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Abstract

For finite-dimensional linear systems, the Youla–Kucera parameterization (YKP) with a Q

parameter over RHN is assumed to satisfy the Diophantine identity. However, the stability is

guaranteed if the Diophantine equation is the ‘‘U(RHN)‘‘ equality, but not if it is the ‘‘identity’’

equality. However, Vidyasagar’s structure with an H parameter over U(RHN) is an observer–con-

troller configuration that satisfies the Diophantine equation. This study discusses the deficiency of the

Diophantine identity; expands the YKP using an H parameter over U(RHN), and expands the

Vidyasagar’s structure using a Qv parameter over RHN so that both of the expanded

parameterizations satisfy the Diophantine equation and are equivalent for all stabilizing

compensators. Moreover, an equation that relates to Q, Qv, and H will be introduced to establish

relationships among the YKP, Vidyasagar’s structure and both expanded parameterizations.

r 2007 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

All stabilizing controllers have to date involve well-known Youla–Kucera parameter-
ization (YKP) with a Q parameter over RHN for finite-dimensional linear systems [1–6].
The YKP is supposed to satisfy the Bezout identity or the Diophantine identity [3,6].
However, the stability is guaranteed when the Diophantine equation is the ‘‘U(RHN)’’
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equality rather than the ‘‘identity’’ equality. The assumption of the Diophantine identity
suggested by Youla et al. [3] causes the ‘‘U(RHN)’’ parameter to be omitted from the
parameterization of all stabilizing compensators. The omission of the ‘‘U(RHN)’’
parameter makes finding another form of parameterization difficult. Vidyasagar [6] agreed
that the YKP were all stabilizing compensators, and so included the stabilizing solutions to
Vidyasagar’s structure (VS) that he proposed. The VS with an H parameter over U(RHN)
is an observer–controller configuration that satisfies the Diophantine equation. However,
the solutions to VS differ greatly from those to the YKP, as will be discussed herein. YKP
and VS motivate the present study of the deficiency with the Diophantine identity,
the expansion of the YKP (EYKP) by adding an H parameter over U(RHN), and
the expansion of VS (EVS) by adding a Qv parameter over RHN so that both of the
expansions satisfy the Diophantine equation and are equivalent to all stabilizing
compensators. Moreover, since H builds the bridge between the EYKP and the EVS, an
equation in Q, Qv, and H that connects YKP, VS, EYKP, and EVS can be introduced.
Other parameterizations of stabilizing controllers for other systems are available [7–11].

Infinite-dimensional linear systems [7,8], admit (weakly) left/right/ doubly coprime
factorizations by means of Banach algebras; such systems which are algebraically and
topologically more complex than the ring RHN. For structurally stable multidimensional
systems, it is not known yet whether or not a stabilizable plant always has its doubly
coprime factorization [9,10]; parameterization method of stabilizing controller without
doubly coprime factorization is presented [11].
The study is laid out as follows. Section 2 discusses the deficiency of the Diophantine

identity, which reduces the solutions to all stabilizing compensators. Moreover, the EYKP
is introduced. Section 3 investigates VS again and develops the EVS. Moreover,
the relationships among the EVS, VS, the EYKP, and the YKP are specified by an
equation that relates Q, Qv, and H. Section 4 presents an example that confirms the
accuracy of the derivation and demonstrates the selection of Q, Qv, and H and draws
conclusions.
Mathematical notations:

Re(s)
 real part of s, where s is a complex variable

RHN
 set of analytic real rational function matrices analytic in Re(s)40

R(s)
 set of real rational functions

Rn� n
 consists of n�m matrices whose elements are in R(s)

HARn� n
 unimodular matrix over RHN if the inverse of H exists over RHN
U(RHN)
 set of unimodular matrices over RHN
Rp(s)
 set of proper rational transfer function matrices
2. The deficiency of diophantine identity

This section discusses the deficiency of the Diophantine identity, which the YKP
satisfies, and elaborates an output-feedback controller and an observer–controller
compensator with two independent parameters. One parameter is over RHN and the
other is over U(RHN). Both of the compensators are input–output equivalent, and can be
transformed into ‘‘the EYKP’’, which satisfies the Diophantine equation with an extra
property that the YKP does not have.
The following well-known facts are presented as they will be extensively applied herein.
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A system matrix P(s)ARp(s) is said to exhibit doubly coprime factorization if there exists
a right coprime factorization (rcf) of P(s), i.e., P ¼ NM�1, a left coprime factorization (lcf)
of P(s), i.e., P ¼ ~M

