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Abstract

The goa of this project is to design an embedded platform to
support next generation stereo video and 3-D man-machine user
interfaces for multimedia applications. The key design focus of this
platform is that it is not designed for any particular killer applications.
Instead, it is designed based on an open multimedia application
middleware, namely DVB-MHP. Therefore, any third party designer can
develop innovative applications for this platform without having to
worry about the underlying architecture, such as the type of processor or
the type of OS used to create the platform. More importantly, the
middleware provides user application accesses to highly efficient
feature-rich multimedia components, including audio-video decoding,
graphics, and 3-D video. The key technologies that will be developed in
this project include: DVB-MHP middleware with extension for stereo
video and man-machine user interface, a deeply-embedded minimal OS
designed specifically for Java runtime support, 3-D video accelerator,
3-D graphics accelerator, Java processor, and multiview video coding
technology.

Keywords: Middleware, Java Processor, Embedded OS, 3-D Video,
Disparity Estimation Accelerator, 3-D Graphics Accelerator, Multiview
Video Coding
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M ethod Error Rate % E_xec.
TSUK UBAIVENUSTEDDY|CONEY Time(sec)

Original 1.85 119 | 133 9.79 | 95.65

+MC+2P 3.47 091 | 143 11.2 | 475

+MC+2P+ Manhattan 3.08 059 | 14 101 | 3.12

+MC+2P+ Manhattan +Truc(64,2) 3.03 061 | 14 101 | 252

+M C+2P+ Manhattan+Truc(64,1) | 3.06 0.66 [ 13.9 10.1 1.84
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Perfor mance under UM C 90nm Technology

Clock rate 100 MHz

External buswidth 32 bit

Image size 352x288

Disparity level 64

Logic 562k equivalent gate counts
Internal memory 21K bytes

FPS 42
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Design Category MDE/s TSU VEN TED CON SAW MAP

Proposed Hardware 272.5 280 064 137 101 211 321
TrellisDP [1] Hardware 294 263 344 - - 188 091
HBP[?2] Hardware  73.7 285 192 - - 6.25 6.45
EffectAggr [3] CPU 18.9 296 353 107 492 - -
Real DP [4] CPU 209 285 642 - - 6.25 6.45
Chiased [5] CPU+GPU 605 477 102 - - 0.82 0.65
SepL aplacian [6] CPU+GPU 679 13.0 - - - - -
Real TimeBP [7] CPU+GPU 19.6 340 190 132 116 @ - -
Real TimeGPU [8] CPU+GPU  19.6 422 298 144 137 @ - -
ReliableGPU [9] CPU+GPU - 136 109 - - 235 0.55
GradientGuided[10] CPU+GPU 117 248 391 - - 163 0.73
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B116. Subdivision Based Shading % = 47 %

Phong shading: 41300 times

Gouraud shading with subdivision
scheme: about 21696 times
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Coefficients setup

Global coefficients

1) Fog factor: dfx, dfy
Depth: ddx, ddy

2)
) 1/w: dwx, dwy
Screen coordintate: (X,Y) ) (u,v): dux duy, dvx dvy
Fog factor | . etc

1)

2) _

3) Depth value

4) 1w »
Local coefficients

Subdivider - 1) (R, G, B): drx, dry,
Small triangles dgx, dgy

&lighting AA b dby
1) Screen coordintate: (X,Y) 2) Edge functions
2) Light intensity:(R, G, B)

Original triangle
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Conventional Proposed Complexity
subdivision subdivision reduction
algorithm algorithm in percent
Number of the
lighting 24 15 37.5%
operations
Number of the
4Ax4 matrix
multiplications 24 3 87.5%
for perspective
transformation




Number of the
clipping/culling
test operations

16

93.75%

Number of the
3x3 matrix
multiplications
for setup
operation for
rasterization

80

27

66.25%

Rasterization

anomalies

occur

Sometimes

Completely
eliminated

~
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(c) Rasterization result (a)
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Average compression ratio per 5 tiles
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3. Rasterizer Subsystem
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Rendering Engine
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SKIP #3
Block PCU {E Pixel Generator
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Block Generator = Texture Access Unit g
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Edge Test Color Blending Unit > 2
Memory I/F
m24 -E,‘ § &+ ‘. urﬂ&m aK - %E_m

? ~  Triangle Setup Engine (T SE)
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Texture Mapping Unit
Texture Mapping Unit %&:{ﬁ; eh Pixel Process: i & 43t 8 & B if
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4. FPGA 5% T 4

T4 55 3D gt B+ kA Xilink Spartan 3A DSP B 3 45 47 ié *

S FPGA TR > d p- % —‘F% km#HmE_FPGA thSliceiz * £ FAREHH ~

DSP48A enig {é_j‘;"% AL v ?ji‘ P B2 S AFFFAFET LREH

3] Xilinx ML507 B 2 4% o

#5. & + ® BT} FPGA(Spartan 3A DSP 1800) § ik st &

Slices Flip 4input LUT DSP48A

Flops
Geometry 4069 3605 6168 35
Engine
Raster 4220 4776 7776 44
Engine
Total 8289 8381 13944 79
% 24% 50% 42% 94%

P E & & Xilink Spartan 3A DSP B 3 T & b Rl #f % S Hde ] 25
d FPGA ¢ @1 MicroBlaze processor fx# FPGA @ S fmigde S+ k> & B
Pl SR R A Y R Eo Y THEE 2 g IRz &
25§ @ v MicroBlaze iz {5 chig Bl (¥ - & 15 MicroBlaze $ &JIZ {5 ihif
FTEHBE G EFR



MicroBlaze

Initial Program

1.
- 2. Hw/Swinterface
!u_l.ne 3. Rasterization Engine
T 4.  Fiil FrameBuffer

l:>[§ ;J

B125. FPGA Z T o2 % ik i
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Bied j s 0 9 & 100MHZ 2 % -

£6. &3 F M. ¢ FPGA(ML507) 7 i 453+ 4

Device: Vertex-5 5vfx70t ff1136 -1

Geometry Engine  Raster Engine  Total
Slice L ogic Utilization
Slices Register 7361(16%) 14074(31%) 47%
SlicesLUTs 5823 8844 31%
Number used as L ogic 5644 8844 31%
IO Utilization
Number of 10s 902 1601 -
Number of bonded |OBs 0 0 -
Specific Feature Utilization
Number of DSP48E 35 28 49%
Maximum Frequency 153.86 MHz 40.912 MHz
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Zp=Z,4n,) 0 q=W(Z,) k7 RIESXFLE TS FHER ST

&, =(1:(P) = 1;(@))" = (1x(p) - 1:(@))?
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B129. Measuring the depth-error sensitivity under various settings of
Z,, Z, and aZ(p).
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=

* Reference View

» Target View

®130. A geometrical interpretation of the effect of Z, on depth-error
sensitivity.
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B]32. PSNR of synthesized images as a function of the depth and reference
QP. The reference view images are coded with QP=22 (a)(b) and QP=31
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B33. Subjective quality comparison of synthesized images: (a) MPEG
FTV(without depth refinement), (b) Tanimoto, (c¢) Sung, (d) the
proposed scheme. The depth QP is set to 44.
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Abstract—External memory bandwidth and internal memory
size have been major bottlenecks in designing VLSI architecture
for real-time stereo matching hardware because of large amount
of pixel data and disparity range. To address these bottlenecks,
this work explores the impact of data reuse on disparity-order
and pixel-order along with the partial column reuse (PCR) and
vertically expanded row reuse (VERR) techniques we proposed.
The analysis suggest that a disparity-order reuse with both PCR
and VERR techniques is suitable for low memory cost and low
external bandwidth design, whereas the pixel-order reuse with
both techniques is more suitable for low computation resource
requirement.

I. INTRODUCTION

Computational binocular stereo is one of the major topics
in computer vision, which is useful in many fields, such as
intelligent robots, autonomous vehicles, 3D scene
reconstruction, and multiview video coding [1]. The goal of
computational binocular stereo is to estimate the displacement
between each corresponding pair of pixels in the left and right
views. The displacement is referred as disparity and the
process is referred as disparity estimation. The most efficient
way to estimate disparity is referred as local stereo matching
[2] which finds the stereo correspondence by means of local
matching windows.

Local stereo matching is the most prominent approach in
implementing a real-time stereo matcher. For more
complicated local stereo matching algorithms having better
stereo matching performance, VLSI hardware implementation
is inevitable. However, these powerful stereo matching
algorithms often demands enormous data storage and memory
bandwidth. To resolve such storage and bandwidth issues, data
reuse techniques must be employed. Previous work [3] [4]
have studied the data reuse in simpler local stereo matching
algorithms based on block matching. However, the data reuse
of more complex and robust local stereo matching [5] [6]
algorithms with additional cost aggregation step has not been
considered.

Unlike the simple local stereo matching algorithms, the
more complex aggregation-based stereo matching algorithm
poses a challenge in data reuse. The data reuse order and
direction within different steps in the aggregation-based stereo
matching algorithms may sometimes interfere with each other
and result in even larger internal memory size or more
bandwidth. To ensure the success of a hardware architecture

for real-time aggregation-based stereo matcher, it is necessary
to clarify the how different data reuse order and direction
would affect the overall performance.

