
Discrete Applied Mathematics 155 (2007) 2471–2486
www.elsevier.com/locate/dam

Constrained sequence alignment: A general model and the hardness
results

Yun-Sheng Chunga, Chin Lung Lub, Chuan Yi Tanga,∗
aDepartment of Computer Science, National Tsing Hua University, Hsinchu, Taiwan 300, ROC

bDepartment of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 300, ROC

Received 12 June 2006; received in revised form 28 April 2007; accepted 16 June 2007
Available online 13 August 2007

Abstract

Imposing constraints is a way to incorporate information into the sequence alignment procedure. In this paper, a general model
for constrained alignment is proposed so that analyses admitted are more flexible and that different pattern definitions can be treated
in a simple unified way. We give a polynomial time algorithm for pairwise constrained alignment for the generalized formulation,
and prove the inapproximability of the problem when the number of sequences can be arbitrary. In addition, previous works deal
only with the case that the patterns in the constraint have to occur in the output alignment in the same order as that specified by
the input. It is of both theoretical and practical interest to investigate the case when the order is no longer limited. We show that
the problem is not approximable even when the number of sequences is two. We also give the NPO-completeness results for the
problems with bounds imposed on the objective function value.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Constrained sequence alignment; Nonapproximability; NPO-completeness

1. Introduction

Sequence alignment is one of the most fundamental problems in computational biology. Due to its importance, it has
been extensively studied in the past (see, e.g., [13]). As biological knowledge and predictions grow, it is often desirable
if one can incorporate more information into the alignment procedure in hope that the alignment result can be more
biologically meaningful and reasonable. In particular, when the input sequences share some properties, one then expects
that the resulting alignment should not violate these properties. Such kind of preservation is in its nature a satisfaction
of properly defined constraints. Due to this need, Tang and coauthors [20] defined the constrained sequence alignment
problem (CSA for short). They considered the alignment of RNase sequences which share a conserved sequence of
residues H, K, H. It is expected that the alignment result should have these conserved residues aligned together so that
the semantic meaning is not violated. A constraint is then defined in [20] as a sequence of characters, say c1c2 · · · cm.
The problem requires that, in the output alignment, there exist m columns such that the ith of these columns contains
solely of ci . The goal is to find the best such alignment.

∗ Corresponding author. Tel.: +886 3 5715131x31077; fax: +886 3 5723694.
E-mail addresses: yschung@algorithm.cs.nthu.edu.tw (Y.-S. Chung), cllu@mail.nctu.edu.tw (C.L. Lu), cytang@cs.nthu.edu.tw (C.Y. Tang).

0166-218X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2007.06.016

http://www.elsevier.com/locate/dam
mailto:yschung@algorithm.cs.nthu.edu.tw
mailto:cllu@mail.nctu.edu.tw
mailto:cytang@cs.nthu.edu.tw

2472 Y.-S. Chung et al. / Discrete Applied Mathematics 155 (2007) 2471–2486

Later, Chin and coauthors [6] proposed an efficient algorithm for the pairwise version, along with a 2-approximation
algorithm for the multiple alignment version with scoring function satisfying triangle inequality. In [21], Tsai and
coauthors generalized the definition of a constraint from a sequence of characters to a sequence of strings (patterns),
and the occurrences of each pattern in the sequences need not be identical to the pattern specified in the input. Instead,
the Hamming distances between each pattern and its occurrences need only to be within a threshold. This formulation
enables the user to align sequences so that known motifs specified in the constraint are required to be aligned together.
Lu and Huang [16] then reduced the memory requirement of the algorithm in [21], which significantly improves the
applicability of the tool. Arslan introduced the regular expression constrained sequence alignment (RECSA) problem
[2], in which a constraint is a regular expression, and a feasible solution is an alignment containing a run of contiguous
columns corresponding to two substrings, one for each input sequence, such that both substrings match the regular
expression constraint. Chung and coauthors [7] followed the formulation of Arslan and gave more time and space
efficient algorithms for RECSA.