�1 ~N, and Xr, Yr, Xl, YlARHN such that

X r Y r

� ~N ~M

� �
M �Y l

N X l

" #
¼

M �Y l

N X l

" #
X r Y r

� ~N ~M

� �
¼ I . (1)

Then, the set of all negative output-feedback controllers achieving internal stability of
P(s) can be parameterized as follows:

CðsÞ ¼ ðX r þQ ~NÞ�1ðY r �Q ~MÞ; detðI þQ ~NX�1r Þð1Þa0, (2)

CðsÞ ¼ ðY l �MQÞðX l þNQÞ�1; detðI þ X�1l NQÞð1Þa0. (3)

Eqs. (2) and (3) are the well-known YKP. Moreover, suppose P(s) is controllable and
observable, and its realization is

P =
A B

C D
, (4)

where AARn� n, BARn�m, CARp� n and DARp�m are real constant matrices. Let F and L

be such that A+BF and A+LC are both stable, then the coprime factor state models for
the system and controller become

0l

l

A BF B
M Y

F I
N X

C DF D I

+
−

= − −
+

−L
, (5)

−
−

−++
=

−
IDC

IF

LLDBLCA

MN

YX rr 0

)(

~~ , (6)

where FARm� n is a control gain matrix and LARn� p is an observer gain matrix [12].
However, the set of all stabilizing observer–controller compensators can be given by

yo ¼ ḠuðsÞuþ Ḡyy, (7)

where yo is the output of the observer–controller compensator and

ḠuðsÞ ¼ X rðsÞ þQðsÞ ~NðsÞ � I , (8)

ḠyðsÞ ¼ Y rðsÞ �QðsÞ ~MðsÞ. (9)

The observer–controller compensator that is composed of ḠuðsÞ and ḠyðsÞ and the YKP
are input–output equivalent because of ½I þ ḠuðsÞ�

�1ḠyðsÞ ¼ ðX r þQ ~NÞ�1ðY r �Q ~MÞ.
The YKP given by Eq. (2) and the observer–controller compensator given by Eq. (7) are

confined to the Diophantine identity as follows:

½X rðsÞ þQðsÞ ~NðsÞ�MðsÞ þ ½Y rðsÞ �QðsÞ ~MðsÞ�NðsÞ

¼ ½I þ ḠuðsÞ�M þ ḠyðsÞNðsÞ ¼ I . ð10Þ
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However, the internal stability is confirmed if the Diophantine equation is the
‘‘U(RHN)’’ equality [3,6]. The EYKP derived from the compensators in Theorem 1 or
Corollary 2 below is utilized to demonstrate that for the EYKP, all stabilizing
compensators satisfy the Diophantine equation, which is the ‘‘U(RHN)’’ equality.

Theorem 1. The set of controllers in the following:

C1ðsÞ ¼ ðHX r þW ~NÞ�1ðHY r �W ~MÞ (11)

are all stabilizing compensators and H(s)AU(RHN) and W(s)ARHN are independent of each

other. As presented in Fig. 1 ur is the command reference, ud is the input disturbance, and un is

the sensor noise; er, ed, and en are the internal signals, and y is the output of P(s).

Proof. Applying X rðsÞMðsÞ þ Y rðsÞNðsÞ ¼ I and ~NðsÞMðsÞ � ~MðsÞNðsÞ ¼ 0 to the left-
hand side of Eq. (12) yields the right-hand side as follows:

ðHX r þW ~NÞM þ ðHY r �W ~MÞN ¼ H 2 UðRH1Þ. (12)

Eq. (12) indicates that Eq. (11) satisfies the Diophantine equation. Also, Eq. (12)
guarantees the internal stability of the system so that the nine transfer functions of Fig. 1
from ður; ud ; unÞ to ðer; ed; enÞ are stable as follows:

er

ed

en

2
64

3
75 ¼

MH�1 MH�1ðHX r þW ~NÞ � I �MH�1ðHY r �W ~MÞ

MH�1 MH�1ðHX r þW ~NÞ �MH�1ðHY r �W ~MÞ

NH�1 NH�1ðHX r þW ~NÞ I �NH�1ðHY r �W ~MÞ

2
64

3
75

ur

ud

un

2
64

3
75.

