine the adjustment powerAS by setting
the desired detection power and the sample subgroup size n. Generally, the
sample subgroup size of 2S and S control charts is moderately
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large( 10 or 12n  ). If we set detection power 1/ 2 and 10(1)30n  . The
magnitude of adjustment 1/2AS based on 2S control chart is shown from Table
6. Temporary movements in  smaller than powerAS  are more than likely to
be missed by a control chart. We also provide the powerAS values of 2S control
charts (See Appendix A) for detection power 1/ 3, 1/ 4 and 1/ 5 versus various
sample subgroup sizes 2(1)30n  .

4.3. Modified Process Capability pkC for Normal Processes
Acknowledging that processes will experience change in various magnitude

of variance, and knowing that not all of these will be discovered, some allowance
for them must be made when estimating outgoing quality so customers are not
disappointed. Because changes ranging in size from 0 up to powerAS  are

Table 6. powerAS values of 2S control
chart for various sample subgroup sizes.

n Power=1/2

10 1.80215

11 1.75533

12 1.71577

13 1.68158

14 1.65192

15 1.62555

16 1.60220

17 1.58119

18 1.56210

19 1.54480

20 1.52901

21 1.51445

22 1.50099

23 1.48849

24 1.47696

25 1.46611

26 1.45595

27 1.44647

28 1.43755

29 1.42903

30 1.42107



likely to remain undetected (larger moves should be caught by the chart), a
conservative approach is to assume that every missed change is as large as

powerAS .
Since changes can move standard deviation larger or smaller, in place of

using ̂ for the process variance when estimating capability, ̂ multiplied by
powerAS is a conservative way to evaluate the process capability. The adjustment

is incorporated into the pkC formula, which we refer to as “dynamic” pkC
index, by making the following modifications:

ˆ
min ,

ˆ3pk
power

USL
C

AS




  





 


 

ˆ
.

ˆ3 power

LSL
AS

(13)

By including an adjustment in this assessment for undetected shifts in variance,
the estimate of capability will decrease and the expected total number
nonconforming parts will increase. To illustrates the use of dynamic pkC index,
setting the detection power 0.5 of 2S control chart. Then 1.63powerAS  (see
Table 6) when 15n  from normal distribution. Factoring in the possibility
missing changes in  of up to 1.63 drops the pkC index.

5. Process Variance Change Investigation for Normal Processes Using S

Control Chart

Most quality engineers use either 2S control chart or the S control chart
to monitor process variability. In this chapter, we exhibit the detection powers of
S control chart by using the sampling distribution of S to find the adjustment
for normal processes with standard deviations change.

5.1. Detection Power of S Control Chart for Normal Processes
Setting up and operating control charts for S requires about the same

sequence of steps as those for 2S control chart, except that for each sample we
must calculate the sample standard deviation S ,



 
1

1
.

m

i
i

S S
m

(14)

STEP 1: Construct the limits. The statistic 4/S c is an unbiased estimator of
. Therefore, the parameters of the S control chart would be







4

3

UCL ,

Center line ,

LCL .

B S

S

B S

(15)

We usually define the constants

  

  

2
3 4

4

2
4 4

4

3
1 1 ,

3
1 1 .

B c
c

B c
c

(16)



Note that this control chart is defined with three-sigma control chart limits.
STEP 2: Consider the detection power for an S control chart. If the

standard deviation changes from the in-control value to another value 0k . The
probability of detecting this change is


  

  

 

     

    

│

│

1 0

1 0

Detection power 1

1 ( )

1 ( ( ) ),
UCL

LCL

P LCL S UCL k

P f v s dv k

(17)

where ( )f v denotes the sampling distribution of the sample standard deviation
and 1 is the standard deviation after variance change ( 0 is the standard
deviation of the original process).

Table 7 displays the detection power of S control chart with various
magnitude of standard deviation change ( k) when data come from normal
distribution under various sample subgroup sizes 10(1)20n  .

5.2. Modified Variance Adjustments for Normal Processes
Figure 5 depicts the power curves of S control chart. Those lines portray

the probability of detecting a change in standard deviation of a given size
(expressed in  units on the horizontal axis). For small change in standard
deviation, all three curves are close to zero. As the size of the change increases, so
does the power of the chart to detect it, with all three curves eventually leveling
off close to 100% for shifts in excess of 3.5.

