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%5 2008 & 11 * spH €& 4 T L ficdy - Eﬁ% PP TR e iR OBBYHE S BT S
BRI G ARG L4 e 2 9BIpHLES RO BERE-

longitude( » ) latitude( ° ) gravity(mili gal) site ID

120.27920  23.35806 978832.502 ICHUb
120.40469 = 23.31761 978816.260 TUNS
120.50790  23.33044 978749.334 KULNb
120.48159 = 23.42754 978818.635 SJPUb
120.61140  23.43346 978761.845 RGOI
120.68912  23.46288 978569.017 RGO2
120.76638 = 23.48967 978488.330 RGO3
120.82280  23.48078 978353.639 RG04
120.88980  23.48737 978280.153 TATAb
120.63335 = 23.06984 978675.987 RGO7
120.59144  23.08053 978747.991 GAISb
120.64270  23.16277 978729.013 SILNb
120.55424  23.06750 978741.869 RG0O6
120.48568  23.05493 978773.514 RGOS
120.41200  23.05700 978794.394 AGO7
120.65671  23.00625 978743.244 RGOS
120.65133  22.96367 978745.562 RG09
120.65680  22.88599 978748.469 RGO9b
120.70353 = 22.91562 978690.447 DONA
120.70289  23.10860 978713.821 AGO6
120.73860  23.13808 978685.266 RG10
120.77597 = 23.16941 978669.807 RGI11
120.80254  23.22153 978648.455 RGI12
120.82630  23.26380 978611.794 MESN
120.87675  23.28170 978449.120 RGI13
121.06504  23.15316 978669.312 RGI15
121.02600  23.20100 978491.018 AGO4
120.98627 = 23.24797 978340.814 RGl14
120.96058 = 23.26388 978248.983 AGOS
12091727 23.27698 978344.389 TENCb
121.29535  22.98927 978881.430 RGI8
121.30060  23.04509 978863.194 RG17
121.30020  23.07556 978830.176 TUNH
121.27246 = 23.10294 978770.386 RG16
121.23711  23.12160 978817.210 TAPOb
121.19951  23.10886 978812.165 SHAN

121.30465  22.97043 978893.609 AG2a
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121.37475  23.09881 978916917 CHENDb
121.45436  23.31944 978895.619 PING
121.50578  23.47243 978902.603 KNKO
121.42363  23.49222 978851.011 JSUI
121.37138  23.53160 978863.458 JPEI
121.30113  23.34093 978841.811 YULI
121.35889  23.34108 978849.153 JPIN
121.27990  23.14189 978814.496 AG2b
121.11871  23.13295 978759.943 AGO3
121.16614  22.94218 978820.502 ERPN
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The 2009 General Assembly of the European Geosciences Union (EGU) is held at the
Austria Center Vienna (ACV) in Vienna, Austria, from 19 - 24 April 2009. The
assembly is open to the scientists of all nations. The purpose of attending this meeting
to present two papers: (1) Results from two years superconducting gravity observations
in Taiwan, and (2) Multi-altitude airborne gravity for geoid determination: unification
of Taiwan of height datum between and its offshore islands. | also met Dr David
Crossley and J Hinderer of GGP and several other scientists to discuss the geoid and
superconducting gravity research in Taiwan.

B EGU2009 ¢ 3% 4%

The 2009 meeting of European Geosciences Union was held in Vienna, Austria,
April 19-24, 2009. The number of abstracts submitted to this meeting is over 12,000 and
the number of attendees is about 10,000. The attendees are from all over the world,
covering more than 60 countries. The scientific program includes such disciplines as
atmosphere, space physics, geodesy, geology, planetary science, hydrology, and
oceanography. | presented (1) Results from two years superconducting gravity
observations in Taiwan, and (2) Multi-altitude airborne gravity for geoid determination:
unification of Taiwan of height datum between and its offshore islands in Session G13
and G11. A number of useful comments were given to this paper. Many scientists
show their interest in cooperation with Taiwan on and superconducting and airborne
gravity research.

This meeting brought attention to methods for warning such disastrous events as
soil erosion, flooding, land slide and volcano eruption. It appears inter-disciplinary
methods are appealing and are trends for the future.

A significant amount of papers about precise orbit determination (POD) and
gravity determination from GOCE (launched March 16, 2009) were presented in this
meeting. Time-varying gravity from GRACE and its interpretations are also hot subjects
of discussions.



1. Gravity research is very active in Europe. Their techniques and theories

are more sophisticated than those in Taiwan

2. Taiwan should put more resource in gravity research in order to compete

with other nations
A s
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Abstract

The Hsinchu (HS) superconducting gravimeter (SG, serial No. T48) station is a newly
established site in the Global Geodynamics Project (GGP). Simultaneous
observations of T48, three FG5 absolute gravimeters and GPS at four stations are
studied. GPS shows few mm year" of horizontal and vertical motions around HS.
The calibration factor and drifting rate of T48 are -75.96+0.07 pgal V' and 0.2+0.7
ngal year' (1 pgal = 10° m s). Both the SG and absolute gravity records contain
trends of about 2-3 pgal year'. The ocean tide gravity effects (OTGEs) were
estimated from NAO.99b, FES2004 and CSR4.0, and their amplitudes agree with the
SG observations at the sub-pgal level, but their phases differ from the observations up
to 10°. The Newtonian effect of ocean tide contributes 20% to the total OTGE at HS,
and it is larger at islands in the Taiwan Strait. The inelastic body tide model of DDW
is more consistent with the SG observations than the elastic model. Modeled
gravity-atmosphere admittances based on an exponential distribution of air mass
explain well the observed admittances. The average gravity-atmosphere admittance
during typhoons is 30% larger than that in a non-typhoon time. A list of co-seismic
gravity changes from T48 caused by earthquakes over 2006-2007 is given for
potential studies of fault parameters. The modeled effects of atmospheric pressure,

ground water, soil moisture, and polar motion explain the FG5 observed gravity trend
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to 1.1 pgal year'. Seasonally, the groundwater-induced gravity change contributes

the most to the SG residual gravity, but its phase leads the latter by 63 days.
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atmosphere,

earthquake,

GPS,

superconducting
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1. Introduction

In March 2006, a single-sphere superconducting gravimeter (SG), serial
number T48, was installed at Tunnel B of Mt. 18-Peak in the Hsinchu City, Taiwan.
T48 is manufactured by GWR and has a nominal sensitivity of one ngal and a
stability of few pgal year" or better (1 ngal =10"" m s ; 1 pgal = 10%m s?). The
Hsinchu SG station is now included in the SG network of the Global Geodynamics

Project (GGP, http://www.eas.slu.edu/GGP/ggphome.html). The latitude, longitude

and elevation of HS are 24.79258°N and 120.98554°E and 87.6 m, respectively. The

scientific objectives and related issues of GGP, in particular GGP’s role in the Global

Geodetic Observing System (GGOS), are detailed by Hinderer and Crossley [2004]

and Forsberg et al. [2005], and will not be elaborated here. Hereafter we will use the

abbreviation HS to represent the Hsinchu SG station. Also, a second SG —T49 at HS

is under test, but its result will not be reported here. Several meteorological sensors, a

seismometer, a continuous GPS station and a groundwater monitoring well are

deployed to monitor environment-induced gravity changes. Also, HS is about 8.6 km

from the Taiwan Strait, where the average depth is 80 m and the ocean tide amplitude

and phase are rapidly varying [Jan et al., 2004]. Taiwan, like many other regions in

the western Pacific, is prone to attacks from such hazards as landslide, typhoon and

earthquake. Installed at a proper location, a SG may be used to monitor man-made
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and natural hazards.