The formulation in this paper is generalized from the aforementioned works (see Section 2 for an example). To
facilitate further discussion we say that in all these works a constraint is a sequence of patterns; a pattern is a simple
character in [20,6], a substring allowing mismatches in [21,16] and a regular expression in [2,7]. Each pattern is
described by its sequence content in these works. In this paper, we characterize each pattern directly by the set of the
positions of its candidate occurrences in the input sequences. The input sequences are in effect annotated with the
substrings representing the candidate occurrences of each pattern. This generalizes the previous formulations since,
given patterns defined in [20,6,21,16,2,7], the occurrences can be easily annotated in the sequences by well-established
pattern matchers (e.g., the UNIX utility grep for regular expression patterns), thereby transforming the original
patterns into an instance of our formulation. The formulation here also enables one to adopt mixed pattern definitions
simultaneously in the analysis, for example some patterns can be specified by regular expressions and the others by
strings with mismatch tolerance. Another immediate and desirable consequence is that, it is now easy to use string edit
distance instead of Hamming distance as in [21,16] to define pattern occurrences. We note that annotating substrings
on input sequences directly to represent patterns rather than specifying the forms of the patterns had appeared in the
context of annotated sequence comparison to support patterns of various types (see [9, Sections 3.2, 3.3, Chapter 6]).

Myers and coauthors [18] had adopted a different definition of constraints, and applications admitted are different
from those in [20,6,21,2,7]. In [18], a constraint is an order relation of two characters on two different sequences in the
input set of sequences. The order has to be satisfied in the resulting multiple alignment. To keep two specific characters
lined up in a column in the multiple alignment, one can easily use two constraints simultaneously; e.g., is�j� and
is�j�, which means that the ith character in the sth sequence should appear no later than the jth character in the �th
sequence in the alignment, and vice versa. This kind of constraint is particularly useful when one knows exactly which
characters are to be aligned together. However, one may not have this strong information. If one has the knowledge
only about the form or candidate occurrences of the patterns shared by all sequences rather than the exact positions
of them, one needs the capability of choosing from the candidate occurrence set of a pattern on each of the sequences
which candidate is to be aligned with those on the other sequences such that the overall score can be optimized. This
is not supported in the formulation in [18].

Although there have been web-based tools “MuSiC” [21] and “MuSiC-ME” [16] for CSA which are shown to be
useful supplements to classic sequence alignment tools, the actual hardness of CSA remains not investigated, except
for those inherited directly from the classic MSA. As mentioned before, a 2-approximation algorithm for the multiple
CSA is proposed in [6], but its running time is not bounded by a polynomial, and hence the result does not imply
the approximability of CSA. Indeed, the past development of CSA had been founded on applications and a lack of
theoretical discussion is observable.

For the problem formulation generalized in this paper, we propose a polynomial time algorithm in the pairwise
case. It is straightforward to apply a progressive strategy as in [21,16] to extend the pairwise algorithm to the case of
multiple sequences, but with no performance guarantee. We shall prove that the problem is not approximable within
any function computable in polynomial time if the number of sequences can be arbitrary. On the other hand, previous
works require that the order of the appearances of the patterns in the output alignment must be the same as that in
the input constraint. Hence the constraint is a sequence of patterns. It is theoretically interesting to investigate the
problem without this limitation. That is, how is it if the constraint is in the sense a set of patterns. It is noted that from
the biological perspective, the order of regulatory elements are sometimes important for determining gene expression
[15,10]. However, the necessity for functional motifs to keep in some fixed order is not always clear. In light of this, the

Y.-S. Chung et al. / Discrete Applied Mathematics 155 (2007) 2471–2486 2473

order limitation should not always be imposed on the problem. As we shall see, the problem turns out to be hard even
when the number of input sequences is only two; in this paper it is proved to be not approximable within any function
computable in polynomial time.

The remainder of this paper is organized as follows. In Section 2, we give some definitions and problem formula-
tions. In Section 3, an algorithm for the pairwise CSA in generalized formulation is given, along with the proofs of
inapproximability when the number of input sequences can be arbitrary and of NPO-completeness for the bounded
version. Section 4 establishes symmetric hardness results for the problem without the order limitation in the pairwise
case. Finally, in Section 5, we give conclusions and discussions.