(13)

Hence, Eq. (11) describes all stabilizing compensators.
In Eq. (13), H(s) appears in all nine elements, but W(s) does not appear in the first

column. Moreover, W(s) and H(s) have different characteristics. H(s) must be invertible,
but W(s) need not be. W(s) can have zeros in the right complex plane, but H(s) cannot.
Hence, W(s) and H(s) are mutually independent parameters. &

Since the feedback systems in Figs. 1 and 2 are input-output equivalent, the following
Corollary 2 can be obtained directly from Theorem 1.

Corollary 2. In Fig. 2, the set of observer– controller compensators is defined as follows:

Ḡ
0

uðsÞ ¼ HðsÞX rðsÞ þW ðsÞ ~NðsÞ � I , (14)

Ḡ
0

yðsÞ ¼ HðsÞY rðsÞ �W ðsÞ ~MðsÞ (15)
1( HXr + WN )− P
er ed

ud

+

+

HYr  −  WM
~

~

en
+

+

y

un

+

−

ur

Fig. 1. Stabilizing controller in Theorem 1.
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Fig. 2. Observer–controller configuration of Corollary 2.
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Fig. 3. Expansion of the Youla parameterization.
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are all stabilizing compensators, and H(s)AU(RHN) and W(s)ARHN are independent of

each other.

In the feedback systems in Figs. 1 and 2, their compensators are equivalent for all
stabilizing compensators that satisfy the Diophantine equation. If W(s) is redefined as
H(s)Q(s), then the compensator of Fig. 1 can be redrawn as the EYKP in Fig. 3, where the
nine transfer functions from ður; ud; unÞ to ðer; ed; enÞ satisfy

er

ed

en

2
64

3
75 ¼

MH�1 MðX r þQ ~NÞ � I �MðY r �Q ~MÞ

MH�1 MðX r þQ ~NÞ �MðY r �Q ~MÞ

NH�1 NðX r þQ ~NÞ I �NðY r �Q ~MÞ

2
64

3
75

ur

ud

un

2
64

3
75. (16)

In Eq. (16), H(s) is eliminated from the second and third columns, but remains in the
first column. That is, H(s) in the EYKP exhibits the pre-filter property, but cannot
contribute to feedback.

Notably, if X rðsÞ þQðsÞ ~NðsÞ and Y rðsÞ �QðsÞ ~MðsÞ are left coprime, then HðsÞ½X rðsÞ þ

QðsÞ ~NðsÞ� and HðsÞ½Y rðsÞ �QðsÞ ~MðsÞ� are also left coprime. This fact may explain the
omission of the structure in Fig. 3 from all stabilizing controllers to date.

H(s) in the EYKP that is related only to ur, but not to ud or un. The following section
presents another equivalent parameterization of all stabilizing compensators, the EVS,
where H(s) relates to ur, ud, and un.

3. Vidyasagar’s structure and all stabilizing compensators

VS is an observer–controller configuration, as displayed in Fig. 4 [6]. The observer that
is composed of Xr(s) and Yr(s) over RHN reconstructs the ‘‘internal state’’ z as ẑ, and the
controller K(s)ARHN feeds back ẑ. The system is internally stable if and only if [6]

MðsÞ þ KðsÞ ¼ HðsÞ 2 UðRH1Þ. (17)
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Fig. 4. Vidyasagar’s structure (VS).
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Fig. 6. Classical controller: the YKP.

Y.-Y. Huang, A.-C. Lee / Journal of the Franklin Institute 344 (2007) 1075–10901080
Eq. (17) is derived from the Diophantine equation. The input–output equivalence is such
that VS in Fig. 4 can be reduced to the compensator in Fig. 5 by reducing the block
diagram. Vidyasagar [6] thought that the set of controllers in Fig. 5 was included in the
set of controllers of Fig. 6, which is the YKP (Section 5.6 of [3].). However, comparing
Eq. (17) with Eq. (10) raises a question about whether the configuration in Fig. 5 (or Fig. 4)
differs from that in Fig. 6.