Motivated by the aforementioned reason, this work
investigated disparity-order and pixel order data reuse for the
initial matching cost computation. In addition, we proposed a
partial column reuse (PCR) and a vertically expanded row
reuse (VERR) techniques for the cost aggregation. The
impacts of different combinations of data reuse orders and
techniques on internal memory size and external memory
bandwidth are analyzed. The analysis and comparison result
suggest that if the internal memory size is the most important
requirement, disparity-order reuse with PCR technique is the
best candidate. On the other hand, if external memory
bandwidth is deemed more important, disparity-order reuse
with both PCR and VERR techniques should be more suitable.

The rest of the paper is organized as follows. Section II
explains the flow of aggregation based method. Section III
analysis the data reuse problem and explaining how the data
reuse methods function. Section IV will compare the
performance of different solutions. Then, we conclude in
Section V.

II.  REVIEW OF AGGREGATION BASED ALGORITHMS

According to Scharstein and Szeliski [7], the flow of
aggregation based algorithms for stereo matching consist of
three steps: cost computation, cost aggregation, and disparity
computation. The detail of each step is explained in the
following subsections.

A.  Matching Cost Computation

Matching cost computation computes the initial matching
cost of each pixel at different disparities. The matching cost is
usually computed from luminance. There are many different
similarity measures that can be used as the matching cost. The
simplest similarity measure only requires one reference and
target pixel to compute, such as the commonly used absolute-
difference (AD). Other similarity measures requires a support
window to take information of neighboring pixels into
consideration, examples include sum-of-absolute-difference
(SAD), adaptive support weight SAD, zero-mean SAD
(ZSAD), census hamming distance [8], and mutual
information [9]. The size of the window is arbitrarily selected
depending on the performance requirement. Larger window
often result in more accurate disparity map with blurry
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boundary, whereas smaller window result in opposite way.
Here we define the matching cost of a pixel at (x,y) in the left
reference image with disparity d be

Coryay = Matcher L(x,y), R(x—d, y))» (1)
where L(x,y) and R(x-d,y) represents the center pixels of the
support window in left and right images respectively, and
Matcher() is the similarity measure function. For each pixel at
(x,y), if the disparity range is 32, there would be 32 matching
costs for (x,y) with each associated to a disparity value.

B.  Cost Aggregation

In this step, the initial cost of a pixel and its neighboring
pixels within an aggregation window are summed together.
This aggregated cost includes the influence of the neighboring
pixels to enforce the smoothness constraint [7]. The cost
aggregation can be iteratively performed to include the
influences from farther pixels. The aggregation of iteration t+1
can be defined as
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where A(X,y,i,j) is the weighting of each pixel within the
window of size rxr pixels, and R(x,y) is the weighting
normalization term which is the summation of the weightings.
The weighting gives different degree of influence to different
neighboring pixels to achieve better disparity result. Examples
of algorithm using weighted aggregation includes non-linear
diffusion [10], outlier-rejection [6], and adaptive support
weight [5].

C. Disparity computation

The disparity of a pixel is determined in a winner-takes-all
(WTA) manner. The disparity with the minimal aggregated
cost is selected as the disparity for this pixel.

III.  ANALYSIS OF DATA REUSE METHODS

On implementing aggregation based method under real-
time constraint, there are many solutions to the data reuse
issue. We will use the hardware architecture shown in Fig. 1
to explain different solutions.

Data Reuse Region

[

Y LeftImage

(a) Matching Cost Generating in Disparity Direction
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27

N

Y Leftimage
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Figure 2. The two data reuse directions

A. Data Reuse Problem

In the matching cost computation, if data reused along the
disparity axis is preferred, the computation of all the matching
costs for a pixel is computed before jumping to the next pixel.
This allows the data within the matching cost support window
to be reused. However, the cost aggregation sums the initial
matching costs of the same disparity together, which would
prefer initial costs to be output along the spatial (X-Y) plane
than the disparity axis. As a result, to compute the aggregated
cost within an aggregation window, all the matching costs at
each disparity must be stored before the aggregation can be
performed. These initial matching costs that need to be stored
before the aggregation of an aggregation window can be
represented with a cuboid in the disparity-spatial (D-X-Y)
space. The volume of this cube represents the memory size
needed to store the initial costs. One way to reduce the storage
requirement is to avoid the conflict in data reuse direction. For
instance, change the reuse direction in matching cost
computation to the X-Y plane so that it meets the direction in
cost aggregation. Although doing so removes the conflict
between the matching cost computation and the cost
aggregation, the conflict between the cost aggregation and the
disparity computation exists. To determine the disparity of a
pixel, the disparity computation needs to have all the matching
costs at each disparity for that pixel. However, the aggregated
costs are generated in the X-Y plane first, which is different
from the preferred direction of the disparity computation.
Consequently, additional storage would be required to store
the aggregated costs. These conflicts in data generation and
reuse directions play a key role in determining the storage
requirement. Therefore, it is important to derive the best data
reuse strategy which resolves these conflicts so that the
storage requirement can be minimized.

B.  Matching Cost Computation Data Reuse

The data reuse in the matching cost computation can be
categorized into two types according to the reuse order. The
details of these data reuse method are explained below.

1) Dipsarity-Order Reuse
The disparity-order reuse reuses the data in the matching
window of different disparities. Fig. 2(a) illustrates how
disparity-order reuse works. When we compute the disparity
of a pixel in the left image, the matching window in the right
image would slide leftward within the disparity range. In other
words, the matching cost of different disparities for a pixel in
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the left image is first computed. Then the matching cost
computation of the next pixel in the left image is performed.
With the disparity-order reuse, the overlapped data within the
matching window in the right image shown in Fig. 2(a) can be
reused to compute the matching cost at different disparities.
As a result, if the pixel data are stored in external memory,
there is no need for repeating accesses of the overlapped
pixels. Hence, the bandwidth requirement to external memory
can be reduced. However, the order of matching cost
generation is different from the order of the matching cost
consumption in the following cost aggregation step. This
would result in additional memory storage requirement.

2) Pixel-Order Reuse
Similar to the disparity-order reuse, the pixel-order reuse
reuses the data overlapped by the neighboring matching
window in both left and right images.

Fig. 2(b) illustrates the detail of pixel-order reuse. The
matching cost of the same disparity for each pixel is first
computed. Then the cost of the next disparity for each pixel is
computed. As a result, the matching window in the left and the
right images both slides synchronously with the same disparity
offset. With the pixel-order reuse, the overlapped data within
the matching windows shown in Fig. 2(b) can be reused.
Therefore, the pixel-order reuse can also reduce the external
memory bandwidth requirement. In contrast to the disparity-
order reuse, the order of matching cost generation is the same
as the order of the cost consumed by the following cost
aggregation step. Hence, the buffer size between the two steps
can be reduced. However, the data reuse can only be exploited
during the cost computation of one single disparity. There is

no data reuse between the computations of different disparities.

Once all the computation of the previous disparity has been
completed for all the pixels in the whole image, pixel data
have to be read from the external memory again. Unless all the
previously read pixel data could be stored within the internal
memory, otherwise repeating external memory accesses are
inevitable.

C. Cost Aggregationt Data Reuse

In addition to the data reuse in the matching cost
computation, there are two data reuse methods in the cost
aggregation. The details of these two data reuse methods are
explained as follows.

1) Partial Column Reuse

The partial column reuse method reduces the local
memory size in the cost aggregation by distributing the
computation of aggregated cost to each column. Instead of
computing the aggregated cost after all the initial costs in an

Original
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aggregation window are available, the PCR computes the
partial sum of a column after the initial costs of this column
are available. As a result, the size of the local memory can be
reduced from a window to only one column. Moreover, the
partial sum of each column can contribute to the aggregated
cost of multiple overlapped windows. Storing partial column
cost requires less local memory size than storing all the initial
matching costs in a column.

Fig. 3 illustrates an example of the PCR with a 5x5
aggregation window size. An aggregated cost requires the
partial sum of five initial cost columns. With PCR, the current
partial column sum in Fig. 3(a) can be reused to contribute to
the aggregated cost of windows 1 to 5.

2) Vertically Expanded Row Reuse

The vertically expanded row reuse reduces the bandwidth
requirement to the initial cost memory by deliberately access
additional rows of initial costs. When the aggregation
finishes processing the current row and jumps to the next row,
the overlapped data between the windows at the previous
row and the current row have to be read from the initial cost
memory again. Fig. 4 shows an example of the situation that
the data are overlapped. To avoid accessing the already
accessed costs, the VERR vertically expand the rows of
initial costs to be read so that they can be reused to compute
multiple rows of aggregated cost at once.

Fig. 4 shows how VERR can reduce the overlapped data.
Without the VERR, most of the data in the windows are
overlapped for many times. These overlapped data are read
repeatedly multiple times. However, with the VERR, the
portion of overlapped data becomes much smaller than the
case without the VERR. Moreover, the overlapped data in
the VERR case only overlap once. This implies that with the



TABLE L.