2. Preliminaries

In this section, we formulate the notion of constraints and constrained alignments; we begin with some standard
definitions. Let � be the alphabet where the characters in sequences are drawn from. For a sequence S, let S[i] be the
ith character on S, and denote the string S[i]S[i + 1] . . S[j] as S[i . . j]. The length of S is denoted as |S|. Throughout
this paper, we denote the number of input sequences as �. An (unconstrained) alignment of strings S1, . . . , S� is a set
of strings S̄1, . . . , S̄�, where S̄i is obtained by inserting some space characters “-” into Si , such that for all j, S̄i[j] �= -
for some i, and |S̄i | = |S̄j | for all i, j.

An ordered constraint P is a sequence of patterns, where each pattern is characterized by � sets of index pairs
to indicate the start and end indices of the candidate occurrences of the pattern in the sequences. The set of index
pairs of candidate occurrences for pattern k on sequence i will be denoted as occuri (k), with each element [x1, x2] ∈
occuri (k) indicating that Si[x1 . . x2] is a candidate occurrence of pattern k. Constraint P is formally specified as the
list 〈occuri (k) : 1� i��, 1�k�m〉, where m is the number of patterns. A constrained alignment A for sequences
S1, . . . , S� satisfying P is a set of equal-length sequences S̄1, . . . , S̄�, with some additional properties:

(1) There exist exactly m positions j1 < · · · < jm in A such that for each i, 1� i��, each S̄i[jk] corresponds to a
candidate occurrence of pattern k on Si . That is, there is an index pair [xi,k, x

′
i,k] ∈ occuri (k) such that S̄i[jk]

corresponds to Si[xi,k . . x′
i,k], which we denote as S̄i[jk]= [xi,k, x

′
i,k] directly. This condition can then be restated

as S̄i[jk] ∈ occuri (k) for all pattern k and sequence Si . Note that jk corresponds to pattern k, hence jk < jk+1
implies that the order of the patterns appeared in the constrained alignment is the same as specified in the constraint.

(2) It is required that x′
i,k < xi,k+1 for all 1� i�� and 1�k < m. This, together with the next condition, ensures that

the constrained alignment preserves the order of the characters in the original sequences, as an unconstrained
alignment does.

(3) Regions in A excluding those positions jk are standard unconstrained alignments. Specifically, {S̄i[1 . . j1 − 1] :
1� i��} forms an unconstrained alignment of {Si[1 . . xi,1 −1] : 1� i��}, {S̄i[j1 +1 . . j2 −1] : 1� i��} forms
an unconstrained alignment of {Si[x′

i,1 + 1 . . xi,2 − 1] : 1� i��}, and so on.

We illustrate these notions in the following example. Let input sequences S1 and S2 be

Let there be two patterns in the constraint, with sets of candidate occurrences occur1(1) = {[3, 6], [7, 10], [8, 10]},
occur1(2)={[15, 19]}, occur2(1)={[3, 5], [19, 21]}, and occur2(2)={[12, 16]}. Then a feasible constrained alignment
is

(1)

This constrained alignment cannot be found under the formulation of [21,16] since the substrings in S1 and S2 cor-
responding to the first pattern are of different lengths, while as a consequence of adopting Hamming distance, such
substrings must be of identical length in [21,16].

2474 Y.-S. Chung et al. / Discrete Applied Mathematics 155 (2007) 2471–2486

Intuitively, A is regarded as satisfying P since for each pattern k we can find a position jk in A consisting solely of
the pattern. The substrings Si[xi,k . . x′

i,k] responsible for this witness are then said to satisfy pattern k. This formulation
follows the logic in the previous works [20,6,21,16,2,7] that, for each pattern, a legal occurrence on each sequence is
chosen to support the feasibility of a constrained alignment, while those occurrences not chosen are treated as normal
characters. Unlike the previous studies, we do not specify how the characters in the substrings Si[xi,k . . x′

i,k] satisfying

pattern k are aligned. Instead we simply put S̄i[jk] = [xi,k, x
′
i,k]. Aligning these substrings is not always meaningful

since the patterns may correspond to entities irrelevant to the character composition, e.g., local features of secondary
structure. Whenever desirable, one may as well expand these S̄i[jk] into alignments of the corresponding substrings
without difficulty.