3.1. Another new parameterization, the common solution of VS and YKP, and of EVS and

YKP, and the same solution of EVS and EYKP

In Fig. 7, the plant P(s)ARP(s) has a rcf (N(s), M(s)) and a lcf ð ~MðsÞ; ~NðsÞÞ; Xr(s),
Yr(s)ARHN exist such that Xr(s)M(s)+Yr(s)N(s) ¼ I; M(s) and K(s) satisfy the equation
M(s)+K(s) ¼ H(s)AU(RHN); Qv(s)ARHN. Before the relationship between VS and the
YKP is clarified, another new parameterization in Fig. 7 must be demonstrated to involve
all stabilizing compensators with two independent parameters: QvARHN and HAU(RHN)
according to Theorem 3. Then, the condition under which the new parameterization and
the EYKP have the same solutions can be obtained using Theorem 4. The new
parameterization and the YKP have common solutions according to following Corollary 5
when the parameter H is the identity in both. The input–output equivalence enables the
new parameterization of Fig. 7 to be unfolded to the EVS in Fig. 8, which becomes VS
when Qv is zero. Therefore, the common solution of the YKP and VS can be obtained
directly from Corollary 5 by setting Qv to be zero.
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Theorem 3. (i) For Fig. 7, the new parameterization

CEVSðsÞ ¼ ½I þ KðsÞX rðsÞ þQvðsÞ
~NðsÞ��1½KðsÞY rðsÞ �QvðsÞ

~MðsÞ�

det½I þ KðsÞX rðsÞ þQvðsÞ
~NðsÞ�ð1Þa0 ð18Þ

internally stabilizes the control system in Fig. 7 and (ii) moreover, Qv(s) and H(s) are

mutually independent parameters.

Proof. (i) For Fig. 7, the Diophantine equation

½I þ KX r þQv
~N�M þ ½KY r �Qv

~M�N ¼ H 2 UðRH1Þ, (19)

is satisfied by ~NðsÞMðsÞ � ~MðsÞNðsÞ ¼ 0, X rðsÞMðsÞ þ Y rðsÞNðsÞ ¼ I , and M(s)+K(s) ¼ H(s)
so that the nine transfer functions from ður; ud; unÞ to ðer; ed; enÞ

er

ed

en

2
64

3
75 ¼

MH�1 MH�1ðI þ KX r þQv
~NÞ � I �MH�1ðKY r �Qv

~MÞ

MH�1 MH�1ðI þ KX r þQv
~NÞ �MH�1ðKY r �Qv

~MÞ

NH�1 NH�1ðI þ KX r þQv
~NÞ I �NH�1ðKY r �Qv

~MÞ

2
64

3
75

ur

ud

un

2
64

3
75,
(20)

are stable. Therefore, the feedback system in Fig. 7 is internally stable.
(ii) In Eq. (20), H(s) is present in the nine elements, but Qv(s) does not appear in the first

column. Moreover, Qv(s) and H(s) have different characteristics. H(s) must be invertible,
but Qv(s) is not necessarily invertible. Qv(s) can have zeros in the right complex plane, but
H(s) cannot. Therefore, Qv(s) and H(s) are independent parameters. &

Theorem 4. N(s), M(s), ~MðsÞ, ~NðsÞ, Xr(s), Yr(s), Xl(s), and Yl(s)ARHN are doubly coprime

satisfying Eq. (1). Then, the compensator in Fig. 7 and the EYKP in Fig. 3 have the same
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solutions if and only if the following equation is satisfied:

HðsÞQðsÞ ¼ Y lðsÞ þQvðsÞ. (21)

Proof. ‘‘if ’’)Suppose HðsÞQðsÞ ¼ Y lðsÞ þQvðsÞ is satisfied. Substituting the equation
M(s)+K(s) ¼ H(s) and Eq. (21) into the compensator in Fig. 7, yields the following two
equations:

KY r �Qv
~M ¼ ðH �MÞY r � ðHQ� Y lÞ ~MðsÞ, (22)