In addition to supplying SG data to users interested in the targeted research subjects

listed in GGP and GGOS, HS offers some extra features. HS is the closest station to the

Tropic of Cancer in GGP and will be most sensitive to gravity change due to the motion of

the earth’s inner-core in the summer solstice, so that the SG data here are the best for

testing the universality of free-fall [Shiomi, 2006]. Because of the short distance to shallow

waters (8.6 km to the Taiwan Strait in the west), and the medium distance to deep waters

(about 100 km to the Pacific in the east), the SG data at HS can be useful for studying the

Newtonian effect and the loading effect of ocean tide. SG data at HS will enable the

detection of non-linear ocean tides originating from the Taiwan Strait [Boy et al., 2004;

Khan and Heyer, 2004]. A typhoon is an extremely low pressure system with abundant

precipitating waters on the surface and in the air. Typhoons pass through Taiwan and the

seas near this island from April to November, and create large gravity variations that are

easily detectable at HS and can be used to investigate gravity change caused by

atmospheric pressure change, including the effects originating from attraction, loading and

inverted barometer [Boy et al., 2003; Hinderer and Crossley, 2004; Rccardi et al. 2007].

Finally, the co-seismic gravity change at HS due to a nearby earthquake will help to

validate the fault parameters associated with the earthquake [Imanishi et al., 2004].

Real-time data of typhoons and earthquakes around Taiwan can be assessed at the Central
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Weather Bureau of Taiwan (http://www.cwb.gov.tw).

With more than 2 years of SG data available at HS (from March 2006 to present), the

objective of this paper is to present results on the quality assessment of the HS SG data and

the applications of such data to selected problems. The geological settings and the regional

tectonic motion around HS, based on previous geophysical explorations and continuous

GPS observations, will also be presented. The calibration factor and the drifting rate of T48

will be estimated from parallel observations of absolute and SG gravity values, and these

are two crucial parameters of T48 that must be taken into account when using the SG data

at HS. The absolute gravity measurements were collected by three FG5 gravimeters from

Taiwan and France. We will also employ standard models to account for the gravity

changes due to atmosphere, groundwater, soil moisture and polar motion, which help to

explain the origins of gravity changes obtained from FGS5 and SG observations at HS.

2. Geological setting and GPS-derived regional tectonic motion

As shown in Figure 1, HS lies south of an alluvium created by two major rivers in

Hsinchu. There are three non-active faults near HS. The Hsinchu Fault is within few

hundreds of m to HS and is a normal fault lying in the west-east direction with a total

length of 9 km. The latest movement of the Hsinchu Fault occurred some 100,000 years

ago (Central Geological Survey of Taiwan, http:/www.moeacgs.gov.tw), and it is expected




105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

that there will be no immediate threat of large ground movement and earthquake at HS due
to this fault. HS is at the foot wall of the Hsinchu Fault and is situated on the “Toukeshan
formation” that has a distinct geological structure from that of the alluvium to the north.
The alluvium is fan-shaped and contains several soil layers. Figure 2 shows a cross-section
of the alluvium (Figure 1). The depths of the layer with shallow groundwater range from
10 m to 40 m. Below this surface layer lies several layers composed of gravel and fine sand
that can store groundwater. The amount of groundwater in these layers varies with rainfall,
which is largely brought by monsoons and typhoons. As such, the seasonal or shorter
time-scale changes of groundwater over the alluvium will create gravity variations at HS,
and will be discussed later in this paper.

Compared to the eastern coast of Taiwan, the western coast of Taiwan is relatively
quiet in terms of seismic activity. About 75% of earthquakes in Taiwan happen in the
eastern coast, and 25% in the western coast (Central Geological Survey of Taiwan). Based
on the GPS measuring results and a viscoelastic earthquake cycle model of Johnson et al.
[2005], the horizontal rates of plate motion in southeastern Taiwan are about 7-8 cm year™,
while the horizontal rates in the rest of Taiwan are few mm year™ to few cm year™. In this
paper, we used GPS data from four continuous GPS stations (Figure 1), spanning almost
the same time period as that of the HS SG data, to study the regional tectonic motion

around Hsinchu. Station HCHM is located on the summit of Mt. 18-Peak and is regarded
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as a co-located station with HS. Station TCMS is in the International GPS Service (IGS)
network. Station SHJU is co-located with the Hsinchu tide gauge station. Using the 1GS
precise GPS orbits (http://igscb.jpl.nasa.gov/) and the Bernese 5.0 software [Beutler et al.,
2007], daily coordinates of the four GPS stations were determined and their variations are
given in Figure 3. In general, all GPS stations show a consistent southeastward motion at a
speed of about 1- 2 cm year ', and the pattern of horizontal motion in Figure 3 is similar to
that given by Johnson et al. [2005]. Unlike the vertical motion, a localized and uniform
horizontal motion will not create a significant mass change leading to gravity change.

The vertical motions at the four GPS stations range from -3.5 to 0.5 mm year .
TCMS and NCTU are several hundreds of m from HCHM and are located on the top of a
building. These two stations have been installed for over 10 years. Therefore, the
subsidence of the buildings will not contribute to the vertical rates detected by GPS over
2006-2008. The SHJU tide gauge station, installed in 2004, is situated at the Hsinchu
fishing harbor. Again the platform housing the SHJU tide gauge should be stable by 2006.
The vertical rate of HCHM (also HS) is 0.5+0.3 mm year". Since there is neither major
man-made structure nor groundwater extraction near HCHM, the vertical motion at
HCHM (and therefore at HS) should be of tectonic origin. Furthermore, the vertical rate of
HCHM (at the foot wall) relative to TCMS (at the hanging wall) is 0.2+0.4 mm year”,

which shows that the relative vertical displacement between the foot wall and the hanging
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wall of the Hsinchu Fault is small.