ANALYSIS OF DISPARITY-ORDER AND PIXEL-ORDER DATA REUSE WITH PCR AND VERR METHODS

Disparity-Order Pixel-Order
Section Property
Original +PCR +VERR +-:})l§l§R Original | +PCR +VERR +-:})ECI§Q
Step 1 Internal Memory Size (KBytes) 2.4 2.4 2.6 2.6 22 2.2 2.4 2.4
Bandwidth Requirement from
External DRAM (MBytes/sec) 33 3.2 0.9 0.9 207.9 207.9 10.1 10.1
Step 2 Internal Memory Size (KBytes) 563.2 1.6 44.8 '1.8 0.6 X 1.8 0.1
Bandwidth Requirement from Cost
Computation Engine (MBytes/sec) 6.5 158.7 43 4.3 6.5 X 4'—7 ﬂ
Step 3 Internal Memory Size (KBytes) 0.1 0.1 0.1 0.1 228.1 228.1 228.1
Internal Memory Size (Bytes) 565.7 4.1 47.6 4.5 230.9 232.3 230.5
Bandwidth Requirement from
Total External DRAM (MBytes/sec) 33 3.2 u w 207.9 207.9 10.1 10.1
Real-time Constraint (30 fps) Meet Meet Meet Meet Fail Fail Meet Meet

VERR, the repeating accesses of the overlapped data would
be fewer than the case without the VERR.

Fig. 5 plots the relationship between the average access
count of an initial matching cost and the value k given an
aggregation window size of 25x25. The value k represents
the number of expanded rows. It can be observed that the
average access count decreases as k increases. This suggests
that with more rows expanded, less bandwidth is needed.
However, increasing the value of k will also increase the
local memory size and computing resource requirement.

IV. COMPARISON

TABLE [ compares the estimated memory size and
bandwidth requirement of the disparity-order and pixel-order
reuse methods. The target disparity image is 352x288 pixels
large with 64 disparities. The real-time constraint is 30 fps.
The architecture is assumed to operate at I00MHz clock with
a 32-bit data port to the external memory. The size of support
window in the matching cost computation and cost
aggregation are 9x9 and 25x25 pixels respectively.

From TABLE I, only original pixel-order and pixel-order
reuse with PCR technique fail the real-time constraint because
of enormous external memory bandwidth requirement. This is
because applying PCR with the pixel-order reuse alone would
limit the cost aggregation throughput due to column-based
computation. For reuse combinations that meet the real-time
constraint, if minimal internal memory size is required, the
disparity-order reuse with PCR is the best candidate. On the
other hand, if external memory bandwidth is deemed more
important, the disparity-order with both PCR and VERR is
more suitable. However, the disparity-order has large
bandwidth requirement from the matching cost computation

engine, which implies large computation resource requirement.

Hence, if the computation resource is the concerning issue, the

pixel-order reuse with both PCR and VERR should be adopted.

V. CONCLUSION

This paper explores the impact of disparity-order and
pixel-order data reuse in the matching cost computation and
proposed the partial column reuse (PCR) and vertically

expanded row reuse (VERR) techniques for the cost
aggregation for local stereo matching architectures. The
analysis and comparison conclude that the architecture using
the disparity-order reuse with both the PCR and VERR
techniques is suitable for the design of low memory cost with
high computation resource. On the other hand, the architecture
using pixel-order reuse with VERR technique requires less
computation resource, but needs large internal memory in
storing the aggregated cost. It is up to the designers to adopt
the reuse combination that meets best to their constraints and
requirements. Further study on impact of various reuse
parameter settings shall be conducted in the future.
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Abstract—In this paper, we proposed a low complexity
subdivision algorithm to approximate Phong shading. It is a
combination of a subdivision scheme using forward
difference and a recovery scheme to prevent rasterization
anomaly. Dual space subdivision, triangle filtering and
variable sharing schemes are also proposed to reduce the
computation. Compared with the conventional recursive
subdivision shading algorithm, the proposed algorithm
reduces 46.6% memory access, 80% projective
transformations and  perspective  division, 93.75%
clipping/culling tests and 60% 3x3 matrix multiplications for
setup operation.

1. INTRODUCTION

Gouraud shading [2], per-vertex lighting, is commonly
used in real-time application because it only applies
reflection model [1] on vertices of polygons and linearly
interpolates the intensities for internal pixels. Phong
shading [3], per-pixel lighting, linearly interpolates face
normal across a polygon for internal pixels and applies
reflection model on each pixels. Phong shading can render
smooth and realistic highlight but demand huge
computation to light every pixel. Therefore, it’s not
suitable for real-time application without hardware
acceleration.

In order to reduce complexity of Phong shading, many
researchers concentrate on approximating scheme with
reasonable tradeoff between cost and quality. The Taylor
expansion [4] is used to approximate Phong reflection
model. The average cost is high in the scenes with small
polygons or multi-light sources. Spherical interpolation
algorithms [6][7] aim to avoid renormalization. But, the
setup cost is expensive for small polygons. The mix
shading [11] combines two shading methods. When the
hightlight covers the polygon, it is rendered using Phong
shading. Otherwise, Gouraud shading is employed. The
problem is that per-pixel lighting is involved in the
highlight region. To completely eliminate pre-pixel
lighting, quadratic interpolation [8][9] uses quadratic
function to interpolate light intensities between six points
in a triangle. The quadratic scheme may introduce notable
gap on the edge if the triangle is too large. Subdivision
scheme [5][12] is another way to approximate Phong
shading. Subdivision scheme subdivides a triangle into

This work was supported in part by the National Science Council (NSC)
Grant NSC-96-2220-E-009-038, NSC-97-2220-E-009-055

978-1-4244-3828-0/09/$25.00 ©2009 IEEE
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smaller ones and renders these small triangles individually
with Gouraud shading. Compared to per-pixel lighting,
only vertices are lit. It is manifest that the computational
complexity is greatly reduced.

The attractive feature of subdivision scheme is that it
can control rendering quality dynamically. If high quality
shading is demanded, more small triangles are generated.
Otherwise, fewer triangles are generated to reduce the
processing time and power consumption. Previous works
use recursive subdivision algorithm to subdivide triangles
in software. Subdivision in software has unnecessary bus
traffic from CPU to graphic hardware because the
generated vertices must be transferred to graphic hardware
for rendering. To save bandwidth, the subdivision
algorithm should be integrated into graphic hardware.
Recursive subdivision algorithm is not efficient for
hardware implementation because it uses stack to buffer
the intermediate vertices. As illustrated in Fig. 1, the
memory accesses consume large amount of power and the
required memory size depends on the recursive depth.
Another problem of previous algorithms is the overhead
introduced by the generated triangles. They decrease
performance greatly if they were not correctly handled.
Little attention has been given to these points above.

In this paper, we proposed a low complexity
subdivision algorithm to approximate Phong shading using
forward difference technique. With least memory access
and constant memory size requirement, it’s suitable for
hardware implementation. A recovery scheme is proposed
to prevent rasterization anomaly. We also present three
different schemes to reduce the overhead of the

subdivision schemes.
Push vertices 1, 2, 3 (3 write)
Pop vertices 1, 2, 3 (3 read)
1 Gen vertices 4, 5, 6
Push vertices 1, 4, 5 (3 write)
Push vertices 4, 2, 6 (3 write)
Push vertices 4, 6, 5 (3 write)
Push vertices 5, 6, 3 (3 write)
Pop vertices 1, 4, 5 (3 read)
Gen vertices 7,9, 8
Output triangle 1, 7,
Output triangle 7, 4,
Output triangle 7, 9,
Output triangle 8, 9,

8
9
8
5

Fig. 1. llustration of recursive subdivsion scheme.
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This paper is organized as follows: the proposed
algorithm is described in Section II. In Section III, we
present three schemes to improve the subdivision
algorithms. Complexity analysis is given in Section IV. At
last, the brief statements conclude the presentation.

II.  PROPOSED SUBDIVISION ALGORITHM

In this section, we present proposed subdivision
algorithm to approximate Phong shading. Our algorithm is
the combination of a subdivision scheme using forward
difference and a recovery scheme used to prevent
rasterization anomaly. Forward difference is a technique
used to refine mesh [10]. Herein, we use it to subdivide
triangles. An example is illustrated in Fig. 2. First, we
compute the differentials vectors, dx and dy in horizontal
and vertical direction, respectively:

Vb Ve Vb
Vbc

(a) Subdivided four triangle

(b) Incremental subidivision

Fig. 2: Illustration of the proposed subdivision scheme.

dx = (Ve—"Vb)/level
dy = (Vb—=Va)/level
level = log2( number of generated triangles )

After obtaining the differentials, the middle vertices, Vg,
V. and V,, are computed by adding the difference vectors:

Var =Va+dy
Vea=Va + dx
Vo =Va + dx
Ve =Vb+ dx
Ve="Vee + dx

Finally, all vertices: V,, Vi, V¢, Va, Vi, and Vg, are
obtained. They are packed into four triangles and output.
This scheme is extended easily to subdivide arbitrary level.

The proposed subdivision scheme is more efficient
than recursive ones because generating one vertex only
access memory one time. Since only two difference
vectors and two accumulation vertices for different
direction to be buffered, the required memory size is
constant. Therefore, the proposed scheme is very suitable
for hardware implementation.

Subdivision schemes using forward difference may
result in rasterization anomaly where pixels are lost in the
rendered object. As shown in Fig. 3(a), the green pixels on

the teapot are the lost pixels. The forward difference
technique is numerical instable with small step width [10].

