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Abstract—We propose a novel dispersion-free interleaver using
optical delay lines by accurately locating the zeros in the transfer
function. It has been implemented with the design of interleaver
pairs with the same amplitude responses but opposite phase re-
sponses for bidirectional dense wavelength-division multiplexed
(DWDM) transmission systems. The measured results are consis-
tent with device simulation. We have further modified the original
three-port design using unidirectional amplification, and a four-
port interleaver has been built and demonstrated to achieve bidi-
rectional DWDM transmission. In this paper, we fully studied and
verified the applications of our four-port interleavers in bidirec-
tional transmission. We demonstrated a bidirectional strain-line
system over 210 km and a recirculating loop transmission over a
500-km standard single-mode fiber using 10-Gb/s ON-OFF keying
signals. Furthermore, we also demonstrated return-to-zero dif-
ferential phase-shift keying (DPSK) and nonreturn-to-zero DPSK
modulation formats for more than 230 km of transmission. For
comparison, the different amplification functions, such as the
erbium-doped fiber amplifier and the semiconductor optical am-
plifier, have also been probed in this paper. The experimental
results have clearly illustrated the desirable functions of this novel
bidirectional amplifier in this dispersion-free interleaver.

Index Terms—Birefringence, differential phase-shift keying
(DPSK) modulation, interleaver, optical fiber communication,
optical filters, wavelength-division multiplexed (WDM) optical
fiber devices.

1. INTRODUCTION

S AN OPTICAL filter, an interleaver combines or sep-
arates a comb of dense wavelength-division multiplexed
(DWDM) signals [1]-[3]. The periodic nature of the interleaver
filter reduces the number of Fourier components that are re-
quired for a flat passband and a high-isolation rejection band.
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This behavior is in great contrast to the single-channel add/drop
filters that synthesize a single narrow-band filter over a wide
rejection band. Because the interleaver requires fewer Fourier
components than a single narrow-band filter, the same flat-top
sharp edge response of a higher order narrow-band filter can be
realized using a small number of sections [1]. The filter function
of an interleaver and its period can be separated. Interleavers
have been shown to resolve a comb of DWDM frequencies with
channel spacings of 100, 50, 25, and 12.5 GHz. The period of
the interleaver is governed by the free-spectral range of the core
elements, in which a longer optical path achieves a narrower
channel spacing [2].

Although the interleaver has been widely used in multi-
plexing and demultiplexing of DWDM optical signals, its ap-
plications in bidirectional transmissions have not been fully
studied and verified. With rapid growth of Internet traffic, it is
desirable to increase the capacity of DWDM optical networks
by using spectral efficiency and high-bit-rate transmissions
[4]. Bidirectional transmission provides an effective method
for DWDM networks to increase bandwidth utilization and
reduce operating costs at the same time [5]-[7]. One of the
core technologies in bidirectional transmission is bidirectional
amplification, which requires high gain, low noise, and remov-
ing or reducing Rayleigh backscattering (RB) [8]. Currently,
two key bidirectional transmission amplifier schemes have been
demonstrated. One scheme is to use two circulators along
with two regular erbium-doped fiber amplifiers (EDFAs), and
the other scheme is to use semiconductor optical amplifiers
(SOAs). The first scheme needs more optical components and
more EDFAs; therefore, this scheme is not a cost-effective solu-
tion. The gains of EDFAs are typically limited to avoid the RB
self-oscillation; these limitations will significantly shorten the
amplification span and reduce the optical signal-to-noise ratio
(OSNR) [9], thus increasing the operational cost and degrading
the transmission quality. The main problems of the second
scheme are the small gain and large crosstalk caused by cross-
gain modulation (XGM) in SOA when the transmission signals
have an ON—OFF keying (OOK) modulation format [5], [10].
A four-port interleaver has been proposed before [6] using
fiber-based configuration. The device is sensitive to temperature
variation and exhibits Gaussian passband characteristics. This
paper proposed and experimentally demonstrated a new four-
port interleaver with a temperature-compensated flat-top pass-
band for dispersion-free transmission. The primary functions of
the four-port interleaver are to redirect east and west traffic to
an individual unidirectional transmission path in the interleaver
while achieving simultaneous crosstalk and noise reduction.
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Among several choices of modulation and demodulation for-
mats, special attention has been given to differential phase-shift
keying (DPSK), which was proving to be superior [11] relative
to the traditional OOK in an optical fiber communication sys-
tem. This is due to its larger tolerance to fiber nonlinearity and
noise from amplified spontaneous emission (ASE) [11]. Well-
conducted experiments have indicated that bidirectional DPSK
transmission attains optimal performance by using SOAs as
inline amplifiers [10], [12]. However, in WDM systems, SOA
needs to be operated above the saturation level to obtain the
required OSNR at the receiver. However, the waveform distor-
tion and XGM pose severe challenges to operate SOAs in the
saturation region [12]-[14]. Due to the tolerance of DPSK mod-
ulation to various nonlinear effects such as self-phase modula-
tion and cross-phase modulation, it has attracted much attention
from researchers around the world. The experimental results
show that optical signals using a DPSK modulation format can
achieve ultralong-haul transmission [13], [15]. Most of the re-
cent DPSK experiments used return-to-zero (RZ) signals rather
than nonreturn-to-zero (NRZ) signals to achieve an optimal
bandwidth/distance performance because the RZ shape can tol-
erate high input power and has a small intersymbol interference.