I þ KX r þQv
~N ¼ I þ ðH �MÞX r þ ðHQ� Y lÞ ~NðsÞ. (23)

Applying MðsÞY rðsÞ ¼ Y lðsÞ ~MðsÞ by Eq. (1) to the right-hand side of Eq. (22), yields

KY r �Qv
~M ¼ HðY r �Q ~MÞ. (24)

Applying MðsÞX rðsÞ þ Y lðsÞ ~NðsÞ ¼ I by Eq. (1) to the right-hand side of Eq. (23), yields

I þ KX r þQv
~NðsÞ ¼ HðX r þQ ~NÞ. (25)

Eqs. (24) and (25) reveal that the compensator in Fig. 7 is equivalent to the EYKP in
Fig. 3 when Eq. (21) is satisfied. ‘‘only if’’)Suppose the compensator in Fig. 7 and the
EYKP in Fig. 3 have the same solutions. Accordingly, one satisfies the following two
equalities:

I þ ðKX r þQv
~NÞ ¼ HðX r þQ ~NÞ, (26)

KY r �Qv
~M ¼ HðY r �Q ~MÞ. (27)

Post-multiplying Eq. (26) by Yl(s), yields

Y l þ ðKX r þQv
~NÞY l ¼ HðX r þQ ~NÞY l. (28)

Post-multiplying Eq. (28) by Xl(s), yields

ðKY r �Qv
~MÞX l ¼ HðY r �Q ~MÞX l. (29)

Subtracting Eq. (29) from Eq. (28) yields (21) when ~NðsÞY lðsÞ þ ~MðsÞX lðsÞ ¼ I ,
X rðsÞY lðsÞ � Y rðsÞX lðsÞ ¼ 0, according to Eq. (1). &

In Theorem 4, if the new parameterization of Eq. (18) satisfies Eq. (21) and is expressed
as displayed in Fig. 7, then the new parameterization of Eq. (18) provides the same
solutions as the EYKP in Fig. 3. When H(s) is an identity within the new parameterization
and the EYKP, K(s) in Eq. (18) satisfies the equation K(s) ¼ I�M(s), and the EYKP
becomes the YKP. Therefore, the condition under which the compensators in Figs. 6 and 7
have common solutions is presented in Corollary 5 as follows.

Corollary 5. The compensators in Figs. 6 and 7 have common solutions when the following

equations are satisfied

KðsÞ ¼ I �MðsÞ, (30)

QðsÞ ¼ Y lðsÞ þQvðsÞ. (31)



ARTICLE IN PRESS
Y.-Y. Huang, A.-C. Lee / Journal of the Franklin Institute 344 (2007) 1075–1090 1083
Proof. By Theorem 4 and the above description.
When Qv(s) is zero, the control system in Fig. 7 becomes the control system in Fig. 5.

Also, the compensator in Fig. 5 is equivalent to VS. Clearly by Corollary 5, VS and the
YKP have a common solution when the two equations: K(s) ¼ I�M(s) and Q(s) ¼ Yl(s)
are satisfied. That is, VS in Fig. 4 and the YKP in Fig. 6 have only one common solution
when H(s) is the identity and Q(s) ¼ Yl(s). When H(s) is not the identity, the solutions to
VS in Fig. 4 are different from the ones to the YKP in Fig. 6. &

3.2. Mapping relationships among the EYKP, the YKP, the EVS, and VS

The EVS has the same solutions as the EYKP. That is, H(s), Q(s), and Qv(s) satisfy
H(s)Q(s) ¼ Qv(s)+Yl(s) so that each solution in both EVS and EYKP can be can mapped
onto each other. Here, H(s) bridges them. While each solution in the EVS corresponds
to an H(s)AU(RHN) and a Qv(s)ARHN, each solution in the EYKP corresponds to
an H(s)AU(RHN) and a Q(s)ARHN. When H(s) is an identity, the EYKP reduces
to the YKP, and the common solutions between the YKP and the EVS satisfy
QðsÞ ¼ Y lðsÞ þQvðsÞ. When Qv(s) is zero, the EVS reduces to VS, and the common
solutions of VS and the EYKP satisfy the equality HðsÞQðsÞ ¼ Y lðsÞ. Therefore, VS and the
YKP have a single solution when H(s) is the identity, Qv(s) is zero, and Q(s) ¼ Yl(s). Fig. 9
presents the mappings among the EVS, VS, the EYKP, and the YKP.