3. Parallel absolute and superconducting gravimeter observations

3.1 Calibration factor of T48

It is necessary to determine a calibration factor of T48 that converts the raw SG

readings to readings in gravity. We determined an optimal calibration factor of T48 using

parallel observations of T48 and a FG5 absolute gravimeter (serial No. 231). The pillars

for T48 and FGS are separated by about 1 m only. This method has been demonstrated by

Francis et al. [1998], Imanishi et al. [2002] and Tamura et al. [2005]. In total, 18 sessions of

parallel observations were collected. The following model is adopted for the determination

of the calibration factor:

g(t)= fV(t)+b—st (1)

where f. is the calibration factor, b is an offset, S is the trend of T48 and g and V are

readings from FG5 and T48, respectively. Given the observations (g and V), the standard

least-squares technique is used to compute f_, s and b. FG5 and T48 sense the same

gravity effects of solid earth tide and ocean tide, as well as any other time-varying

gravity effects, to produce gravity variations, which are exactly what we need for
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determining the calibration factor. Before the least-squares solution, the outliers in the
T48 and FGS data, which occur mostly during heavy rainfall, earthquakes and abrupt
changes of air pressure due to typhoons, were removed. As an example, Figure 4 shows the
T48 and FG5 data for calibration from the session of June 20, 2006 — July 2, 2006. The
variations in the FGS5 gravity readings are mainly caused by the body tide and are almost
linearly correlated with the SG readings in voltage (correlation coefficient 0.953). The
residuals of FGS5 observations from the least-squares adjustment (raw FG5 gravity values
minus fitted gravity values) follow the normal distribution, suggesting that the linear model
in Eq. (1) is adequate, and the estimated parameters are unbiased.

Table 1 lists the 18 parallel sessions and some useful information about the FG5
observations. Using all data from the 18 sessions, we obtained a calibration factor of
-75.96+0.07 pgal V' for T48. The trend s of T48 is 1.41+0.09ugal year™. Note that this
calibration factor (-75.96 pgal V') was determined using all FG5 and T48 observations
simultaneously in one least-squares solution, rather than the average of the individual
calibration factors from the 18 sessions in Table 1. A calibration factor based on just one
session in Table 1 is considered less reliable. The standard error (0.07 pgal V') is smaller
than 0.1 pgal V', which is in general an acceptable value in the SG community [Tamura et
al. 2005]. The uncertainty in the calibration factor is largely caused by the random errors in

the FG5 observations. As mentioned before, HS is only 8.6 km from the sea, so the set
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scatters of FGS5 observations (from 1.3 to 4.1 pgal; Table 1) are larger than what would be

expected at a “quiet” station, where a typical set scatter is below 1 pgal. The calibration

factor of T48, to be published on the GGP web site, will be constantly improved as more

parallel FG5 and T48 observations are available in the future. Since the calibration factor of

T48 obtained in this paper has already been very precise, we expect only a minor change in

future updated values.

3.2 Drift of T48

The drift of a superconducting gravimeter will lead to a false interpretation of the

long-term gravity change at the SG site. Figure 5 shows the parallel FG5 and SG

observations from 2006 to 2008, with the solid tide and ocean tide gravity effects and

anomalous values removed. Some of the gravity values were collected by FG5 No. 224

(from Taiwan) and 228 (from France) when FG5 No. 231 (from Taiwan) was on the field

work. These two time series of gravity, sampled at different time intervals, show a

dominant annual cycle and an increasing trend. A gravity measurement from FG5 or T48,

g(t), can be modeled as

g(t)=g, + dt+ccoswt +d sinwt +e(t) )
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where tis time, g, isa constant, § is the linear change rate, ¢ and d are the coefficients

of the annual cycle, w is the annual frequency, and e is the measurement noise.
Least-squares estimations were then employed to determine the four parameters in Eq.
(2). The amplitude and phase were determined as vc*+d” and tan"'(d/cC). As a
result, the amplitudes of the annual cycle from FG5 and T48 are 5.9 and 6.3 pgal, and
the phases are -22.9° and -26.1°. The difference in phase is partly due to data errors
and partly due to the two different ways of sampling FG5 and SG measurements.
The measurements of SG were almost continuous (sampling rate is 1 HZ) from
March 2006 to present, but the measurements of FG5 were taken at the times given
in Figure 5, and each FG5 gravity value was the average over several drops. The
linear change rates from FG5 and T48 are 2.2+0.7 and 2.4+0.2 pgal year'. If we
assume that the rate obtained by the FG5 gravimeters is a true rate of gravity
change, the instrumental drift of T48 is estimated to be at a rate of 0.2+0.7 pgal
year”'. Note that this drifting rate (0.2 pgal year') is estimated using the absolute
gravity observations (serial No. 224, 228, and 231) from three FG5 absolute
gravimeters. It differs from the trend (1.4 pgal year") estimated in Section 3.1. This
is explained by the fact that the trend in Eq. (1) may also absorb other un-modeled
effects in the determination of the calibration factor and may not truly reflect the

drift of T48.
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4. Tidal analysis and observed tide
4.1 Preprocessing of the observed SG data

Before the tidal analysis, using the software “TSOFT” provided by the
International Center for Earth Tides (ICET, http://www.astro.oma.be/ICET/), the SG
data of T48 were de-spiked, filtered and decimated to hourly records for spectral
analysis. Figure 6 shows the spectrum of the raw SG gravity records. As expected, we
observe the six leading tidal components of M,, K;, S,, O;, N, and P, (in decreasing
order of amplitude). Note the distinct signal component labeled M3 in Figure 6 at a
frequency of about 2.9 cycle day”', which is due to the M3 ocean tide modulated by
the complex bathymetry and coastal lines around the Taiwan Strait. This shows that,
as pointed out by Hinderer and Crossley [2004], and Boy et al. [2004], SG provides
interesting and important data to study non-linear tides over such a shallow-water

area as the Taiwan Strait.

4.2 Tidal analysis
We compared the two computer programs ETERNA [Wenzel, 1996] and
BAYTAP-G [Tamura et al., 1991] for tidal analysis. Tables 2 and 3 summarize the

amplitude factors and phases along with the standard (formal) errors for the



238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

15

short-period tides obtained by ETERNA and BAYTAP-G, respectively. A phase
shown in Table 2 and 3 is given as the phase difference from the equilibrium body
tide whose amplitude changes with the astronomical argument of each tidal
constituent. The standard errors in Tables 2 and 3 suggest that the estimated
amlitudes and phases are statistically meaningful. The tidal parameters obtained from
the two computer programs are quite consistent. As expected, the standard errors
increase with the tidal periods. The M, wave, the most dominant component in the
gravity time series, has the least standard error in both amplitude factor and phase.
The phase of y; constituent shows a large formal error exceeding 1°, which may be
reduced when a longer SG record than 2 years is available for the analysis.

To reduce the analysis error due to the contamination of the effect caused by
atmospheric pressure changes, the pressure term was included in the tidal analysis as
a term to be estimated. By using the barometer data simultaneously obtained at HS
with the SG data, we obtained the gravity-atmospheric admittances of -0.340+0.003
and -0.355+0.003 pgal hPa™ from ETERNA and BAYTAP-G, respectively. Although
the two computer programs ETERNA and BAYTAP-G are developed independently,
they produce gravity-atmosphere admittances consistent to 97%. These values
represent a mean value for the gravity-atmosphere of the HS SG that is averaged over

the two years. As we will discuss in Section 5, the gravity-atmosphere admittance
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will vary with the spatial and temporal scales of the atmospheric pressure change.
4.3 Ocean-tide gravity effect
We model the ocean-tide gravity effect (OTGE) according to the Green’s

function approach, which is represented by

_ Gpw h(¢a ﬁ“)(p —U) _
ag == 0+ 2p pu [[ (g DK (s (3)

where G is the Newtonian gravitational constant, p is the density of sea water, R is
the mean earth radius, h is tidal height (depending on latitude ¢ and longitude 1),
is spherical distance, U=cosy,p=(R+H)/R,ds=R*cosgdgdl , and K is
Greens’ function based on the loading love numbers of Farrell [1972]. The first and
second terms of the right-hand side of Eq. (3) represent the effects of attraction and
loading, respectively. The detail of our OTGE model and software development is
given by Huang et al. [2008]. Note that the Newtonian (attraction) effect depends on
station height H through variable p.