This paper is organized into five sections. Section II presents
the design and implementation of the interleaver. Section III
presents characterization and analysis regarding passband, in-
sertion loss, temperature sensitivity, and dispersion characteris-
tics of the interleaver. Experimental setup and demonstration
of a bidirectional DWDM transmission system based on a
four-port interleaver are presented in Section IV. Finally, the
conclusions are summarized in Section V.

II. CONSIDERATIONS OF AN INTERLEAVER DESIGN

A birefringent crystal has long been used in designing optical
filters, including birefringent crystal plates and polarizers. The
two major types of birefringent filters are Lyot—Ohman filters
and Solc filters [16]-[18]. Both types are based on interference
between polarized light and require phase retardation among
the components of light polarized parallel to the slow and fast
axes of the crystal as light passes through it. Consequently,
the birefringent crystal is served as an optical delay line, and
a half-wave plate is used to alter the polarization between the
delay stages. The rotation of the half-wave plates can also be
considered to be designed to generate various required Fourier
frequency components.

Fig. 1 shows the configuration of the three-port interleaver
employed by the birefringent crystal. At the input and outputs of
the interleaver, a YVO, walk-off crystal and a half-wave plate
were used to ensure that the optical delay cells contained only
a single polarization. Each delay cell includes two birefringent
crystals, namely YVOy, and rutile (TiO5), to compensate for the
temperature variation. The lengths of YVO, and rutile can be
determined using
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Fig. 1. Possible configuration of a three-port L-2L interleaver.
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Fig. 2. Measurement setup of the birefringent crystal temperature sensitivity.
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In (1) and (2), An; and Ans indicate the group index dif-
ference between ordinary and extraordinary axes of YVO, and
rutile, respectively. Moreover, ¢ denotes the speed of light, FSR
represents the free spectral range, L; represents the length of the
crystal, Acenter denotes the center wavelength of the operation
wavelength range, m represents the order of the birefringent
wave plate, and (3, is the normalized variation in the wavelength
with temperature. Fig. 2 shows the measurement setup that is
used to determine (3. For normal incident light, each crystal
forms a Fabry—Pérot etalon cavity from the facets’ reflection,
and the transmission spectra will have null points with FSR
determined by the cavity length. When we change the temper-
ature of the crystal, the cavity length will change, and the null
points will start to drift accordingly. 5 can then be determined
by measuring the drifting of the null point with temperature
in the optical spectrum analyzer (OSA). For YVO4 and rutile,
the group index differences are 0.2139 and 0.2652, and the
3 values are —26.54 x 107¢ 1/°C and —99.06 x 107¢ 1/°C,
respectively. At the central frequency of 193.5 THz, the values
of 3 correspond to 5.13 and 19.17 GHz/°C, respectively. For
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Fig. 3. Two types of interleavers with the same amplitude but opposite delay
response.