Although H(s) bridges the EVS and the EYKP, it plays a different role in each. By
Eq. (20), H(s) in the EVS has the feedback property that is related to ud and un and the pre-
filter property that relates to ur. By Eq. (16), H(s) in the EYKP exhibits only the pre-filter
property that relates to ur. Qv(s) of the EVS and Q(s) of the EYKP exhibit have the
feedback property that relates to ud and un.

4. An example and conclusion

An example of equivalent mappings within the EVS and the EYKP is presented,
indicating the selection of Q, Qv, and H to improve performance. Conclusions are then
drawn.
a:{ ( ), ( ) ( ) 0}

b:{ ( ), ( ) ( ) }

c:{ ( ), ( ) ( ) 0, ( ) }

v v

v

v v

Q s H s Q s

Q s H s H s I

Q s H s Q s H s I

=

=

≠ ≠

−1'

'

1'

a:{ ( ), ( ) ( ) ( ) ( )}

b:{ ( ), ( ) ( ) }

c:{ ( ), ( ) ( ) ( ) ( ), ( ) }

l

l

Q s H s Q s H s Y s

Q s H s H s I

Q s H s Q s H s Y s H s I−

=

=

≠ ≠

( ) ( ) ( )l vQ s Y s Q s= +

a

b

c

'b

'a

'c

' ' '( ) ( ) ( ) ( )
c+b+ac+b+a

vl
H s Q s Y s Q s= +

←⎯⎯⎯⎯⎯⎯⎯ ⎯⎯ →

T h e  E V S ( a + b + c ) ,  V S ( a ) ,  T h e  E Y K P ( a '+ b '+ c ') , T h e  Y K P ( b ')  

Fig. 9. Mappings among the EVS, VS, the EYKP, and the YKP.
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Example 1. (The sample is adapted from example 9.3 in [13], pp. 381.) The nominal plant
P(s) and its disturbance dynamics Pd(s) are considered as follows:

PðsÞ ¼
200

10sþ 1

sþ 2

sð0:05sþ 1Þ2
; PdðsÞ ¼

100

10sþ 1
. (32)

The plant and its disturbance d are represented by the block diagram in Fig. 10. The
disturbance enters at the plant input in the sense that P(s) and Pd(s) share the same
dominating dynamics, which are represented by the term 200/(10s+1). ~MðsÞ, ~NðsÞ, M(s),
Xr(s), Yr(s), and Yl(s) are given by

~NðsÞ ¼
8000sþ 16 000

s4 þ 54:87s3 þ 1105s2 þ 9969sþ 16 000
, (33)

~MðsÞ ¼
s4 þ 40:1s3 þ 404s2 þ 40s

s4 þ 54:87s3 þ 1105s2 þ 9969sþ 16 000
, (34)

NðsÞ ¼
8000sþ 16 000

s4 þ 112:1s34046s2 þ 61 280sþ 103 900
, (35)

MðsÞ ¼
s4 þ 40:1s3 þ 404s2 þ 40s

s4 þ 112:1s3 þ 4046s2 þ 61 280sþ 103 900
, (36)

X rðsÞ ¼
s4 þ 126:8s3 þ 5810s2 þ 132 900sþ 243 300

s4 þ 54:87s3 þ 1105s2 þ 9969sþ 16 000
, (37)

Y rðsÞ ¼
143:6s3 þ 6201s2 þ 73 450sþ 103 900

s4 þ 54:87s3 þ 1105s2 þ 9969sþ 16 000
, (38)

Y lðsÞ ¼
143:6s3 þ 6201s2 þ 73 450sþ 103 900

s4 þ 112:1s3 þ 4046s2 þ 61 280sþ 103 900
. (39)