Ei(x.y)

=aox+boy+co

=(2-yDO=xD+(x2-x1)(y-y1)

o/ =(y2-ylyx+(x2-x1)*y
+(y2*x1-y1*x2)

a=—y2-yl)

b =—(x2-x1)

o =y2*x1-y1*x2

o

(a) Anomalies (b) No
occurs Anomalies

Fig. 3: Example of teapot. Fig. 4: Edge function definition.
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Fig. 5: Example of rasterization anomaly.
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(a) before recovery
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Fig. 6: Illustration of edge function.
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DCy = (Xe-Xp)*(Ye-Ya) + (Yo Yb)*(Xa-Xe)) / 2
DCz = ((Xa-Xp)*(Ye-Yb) + (Ya-Yb)*(Xe-Xc)) / 2
DCs = ((Xo-Xa)*(Ya~Yo) + (Yo-Ya)*(Xe-Xa)) / 2

Cy=-Cia - DCy

Cji=-Cp - DC;

Cik=-Cia - DCs

Fig. 7: lllustration of the recovery scheme.

Cea=Ya XY Xy

Moreover, the vertices on the sharing edge are calculated
with different starting vertex and differential vectors.
Therefore, the subdivision leads to considerable numerical
errors. As illustrated in Fig. 5(a), M is a vertex on the
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sharing edge. Since the accumulated numerical errors, the
A and A’ have different coordinates. As a result, small
triangles defined by A and A’ are not adjacent to each
other. Consequently, the rasterization anomaly occurs. Fig.
5(b) shows the result after rasterization.

To ecliminate the anomalies, a recovery scheme is
proposed. The proposed scheme takes the advantage of the
edge function [14]. The edge function is a line equation
thought two vertices as shown in Fig. 4. Pixels are
regarded as being in the triangle if they are located in the
region where the values of the edge functions of the
triangle are all positive. For example, in Fig. 6(a), the P1 is
in the triangle because it is located the blue region where
the values of edge functions E1, E3 and E4 are all positive.
Since A and A’ have different coordinates, they define
different edge functions E1 and E2 on edge E; and E, in
Fig. 6(a), respectively.. The pixels, for example P2, in the
green region have negative values of both E1 and E2 and
are not regarded as pixels in any triangle. Thus, these
pixels will not be rendered which result in rasterization
anomaly. With the proposed recovery scheme, the problem
can be eliminated.

In Fig. 7, Cy,, Cy, C., are edge function constants of the
original triangle. C,, Cj and Cj, are edge function
constants of the upper small triangles and can be derived
from the following steps. First, by the linearity, C,, Cj,
and Cyy are calculated with dividing C,,, C,, and Cy, by
two, respectively. Secondly, the forward difference, DC,,
is derived using the formula listed in Fig. 7. Finaly, Cj; is
derived by adding DC, to Cy. Edge function constants of
other small triangles can be derived in the similar way.
After all constants are obtained, these small triangles with
the derived constants in the previous steps are rendered.

Fig. 6(b) depicts an illustration of the recovery scheme.
The dash line represents the edge functions E1’ and E2’
derived by our scheme. Edge function constants of E1” and
E2’ have the same magnitude and opposite sign. The pixels
in the green region must have positive value of one of the
two edge functions and are regarded as being in one of the
two triangles. Therefore, they are rendered correctly. In
Fig. 3(b), the teapot is rendered without anomalies using
the recovery scheme. The proposed recovery scheme only
involves one addition for evaluating one edge function
constant.

III. PROPOSED SCHEMES TO IMPROVE SUBDIVSION

ALGORITHM

In this section, we present three schemes to improve the
proposed subdivision algorithm.

A. Dual space subdivision

Many graphic libraries support three kinds of light
sources. Point and spot lights require coordinates of
vertices in the eye space for light directions. Therefore,
subdivision in the eye space is instinctive. After lighting,
coordinates in the eye space are projected to the screen
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space for the rasterization. Since the projection involves
the projection transform and perspective division which
are expensive operations, we introduce a dual space
subdivision scheme depicted in Fig 8.

Eye space
subdivision&
Lighting

Eye space coordinates
Normal vertices

Ai

Screen space coordinates|

Light intensity information

Rasterizer

Geometry information

Screen space
subdivision

Fig. 8: Data flow of dual space subdivision.

First, the original triangle is transformed to the screen
space but the eye space coordinate are maintained.
Secondly, the triangle is subdivided in both spaces. Finally,
for each small triangle, the eye space coordinates and
normal vectors are used for lighting. The screen space
coordinates are provided as the geometry information for
rasterization. With this scheme, the proposed subdivision
scheme is more efficient. The light intensity of the
rendered image, of course, is not perspective correct. This
problem is neglectable because human eye is not sensitive
to the light intensity difference and perspective correctness
is more important to texture coordinates, not light intensity.

B. Triangle filtering: Pre-Culling/ Clipping/Specular test

The conventional subdivision based approximating
Phong shading algorithms process small triangle
individually. They are not efficient because each small
triangle is processed with individual complicated culling
and clipping operations. Thus, a pre-culling scheme is
proposed to reduce the computation. This scheme is based
on the fact that the small triangles subdivided from the
original triangle are lying on the same plane in the space.
Therefore, they have the same face normal and the same
culling test result. If the original triangle is culled,
subdivision is unnecessary. Otherwise, all small triangles
are rendered without culling test. The proposed pre-
clipping scheme uses the same property. Once a big
triangle is clipped, all small triangles from the original
clipped triangle are guaranteed to be inside the viewing
frustum. Therefore, no additional clipping operations were
needed. The H test [11] is also adopted in the triangle
filtering scheme to eliminate unnecessary subdivision
operations. As illustrated in Fig. 9(a), the red region
indicates the triangles do not pass the H test and will not
be subdivided. Fig. 9(b) depicts the data flow of the
proposed filtering mechanism. Moreover, we deliver the

H -V terms to the Gouraud shader to eliminate the
recomputation for these terms.

C. Vertex attributes sharing

The conventional subdivision based approximating
Phong shading algorithms subdivide all vertex attributes
including depth, fog factor, and texture coordinates. These
attributes are interpolated linearly in rasterization stage
using planar equation [13]. Computing the planar equation
coefficients for one attribute involves a 3x3 matrix
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multiplication. A sharing scheme is proposed to reduce the
computation. Since the original triangle and the small
triangles are lying on the same plane, they define the same
plan equation. Therefore, the coefficients of the planar
equation derived from the small triangles are the same.

Gouraud
shading

Rasterizer

(b) Triangle filtering data flow

(a) H test passed region

Fig. 9: Illustration of triangle filtering scheme.

Reusing these coefficients eliminates the subdividing and
the setting up vertex attributes for the small triangles.
However, these coefficients have to re-setup for small
triangles for rasterization. The cost depends on the
rastization algorithm. It takes about three multiplications
to re-setup for each small triangle with tiled traversal
scheme [14].

Iv.

In this section, we present a brief analysis and comparison
for the proposed algorithm and the conventional
subdivision algorithm. To simplify the comparison, we

COMPLEXITY ANALYSIS

assume that one triangle is subdivided into 16 smaller ones.

Each vertex has five attributes. In this case, 15 vertices
where generated and they define 16 small triangles. The
conventional recursive scheme requires five stack push
and five stack pop operations. Each stack operation
involves three writes or reads, in Fig. 1, the memory were
accessed 30 times. In proposed scheme, generating one
vertex only accesses memory once and the total number of
memory accesses is 16.

The conventional scheme takes 15 projection transforms
and perspective divisions to project the generated vertices
to the screen space. With dual space subdivision scheme, it
only needs three of them. The triangle filtering scheme
also reduces the culling and clipping computation from 16
times to once. Setting up five attributes, in this case,
requires 80 3x3 matrix multiplications. With variable
sharing scheme, the expensive 3x3 matrix multiplication
can be replaced with inexpensive 1x3 matrix
multiplication for re-setting up each small triangle. Thus,
the setup cost of the subdivided triangles is equivalent to
80*(1/3) + 5 = 32 3x3 matrix multiplications where 5 is
the initial setup cost. The summary of the complexity
analysis is listed in Table. 1.

Table. 1: Complexity Comparison

Conventional Proposed Complexity
subdivision subdivision reduction
algorithm algorithm in percent

2376

Number of memory
accesses

30 16 46.6%

Number of the
projective
transforms and 15 3
perspective
divisions

80%

Number of the
clipping/culling test 16 1
operations

93.75%

Number of the 3x3
matrix
multiplications for
setup

80 32 60%

V. CONCLUSION

In this work, a subdivision algorithm for approximating
Phong shading is presented. The proposed algorithm is a
combination of a subdivision scheme using forward
difference and a recovery scheme to prevent rasterization
anomaly. Three schemes are proposed to lower the
computation of subdivision-based approximating Phong
shading. Compared with the conventional recursive
subdivision, the proposed algorithm is more efficient and
suitable for hardware implementation.
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Abstract

This paper addresses the problem of refining depth
information from the received reference and depth im-
ages within the MPEG FTV framework. An analytical
model is first developed to approximate the per-pixel
synthesis distortion (caused by depth-image compres-
sion) as a function of depth-error variances, intensity
variations, ground-truth depth and virtual camera lo-
cations. We then follow the model to detect unreliable
depth pixels by inspecting intensity gradients and to re-
fine their values with a candidate-based block dispar-
ity search. Additional side information is transmitted
to make both operations robust against compression ef-
fects. Experimental results show that our scheme offers
an average PSNR improvement of 1.2 dB over MPEG
FTV and consistently outperforms the state-of-the-art
methods. Moreover, it can remove synthesis artifacts
to a great extent, producing a result that is very close
in appearance to the ground-truth view image.