a 100-GHz interleaver, FSR equals to 200 GHz, and solving
(1) and (2) yields the lengths of the YVO, and rutile crystals,
which are 9.5697 and 2.0685 mm, respectively [19]. After
temperature compensation, the temperature drift is reduced
to approximately 0.056 GHz/°C. This corresponds to about
3.7-GHz drift in temperature variation from 0 °C to 65 °C.

One difficulty that could not be fully compensated for during
the design process was the wavelength dependence of refractive
index, namely dispersion. However, as shown in Appendix,
with a proper selection of crystal lengths, for a typical C-band
application (with a center frequency of 193.5 THz and a total
bandwidth 4 THz), the refractive index dispersion introduces a
center frequency offset of only 2-2.5 GHz.

The optimized wave-plate angles were determined using the
“minimize the integral square error” method, as shown in

N
min {Z [E(fa) - x(an} 3)

n=1
with

FSR FSR

In (3), Z(f,) is the desired target amplitude response, and
2(f,) is the real transmission function. The transmission func-
tion is periodic; therefore, the errors can be summed over one
FSR at the central frequency f.. By charging the position of
the half-wave plate at the input walk-off crystal, the input
polarization angle was shifted 90° and generates two delay
responses. Minimizing (3) can yield the corresponding wave-
plate angles. Fig. 3 presents the simulated amplitude and delay
response of two types of interleavers. This figure shows that
changing the input polarization yields two interleavers with
the same amplitude responses but opposite delay responses.
Therefore, the cascaded interleaver pair will have a constant
delay, and therefore, the dispersion will approach zero.

To design an interleaver with a sharp edge response, higher
Fourier frequency components must be included. Additional
delay line stages are required to increase the highest Fourier
frequency, and the passband, insertion loss, size, reliability, and
cost are all traded off against one another. For a 100-GHz inter-
leaver, L-2L-2L can meet the passband and delay requirements
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for 40-Gb/s transmission without difficulty. If only a 10-Gb/s
signal is transmitted, an L-2L design will suffice.

III. EXPERIMENTAL RESULTS OF 100-GHzZ
L-2L-2L INTERLEAVERS

After the design analysis, an L-2L-2L interleaver was fab-
ricated to verify the design. Fig. 4(a) and (b) shows the mea-
surement results of the recentered transmission responses in a
frequency range from 191.8 to 195.5 THz at 0 °C, 23 °C, and
65 °C, respectively. The figures clearly demonstrate successful
mitigation of the temperature variation. Fig. 4(c) shows the
0.5-dB passband of different channels at 0 °C, 23 °C, and 65 °C.
The average 0.5-dB passband is about 73 GHz. Fig. 4(d) shows
the polarization-dependent loss (PDL) of different channels at
0 °C, 23 °C, and 65 °C. The average PDL is below 0.15 dB,
which means that there is a good control of the alignment
between the input fiber and the walk-off YVO, crystal. The
fiber alignment is similar to typical microoptic fiber devices
such as isolator, circulator, and switch. The alignment needs
to be very carefully done, and an active alignment is needed.

Fig. 5 plots the measured amplitude and delay responses
of two types of 100-GHz interleavers. Fig. 5(a)—(d) illustrates
type-A and type-B interleavers that have identical transmission
spectra but reversed delay responses. Meanwhile, type-A and
type-B interleavers can be cascaded to generate a linear-phase
interleaver pair with a total dispersion near zero, which is a
feature that is desirable, particularly in metro add/drop appli-
cations and/or high-bit-rate transmission systems. Fig. 6 plots
the measured results that relate to seven cascaded interleaver
pairs. The figure shows that the total delay is below 1 ps within
the passband. Figs. 5 and 6 clearly show that interleavers with
the same amplitude response and opposite delay response were
successfully designed.