According to Eqs. (37) and (38), the central controller X�1r ðsÞY rðsÞ for the YKP
performs well when d is a unit step function, as presented in Figs. 11 and 12. Next, a
compensator in EVS and a compensator in the YKP must be found such that the final
value y equals zero when d is a sinusoidal signal, sin t.
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Firstly, an approach proposed elsewhere [14] is adopted to obtain a proper C(s) in the
form of Eq. (2). For such C(s), the transfer function from d to y is 100/(10s+1)
M(s)[Xr(s)+Q1(s) ~NðsÞ], where Q1(s) is the first estimate of the parameter Q(s). The
sinusoid d is rejected if

100=ð10j þ 1ÞMð1jÞ½X rð1jÞ þQ1ð1jÞ ~Nð1jÞ� ¼ 0. (40)
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Hence, the problem reduces to the purely algebraic problem of finding Q1ðsÞ 2 RH1
that satisfies Eq. (40), which reduces to

Q1ð1jÞ ¼ �15:194� 0:701j. (41)

Eq. (41) can be written as two equations

ReQ1ð1jÞ ¼ �15:194, (42)

ImQ1ð1jÞ ¼ �0:701. (43)

Hence, a parameter Q1(s)ARHN that satisfies Eqs. (42) and (43) must be found. An
effective method is to let Q1(s) be a polynomial in (s+9)�1 with sufficient variable
coefficients, guaranteeing that Q1(s)ARHN. Since two equations must be satisfied, two
coefficients are allowed. Q1(s) is of the form

Q1ðsÞ ¼ c1 þ
c2

sþ 9
. (44)

The two Eqs. (42) and (43) yield one of the form Ac ¼ b, where c ¼ ½c01 c02�
0. This

equation is solved for c. In this case, the solution is

c1 ¼ �21:62; c2 ¼ 58:417.

These values give

Q1ðsÞ ¼
�21:62s� 136:163

sþ 9
. (45)

Hence, from Eqs. (33), (34), (37), (38), and (45), C(s) is obtained as follows:

CðsÞ ¼

21:62s9 þ 2333s8 þ 1:085� 105s7 þ 2:858� 106s6 þ 4:668� 107s5

4:824� 108s4 þ 3:095� 109s3 þ 1:168� 1010s2 þ 2:165� 1010sþ 1:496� 1010

s9 þ 190:7s8 þ 1:551� 104s7 þ 5:538� 105s6 þ 9:728� 106s5

8:516� 107s4 þ 2:374� 108s3 þ 2:445� 108s2 þ 1:7� 108sþ 1:767� 108

.

(46)

With the value of C(s) given by Eq. (46), the Bode plot of the closed loop transfer
function from d to y is presented in curve 1 in Fig. 13.
Secondly, a proper CEVS(s) from Eq. (18) must be found and outperforms C(s) in

Eq. (46). If H1(s) is the first estimate of the parameter H(s), then H1(s) causes the point A
{Q1(s), I} in the YKP to move to the point B {Q1(s), H1(s)} in the EYKP, as presented in
Fig. 14. H1(s) is arbitrarily set to

H1ðsÞ ¼
21sþ 136

21:62sþ 136:163
(47)

since H1(s) is not related to d for the EYKP. Moreover, H1(s) provides the bridge to map
the point B {Q1(s), H1(s)} onto the corresponding point C {Qv1(s), H1(s)} in the EVS, as
presented in Fig. 14. Qv1(s) is given by

Qv1ðsÞ ¼ H1ðsÞQ1ðsÞ � ½Y lðsÞ of ð39Þ�

¼
�21s5 � 2633s4 � 1:077� 105s3 � 1:966� 106s2 � 1:128� 107s� 1:506� 107

s5 þ 121:1s4 þ 5054s3 þ 9:769� 104s2 þ 6:554� 105sþ 9:349� 105
.