In the Taiwan Strait, the amplitude of the M, ocean tide increases toward the
central part of the Strait and it reaches a maximum (about 2.2 m) at a latitude about
24°N, and then decreases almost linearly northwards to the East China Sea and

southwards to the South China Sea. Also, there is a standing M, ocean tide near the
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central Taiwan Strait [Jan et al., 2004]. As an example, the M, amplitudes at Keelung

(25.2°N, near the East China Sea), Hsinchu (24.8°N, near HS) and Pintung (22.0°N,

near the South China Sea) are 0.6, 1.6 and 0.2 m, respectively.

SG observations can also be used to estimate OTGE, as carried out by Boy et al.

[2003]. This is achieved by removing an adopted body tide model from the SG data,

along with all the other known, well modeled signals, so that the residual SG gravity

values are assumed to contain the OTGE signal only. However, such an estimated

OTGE will be highly dependent on the adopted body tide model. As an experiment,

we removed the DDW body tide of Dehant et al. [1999] from the raw SG gravity

records. The remaining gravity values were then used to estimate OTGE at HS by

ETERNA software. The estimated OTGE will be then called the “observed” OTGE.

Figure 7 shows the amplitudes of the “observed” OTGE at HS and the amplitudes of

the ocean tide at the SHJU tide gauge station (Figure 1). In the amplitude spectra of

Figure 7, six leading components are identified: O, P;, K;, N,, M; and S,. It is

interesting to note that the relative magnitudes of these constituents are different

between the OTGE and the ocean tide. For OTGE, the order is M,, Oy, K, S,, N,

and P,, while for the ocean tide, the order is M», S,, N,, K;, Oy, and P;. For both the

ocean tide and its gravity effect, the M, component is dominant. For ocean tide, M,

contributes 47% to the total signal, while for OTGE the M, contribution is only 23%.
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In addition to M3, several other non-linear tides are also present in Figure 7. The SG

observations at HS can be used to study non-linear tides in the Taiwan Strait, as was

done by Boy et al. [2004) for European shallow waters.

Table 4 compares the amplitudes and phases of OTGE from the observations

(T48) and from the NAO.99b [Matsumoto et al., 2000], FES2004 [Lyard et al., 2006]

and CSR4.0 [Eanes and Bettadpur, 1996] ocean tide models for 8 short-period waves.

Overall, the OTGE from the NAO.99b tide model agrees the best with the SG

observations in both amplitudes and phases of all tidal components. The model

assessment by Penna et al. [2007] at TWTF, a continuous GPS station in Taiwan

some 30 km north of HS, also shows that, compared to FES2004, the ground

displacements predicted with NAO.99b are more consistent with the GPS observed

displacements. The discrepancies in amplitude are at the sub-pgal order, except for

the My from CSR4.0. Compared with the diurnal tides, the modeled phases of the

semi-diurnal tides show relatively large discrepancy, showing the complexity in the

variations of the semi-diurnal tides in the Taiwan Strait. Therefore, there is room for

improvement of the tide models listed in Table 4, especially in the phases of the

semi-diurnal tides.

Since HS is near the Taiwan Strait, the Newtonian gravity effect of the ocean

tide can be significant. Using the NAO.99b tide model, we find that at HS the loading
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effect and the Newtonian effect of M, are 3.01 and 0.75 pgal, respectively. Thus the
Newtonian effect contributes 20% to the total effect. As shown in Eq. (3) and
demonstrated by Lysaker et al. (2008), the Newtonian gravity effect is
height-dependent. As an example, Table 5 shows such a height-dependence at HS and
Lulin for M,. Station Lulin (latitude=24.47109°N and longitude=120.88081°E)
will house the second SG (T49) of Taiwan, and is about 74.5 km to the Taiwan Strait
and 60.7 km to the Pacific. At both HS and Lulin, the Newtonian effect increases with
elevation, and this is due to an increasing vertical component of the attraction as the
elevation becomes larger. Lulin is distant from the sea in comparison to HS (74.5 vs.
8.6 km to the Taiwan Strait), so the Newtonian effect at Lulin is less sensitive to
elevation change than that at HS.

At a given SG station near the sea, the spatial variation of tidal height can be
assumed to be linear. With this assumption and following the method for evaluating
the innermost zone contribution of gravity anomaly to geoid [Heiskanen and Moritz

1985], one finds the near-zone Newtonian effect of ocean tide as

_c Sooh 4)

9 4R

where S, is the radius of the near-zone zone, C is the ocean/land ratio near the station.
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S, 1s the maximum distance that a linear variation of tidal height around the station

holds. Based on the amplitude variation of M; in the Taiwan Strait [Jan et al. 2004],

S, 1s about 10 km. Thus, for a station near the sea, the Newtonian effect is

proportional to the tidal height. Using the integrations in Eq. (3) and the NAO.99b

tide model, the largest Newtonian effect of ocean tide is found to be near Matzu,

which is an island in northwestern Taiwan Strait and offshore mainland China. For

example, at a permanent GPS tracking station on this island that is 500 m from the

sea, the amplitudes of the M, tide for the loading and Newtonian effects are 6.07 and

5.33 pgal, respectively. This implies that for a gravity station on an island, the

Newtonian gravity effect of ocean tide is about the same as the loading effect.

4.4 Comparison with theoretical body tide

In order to demonstrate the uniqueness of the HS SG station at its latitude

(about 25°N) and the effect of OTGE correction, we compare the observed (this study)

and the theoretical amplitude factors for selected waves in Table 6. The theoretical

amplitude factors in Table 6 are given by the DDW model of Dehant at al. [1999] for

the elastic and inelastic earth, which are derived using the PREM earth model

[Dziewonski and Anderson, 1981]. The DDW amplitude factors are

latitude-dependent and can be expressed by
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J6

o' =a’ +b! T(7 sin” ¢ — 3)

NG

5is = ais + bis 7(7 Sin2 ¢—1)

©)

where ¢ is latitude, subscript i stands for tidal component, and superscripts d and s

stand for diurnal and semi-diurnal waves, respectively. The second terms in Eq. (5)

are the latitude-dependent terms contributing ~0.4% to the amplitude factors; see also

Torge [p. 398, 1989]. A “relative difference” in Table 6 is defined as the ratio between

the absolute difference (observation — model) and the observation. Three global

ocean tide models -NAO.99b, FES2004 and CSR4.0- were used to correct for the

OTGE in the SG data.