The horizontal in Figure 5 show that there is a 50% chance of missing a

Table 7. The detection power of the S control chartfor
normal processes with various sample subgroup sizes.

variance change size( k)
n

k=1.0 k=1.5 k=2.0 k=2.5 k=3.0 k=3.5

10 0.00183 0.22585 0.67581 0.89479 0.96641 0.98860

11 0.00189 0.25147 0.72117 0.92148 0.97817 0.99348

12 0.00194 0.27709 0.76113 0.94174 0.98590 0.99630

13 0.00199 0.30264 0.79612 0.95700 0.99096 0.99791

14 0.00203 0.32803 0.82659 0.96841 0.99423 0.99883

15 0.00207 0.35319 0.85298 0.97691 0.99634 0.99347

16 0.00210 0.37806 0.87574 0.98319 0.99749 0.99964

17 0.00213 0.40257 0.89527 0.98781 0.99855 0.99980

18 0.00216 0.42668 0.91197 0.99119 0.99910 0.99989

19 0.00218 0.45035 0.92620 0.99365 0.99943 0.99994

20 0.00221 0.47352 0.93828 0.99545 0.99965 0.99997



1.70 change in standard deviation when 12n  for S control chart, whereas
standard deviation must change by 1.78 to have this same probability when

10n  .

Figure 5. Power curves of S control chart for sample subgroup sizes 10, 11
and 12.

The undetected standard deviation change adjustment is called powerAS
which is the magnitude of change we need to adjust based on designated
detection power and process data come from normal distribution. We develop a
Matlab program to determine the adjustment powerAS by setting the desired
detection power and the sample subgroup size n. For example, if we set detection
power=1/2 and 10(1)30n  . The magnitude of adjustment 1/2AS based on S
control chart is shown from Table 8.

We also provide the powerAS values of S control chart (See Appendix B) for
detection power 1/ 3, 1/ 4 1/ 5and versus various sample subgroup sizes

2(1)30n  .
Table 8. powerAS values of S control
charts for various sample subgroup sizes.

power 1/ 2

n S control chart

10 1.78265

11 1.73679

n =12
n =10

1.783

1.698
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6. Application

In the previous chapter we presented the statistical reason for the magnitude
of adjustment for 2S and S control charts. We now illustrate the application of
the dynamic pkC to estimate process capability.

Because of advantages such as long lifetime, low power consumption, and
no mercury containing, Light Emitting Didoes (LEDs) are widely used in a
variety of general-purpose illumination applications. For indoor illumination,
there are two different approaches for generating white light with LEDs. One
way is combining a blue or UV LEDs with a down conversion phosphor, and the
other way to obtain white light is mix the monochromatic LEDs with different
colors. The later approach seems a better way to generate white light for indoor
illumination. Figure 6 illustrates the red, green and blue (RGB) LEDs in one
package. For RGB LEDs, or the white light mixed by more than three LEDs, the
color rendering and luminous efficiency depend on the choice of the individual
peak wavelengths of the LEDs, which will lead to very different color rendering
and luminous efficiency. So the optimization of the white light formed by more
than two LEDs can achieve a maximum of certain luminous efficiency and

12 1.69806

13 1.66483

14 1.63585

15 1.61031

16 1.58751

17 1.56705

18 1.54865

19 1.53175

20 1.51637

21 1.50237

22 1.48932

23 1.47723

24 1.46597

25 1.45547

26 1.44565

27 1.43645

28 1.42780

29 1.41956

30 1.41187



color-rendering index (CRI). To make sure the optical properties are acceptable
to customers, the wavelengths we choose with highest luminous efficiency at
that time are in blue 455-480 nanometer (nm), green 510-535 nm and red
610-630nm regions.

To illustrate the use of the dynamic pkC to estimate process capability.
Consider Table 9, which presents a part of historical data of wavelength for blue
LED collected from the factory. The proposed specifications on wavelength for
blue LED are USL = 480nm and LSL = 455nm, respectively. From Figure 7, note
that the data lie nearly along a straight line, implying that the distribution of
wavelength is normal distribution. Furthermore, Figure 8 shows the shape of the
histogram implies that the distribution of wavelength is approximately normal
distribution.

Table 9. The 100 observations are collected from the historical data.

463.029 466.841 463.560 462.841 467.381

465.297 463.411 462.623 463.485 470.220

464.694 463.413 464.895 467.947 465.504

462.441 464.557 465.835 463.000 464.413

467.604 464.955 464.273 464.092 466.544

464.966 465.614 463.900 463.886 461.244

466.180 467.328 464.921 468.563 469.098

463.424 466.368 464.616 465.178 467.435

463.558 461.149 462.894 462.622 462.299

465.692 466.534 467.844 462.526 463.526

465.235 466.785 465.970 468.819 467.950

469.066 466.400 467.818 469.262 465.854

464.395 467.882 463.905 468.597 465.865

469.868 465.720 462.539 462.237 463.927

468.319 463.519 466.777 464.530 465.501

460.721 464.672 465.091 464.562 466.508

461.303 459.612 463.336 465.677 463.599

463.738 466.041 464.804 463.741 462.794

464.591 465.257 460.581 462.849 464.592

465.020 463.700 467.385 464.017 462.681



Figure 6. The RGB LEDs.