As in [9], the usefulness of treating patterns and characters in different levels is embodied in the ability to adopt
different cost functions for them. In general, for a pattern, we may have different confidence on different candidate
occurrence’s being a true occurrence of the pattern. In particular, patterns are not necessarily recognized by character
compositions, hence such confidence need not be based on character compositions either. For example, protein sec-
ondary structure prediction tools such as the well-known PSIPRED [17] give a putative secondary structure (helix,
strand or coil) for each residue associated with a confidence value for the prediction. Hence in case that patterns cor-
respond to secondary structures with candidate occurrences found by such a tool, our cost function should be able to
differentiate the candidates according to the confidence. In this light, when we are evaluating the cost of matching two
pattern occurrences, their positions and which sequences they lie on should be considered. Furthermore, a substring on
an input sequence may simultaneously be candidate occurrences of two distinct patterns. For example, if there are two
patterns cgt and cgc in the constraint, then a substring cgt of a sequence may be regarded as a candidate occurrence
for each of both patterns, and we may regard it as being more likely to be the first and in turn may favor this possibility
over the other. In terms of the cost function this means that the cost function should depend on which pattern a candidate
occurrence is now expected to satisfy. Under the above considerations and following our notation like S̄i[jk]=[x1, x2],
we use �([x1, x2], [y1, y2]) to denote the cost of matching the two candidate occurrences, which is meaningful only if
we have specified i1, i2 and k such that [x1, x2] ∈ occuri1(k), [y1, y2] ∈ occuri2(k) and that these two occurrences are
expected to satisfy pattern k (since, say, [x1, x2] may be a member of occuri1(k

′) for some other pattern k′ as well).1

In a constrained alignment {S̄i : 1� i��}, for each pattern k there is a column jk such that each S̄i[jk] corresponds
to an occurrence satisfying the pattern. Hence the meaning of writing “�(S̄i[jk], S̄i′ [jk])” is clear. For �(a, b) where
a, b ∈ � ∪ {-}, typically we care only about what symbols a and b are and neglect information about their positions
or which sequences they lie on.

Given the above discussion, the score of a constrained alignment A={S̄i : 1� i��} can be expressed as the simple
form

score(A) =
∑

1� i<i′ ��

|S̄1|∑
j=1

�(S̄i[j], S̄i′ [j]). (2)

Consider the constrained alignment shown in (1). If we define the cost of matching two pattern occurrences as the
score of the optimal unconstrained alignment of the two corresponding substrings, and for a, b ∈ � ∪ {-} we define
�(a, b)=0 if a =b while �(a, b)=1 otherwise, then the alignment in (1) has a score of 9, which is optimal with respect
to �. In particular, �(S̄1[3], S̄2[3]) = 1 and �(S̄1[13], S̄2[13]) = 0, corresponding, respectively, to the alignments

catg
ca-g

and
cgtcg
cgtcg

The (generalized) CSA problem can then be stated as follows.
Constrained Sequence Alignment (CSA). Given strings S1, . . . , S�, a constraint P, and cost function �, find a

constrained alignment A satisfying P such that score(A) is minimized.
In Section 3, we study this problem.

1 We may have introduced auxiliary symbols for each pattern occurrence that carry information about the start and end positions, the pattern to
be satisfied, and which sequence the occurrence lies on. Then � when applied on such symbols can be interpreted properly. For notational brevity,
however, we choose to use �([x1, x2], [y1, y2]) directly.