The amplitude factors corrected for OTGE agree better with the model factors of

DDW than the factors from the raw SG data. We observed in Table 6 that, in general,

the inelastic model of DDW agrees better with the observations of T48 than the

elastic model. Among three ocean models compared here, NAO.99b gives the

corrected amplitude factors which are most consistent with the factors expected from

the theory. In this case, if we take the mean value for the six major tidal constituents

having an amplitude exceeding 10 pgal (i.e. K1, O1, P1, N2, M2, and S2), the

relative difference for the inelastic model is smaller by about 22 % than that for the
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elastic model, i.e. ratio of (0.602-0.470)/0.602. Moreover, for the mean of the same 6
constituents, we point out that the inelastic amplitude factor from the DDW (i.e.
1.1540) is systematically smaller by about 0.5 % than the observed one (i.e. 1.1595)
corrected by NAO.99b. Compared with the calibration error of 0.07% described in
Section 3, the difference of 0.5% is significant in the discussion of the tidal factor. It
is necessary to further improve the accuracy of the ocean tide correction to make
concrete conclusions on this, especially for the M, and O; constituents, which have
large amplitude and are far from the effect of the free core resonance (for example,

Wahr, 1981) appearing around the frequency of K, and y; constituents.

5. Atmospheric pressure effect

Using two years of SG and barometric data at HS, we obtained average
gravity-atmosphere admittances of -0.340+0.003 and -0.355+0.003 pgal hPa™ from
ETERNA and BAYTAP-G, respectively. Note that the gravity-atmosphere admittance
is frequency dependent [Riccardi et al., 2007], but this subject is not pursued here. In
the following, we will interpret gravity-atmosphere admittances for various
atmospheric conditions, including typhoons. As shown by Ooe and Hanada [1982],

the distribution of air mass can be approximated by an exponential function, in which

the density change Ap at a spot with a spherical angle 6, to a given station is
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represented by

Ap=Ape ' (6)

where « 1is the horizontal scale (in the same units as the spherical angle) of the
atmospheric pressure change. In this paper, we adopt Ap, =1.225 kg m” for HS. In
a normal case of slow and smooth pressure changes, the synoptic horizontal scale is
about 1000 km or more, and the temporal scale is about 3 days to 7 days. With the
approximation in Eq. (6), the analytical solution of the Newtonian attraction of the air
mass, expressed as admittance in pgal hPa”, can be written as [Ooe and Hanada,

1982]

Ag, = _0.43[1_21(\/1—205@ _\/l—cc;sei1 )e,oj‘gwgi‘/a] )
where n is the total number of segments of the coaxial rings centered at an
observation site. Also, the loading (elastic) effect of atmosphere can be estimated by
numerically convolving air mass and the loading Green’s function as in the case of
the ocean tide loading effect (see Eq. (3)). The oceans respond to atmospheric

pressure changes as an inverted barometer (IB) over wide frequency bands [Wunsch
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and Stammer, 1997], and the observations indicate that this hypothesis is well
realized in the frequency band lower than about 0.1 cycle day™ [Matsumoto et al.,
2006]. If the IB response is completely established, there will be no loading effect
due to atmospheric pressure changes over the oceans, while in the case of the
non-IB response (NIB), the same loading effect is expected on sea and land. To
compare the computations based on conditions of the IB and NIB, we used two
topographic maps of ETOPO2 ona 2'x2" grid for the oceanic area around Taiwan,
i.e., over a region covering 20°N-30°N in latitude and 116°E-120°E in longitude
(ETOPO2 is available from

http://www.ngdc.noaa.gov/mgg/fliers/01lmgg04.html). A 0.5°x0.5° land masking

map as used in NAO.99b was employed. A computer code modified from "GOTIC"

[Sato and Hanada , 1984] was used.

Figure 8 shows the gravity-atmosphere admittances at HS for the cases of 1B

and NIB. The dependency of the Newtonian and loading effects upon the horizontal

scale (o) 1s given in Figure 8. Figure 8 suggests that the difference in the

admittances between the cases of IB and NIB becomes evident at 1°.This is due to

the fact that the loading effect decreases rapidly as the horizontal scale decreases.

The IB hypothesis is well established at the horizontal scales of 10°-12°. The

admittances due to the Newtonian atmospheric effects in the cases of IB and NIB
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are nearly identical at all horizontal scales. As shown in Figure 8, the average
observed admittance of -0.350 gal hPa" at HS corresponds to the admittance
associated with =~ 10° in the case of IB response. Although a rigorous treatment of
the Newtonian atmospheric effect should be based on a 3-dimensional density
model of atmosphere [Neumeyer et al., 2004; Llubes et al., 2004], especially for the
seasonal variations in the atmospheric pressure effect on SG observations, the
present computation indicates that the mean observed admittance over 2 years
mainly reflects the effect of pressure variations at the synoptic scale.

It turns out that the observed admittances during typhoons are far from the mean
admittance. A typhoon is a very low pressure system that might create a large gravity
change. In the western Pacific, a typhoon might occur anytime from April to
November. Table 7 lists the gravity-atmosphere admittances for the typhoons over
2006 - 2007 that caused anomalous gravity changes at HS. Some of the parameters of
the typhoons are also given in Table 7. The mean of these 8 admittances is -0.45 gal
hPa™', which is 30% larger than (in magnitude) the mean value of -0.35 gal hPa™ at
Hs. This phenomenon can be explained in part by the horizontal scale of a typhoon
(Figure 8), and the temporal scale of the variation of a typhoon. In general, the
horizontal scale of a typhoon is only few degrees, which corresponds to a distance

range where the contribution of loading effect is very small. Moreover, the speed of
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typhoon is typically 30 km hour” to 40 km hour”', which is far from the frequency
range where the IB hypothesis is well established. The combined effect of the small
horizontal scale and the fast motion of air will shift the admittance from -0.35 gal
hPa™ to a value of about -0.43 gal hPa™, which is the lowest value obtained from the
model computation here.

In addition to the spatial and temporal scales that result in different admittances
for the typhoon and non-typhoon conditions, other factors may also affect the
admittance during a typhoon, for example, the actual density of the central part of a
typhoon. A typical Doppler radar image of typhoon (see, e.g., the real-time radar
images at Central Weather Bureau of Taiwan) shows that the precipitating water is
not evenly distributed within the effective area of a typhoon and the convection
within a typhoon can be asymmetric; see, e.g., Chou et al. [2008] and Li et al. [2008].
In particular, condensation of water vapour contained in the moist air normally occurs
at low altitudes. Flooding and increased soil moisture will also lead to additional
gravity changes. Therefore, the gravity changes due to typhoons detected at HS can
be used to validate models of density distribution within a typhoon system, e.g., the
model of Chou et al. [2008] that is based on three-dimensional variational data

assimilation (3DVAR) and the Advanced Microwave Sounding Unit (AMSU) data.
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6. Co-seismic gravity change due to earthquake

HS is close to an active earthquake zone belonging to the ring of fire in the western

Pacific. Near real-time records of earthquakes around Taiwan can be found at

http://www.cwb.gov.tw/V5/seismic/quake.htm. An earthquake will introduce oscillations in

the gravity records. Depending on the magnitude, depth and distance to HS, the oscillation

may last from few minutes to few hours. Such oscillations are considered as anomalous

records and are often excluded from such analyses as body tide and ocean tide gravity

effects. Hidden in the oscillations is a permanent gravity change that is caused by mass

change and surface dislocation. The detection of such a permanent gravity change will

require the modeling of a step function before and after the earthquake [Imanishi et al.