Figure 7. Normal probability plot of the historical data.



Figure 8. Histogram plot of the historical data.

The parameters  and  of this normal process could be estimated from
the historical data, giving ˆ 464.98 and ˆ 2.20 . pkC can be calculated as
follows:

ˆ
min ,

ˆ3pk
USL

C



 



ˆ
ˆ3
LSL


 



480 465 465 455
min ,

3(2.20) 3(2.20)
  

  
 

 min 2.27,1.52 1.52. 

Under the assumption of a stationary standard deviation. By including an
adjustment in this assessment for undetected change in standard deviation, the
estimate of capability will decrease and the expected total number of
nonconforming parts will increase. From Table 6, 1/ 2AS of 2S control chart is
1.80 when 10n  . Compared pkC to the value of the following index:
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 
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min ,
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  
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 

 min 1.26,0.84 0.84. 



We can see that the value of the dynamic pkC is much smaller. By increasing the
sample subgroup size n, a change in  has a higher probability to be detected.
For example, if 15n  , the 1/ 2AS would be 1.63 for normal distribution and

ˆ
Dynam ic m in ,

ˆ3pk
power

USL
C

AS




   

ˆ
ˆ3 power

LSL
AS




 
 

480 465 465 455
min ,

3(2.20)(1.63) 3(2.20)(1.63)
  

  
 

 min 1.39,0.93 0.93. 

Changing sample subgroup size n from 10 to 15 increases the dynamic pkC
index value from 0.84 to 0.93.

7. Conclusion

In Bothe’s study, the author provided the statistical rationale for adjusting
estimates of process capability by including a possible shift in . But the case of
standard deviation change occurs frequently in practice. This project has
considered the problem for adjusting estimates of process capability by including
a change in  when the process output has normal distribution. We use a
Matlab program (available on request) to compute the standard deviation change
adjustments based on the detection power is 1/2( 1 2ARL  ), 1/3( 1 3ARL  ),
1/4( 1 4ARL  ), 1/5( 1 5ARL  ) percent for data come from normal distribution
with various values of 2(1)30n  . The adjustments are incorporated into the

pkC formula, which we refer to as the “dynamic” pkC index. It has proven to
be a useful way for the engineers/practitioners to access process performance. A
real-world application on LED production plant is investigated and presented to
illustrate the applicability of the proposed approach.
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Appendix A. powerAS for Normal Processes with Variance Change Using 2S

Control Chart
Detection Power

n
1/3 1/4 1/5

10 1.62857 1.54233 1.48767

11 1.59479 1.51459 1.46323

12 1.56595 1.49055 1.44235

13 1.54095 1.46982 1.42409

14 1.51884 1.45142 1.40802

15 1.49934 1.43507 1.39360

16 1.48190 1.42038 1.38055

17 1.46611 1.40706 1.36888

18 1.45183 1.39497 1.35817

19 1.43864 1.38385 1.34828

20 1.42670 1.37369 1.33936

21 1.41557 1.36435 1.33098

22 1.40527 1.35556 1.32315

23 1.39580 1.34746 1.31587

24 1.38687 1.33990 1.30914

25 1.37849 1.33276 1.30283

26 1.37067 1.32603 1.29685

27 1.36339 1.31979 1.29129

28 1.35638 1.31381 1.28593

29 1.34986 1.30818 1.28085

30 1.34361 1.30289 1.27618



Appendix B. powerAS for Normal Processes with Variance Change Using S

Control Chart
Detection Power

n
1/3 1/4 1/5

10 1.61099 1.52571 1.47147

11 1.57803 1.49866 1.44785

12 1.54988 1.47531 1.42752

13 1.52557 1.45512 1.40994

14 1.50415 1.43727 1.39429

15 1.48520 1.42148 1.38042

16 1.46831 1.40733 1.36792

17 1.45306 1.39456 1.35666

18 1.43919 1.38289 1.34636

19 1.42656 1.37218 1.33688

20 1.41489 1.36243 1.32823

21 1.40417 1.35336 1.32027

22 1.39429 1.34499 1.31285

23 1.38509 1.33716 1.30585

24 1.37657 1.32988 1.29939

25 1.36847 1.32301 1.29335

26 1.36092 1.31670 1.28765

27 1.35391 1.31065 1.28223

28 1.34718 1.30489 1.27715

29 1.34087 1.29953 1.27234

30 1.33489 1.29445 1.26781