ð48Þ
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Since the points A, the point B, and the point C perform equally for d, another H2(s) is
sought to replace H1(s) to improve the performance of d in the EVS, where H2(s) is the
second estimate of the parameter H(s). The sinusoid d is rejected if

100=ð10j þ 1ÞMð1jÞH2ð1jÞ�1½1þ ðH2ð1jÞ �Mð1jÞÞX rð1jÞ þQv1ð1jÞ ~Nð1jÞ� ¼ 0. (49)

The problem reduces to the purely algebraic problem of finding H2(s)ARHN that
satisfies Eq. (49), which in turn reduces to

H2ð1jÞ ¼ 0:999� 0:0035j. (50)

Eq. (50) can be expressed as two equations

ReH2ð1jÞ ¼ 0:999, (51)

ImH2ð1jÞ ¼ �0:0035. (52)

A parameter H2(s)AU(RHN) that satisfies Eqs. (51) and (52) must be found. Since two
equations must be satisfied, two coefficients are required. H2(s) is of the form

H2ðsÞ ¼
k1ðsþ k2Þ

2

ðsþ 100Þ2
. (53)
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If k240 then Eq. (53) guarantees that H2(s)AU(RHN). The two Eqs. (51) and (52) yield
one of the form

10�4 4� 10�6

�2� 10�6 1:999� 10�4

" #
k1ðk

2
2 � 1Þ

k1k2

" #
¼

9:99� 10�1

�3:5� 10�3

" #
. (54)

The solution to Eq. (54) is

k1 ¼ 6:796� 10�1; k2 ¼ 121:2425; �8:2� 10�3.

These values give

H2ðsÞ ¼ 6:796� 10�1
ðsþ 121:2425Þ2

ðsþ 100Þ2
. (55)

With H2(s) and Qv1(s) the solution in the EVS moves from the point C to the point D in
Fig. 14. From Eqs. (33), (34), (37), (38), (48), and (55), CEVS(s) can be obtained. Curve 2 in
Fig. 13 is the Bode plot of the closed loop transfer function from d to y for such CEVS(s).
From Fig. 15, CEVS(s) with Qv1 and H2 rejects the sinusoidal signal d almost completely
and exhibits less transient oscillation than does C(s) with Q1.
From Fig. 14, one sees that H2(s) provides the bridge to map the point D {Qv1(s), H2(s)}

onto the point E {Q2(s), H2(s)} where

Q2ðsÞ ¼ H�12 ðsÞQv1ðsÞ þH�12 Y lðsÞ

¼ 1:4715�
ðsþ 100Þ2

ðsþ 121:2425Þ2
�21s� 136

sþ 9
, ð56Þ

which is the second estimate of the parameter Q(s). Since H2(s) in the EYKP is unrelated to
d, the points E and F {Q2(s), I} in Fig. 14 perform similarly for d. Q2(s) in Eq. (56) yields a
controller in the YKP such that the Bode plot for the closed loop transfer function from d

to y is curve 2 in Fig. 13. Thus, Q2ðsÞ in Eq. (56) outperforms Q1(s) in Eq. (45).
0 1 2 3 4 5 6 7 8

0
By CEVS (s) with Qv1 and H2

By C(s) with Q1 

-0.01

-0.005

0.005

0.01

0.015

0.02

0.025

0.03

Time (sec) 

Fig. 15. Responses from d to y for d ¼ sin t by using C and CEVS.
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In conclusion, the EVS and the EYKP are equivalent to all stabilizing compensators for
finite-dimensional linear systems. Given H(s), the solutions to both can be mapped onto
each others and the mapping relationships are explained by the equation, HQ ¼ Y l þQv:
H(s) in the EYKP exhibits the pre-filter property, but H(s) in EVS exhibits the properties
of pre-filter and feedback. Q of the EYKP and Qv of the EVS exhibit the feedback
property. The equation yields the relationships among the EYKP, the YKP, the EVS, and
VS. In particular, VS and the YKP have only a single common solution. Moreover, the
example illustrates the selection of Q, Qv, and H to improve performance.

The parameterization is well known to increase the orders of the compensator.
Frequency-weighted extensions of three basic methods are employed to solve controller
reduction problems. The approaches are balanced truncation approximation (BTA),
singular perturbation approximation (SPA) and Hankel-norm approximation (HNA) can
be employed. Theoretical and computational enhancements of the frequency-weighted
BTA and SPA methods have been proposed elsewhere [15,16]. They have been extended to
solve efficiently a class of stability/performance preserving controller reduction problems
[16,17], the stability-preserving frequency-weighted coprime factor controller reduction
problem [18], and the performance-preserving frequency-weighted coprime factor HN

controller reduction problem [19].
In the future work, one will propose a design procedure and guide lines for selecting H

and Qv to improve the performance of the EVS.
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