IV. NOVEL BIDIRECTIONAL TRANSMISSION SYSTEM
USING FOUR-PORT INTERLEAVERS

Through minor modification of the original three-port design,
a novel four-port interleaver that enables bidirectional trans-
mission using unidirectional amplification was demonstrated.
The interleaver used in this paper is a symmetrical four-port
interleaver with two input and two output ports. Fig. 7 shows
the detailed configuration of the interleaver. Fig. 8(a) illustrates
the measured amplitude response of the interleaver for even
and odd channels. The channel spacing of this interleaver was
50 GHz, with an insertion loss of 2.2 dB and a 0.5-dB passband
of approximately 35 GHz. The interleaver was designed to have
complementary wavelength-dependent routing characteristics.
For example, if A; (odd channel) enters port 1, it is routed to
port 4. However, when Ay (even channel) goes into port 2, it
is also directed to port 4. By using this interleaver property,
when east-even channels arrive at port 2 of the interleaver,
they are sent to port 4. On the other hand, when the west-odd
channels enter port 1 of the interleaver, they are also routed
to port 4. Therefore, bidirectional transmission is routed into
unidirectional transmission, and unidirectional amplification is
achieved using a single EDFA, as shown in Fig. 8(b).
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A. Strain-Line Bidirectional Transmission System

To demonstrate this novel wavelength-sensitive routing char-
acteristic of the four-port interleaver, a bidirectional transmis-
sion system was used, as illustrated in Fig. 9 [7]. A dual-stage
EDFA with midstage dispersion compensation was employed
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to provide the unidirectional loss and dispersion compensation.
The eight-channel laser sources consist of two groups: one
from 1550.52 to 1551.72 nm and the other from 1554.54 to
1555.75 nm, all on the standard International Telecommunica-
tions Union (ITU) 50-GHz channel spacing grids. These eight
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lasers were separated into two parts, i.e., as even and odd
channels for eastbound and westbound demonstrations. Both
eastbound and westbound signals were individually modulated
using a LiNbOj electrooptical modulator at 10 Gb/s with
a pseudorandom binary sequence (PRBS) length of 23! — 1
pattern. We used two 105-km standard single-mode fiber
(SSMF) spoons for transmission. The total distance for the
bidirectional transmission was 210 km. Within the dual-stage
EDFA, a dispersion-compensating fiber (DCF) was inserted
to compensate for the accumulated chromatic dispersion in
210 km of SSMFE. The gains and noise figures (NFs) of the
dual-stage EDFA at all channels were about 23.5 and 4.5 dB,
respectively. Fig. 10(a) illustrates the bit-error-rate (BER)
curves and the corresponding eye diagrams of the worst chan-
nel, namely channel 6. After 210 km of transmission, both
the eye diagrams and BER curves indicate similar perfor-
mance degradation due to the accumulated ASE noise and
dispersion in the bidirectional and unidirectional transmission
systems. Fig. 10(b) depicts the BER penalty of all channels.
This figure clearly shows that the BER penalty variations
between the bidirectional and unidirectional transmissions are
less than 0.2 dB for all channels. When compared with the
back-to-back BER curve, the sensitivity penalties are less than
0.8 dB for both cases. The inset figure within Fig. 10(b) is
the received optical spectrum of the east-even channels (A =
1550.92, 1551.72, 1554.94, and 1555.74 nm) after 210 km of
transmission. Because all the signals are rerouted from the bidi-
rectional transmission into the unidirectional transmission at
the amplification stage using an interleaver, the noise is consid-
erably diminished. Consequently, the optical signals experience
a much lower NF, as compared with an NF, exceeding 6.5 dB
by using a linear optical amplifier [5]. Therefore, OSNRs
exceeding 35 dB after 210 km of transmission at all channels
were achieved by the proposed method, as compared with less
than 26 dB of OSNR in [5].