2004). Following the method used by Imanishi et al. [2004], we used the T48 records to

determine permanent gravity changes due to earthquakes around Taiwan in 2006 and 2007,

which are listed in Table 8. As an example, Figure 9 shows the permanent gravity change at

HS due to an earthquake on September 6, 2007. The magnitude of this earthquake is 6.6

and the depth is 54 km. Situated at the Pacific Ocean northeast of Taiwan, the earthquake’s

epicenter is at latitude=24.28° and longitude=122.25° , some 155 km from HS. The gravity

change due to the co- and post-seismic deformations was theoretically studied (for

example, Wang et al. [2006], Fu and Sun [2008]). Although we must carefully check

the instrumental instability as a possible source to make the gravity offset shown in
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Table 8 by comparing the observed offsets to the amplitudes and the directions which

are expected from the theoretical estimations and the GPS observations carried out at

HS and nearby sites to it. However, Table 8 can be used to validate the theoretical

models that estimate co- and post-seismic gravity changes, and therefore help to

refine the fault parameters associated with an earthquake. Furthermore, it is noted

that cumulative gravity offsets due to earthquakes will be a possible significant

source of the secular gravity rate changes at HS.

7. Residual gravity change

7.1 Observations and models

The observed residual gravity changes at HS were obtained from the raw SG gravity

records corrected for the effects of the body and ocean tides (Section 4). Several sources

contribute to the gravity changes at a given gravity station; a summary of all possible

sources is given by Torge [1989]. One source is atmospheric pressure change, whose

gravity effects at short temporal scales have been discussed in Section 5. Another source of

gravity change is groundwater. Depending on the spatial scale sought, the

groundwater-induced gravity change is often classified into local, regional and global

variations. For a precise modeling of the local groundwater effect, the local hydro-geology

data must be given. At HS, the basic scenario of the hydro-geological structure is given in
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Figures 1 and 2, but far more details are needed to account for the hydrology-induced
gravity changes. The water table at HS alone cannot fully describe the distribution of
groundwater over the Toukeshan formation around HS and over the alluvium north of HS.
Furthermore, a soil moisture sensor is deployed right above Tunnel B that houses T48.
However, the soil moisture data collected here will not be representative of water
distribution in the unsaturated layers around HS. Despite these difficulties, preliminary
models to account for the residual gravity changes at HS due to non-geodynamic origin are
presented below.

(1) Atmospheric pressure effect (ugal)

g, = f,(P, ~1013) ®)

where P, is pressure in hPa, 1013 hPa is the standard atmospheric pressure at HS and f,
is the gravity-atmosphere admittance. According to the result in Section 5, we set f, =
-0.350 pgal hPa™.

(2) Groundwater effect (ugal)

&, = 0.42P3H ©)
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where P is the porosity of soil in percentage and JH is groundwater level variation in m.
We adopt P=10% as the optimal porosity for the Toukeshan formation (Section 2).

(3) Soil moisture effect (pgal)

oy, =—0.42HP (10)
where H is the depth of unsaturated soil layer and oP is the recorded soil moisture change
in percentage . Here we adopt H =1 m. The minus sign in Eq. (10) is due to the fact that
T48 is housed in a tunnel beneath the unsaturated soil.

(4) Polar motion effect (ngal)

A, :1.164><108a)2Rsin2(0(Xp cosA—Yy,sinA) (11)

where ¢, 4 are latitude and longitude, and X, y  are polar motion components in radian ,

which are available from the International Earth Rotation Service (IERS,
http://www.iers.org).

Figure 10 compares the observed (by T48) residual gravity changes and the modeled
values at HS. Conclusions on the non-linear gravity changes based on Figure 10 are given

below.
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(1) At the time scales of hours to days, the largest contribution to the observed residual

gravity change is from the atmospheric pressure change. In fact, the analysis in Section

5 shows that the correlations between residual gravity change and atmospheric pressure

change at such short time scales are more than 90% in most cases. The episodic

changes of gravity due to groundwater have to do with sudden rainfalls. The soil

moisture also creates short-period gravity variations, but the pattern of variation is quite

irregular. There are no clear short-period gravity variations due to polar motions.

(2) The observed and modeled gravity changes all contain annual variations, but with

different amplitudes and phases. Table 9 lists these amplitudes and phases. The

amplitude of the groundwater gravity effect is the largest, followed by that of the

atmosphere gravity effect. The amplitudes of the soil moisture and polar

motion-induced annual gravity change are almost equal, and are 1/4 of the groundwater

gravity effect. Seasonally, the modeled gravity changes due to atmosphere and

groundwater lead the observed residual gravity by 110 and 63 days, while the modeled

gravity changes due to soil moisture and polar motion lag behind the observed ones by

about 12 days. Disagreements in amplitude and phase between observed gravity

change and hydrology-induced gravity change are very common, as shown by Boy and

Hinderer [2006] and Neumeyer et al. [2008] at selected GGP stations. In the case of HS,

exactly how and how long the aquifers under the alluvium (Figure 1) are filled and



560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

32

drained are not clear, and these uncertainties contribute to the disagreement between
the observed and groundwater-induced gravity changes.

(3) Clearly the models in Eq. (8)-(11) have deficiencies, e.g., the 63-day phase difference
between the observed and groundwater-induced gravity changes. On the other hand,
the SG and FG5 observed gravity changes may be used to investigate such problems as
flow of groundwater and small-scale hydrological process; see, e.g., Jacob et al. [2008]

and Naujoks et al. [2008].

7.2 Rate of gravity change at HS

As shown in Section 3.2, the absolute and T48 gravity records all show a long-term
trend of gravity change at HS. The origins of the trend are now interpreted using the
modeled gravity changes given in Section 7.1, plus the vertical displacement given in
Section 2. The rates of the modeled gravity changes are listed in Table 10. The total rate
from these models is 3.3+0.8 pgal year”, compared to 2.2+0.7 pgal year” from the absolute
gravimeter measurements (Section 3.2). Therefore, the modeled rates cannot fully account
for the observed rate of gravity change. One source of the gravity change not accounted for
in Table 10 at HS is earthquakes around Taiwan. For example, the earthquake occurring on
September 6, 2007 created a gravity offset of 0.6 pgal, which contributes a rate of 0.3 pgal

year” to the total rate at HS over two years (Section 6). Other small earthquakes will also
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create gravity changes that eventually add to the rate of gravity change at HS. Gravity
change due to sea-level rise will also contribute to the rate of gravity change recorded at HS.
An example of gravity change due to sea level rise over the Baltic Sea is given by Virtanen
and Makinen [2003]. At the global scale, a rising rate of 3.1 mm year" in sea level, as
estimated from TOPEX/Poseidon and Jason-1 satellite altimeter data [Nerem et al., 2006],
will lead to a rate of 0.2 pgal year” in gravity based on a simple Bouguer model for the

effect of oceanic water mass.