1 Introduction

Technology evolution in the capture and display of
3D videos will soon extend visual sensation from 2D
to 3D while allowing unrestricted spatiotemporal scene
navigation. In general, offering a 3D depth impression
of a real-world scene requires two separate images cap-
tured from properly arranged viewing positions. To en-
able scene navigation, a multi-view video may have to
be acquired through a dense camera set-up. However,
due to the complexity involved in acquisition, storage
and transmission, it is unlikely to have a large number
of camera inputs. An efficient 3D data format is thus
needed to allow the generation of intermediate views
from a sparse sampling of the observed scene.

For this, the MPEG committee has recently defined

a "multi-view video plus depth" data format [1], which
specifies a way of multiplexing the coded representa-
tions of a multi-view video and its associated per-pixel
depth information. With explicit scene geometry, an
arbitrary virtual view can be generated at the receiver
side by means of the so-called depth-image-based ren-
dering (DIBR) [2][3][4][5], requiring only a small num-
ber of view images for scene navigation. Since depth
images must be conveyed together with the correspond-
ing view images, both types of scene representations
are compressed, based mostly on H.264/AVC, for an
efficient use of network bandwidth.

Although block-based hybrid coding is equally ap-
plicable to depth-image compression, it causes undesir-
able synthesis artifacts. This is because depth images
represent scene geometry information, the characteris-
tics of which are very different from those of intensity
data. It was shown in [6] that visually imperceptible
depth errors can still have a profound effect on synthe-
sis quality.

A few approaches have been proposed to alleviate
synthesis artifacts caused by depth-image compression.
In [7] Tanimoto et al. found that the magnitude of
synthesis errors is linearly proportional to the distance
between the virtual and reference cameras. They pro-
posed to compensate the synthesis errors in a virtual
view by estimating their magnitudes from the errors
observed in a nearby reference view. Sung et al. [8], on
the other hand, made use of the Lambertian condition
to refine depth images. The process involves using the
similarity between the depth (and intensity) values of
corresponding pixels to detect unreliable depth pixels
and then refining their values through a group-based
disparity search. Because both schemes rely entirely
on the decoded information for intensity correction or
depth refinement, their performance is greatly influ-
enced by compression effects.

In this paper, we propose a synthesis-quality-
oriented depth refinement scheme. Rather than trying
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Figure 1. View synthesis based on multi-view
video plus depth.

to minimize depth errors, our scheme, as implied by
its name, intends to detect and refine only those depth
pixels that are highly sensitive to errors. An analytical
model was derived to measure how sensitive a depth
pixel is to its error in terms of synthesis distortions.
The model was also used as a guide for detection and
refinement. In order for the two operations to be able
to adapt to statistical changes due to compression ef-
fects, the settings of their control parameters are first
determined at the sender side by evaluating the per-
formance as perceived by the receiver over the range
of all possible choices, and then sent to the receiver as
the side information. Although extra bits are required
for signaling, the overhead is negligible and justified by
the significant improvement in synthesis quality. Ex-
perimental results show that the proposed scheme has
an average PSNR gain of 1.2dB over MPEG FTV and
consistently outperforms the state-of-the-art methods.

This paper is organized as follows: Section 2 con-
tains a brief review of DIBR. Section 3 introduces
an analytical model for characterizing synthesis dis-
tortions caused by depth-image compression. Section
4 describes our proposed synthesis-quality-oriented
depth refinement scheme. Section 5 compares the pro-
posed scheme with the state-of-the-art approaches in
terms of synthesis quality. The paper is concluded with
a summary of our observations.

2 Depth-Image-based Rendering

Depth-image-based rendering (DIBR) is a view gen-
eration method that renders virtual views of a scene
from a known reference image and its associated per-
pixel depth information. Often referred to as 3D im-
age warping, the process involves first reprojecting the
reference image into the 3D space utilizing its depth
information, followed by the projection of the recon-
structed scene onto the image plane of a virtual view

camera. The warping defines a vector-valued function
U that takes pixel coordinates p = [z,%]” in the refer-
ence view as input and returns the corresponding co-
ordinates p’= [2’,7/]” in the virtual view as output:

\IJ:{?}H[I{]:A’RA1[$}+ZLPA’T, (1)

where the rotation and translation matrices, R and T,
specify the relative position of the virtual camera; A’
and A indicate respectively the intrinsic parameters of
the virtual and reference cameras; and Z, is the depth
value associated with p. In the above, we have tacitly
assumed parallel camera configuration. The reader is
referred to [2] for details. For brevity we use ¥(p; Z,)
to denote the warping of the pixel p.

Eq. (1) establishes a depth dependent relation be-
tween the pixel coordinates of corresponding points in
an image pair. According to the equation, an arbitrary
virtual view can in principle be generated, provided
that the depth value Z, is known for every pixel p in
the reference image and that camera parameters are
available. In practice, however, the viewpoint naviga-
tion is constrained by disocclusion problems: "holes"
appear in synthesized images if areas occluded in the
reference view become visible in a virtual view. Such
artifacts become most obvious when the virtual view is
very far away from its reference.

To reduce the effects of disocclusion, the MPEG
committee has recently proposed a "multi-view video
plus depth" data format that enables the generation
of a virtual view to make use of more than one ref-
erence view. Figure 1 shows a classic illustration of
the view synthesis based on such data format. In the
example, each pixel in the virtual view is formed by a
weighted sum of its corresponding points in the two ref-
erence views, and depending on the disocclusion level,
the weight vector can vary from one pixel to another.
To find the corresponding points, depth images must
be transmitted along with their video signals. Due
to the enormous amount of data involved, both view
and depth images must be compressed prior to trans-
mission. The influence of depth-image compression on
synthesis quality is the subject of the next section.

3 Per-Pixel Synthesis Distortion Model

In this section, we introduce an analytical model for
characterizing synthesis distortions caused by depth-
image compression. The model is explained with ref-
erence to Figure 2, which illustrates an example of
disparity-compensated interpolation based on an im-
paired depth representation. In the figure, I+ denotes
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Figure 2. Disparity-compensated interpola-
tion using an impaired depth representation.

a virtual view image generated from the reference im-
age Ir utilizing its ground-truth, per-pixel depth in-
formation. As mentioned previously, the warping ¥
establishes a relation between the intensity values of
the reference and virtual images: p’ = ¥(p;Z,) and
Ir(p') = Ir(p). To simplify our discussion, we assume
that the reference image I is without coding errors.
The more general case can be analyzed along the same
lines of derivations that follow.

To examine the influence of depth-image compres-
sion on synthesis quality, we approximate the coding
effects of depth images by an additive noise model, i.e.,
Zy = Zp + ny,. Through the warping function ¥, the
depth error n, causes the projection of the pixel p to
move from p’ = ¥(p;Z,) to ' = \I/(p;Zp); the effect
is known as geometry distortion. It then follows that
Ir (p) is substituted for It (q’) as the intensity value
of the pixel q’; the squared difference indicates the syn-
thesis distortion contributed by n,:

& £ Ur) —Ir (@)’ = Ur(P) ~ Ir(@)’
(Ir (p) = In (p) — VIr (P) - (a — )’

= (-VIr(p)-(a—p))°, (2)
where q’ is inversely projected to Igr by the inverse
mapping function ¥~1(q’; Z,) and a Taylor’s series ex-
pansion is used to approximate Ir(q). Recognizing

that ¢’ = ¥(q;Z,) =¥(p;Z, + n,), we solve for the
vector difference (q — p) as

Q

—np

q-p= 51—,
Zy(Zp +1mp)

where ¢ = [ I, 0541 ] AR T is a vector depending
solely on camera parameters. Substituting this result
into Eq. (2) then yields

@z(ZE%EBW“””Y' Q

Now let us consider parallel camera configuration,
with which the vector ¢ has the form of [c,0]7 where

|| is proportional to the distance between the reference
and virtual cameras. Then it is obvious that

2
§p = (m) X 9923 (p) x A, (4)

where g, (p) denotes the x component of the gradient
VI (P) = [9z (P), gy (P)]T computed at p. To obtain
the expected per-pixel synthesis distortion conditioned
on ground-truth depth values, we take conditional ex-
pectations of both sides and expand (n,,/Z, (Z, + 1))
into its Taylor series in n,:

E{&|Zp, Z4}
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Z3 Z; Z; Zp
xm{P (p) x ¢
1 o (p) (2) 2

~ X x my(p) X ¢, (5)
Z? z2 g

where m,g?) (p) = E{g2 (p)} can be viewed as a measure

of how rapidly the intensity changes along the horizon-
tal direction at p, and o2 (p) indicates the correspond-
ing depth-error variance. In the above, n,, is assumed
to be independent of g, (p) and to obey the normal
distribution, i.e., n, ~ N(0,02(p)). The last approx-
imation in Eq. (5) is justified because Z, is usually
much greater than o, (p).