B. Long-Distance Transmission Using a
Bidirectional Recirculating Loop

To simulate long-distance transmission, a recirculating loop
had been set up, as shown in Fig. 11 [20]. An interleaver was
placed at the input of the recirculating loop to split the east
and west channels for bidirectional transmission, and traffic
directed the opposite way was combined for unidirectional
amplification. Two spools of a 50-km Corning LEAF fiber
were adopted in the recirculating loop. A dual-stage EDFA
with a 5-km Corning DCF was employed in the midstage
of the loop to compensate for the transmission loss and the
accumulated dispersion in the LEAF fiber. The two interleavers
in the loop were particularly arranged to reduce chromatic
dispersion caused by the flat-top transmission band design
of the interleaver [21]. Fig. 12(a) shows the receiving power
penalties of all channels at a BER of 10~ and the optical
spectrum after 500 km. All channels had power penalties of
less than 2.5 dB, and the penalty differential between them
was less than 0.4 dB. The optical spectrum displays an OSNR
of over 31 dB for all channels with a 0.02-nm resolution
bandwidth on the OSA. Fig. 12(b) plots the BER curves and
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bidirectional and unidirectional transmissions and received optical spectrum for
east-even channels after 210 km of bidirectional transmission.

the corresponding eye diagrams at channel 7 (back-to-back) for
100-, 300-, and 500-km transmission distances. The measured
power penalties were about 0.3, 1, and 2 dB for 100-, 300-,
and 500-km transmission distances, respectively, at a BER of
10~? under optimal polarization conditions. The polarization
controller was used to minimize the polarization effects such
as the polarization-dependent gain and PDL in the recirculating
loop. The penalties were attributed to ASE accumulation due
to signal-to-noise ratio (SNR) degradation, resulting from the
high link loss between the amplifier span.

C. Comparison Between Bidirectional DPSK
and OOK Signals

The experimental setup for bidirectional DPSK transmission
is shown in Fig. 13. Eight distributed-feedback lasers producing
continuous-wave lightwaves, which were equally spaced by
50 GHz from 1556.56 to 1559.39 nm, all on the standard ITU
grid, were combined and simultaneously modulated by a phase
modulator (PM). The PM was driven by 10-Gb/s electrical data
with a PRBS sequence length of 23! — 1 to generate DPSK
signals. The transmission fiber was a 230-km SSMF with a
3-dBm total launched power into each 115-km SSMEF. The
matched DCFs were adopted in the configuration to compensate
for the accumulated dispersion in the SSMF. A dual-stage
EDFA with a 24.5-dB gain was employed as the inline amplifier
to compensate for the transmission loss. Fig. 14(a) shows the
BER curves and the corresponding eye diagrams for three of the
eight RZ-DPSK signals, namely channel 1 (A = 1556.55 nm),
channel 4 (A = 1557.77 nm), and channel 8 (A = 1559.39 nm).
We can see that the penalty at a BER of 10~ for channel 8
was less than 1.1 dB, and the clear eye indicates the good
quality of the signals after a 230-km fiber. Fig. 14(b) compares
the RZ-DPSK and NRZ-DPSK modulation performances after
230 km of transmission at channel 4. The RZ-DPSK signals
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improve by a 2-dB penalty than the NRZ-DPSK signals. It
results from the fact that the RZ-DPSK signal has a data-
independent intensity profile and removes the pattern effects
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Recirculating loop setup for a long-distance bidirectional transmission experiment.

in the nonlinear fiber. Fig. 14(c) presents the power penalties
for all channels and compares them with back-to-back results
at a BER of 107%. The inset figure within Fig. 14(c) is the
received optical spectrum after the RZ-DPSK signal bidirec-
tional transmission over 230 km for even channels. Due to
the imperfect circulator and RB, the reflected even channels
can be seen in this spectrum. This figure clearly indicates that
the power penalties for all channels are less than 1.1 dB, and
the differential between the bidirectional and unidirectional
transmissions are less than 0.2 dB. These power penalties are
attributed to residual dispersion and ASE accumulation due to
SNR degradation.