8. Conclusions

This paper summarizes the findings from the observations of a superconducting
gravimeter (T48), three FG5 absolute gravimeters (serial no. 224,228, and 231) and a
regional GPS network around HS. The main purpose of this work is to show some of T48’s
critical parameters and its potential applications to such studies as SET, OTGE, typhoon
and earthquake. The area north of HS is a groundwater-rich alluvium that introduces
gravity variation at HS. A vertical site motion of 0.5+0.3 mm year" at HS was found and is
not directly related to the movement of the Hsinchu Fault. Using the parallel FG5 and T48
observations, the calibration factor and the drifting rate of T48 were found to be
-75.96+0.07 pgal V' and 0.240.7 pgal year™, respectively. The observed drifting rate of

T48 is smaller than the nominal drift of few pgal year” reported by the SG manufacturer.
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The relative differences between the gravimetric amplitude factors determined with T48

(corrected by NAO.99b) and the model factors of Dehant et al. [1999] range from 0.05 to

3.93%. The OTGE model amplitudes and phases from the NAO.99b tide model agree the

best with the observations of T48. The Newtonian part contributes a significant portion to

OTGE (about 20% for M, at HS) at an ocean-side SG station such as HS. A density

distribution model of atmospheric pressure change based on an exponential function

predicts the gravity-atmosphere admittances that agree well with the observations. The

gravity-atmosphere admittances during typhoons are 30% larger than the mean.

The residual gravity from T48 shows a distinct annual cycle and a linear trend.

Four models of temporal gravity changes are used to explain the SG residual gravity, but

there exist a significant discrepancy between the observations of T48 and the model values.

Seasonally, the groundwater-induced gravity change leads the SG residual gravity by 63

days. The phases of the annual cycles from other sources deviate from that of the SG

residual gravity by tens of days to a few months. Both typhoons and earthquakes around

Taiwan created large gravity variations at HS. The SG records at HS are able to detect

co-seismic gravity changes around Taiwan, and the example given in this paper serves as

the beginning of the SG-earthquake research using the SG data at HS. In summary, with

the necessary information presented in this paper, the SG (T48) at HS has delivered data

that meet the quality standard and are ready to be used in a number of geodetic and
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744 List of tables
745 Table 1: Sessions of parallel superconducting (T48) and absolute (FGS5) gravity

746  observations for determining the calibration factor of T48

Satring time of Length  FG5 Set Total Number
session scatter uncer. of drops
(GMT) (hour)  (pgal)  (ngal)
6h, June 5, 2006 30 4.1 2.1 3479
1h, June 9, 2006 29 2.5 2.1 3500
6h, June 13, 2006 24 2.3 2.1 2807
2h, June 21, 2006 48 1.5 2.0 5716
3h, June 30, 2006 48 1.3 2.0 5746
Sh, July 7, 2006 95 23 2.1 10772
9h, October 11, 2006 19 34 2.2 2224
6h, November 4, 2006 24 2.7 2.1 4109
3h, November 17,2006 24 2.4 2.4 4713
8h, March 2, 2007 39 22 2.1 4668
7h, March 4, 2007 72 3.7 2.1 8427
12h, November 10, 2007 28 3.3 22 6123
9h, November 30, 2007 72 2.2 2.0 17242
Oh, December 16,2007 72 1.7 2.0 17018
Oh, January 2, 2008 24 2.5 2.1 5399
Oh, January 7, 2008 72 2.0 2.1 16789
Oh, February 6, 2008 48 3.1 2.1 11510
Oh, February 21, 2008 72 1.8 2.1 16713

747

748



749

750

Table 2: Tidal analysis results by ETERNA

Wave Amplitude Amplitude factor Phase
(ugal) ©)

Qi 5.649+0.008 1.2485+0.0018 -1.34+0.08
O, 29.061+0.008 1.2298+0.0003 -2.28+0.02
M, 2.251+0.007 1.2119+0.0036 -2.50+0.17
P, 13.125+0.010 1.1939+0.0009 -2.74+0.04
S 0.317+0.014 1.2178+0.0541 2.54+2.55
K, 39.145+0.009 1.1784+0.0003 -2.84+0.01
Vi 0.331+0.009 1.2712+0.0355 -5.38+1.60
2 0.584+0.010 1.2348+0.0209 -0.96+ 0.97
AN 2.191+0.008 1.1791£0.0045 -3.36+0.22
00, 1.173+0.005 1.1544+0.0049 -2.51+0.24
2N, 2.314+0.011 1.2232+0.0058 1.86+0.27
N2 13.947+0.014 1.1773+£0.0012 -3.40+0.06
M, 71.452+0.014 1.1548+0.0002 -3.03+0.01
L, 1.817+0.018 1.0388+0.0104 -0.81+0.58
S, 33.093+£0.014 1.1497+0.0005 -1.63+0.02
K, 9.033+0.011 1.1550+0.0014 -1.59+0.07
M; 1.203+0.003 1.0908+0.0024 -0.31+0.12




751

Table 3: Tidal analysis results by BAYTAP-G

44

Wave Tidal amplitude Amplitude factor Phase
(ugal) ©)

Qi 5.646+0.017 1.2482+0.0037 -1.45+0.17
O, 29.056+0.016 1.2299+0.0007 -2.28+0.03
M, 2.239+0.011 1.2053+0.0060 -2.51+0.29
P, 13.117£0.016 1.1933+0.0015 -2.65+0.07
S 0.309+0.004 1.1874+0.0142 -2.12+0.69
K, 39.149+0.014 1.1783+0.0004 -2.83+0.02
Vi 0.309+0.004 1.1888+0.0157 -2.96+ 0.76
2 0.563+0.007 1.1896+0.0153 -2.85+0.74
AN 2.193+0.012 1.1801+0.0066 -3.34+0.32
00, 1.176+0.007 1.1573+0.0068 -2.86+ 0.34
2N, 1.919+0.003 1.2247+0.0020 1.81+0.09
N2 13.947+0.005 1.1778+0.0004 -3.36+ 0.02
M, 71.435+0.005 1.1550+0.0001 -3.03£0.00
L, 1.831+0.006 1.047340.0033 -0.75+0.18
S, 33.057+0.004 1.1488+0.0001 -1.89+ 0.01
K, 9.03140.003 1.1546+0.0004 -1.63+0.02
M; 1.206+0.002 1.0942+0.0018 -0.16+ 0.10




45

752  Table 4: Amplitudes and phases of ocean-tide gravity effect at HS from T48
753  observations and from NAO.99b, FES2004 and CSR4.0 ocean tide models

Wave T48 NAO.99b  FES2004 CSR4.0
M, 3.82° 3.76 3.37 2.85
-98.0° -99.6 91.8 1222
N, 0.84 0.82 0.75 0.93
-79.1 -76.7 -58.9 -56.5
S, 1.12 0.95 0.87 0.82
-110.5 -114.4 -86.4 427
K> 0.26 0.24 0.25 0.31
-103.1 -108.0 -81.9 -30.4
K, 2.38 2.40 2.15 2.47
-54.2 -55.1 51.1 -58.9
0, 2.10 2.08 2.01 2.13
-33.2 -30.8 -34.1 -30.6
P, 0.78 0.78 0.71 0.82
-53.0 52.8 -53.1 -56.7
Q; 0.45 0.44 0.41 0.48
174 224 23.8 233

754  “amplitude in pgal, bphase in degrees
755

756
757



758  Table 5: The amplitude of the Newtonian effect of M, ocean tide as a function of
759  height at the SG stations of HS and Lulin

Height HS Lulin
(m) (ngal) (ngal)
0 0.66 0.69
100 0.70 0.69
200 0.80 0.69
300 0.93 0.70
400 1.08 0.70
500 1.25 0.70

760
761



762  Table 6: Amplitude factors from T48 observations and the DDW model

Wave Factor from theory  T48 corrected by NAO.99  T48 corrected by FES2004  T48 corrected by CSR4.0

elastic  inelastic factor elastic® inelastic® factor elastic’ inelastic® factor elastic® inelastic?