Eq. (5) provides a non-stationary model for the ex-
pected per-pixel synthesis distortion, which suggests
that the depth error for different pixels should have
different contributions to the overall synthesis distor-
tions. From the equation, the distortion caused by
np is determined by several factors measured at p:
the depth-error variance, the intensity variation, the
(ground-truth) depth value, as well as the position of
the virtual camera. Further insight into the combined
effects of these factors is gained by looking at Figure
3, which displays the ratio of Z, to o,(p) as a func-
tion of E{¢,|Z,, Z,}, under various settings of Z,,, Z,,

and mg,Q) (p) simulating smoothly- or rapidly-changing

depth/intensity fields. In the experiment, o, (p) was
varied to identify the highest level of error variance at
which the specified distortion is achieved. The result
is then used to compute Z, /0, (p). Intuitively, the ra-
tio, which we call depth-error sensitivity, characterizes
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Figure 3. Measuring the depth-error sensi-
tivity under various settings of Z,, Z, and

my (p).

Expected Synthesis Distortion

how sensitive a pixel is to its depth error in terms of
the extent of synthesis distortions. A higher ratio (sen-
sitivity) implies that a small error in depth can lead to
a considerable distortion.

From the figure, several important observations can
be made:

1. Compare the curves produced with different set-
tings of mf)(p). The larger the value of mf)(p),
the more sensitive the pixel p is to its depth er-
ror; namely, when depth errors happen in areas
with vertical edges or fine texture details, their ef-
fects on synthesis quality are more apparent. This
observation is also corroborated by [7].

2. Compare parts (a)(c)(e) with parts (b)(d)(f).
When a pixel corresponds to a farther clipping
plane, it exhibits a lower depth-error sensitivity.
In this case, the pixel has a larger depth value Z,
and according to Eq. (1), the resulting geometry
distortion is less significant.

3. Compare part (e) with parts (a)(c) (or (f) with
(b)(d)). When a pixel p is ill-warped to q’, the

L,

9,

Reference View

Target View

Figure 4. A geometrical interpretation of the
effect of Z, on depth-error sensitivity.

resulting synthesis error is less observable if Z, is
much greater than Z, (and hence Zp). The re-
sult can be explained using the example shown
in Figure 4, where q; and qs denote respectively
the inverse projections of q for _the two extreme
cases: Zg1 > Z, and Zgp <K Zp,. Since Zgy >
2p R Zp > Zg, the pixel p is much closer to qi
than to qs. In general, pixels that are spatially
closer to each other exhibit higher intensity corre-
lation, which explains the less significant change
in intensity when Z, > Z,.

4. Observe the reciprocal relation between o2 (p)/Z;
and c¢? in Eq. (5). It suggests that when a pixel p
is warped to a virtual view that is farther away
from the reference view, it is more sensitive to
depth errors.

These observations remain valid for other camera con-
figurations, except that the effects of the intensity vari-
ation and camera arrangement must jointly be consid-
ered by evaluating E{(VIg (p) - ¢)*}.

4 Algorithm Details

The framework of MPEG FTV [9] views the trans-
mitted depth images as deterministically specifying the
depth information for the reference images. The com-
pression effects of depth images were neglected dur-
ing the rendering of virtual views. As seen from the
analysis in §3, depth errors can cause disturbing syn-
thesis artifacts, especially at areas with sharp edges or
fine texture details. To tackle the problem, we propose
to regard both the received view and depth images as
sources of information about the ground-truth depth
of the scene, and provide ways to detect and refine un-
reliable depth values.

4.1 System Architecture

To allow for an easier understanding of our algo-
rithm, Figure 5 depicts the system block diagram with
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Figure 5. System Block Diagram.

a highlight on the data communicated between func-
tional blocks. As shown, for an economic use of net-
work bandwidth, both reference images {I;,I>} and
their respective per-pixel depth information {D;, D2}
are compressed prior to transmission. These data are
decoded and reconstructed at the receiver side before
they are used for the creation of virtual views. The
"prime" symbols in the figure differentiate the coded
view and depth images from their original sources.

Recognizing that depth-image compression may give
rise to depth errors, we introduce a depth refinement
mechanism at the receiver side. The objective is to
improve synthesis quality by refining the depth val-
ues for those pixels (which we call unreliable pizels)
being highly sensitive to depth errors. The process
consists of two sequentially operated steps: (1) the de-
tection of unreliable pixels and (2) the refinement of
their depth values, both need to access the coded view
and depth images. To make their performance robust
against compression effects, additional control parame-
ters are transmitted to the receiver as the side infor-
mation, with their settings being determined at the
sender side by evaluating the detection and refinement
quality as perceived by the receiver over the range of
all possible choices. The details are elaborated in the
subsequent sections.

4.2 Reliability Detection

The detection process at the receiver side aims to
discover unreliable pixels—i.e., those that are highly
sensitive to depth errors and hence require higher fi-
delity for their depth values in order to minimize ren-
dering errors. From the theoretical analysis in §3, a
pixel is likely to be unreliable if it locates in a re-
gion with large intensity variation, or if it represents
a pixel in a near clipping plane. Although both facts
can jointly be utilized to form detection criteria, we
consider only the use of intensity variation because
view images are generally better compressed than their
depth representations, making the intensity informa-

tion more reliable for decision-making.

To quantify intensity variation, we adopt the
Gaussian derivative operator to compute gradient for
all the pixels in view images. A pixel p is considered
to be unreliable and its depth value deserves refining
if the magnitude ||VIj (p)|| of its gradient exceeds a
given level Tp'. According to Observation #1 in §3,
such a pixel is highly sensitive to depth errors, hence
requiring higher precision for its depth value. Appar-
ently, the value of Tp plays a pivotal role in determin-
ing the detection accuracy. With non-stationary signal
statistics, we propose to adapt Tp on a frame-by-frame
basis. This is realized by transmitting its value as the
frame-level side information.

In determining the value of Tp for a particular
frame, we wish to strike a good balance between the hit
and false-alarm rates. The best setting of Tp, denoted
by T}, should have the subset of pixels S(T}) = {p :
VI (p)|| > T3} contain as many unreliable pixels as
possible while keeping the number of reliable ones to
be minimal. To find T}, we first associate each plau-
sible choice of Tp and the corresponding set of pixels
S(Tp) with a matching score that weights the hit rate
against the false-alarm rate:

J(Tp) = Z (1s(p)é, — (1 —1s(p))m),

peS(Tp)

where 1s : p €S — {0, 1} is an indicator function de-

fined as
1 ifg, >0
15(1")_{0 ife, <o

Then we choose, among all possible choices, the one
that yields the highest matching score, ie., T} =
arg maxr,, J(Tp). The approach can be interpreted as
to evaluate, at the sender side, the detection quality as
perceived by the receiver.

In the course of computing the matching score, it
is necessary to decide whether a hit or false alarm oc-
curs. This is accomplished by evaluating the per-pixel
synthesis distortion £, at the sender side with I; and
I, (or in the reverse order) being used in place of Ig
and I7, respectively (cf. Eq. (2)). Specifically, if £,
is greater than or equal to a threshold §, indicating
that the depth associated with the pixel p may be un-
reliable, a hit is identified; otherwise, a false alarm is
signaled. Ideally, the § should be set to zero accord-
ing to the Lambertian condition; however, in practice a
non-zero value was used to compensate camera noises
and illumination difference between view images. The

IWith parallel camera configuration, only the  component of
the gradient is computed and compared with Tp (cf. Eq. (4)).
Also, I}, represents a coded reference image.



settings of § and 7 that yield the best synthesis quality
(in terms of PSNR) are searched exhaustively at the
sender side. Note that they need not be transmitted
to the receiver.

4.3 Depth Refinement

After we discover all the unreliable pixels, our next
step is to refine their depth values. Because depth re-
finement is performed by the receiver, its operation
must be made computationally simple and efficient.
For this reason, we adopt a candidate-based disparity
estimation scheme to derive depth from the received
view images. As in most block-based algorithms, a con-
stant disparity is searched for each block of pixels (of
size 7 x 7), centered on an unreliable pixel p, by min-
imizing the error between the two view images after
disparity compensation. However, unlike their tech-
niques, which usually require examining a large num-
ber of disparities, ours restricts the search to only those
disparities that correspond to an integer depth value in
the interval of [Z, — R, Z, + Rp]. On one hand, this
constraint is an expediency out of complexity consid-
erations, and on the other hand, it prevents the simple
block-based search from getting an improper disparity.

Although reducing the number of search candidates
helps to simplify the disparity search, the issues are
how to determine a proper value of R, for each unreli-
able pixel and how to signal the information efficiently.
As described previously, the value of R, determines

the maximum modification of 2,_, that can be caused
by depth refinement—i.e., it controls the strength of re-
finement. It was found in our analysis that the depth
error sensitivity of a pixel is related to its ground-
truth depth value, implying that the adaptation of R,
should refer to the value of 2,) (which is an approx-
imation of Z,). For a trade-off between quality and
overhead, we divide the set S(T7},) into N disjoint sub-
sets s;(Th),1 < i < N, each of which is assigned a
refinement search range 7;. A uniform quantizer that
operates on the received depth Z, is used to catego-
rize the unreliable pixels in S(7%) into one of the N
subsets. After that, the best settings of {r;}¥, are
searched exhaustively at the sender side and transmit-
ted to the receiver as the side information.