Y.-S. Chung et al. / Discrete Applied Mathematics 155 (2007) 2471–2486 2475

Now we consider the unordered case. An unordered constraint Pu is also specified by 〈occuri (k) : 1� i�� and
1�k�m〉. An alignment A satisfying Pu is similarly defined, and we can also find m columns j1 < · · · < jm, but now
each jk need not correspond to pattern k. What is required is that each pattern k is satisfied in exactly one column j�k

.
Referring to the example given before, if we reverse patterns 1 and 2, that is, if we let occur1(2)={[3, 6], [7, 10], [8, 10]},
occur1(1)={[15, 19]}, occur2(2)={[3, 5], [19, 21]}, and occur2(1)={[12, 16]}, then (1) is a feasible solution for the
unordered version, with column 3 in the alignment corresponding to pattern 2 and column 13 to pattern 1. Provided
the knowledge of which column satisfies each pattern, we can evaluate an alignment satisfying Pu using Eq. (2). Then
(1), with the new occurrence sets defined here and the function � defined before, is also an optimal solution for the
unordered version. The problem in question can be stated as follows.

Sequence Alignment with Unordered Constraint (SAUC). Given sequences S1, . . . , S�, an unordered constraint
Pu, and cost function �, find a constrained alignment A satisfying Pu such that score(A) is minimized.

Section 4 will be devoted to this problem.
For the convenience of the reader, we give the definitions regarding the class NPO, AP-reduction, and approximation

algorithms in the Appendix. They are adapted from [8,3].

3. Constrained sequence alignment

In this section, we study CSA with ordered constraints. First, we propose a polynomial time algorithm for the pairwise
case, and then prove the inapproximability of the general version. A bounded version is shown to be complete in the
class NPO.

3.1. An algorithm for the pairwise case

Let 〈(S1, S2), �,P〉 be an instance of CSA. To compute an optimal solution for the instance, let T [j1, j2; k] be the
optimal score of constrained alignment of S1[1 . . j1] and S2[1 . . j2] satisfying the first k patterns. In addition, we take
the convention that min ∅ = ∞. Then T [j1, j2; k] has the following recurrence:

T [j1, j2; k] = min

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T [j1 − 1, j2; k] + �(S1[j1],-) if j1 > 0,

T [j1, j2 − 1; k] + �(-, S2[j2]) if j2 > 0,

T [j1 − 1, j2 − 1; k] + �(S1[j1], S2[j2]) if j1, j2 > 0,

min [x,j1]∈occur1(k)
[y,j2]∈occur2(k)

{T [x − 1, y − 1; k − 1] + �([x, j1], [y, j2])} if k > 0.

This is a simple generalization of the recurrence presented in [6]. Note that in the fourth item [x, j1] and [y, j2] are
expected to satisfy pattern k, so that �([x, j1], [y, j2]) should have an unambiguous interpretation. The initial values
are

T [0, 0; 0] = 0,

T [j1, 0; k] = T [0, j2; k] = ∞ if k > 0.

Also T is defined over j1 ∈ [0, |S1|], j2 ∈ [0, |S2|] and k ∈ [0, m]. The correctness can be easily seen by observing that,
in an optimal alignment {S̄1, S̄2} of S1[1 . . j1] and S2[1 . . j2] satisfying the first k patterns, there are two possibilities
for the last column � in the alignment: either S̄i[�] ∈ occuri (k) for i = 1, 2 or not. In the first case, let S̄1[�] = [x, x′]
and S̄2[�] = [y, y′]. It must be that x′ = j1 and y′ = j2 for the alignment to be feasible. The score of the alignment
can then be decomposed into two parts: an optimal alignment of S1[1 . . x − 1] and S2[1 . . y − 1] satisfying the first
k − 1 patterns whose cost is T [x − 1, y − 1; k − 1], and the matching of occurrences S1[x . . j1] and S2[y . . j2] for the
satisfaction of pattern k, with a cost of �([x, j1], [y, j2]). The fourth item clearly handles this case. If, on the other hand,
the last column in the alignment is not responsible for the satisfaction of pattern k, then we can have S̄1[�]=S1[j1] and
S̄2[�] = S2[j2], S̄1[�] = S1[j1] and S̄2[�] = -, or S̄1[�] = - and S̄2[�] = S2[j2]. If the first possibility is the case, then
S̄1[1 . . � − 1] and S̄2[1 . . � − 1] must be an optimal alignment of S1[1 . . j1 − 1] and S2[1 . . j2 − 1] satisfying patterns
1 to k with score T [j1 − 1, j2 − 1; k], while �(S̄1[�], S̄2[�]) = �(S1[j1], S2[j2]). This is handled by the third item in
the recurrence. The other cases are similar.