To compare the performance of different inline amplifiers
in this bidirectional configuration, we employed an SOA to
supersede the dual-stage EDFA. To contrast with [13], only
one common SOA has been exercised to realize bidirectional
transmission. Due to the gain limitation of the SOA, we used
an 80-km SSMF and the matching DCF in the transmission
system. The SOA has a saturated power of 11 dBm, and it
provides a gain of 14.3 dB to each wavelength channel. For
comparison, an intensity modulator had replaced the PM in
our system to generate OOK-modulated signals. DPSK demod-
ulator was removed at the receiver, and all other conditions
were maintained. The measured BER curves and typical eye
diagrams of channel 4 with RZ-DPSK, NRZ-DPSK, and OOK
modulation formats are depicted in Fig. 15. The power penalties
of RZ-DPSK and OOK signals were about 0.2 and 1.6 dB,
respectively. In this figure, the eye diagram of OOK signals
was distorted. It probably resulted from the pattern-dependent
effect caused by the gain saturation and the crosstalk induced
by XGM between WDM channels in the SOA. Our experi-
mental results show that it is advantageous to use RZ-DPSK
with a dual-stage EDFA in fiber-optic transmission. However,
DPSK is more immune to SOA-induced crosstalk than OOK.
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Fig. 13. Bidirectional DPSK transmission experimental setup.
Bidirectional RZ-DPSK transmission can be very beneficial APPENDIX

in metro and access networks employing EDFAs as inline
amplifiers.

V. CONCLUSION

We have successfully demonstrated novel three-port and
four-port dispersion-free interleavers with temperature-
compensated flat-top passband for bidirectional DWDM
transmission systems. A three-port interleaver was modified
to demonstrate a novel four-port interleaver with a 50-GHz
channel spacing that enables bidirectional transmission using
unidirectional amplification. Due to the complementary and
wavelength-sensitive routing scheme, a dual-stage EDFA
was employed to provide gain for bidirectional link. We had
experimentally demonstrated this novel amplification scheme
in strain line and recirculating loop transmission over 210
and 500 km with sensitivity penalties of less than 0.8 and
2.5 dB, respectively. For comparison, we also bitransmitted
10-Gb/s DPSK signals over 230 km. In this bidirectional
configuration, RZ-DPSK signals, with an 1.1-dB sensitivity
penalty, improved by a 2-dB penalty than NRZ-DPSK
signals. The experimental results clearly demonstrate the
feasibility of the bidirectional transmission utilizing the
novel four-port interleaver. Furthermore, it is advantageous
to use RZ-DPSK with dual-stage EDFA over SOA and
other modulation formats in fiber-optic transmission. We
believe that the design and configuration of our device can be
scaled to more optical channels to 16 or 32 channels within
the C-band. In analyzing the device performance, we also
validated that the proposed interleaver design is capable of
achieving DWDM spectral-efficient and crosstalk-tolerant
signal transport for high-capacity bidirectional transmission
systems.

To estimate the influence of the dispersion of refractive index
on an interleaver design, the dispersion must be included in the
simulation model. From

[Any(fo)L1 — Ana(fo)Le] = mf%

where Any(fo) = Anyo and Ang(fo) = Angg are the differ-
ences in the refractive index between the slow and fast axes
of the birefringent crystals, respectively, m denotes the order of
the wave plate, c represents the speed of light, and f represents
the center frequency, we arrive at

(AD)

(AnioLy — AngoLa)fo

c = (A2)
[Any(f1)L1 — Ana(f1)La) f1 R (A3)
C
Subtracting (A2) from (A3) yields
1
p [L1 (frAni(f1) — Anio fo)
— Lo (f1Ana(f1) — Anaiofo)] = 1. (A4)

Using Taylor expansion of An(f;) around the center fre-
quency fo

1{ [L1f1 (Anlo +
c

— {Lgfl <An20 +

dAd}llO (f1 — fo)) - Anlofo]

dAngo
df

(f1— f0)> - Anzofo] } =50

(AS5)
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mission by using a SOA as the inline amplifier.