Figure 6 shows a sample result of our refinement
process. Observe that depth compression introduces
blocking artifacts on the decoded depth image (see Fig-
ure 6 (b)(e)). With depth refinement, we can remove
the artifacts largely (see parts (c) and (f) of Figure 6);
note the clarity of object boundaries that simply are
not visible in the decoded depth image. Interestingly,
the refinement can even recover some details that are

(d) (e) (f)

Figure 6. A sample result of the proposed
depth refinement algorithm: (a)(d) the orig-
inal depth image, (b)(e) the decoded depth
image, and (c)(f) the refined depth image.

removed by the enforcement of depth smoothing (com-
pare parts (a)(d) and (c)(f) of Figure 6).

5 Experiments

Simulation was carried out to demonstrate the per-
formance of the proposed scheme, and the results were
compared with that of [7] and [8]. All the refinement
schemes were implemented with the MPEG committee
software VSRS 2.1. All experiments used DERS 2.0
to generate depth images and JMVC 3.0.1 to encode
multi-view videos and their depth. The average PSNR
of synthesized images was computed based on the first
100 frames of each test sequence. Particularly, in im-
plementing the method described in [7], we employed
the magnitude of synthesis errors rather than manually
generated edge maps to distinguish pixels of different
categories. For a fair comparison, all the threshold val-
ues used in [7] and [8] were determined by optimizing
the quality of synthesized images.

Figure 7 compares the PSNR of various schemes
when the depth QP is varied from 22 to 44. The
curves associated with MPEG FTV were produced
without depth refinement. To see the effects of ref-
erence quality, parts (a) and (b) show the results
generated utilizing high-quality references (QP=22),
whereas parts (c) and (d) are their low-quality counter-
parts (QP=31). It can be seen that all three schemes
outperform MPEG FTV in all test sequences, and as
expected, the improvement is the greatest when depth
images are coarsely quantized. Moreover, ours has the
highest gain of all the schemes—an average PSNR im-
provement of 1.2dB over MPEG-FTV. The results are
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Figure 7. PSNR of synthesized images as a
function of the depth and reference QP. The
reference view images are coded with QP=22
(a)(b) and QP=31 (c)(d).

consistent with different test conditions.

Figure 8 further compares the subjective quality of
synthesized images. Part (a) illustrates what can hap-
pen if incorrect depth information is used for view syn-
thesis. Parts (b) through (d) show the results obtained
by correcting depth with one of the three schemes just
described (i.e., [7], [8], and ours). As can be seen,
"ghost effects" appear around object boundaries if the
depth is not refined; in comparison, the visual results
with depth refinement are considerably improved. Our
scheme even produces a result that is very close in ap-
pearance to the ground-truth view image. The rea-
son behind the superior performance can be explained
with Figure 9, which makes visible the unreliable pix-
els detected by the three schemes. As expected, our
scheme tends to correct more depth pixels locating in
areas with fine texture details or vertical edges—namely,
those that will crucially affect synthesis quality.

6 Conclusion

To alleviate the coding effects of depth images,
we proposed in this paper a synthesis-quality-oriented
depth refinement scheme. The approach is character-
ized by the unique consideration of attempting to refine
only those depth pixels that are likely to cause notice-
able synthesis artifacts. In the course, we developed
an analytical model to establish criteria for reliability
detection and to form guidelines for depth refinement.
Since both operate on the decoded information, addi-

tional side information is transmitted to make them ro-
bust against compression effects. Experimental results
show that our scheme has the highest PSNR gain of
all the state-of-the-art methods. It also produces a re-
sult that is visually similar to the ground-truth image.
Better performance is expected with the incorporation
of more sophisticated disparity search. Besides, the
analytical model can find its application in developing
depth compression algorithms.
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Figure 8. Subjective quality comparison of synthesized images: (a) MPEG FTV (without depth re-
finement), (b) Tanimoto [7], (c) Sung [8] and (d) the proposed scheme. The depth QP is set to
44,

Figure 9. Pixels whose depth values are judged unreliable: (a) Tanimoto [7] (category 2), (b) Sung [8]
and (c) the proposed scheme.
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Abstract—In this paper, we have proposed a fast inter-processor
communication interface (IPC) for a dual-core Java application
processor. The dual-core Java application processor is a SoC
composed of a RISC core and a double-issued Java bytecode
execution core. The proposed fast IPC mechanism provides Java
system software a high-level way to invoke a host processor
service routine from Java source code. The proposed IPC has
much lower overhead than that of the standard Java Native
Interface (JNI). Unlike other fast native call interface designed
for VM interpreter, the proposed IPC mechanism is exclusively
designed for the communication between two physical
hardwired processor cores. Based on the experimental results,
the proposed mechanism is very promising for embedded Java
runtime environment.

I. INTRODUCTION

Java runtime environment is becoming very important for
embedded applications. Due to its machine code-level
portability across different operating systems and processors,
it has been selected by many standard organizations (such as
3GPP and DVB) as the standard application environment for
multimedia-capable mobiles and set-top boxes [6][7]. A dual-
core Java application processor was proposed in [1]. The Java
application processor is composed of a host processor core
(PowerPC 405 in [1]) and a double-issue Java bytecode
execution core. The later is referred to as the Bytecode
Execution Engine (BEE) core.

In order to support the full Java runtime environment
(JRE), the proposed joint software-hardware architecture is
shown in Fig. 1. Upon the execution of a Java application, the
class loader running on the host processor core will load and
parse the main class file into the runtime method/class data
structures and store the runtime information in the method
area. The BEE core will then be initialized to fetch-and-
execute the byte codes of the application class files from
method area. In order to reduce the implementation cost of the
Java Dbytecode execution core logic, some complex
instructions such as the floating point operations, system
resource access operations(e.g. for memory allocation, media
accelerators, and 1/O service), etc., will be implemented on the
host processor core as service routines. The communication
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between the BEE core and the host processor core must be
achieved  through  some  efficient inter-processor
communication interface.
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Fig. 1 Proposed dual-core JRE architecture.

Ideally, the IPC should allow the Java source code to
invoke a host processor service routine. One possible
approach is to implement the Java Native Interface (JNI) [2].
JNI is designed to handle situations where Java applications
need to call a library implemented in native binary form
(usually a dynamic loading library). As a two-way interface,
the JNI can support two types of function calls: down-calls
and up-calls. Down-calls are cases when a Java application
invokes native functions, while up-calls are cases when native
functions invoke JNI interface function to access the Java
application resource such as field and data. Due to its general
and flexible nature, JNI overhead are pretty high. It involves
call stack conversion and dynamic native function loading and
calling (automatically handled by the OS). Therefore it is not
efficient enough for the one-way host system service
invocation we need in the proposed dual-core JRE architecture.

Most VM implementation leaves a back-door interface for
fast native system function calls. However, the designs are in
general for software-based VM interpreters. Therefore, calling
native operating system services from a native VM interpreter
application are quite straightforward. In this paper, the design
of a Fast Host Service Interface for invoking host system



routines from the Java processor is proposed. A special Java
class, mmes.native, as a one way BEE-to-host calling interface
is implemented to make services calls to host processor
transparent to Java source programs. Any references to the
methods in this special class from a Java application will be
intercepted at the byte code level by the BEE core and turned
into native calls to host service routines. Neither stack
conversion nor data structure conversion is necessary for such
native calls since all the parameters will be passed into host
processor directly by exporting the internal Java stacks to the
host processor via memory-mapped I/O mechanism. FHSI
aims to provide an extendable and efficient design for inter-
processor communications between the host processor and the
Java bytecode processor.

The paper is organized as follows. Section II describes the
details of FHSI, including runtime method resolution and the
parameter passing mechanism. Section III describes the

implementation platform and shows some experimental results.

Some concluding remarks are given in section I'V.

II.  FAST HOST SERVICE INTERFACE

Proposed Fast Host Service Interface has two major steps.
At first, Java application invocates the method defined in
mmes.HostService through fast dynamic method resolution.
Then, interrupt will be enabled to pass arguments to host
system service routine.

A.  Fast Dynamic Method Resolution

In our proposed dual-core JRE architecture, the dynamic
class loader is a routine running on the host processor core. It
locates and loads Java classes upon the request of the BEE
core (triggered by, for example, a “new” instruction). This
dynamic class loader shall not be mistaken as the Java class
loader. Note that there can be more than one class loaders in a
Java application, but the dynamic class loader running on the
host processor is unique. This loader converts class files into
Java runtime information images and incorporate them into a
large runtime information structure. Each class file is stored in
a structure shown in Fig. 2, which is composed of four parts,
including class table of Constant Pool TOC (TOC), constant
pool, field, and method information.

}4—16 mts—>{

Header < ‘

*All values are in big-endian format.

reserve Field Info Addr | Method Info Addr

addr 0
Index of addr 1
Constant Pool

addr n

Constant Pool Data

Constant Pool
(Same as that in the class file)

Info

data space (8 bytes)

Info

Field { access flag 0 ‘ name index 0 ‘descriplor index0| heap offset 0 ‘
iel

‘ access flag k-1 ‘ name index k-1 ‘descriptor idxk—1| heap offset k-1 ‘ data space (8 bytes)

‘ access flag 0 ‘argumentcounto‘ max stack | max local

Method 0 bytecodes

Method
Info

‘ access flag m-1 ‘argumentcntm—ﬂ max stack | max local
Method m-1 bytecodes

Fig. 2 Definition of Java runtime information.