2 1.2344 1.2656 1.3153  6.15 3.78 1.3088  5.68 3.30 1.3200  6.48 4.12
o) 1.1672 1.1696 1.2175 4.13 3.93 1.2177  4.15 3.95 1.2186  4.22 4.02
00, 1.1547 1.1561 1.1556  0.08 0.043 1.1555 0.07 -0.05  1.1557  0.09 -0.03
K 1.1335 1.1355 1.1416  0.71 0.53 1.1420  0.74 0.57 1.1444  0.95 0.78
Oy 1.1527 1.1542  1.1661 1.15 1.02 1.1701 1.48 1.36 1.1646  1.02 0.89
N> 1.1603 1.1617 1.1724  1.03 0.91 1.1500  -0.90 -1.02  1.1531  0.62 -0.75
Py 1.1479 1.1493 1.1501  0.19 0.07 1.1541  0.54 0.42 1.1521  0.36 0.24
K> 1.1603 1.1617 1.1640  0.32 0.20 1.1532  -0.62 -0.74  1.1304  2.65 2.77
Qi 1.1527 1.1542  1.1379 -1.30 -1.43  1.1459  -0.59 -0.72  1.1308 -1.94 -2.07
M, 1.1603 1.1617 1.1645  0.36 0.24 1.1564 -0.34 -0.46  1.1802  1.69 1.57
Sy 1.1603 1.1617 1.1623  0.17 0.05 1.1470  -1.16 -1.28  1.1278  2.88 3.01
M; 1.0724 1.0734 1.0927 1.86 1.77 1.0926  1.85 1.76 1.0926  1.85 1.76

763  ?relative difference in %
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Table 7: Gravity changes due to typhoons and gravity-atmosphere admittances at HS

Typhoon Date Center Category Pressure Gravity Admittance
pressure change change (ugal hPa™)
(hPa) (hPa) _(ugal)
Chanchu  May 16,2006 960 2 11 55 -0.47
Bilis July 12,2006 985 1 28 8.6 -0.45
Kaemi July 23,2006 960 2 19 8.0 -0.43
Bopha August 7,2006 992 1 4 1.5 -0.48
Shanshan September 14,2006 940 2 7 3.0 -0.45
Wautip August 8, 2007 992 1 5 2.2 -0.41
Sepat August 16, 2007 925 3 23 8.5 -0.52
Krosa October 4, 2007 940 3 35 12.5 -0.40




766  Table 8: Gravity shifts due to earthquakes around Taiwan at HS

Date Distance Depth  Magnitude of Gravity shift
(km) (km) earthquake (ngal)
April 1, 2006 214 9 6.2 1.19
April 15, 2006 223 17 6.0 -0.17
April 28, 2006 109 8 52 -0.61
July 28, 2006 170 49 6.0 1.01
August 27, 2006 197 145 6.0 0.00
October 12, 2006 181 44 5.8 -0.13
December 14, 2006 120 7 4.8 -1.10
December 23, 2006 138 10 54 0.48
December 26, 2006 296 44 7.0 -0.41
January 16, 2007 191 21 54 0.10
January 25, 2007 226 26 6.2 -0.31
May 12, 2007 101 44 4.9 -0.41
July 23, 2007 155 31 6.0 -0.41
August 9, 2007 201 4 59 -1.41
September 6, 2007 155 54 6.6 0.60
October 11, 2007 92 80 52 0.27
October 17, 2007 176 42 5.7 0.01
November 28, 2007 91 69 5.4 -0.94

767
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Table 9: Amplitudes and phases of the annual gravity change at HS from different

sources
Source Amplitude Phase
(ngal) ©)
Observation (T48) 6.24 -26.07
Ground water 5.48 -88.95
Atmosphere 2.98 -135.34
Soil moisture 1.41 -14.04
Polar motion 1.58 -13.98
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771 Table 10: Modeled and FG5-observed rates of gravity change (in pgal year') at HS

Source Rate
Atmosphere -1.3
Ground water 3.8
Soil moisture 0.5
Polar motion 0.4
Free-air motion of site -0.1
Total 3.3
FGS5 observations 2.2
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Figure captions

Figure 1. Geological settings around the Hsinchu SG station and distributions of GPS
and tide gauge stations. The meanings of the formations are explained by
documents in  the Central Geological Survey of  Taiwan

(http://www.moeacgs.gov.tw).

Figure 2. A cross-section along the alluvium north of HS showing layers with
shallow and deep groundwater. Deep groundwater takes time to fill and will
delay groundwater-induced gravity change. The sampling points A, B, C, D and
E are shown in Figure 1.

Figure 3. Variations of coordinates at the HCHM, TCMS, SHJU and NCTU
continuous GPS stations. The numbers in the figure panels are linear rates of
displacements from least-squares fits to the coordinate variations.

Figure 4. Raw observations of SG and FGS5 (top), histograms of residual FG5 gravity
values after the linear regression (center), scaled SG (by the calibration factor)
and FGS5 observations.

Figure 5. Comparison of SG and FG5 measurements to determine the drift of T48.
The FGS gravimeter No. 228 is from France, while No. 224 and 231 are from
Taiwan.

Figure 6. Tidal spectrum (in logarithm scale) from two years of raw gravity records
of T48. Two clusters are present at the semi-diurnal and diurnal wave bands.
Tides with periods shorter than the M3 period are not shown here.

Figure 7. Amplitudes of ocean tide from tide gauge records at the Hsinchu Harbor (9
km to HS) and amplitudes of OTGE from the SG gravity measurements at HS
(amplitudes of OTGE are the same as the ones given in the column “T48” in
Table 4).

Figure 8. Gravity-atmosphere admittances at HS as a function of horizontal scale (in
degree and in logarithm scale) in the cases of IB and NIB oceanic response to
atmospheric pressure change. The admittances of the Newtonian effect for IB
(blue square) almost coincide with those for NIB (red square).

Figure 9. Co-seismic gravity change, given as a jump (step function) in the SG
gravity records at HS, due to the earthquake on September 6, 2007.

Figure 10. Observed residual gravity changes (by T48, without the body tide and
ocean tide gravity effects) and modeled gravity changes at HS. The time starts
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from March 2006.
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819 Figure4
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Figure 5
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Figure 6
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Figure 8
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Figure 9
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835 Figure 10
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