2476 Y.-S. Chung et al. / Discrete Applied Mathematics 155 (2007) 2471–2486

The optimal score of constrained alignment satisfyingP is then given by T [|S1|, |S2|; m]. It is also easy to reconstruct
the corresponding alignment by doing some additional bookkeeping. To concentrate on the problem structure itself, we
assume here that function � can be computed in constant time, since different definitions can lead to different directions
of optimization, which would complicate the presentation of the algorithm. If each occuri (k) is sorted by the end
indices of its member occurrences, then for fixed j1 and j2, all those pairs [x, j1] ∈ occur1(k) or [y, j2] ∈ occur2(k)

can be found when needed during the computation in time linear to the number of such intervals. The sorting itself is
easy, taking O(mn2) time in total. The time taken by the fourth item in the recurrence is then

m∑
k=1

|S1|∑
j1=1

|S2|∑
j2=1

|{x : [x, j1] ∈ occur1(k)}| × |{y : [y, j2] ∈ occur2(k)}|

=
m∑

k=1

⎛
⎝ |S1|∑

j1=1

|{x : [x, j1] ∈ occur1(k)}| ×
|S2|∑
j2=1

|{y : [y, j2] ∈ occur2(k)}|
⎞
⎠

=
m∑

k=1

(|occur1(k)| × |occur2(k)|).

For brevity let M = ∑m
k=1 (|occur1(k)| × |occur2(k)|). The total time needed to compute table T is then O(M + mn2),

where n is the length of the longer input sequence. We summarize the results stated above as the following theorem.

Theorem 1. Given sequences S1 and S2, along with a constraint P and cost function �, where P = 〈occuri (k) :
i=1, 2, k ∈ [1, m]〉, an optimal constrained alignment of S1 and S2 satisfying the constraint can be found in O(M+mn2)

time, where M = ∑m
k=1 (|occur1(k)| × |occur2(k)|).

If |occuri (k)| = O(n) for i = 1, 2 and k ∈ [1, m], then M = O(mn2) and the algorithm takes O(mn2) time. It is also
straightforward to adopt affine gap penalty in the alignment, which is commonly used in biological applications. By
applying the progressive framework in [21,16], one can use the recurrences given here as a core to solve the case when
the number of sequences is more than two, but with no performance guarantee. The recurrences can also be easily
modified to give optimal solutions when more than two sequences exist, but can only be practical when the number of
sequences is small.

We sketch how the above algorithm can be conveniently applied to the formulation in [21,16]. Given patterns (strings)
P1, . . . , Pm over �, which constitute a constraint in [21,16], we find all substrings in S1 and S2 whose Hamming
distances from each Pk are within some specified threshold. Each such set of occurrences for pattern Pk on string Si

is named occuri (k). This can be done in O(�n) time in a straightforward manner, where � = ∑m
k=1 |Pk|. Note that

� = O(n) or there can be no feasible constrained alignment, and that as a consequence of adopting Hamming distance,
all occurrences in occur1(k) ∪ occur2(k) must be of identical length. Also, since �([x, x + �], [y, y + �]) is defined to
be

∑�
j=0 �(S1[x +j], S2[y +j]) in [21,16], for a fixed k it is easy to compute in O(n2) time all �([x, x +�], [y, y +�]),

where [x, x + �] ∈ occur1(k), [y, y + �] ∈ occur2(k) and both are expected to satisfy pattern k, utilizing that given∑�
j=0 �(S1[x +j], S2[y +j]) it takes O(1) time to compute

∑�
j=0 �(S1[x +1+j], S2[y +1+j]). Now our algorithm

can be applied, taking O(mn2) time, since |occuri (k)|=O(n) and M=O(mn2) in this case. This overall time complexity
is the same as that in [21,16], with a much simpler presentation due to our general model.