The last three parts are copied directly from the original
java class file and the offset address of field information and
method information can be indexed by “Filed info Addr” and
“Method info Addr”. Each entry in the Constant Pool TOC is
the address (relative to the base address) to the TAGs in the
constant pool extracted directly from the class file [8]. Some
indirect references will be resolved by the class loader in
advance so that dynamic resolution during runtime will be
faster and simpler. An example is shown in Fig. 3. A byte
code instruction, invokestatic 1D, refers to the constant pool
entry 1D and “Methodref info” represents a symbolic
reference to the method declared in a class. A typical JavaVM
resolves this symbolic reference at runtime. Our class loader
will resolve some references if possible during class loading to
speed up runtime operations.

}4—16 bits—o{

- Methodref_info(oa)
oA
class_index=02
name&type_index=1C
B8|00|1D v
f : Name&type_info(oc),
invokestatic 1D Class() T~ O)ép
Tag 7,07 name_index=15
name_index=01 g*
Utf8(1) Utf8(1) Utf8(1)
Tag'='01 Tag =01 Tag'='01
length=07 length = 07 length = 06

Method Name

Fig. 3 Dynamic method resolution of Java.

Fig. 4 shows our mechanism for fast resolution. The class
loader uses the memory space following a “Methodref info”
entry to store the target address of the method reference.
During runtime, the instruction, invokestatic 1D, refers to the
constant pool entry 1D of the constant pool TOC, and read the
data of that entry. Then, the java BEE core will retrieve the
target address points to the method entry directly. With this
mechanism, dynamic resolution will be faster at runtime.
Symbolic references to other information, such as interfaces
and fields, are implemented in the same way.

zggig’ invokestatic 0x001D
Constant Pool I
Toe Dx0156 0x001D<<1+0x8+base_addr
addrn
Constant Pool Data
™ Methodref_info(oA)
Tag =0A
class_index=02
name&type_index=1C
1 direct address
< access flag arg_cnt max stack max locals
Method Code 000A 0002 0004 0003
Area 033DAT700...................

Fig. 4 Fast dynamic method resolution.



B. Java Stack Operation for Method Invocation

According to the Java VM specification [8], when an
instance method is invoked, a reference to its instance is
passed in through local variable 0 in the stack frame. In the
Java programming language the instance is accessible via the
keyword, this. Class (static) methods do not have an instance,
so a class method starts using local variables at index zero.
Therefore our method invocation is set up by pushing
arguments onto top of stack. When the frame for the new
method is created, the arguments passed to the method
become the initial values of the new frame's local variables.

Note that only a pair of VP (variable pointer) and SP
(stack pointer) exists in stack. VP stands for the first local
variable of the current method, while SP means a next top of
entry in stack. In each frame, some information besides local
variable are stored against the program execution. Pervious
JPC (java program counter) record the return point and
Pervious VP points to the original VP at the previous frame.

After the information of the invoker is recorded, the new
method is invocated. When it returns, its return value is
pushed onto the operand stack of the frame of the invoker. The
VP and SP are then reset. Fig. 5 and Fig. 6 show the
transformation of stack for method invocation and return.
They key idea for the proposed Fast Host Service Interface is
to let the java BEE core identify and intercept all method
invocations to a special Java class (mmes.HostService) and
then signal an interrupt to the host service handler routine
running on the host processor. The caller stack will also be
exposed to the host processor service routine.

VP+— Local var 0 Local var 0 [
Previous JPC Previous JPC original
Previous VP Previous VP frame
Operand stack |::> Operand stack
TOS-1 (arg 0) VP+— Local var 0
TOS (arg1) Ic;ncz)l(s Local var 1 new
SP+— Local var 2 frame
Previous JPC
Previous VP —
SP+—

Fig. S Java stack operation for method invocations.
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Fig. 6 Stack transformation for method return.

C. Execution Flow of Fast Host Service Interface

Fig. 7 shows a detail Fast Host Service Interface example
when a Java application calls an I/O service,
mmes.HostService.print(), on the host side.

1. The Java code that calls mmes.HostService.print() is
compiled by Java compiler into an indirect reference
which is composed of instruction and a unique ID
referred to the constant pool.

2. The proposed fast method resolution mechanism
resolves this indirect reference and start executing
the bytecode sequence of mmes.hostservice.print().
Each method in the class mmes.hostservice has some
inline user-defined bytecode that assign the unique
service ID to the interface register, ServicelD, and
signals an interrupt to the host processor.

3. Upon reception of the interrupt, the host processor
executes the host service routine that corresponds to
the ServicelD register. Note that there are still some
custom data registers are cached for parameter
passing even though the proposed BEE core has
three register for three top stack elements. These
custom data registers are designed for host services
only. Therefore, the service routine on the host
processor can accesses parameters directly through
the custom data registers which are consistent with
operand stack.

Java Code
mmes.hostservice.print ( args ) ;

-> B800 1D

l«——Top of Stack

Previous VP

@

method args 0 L
invocatiol

Previous JPC

package mmes;
public class hostservice {

public static void print ( int args0 )
{ inline bytecodes
1. Record a unique ID from
method resolution (B8 00 1D)

2. Enable Interrupt
}

Custom Regs.

args 0

ISR

3 ; —V¥
case ServicelD :
printf (“ %d “, * args 0) ;
Related ISR in language C

Fig. 7 Execution flow of FHSI.



III. EXPERIMENTAL RESULT

The proposed dual-core JRE is implementation on an SoC
emulation platform, the Xilinx ML405. The platform is based
on a Virtex IV FPGA with a PowerPC hard IP core. Both the
processor frequency and the bus frequency are 100 MHz. On
the RISC side, a thin OS kernel is used for the experiments.
Some host services (to support the behavior including new
object, new array, and print out) are encapsulated in an ISR.
The RTL model of the java BEE core is written in VHDL and
the synthesis report using SynplifyPro for the Virtex IV
device is shown in TABLE II.

TABLE I.  SYNTHESIS REPORT OF THE BEE CORE
Device : vertex-4 xc4vfx20 ff672-10

Number of Slices 3390 out of 8544 39%
Number of Slice Flip Flops 3394 | outof 17088 19%
Number of 4 input LUTs 4405 | outof 17088 25%
Number of 10s 524
Number of bonded IOBs 0 | outof 320 0%
Number of FIFO16/RAM16s 12 | outof 68 17%
Number of as RAM16s 12
Number of DSP48s 3 | outof | 2| 9%
Minimum period 9.600 ns
Maximum Frequency 104.170 MHz

A.  Interrupt Overhead of the Target Platform

The communication efficiency between the java BEE core
and the host processor core is crucial for such heterogeneous
dual-core model. In general, interrupt-driven and polling are
two common ways of the inter-processor communication. In
TABLE 1II. , the communication latency of each method is
shown. The unit of cycle means that the clock cycles are
required, and milliseconds is the multiplication of cycles and
period (10 nanoseconds). Although polling has smaller latency,
we choose to use interrupt mechanism for its flexibility.

TABLE II. THE LATENCY OF INTER-PROCESSOR COMMUNICATION

#Cycle Milliseconds
Interrupt-driven 474 0.05
Polling 135 0.01

B.  Efficiency of the Proposed Host Service Invocation

TABLE III. is the experimental result comparing the
proposed dual-core JRE to the standard CVM running on the
same emulation platform. The value in TABLE III. stands
for execution time in milliseconds for some Java operations
(method invocation, native method invocation, and the new
object) executed for 10,000 iterations. The less value means
the higher performance.

Method invocation is the common function call and it
represents a symbolic reference to the method declared in a
class. This experiment presents the capability of dynamic
resolution. We get about 10 times improvement of this
operation due to the design of fast dynamic method resolution.

Native method invocation means a Java application
invokes the native C dummy function for 10,000 times.

Although proposed JRE has extra interrupt overhead per
native call, the performance is still slightly better than that of
CVM. According to the experiment, the overhead of interrupt
is 98.2% (15,979,980 of 16,269,995 cycles). Only 1.8% of
the execution time is for the Java bytecode. Note that IPC
overhead is unavoidable for a dual-core processor, but the
advantage is that the overall system performance is higher.
For example, we have use two benchmarks, PI and SIEVE, to
show the full system performance. For PI, calculation of & to
500 decimal digits, the execution time of the proposed dual-
core JRE is 176 milliseconds while the execution of Sun’s
CVM is 1086 milliseconds. For SIEVE benchmark, the
execution times of the proposed dual-core JRE and Sun’s
CVM are 2,887 milliseconds and 26,199 milliseconds.

The last experiment tested the overhead of “new object,”
which instantiates an object through the “new” bytecode
instruction. It is the worst case of the proposed system due to
memory management overhead under the host processor side.
This overhead can be reduced if the memory management
functions are optimized for the proposed system.

TABLE III. EXPERIMENTAL RESULT

Dual-core JRE Sun’s CVM
method invocation ( java-call-java ) 3 ms 42 ms
native invocation ( java-call-c ) 163 ms 171 ms
new object 375 ms 42 ms

IV. CONCLUSIONS

A dual-core Java application processor and a fast IPC for
the Java core to invoke system service routines running on the
host core is presented in this paper. The proposed IPC
mechanism is very extensible and the experimental results
show that it is also very efficient.
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