Defining FSR = f; — fo, (AS) can be written as

FSR dA
{Ll [Anm + df?lfl}
dA
— L, [Ango + deQjé} } ~ 1. (A6)

With the group indexes Angio and Angag

An;
Ango; = Ango + mfi, 1=1,2 (A7)
df;
c
FSR = (A8)

[LlAngl() — L2Ang20] '

The crystal length can then be selected using group indexes
for eliminating the first-order error. For a typical C-band ap-
plication, the frequency range of interest is around 4 THz
(i.e., from 191.5 to 195.5 THz), with the center frequency at
193.5 THz. The frequency range corresponds to about 2% of the
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center frequency. Owing to the small frequency range, the first-
order approximation is justified and should provide a sufficient
accuracy.

For a typical Mach—Zehnder interferometer, the transfer
function can be written as

T(f) = sin® {kﬂjﬂ
2 gin? {: f {Ll (Anlo + dAd;”O (f - fo))
— Ly (Anzo + dA;m (f - fo)) } }
(A9)
Inserting (A2) into (A9) yields
T(f)= sin { f{Ll (An10+ a2 ;w (f- fo>)
— Ly (An20+ dAd;LZO (f—f0)>] —mw}
= sin? {Z|:L1 {Anlo(f—fo)'i‘dA;wf(f—fO)}
L [Anzo(f—fo) - f@} }}
(A10)
After some calculations, we have
T (f - fo)2

— sin {FSR(f fO) FSR LlAnglo — LQAng2O

dAnm dATLQo

The following observations can be drawn based on (A11).

1) A minimum occurs approximately every (f — fo) =k -
FSR, and it is used as a basis for defining the FSR to the
first order.

2) There is no first-order deviation if the group index
ng is selected, i.e., the error term error o< (f — fo)

disappeared.
3) The obtained offset is the second-order term, i.e.,
(f — fo)? I dAnqg I dAngg
1 — L
Lingio — Langao df df

The Sellmeier equation of YVO, and rutile can be used to
calculate the slope of refractive indexes. Moreover, the typical
values of the slope of the group index of YVO, and rutile
are calculated as 1.05 x 10™* and 1.72 x 10~*, respectively.
Table I lists some key parameters for 100-GHz interleavers.
Table I can be used to estimate the deviation of FSR at the
edge of frequency band. Fig. 16(a) shows the simulation and
measurement results of the center wavelength offset and reveals
the agreement between the measured results and the simulated
prediction. For a C-band application with a total bandwidth
of 4 THz, the frequency offset at 2 THz off the center is
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TABLE 1
SUMMARY OF THE KEY PARAMETERS FOR THE 100-GHz INTERLEAVER

Slope of Group
Group Index
Crystal Index
Materials  Difference @ B(1/C)
Length (mm) Difference
193.5THz
(1/THz)
YVO, 0.2139 9.5697 -2654x10° 1.05x10™
Rutile 0.2652 2.0685 -99.06x10™ 1.72x10™

Measured and Simulated Center Frequency Offset
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Fig. 16. (a) Measurement and simulation results of center frequency offset

due to dispersion. (b) Center frequency offset with different selected center
frequencies.

about 2.5 GHz. Fig. 16(b) shows the simulated results of the
center frequency offset with different selected center frequen-
cies. Because the frequency offset hyperbolically increases with
the frequency range, the effective bandwidth decreases faster
at the band edge. The center frequency offset caused by the
refractive index dispersion is one inherited design issue due
to the material refractive index dispersion. Therefore, different
sets of crystal lengths are required for C-band and L-band
applications to mitigate the center frequency offset.
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