3.2. Inapproximability of the general case

Now we turn to examine the hardness of CSA for the general cases. We shall prove that CSA is not approximable
within any function computable in polynomial time if the number of input sequences can be general. The proof involves
a reduction from the weighted 3-satisfiability problem (W3SAT) [3,8], which is among the best known NPO-complete2

problems.

2 The problem defined in [19] is slightly different from that in [8,3] in that, the former always regards the trivial truth assignment as a feasible
solution; this version is treated in [3] as exp-APX-complete.

Y.-S. Chung et al. / Discrete Applied Mathematics 155 (2007) 2471–2486 2477

Weighted 3-Satisfiability (W3SAT)
Instance: Set U of variables, collection C of clauses over U such that each clause c ∈ C has |c| = 3, and weight

function w : U → N.
Solution: A truth assignment, i.e., function � : U → {true, false}, satisfying C.
Measure:

∑
v:�(v)=true w(v).

Goal: min.
To fit the standard definition of approximation algorithms (as given in the Appendix), we restrict the range of � to

nonnegative integers so that the problem becomes a member of NPO. This restricted version of CSA will be referred
to as restricted CSA, whose definition is given as follows.

Restricted Constrained Sequence Alignment (RCSA)
Instance: Sequences S1, . . . , S�, nonnegative integer function �, and a constraint P.
Solution: A constrained alignment A satisfying P with score(A) > 0.
Measure: score(A).
Goal: min.
We denote the set of all instances of W3SAT by IW3SAT, and that of RCSA by IRCSA. In what follows, we construct a

transformation f� : IW3SAT → IRCSA, such that if 〈U, C, w〉 ∈ IW3SAT is satisfiable, then score(A)� |U |wmax, while
if not, we have score(A)��|U |wmax, where A is an optimal solution to f�(〈U, C, w〉) and wmax = maxv∈U {w(v)}.
We can then utilize the gap between these two values to prohibit the existence of a polynomial time approximation
algorithm for RCSA, assuming P �= NP. For any fixed � > 1, there is a corresponding mapping f� from IW3SAT to
IRCSA.

Given 〈U, C, w〉 ∈ IW3SAT, we shall construct 〈(S1, . . . , S�), �,P〉 ∈ IRCSA, where � = |C| + 1 and m, the number
of patterns, is |U |. Assume without loss of generality that any ci ∈ C does not contain both vk and ¬vk for vk ∈ U ,
since such a clause is always true and its removal will not affect the satisfiability of the whole formula. Let a be the
only character in alphabet � under consideration. For all 1� i < � and 1�k�m, construct sequence Si as a2m (i.e.,
the concatenation of 2m a’s), and occuri (k) as

occuri (k) =
{ {[k, k], [k, k + m], [k + m, k + m]} if vk ∈ ci or ¬vk ∈ ci,

{[k, k], [k + m, k + m]} otherwise.

It can be noticed that, since each Si has a length of 2m while each [k, k+m] is an occurrence of length m+1, in a feasible
constrained alignment there can be at most one pattern satisfaction of the form [k, k+m]. If [k, k+m] does appear in S̄i , it
must appear in column k, and in this case S̄i[j] corresponds to a pattern for each j. In addition, occuri (k)∩occuri (k

′)=∅
for k �= k′, hence any [x1, x2] ∈ occuri (k) can only be expected to satisfy pattern k. Sequence S� is constructed to
be am, and we let occur�(k) = {[k, k]}. In any feasible solution, S̄�[j] must correspond to pattern j for each j. Since
|S�|=m while |Si |=2m for i < �, provided that the cost of matching a space character against any nonspace character
is sufficiently high, in any S̄i , i < �, it is much preferred to have some pattern k satisfied by an occurrence of the form
[k, k + m] if [k, k + m] ∈ occuri (k) exists, otherwise the alignment will have a poor measure. As an illustration of the
above construction, formula (v1 ∨v2 ∨v2)∧ (v1 ∨¬v2 ∨¬v2)∧ (¬v1 ∨v2 ∨v2)∧ (¬v1 ∨¬v2 ∨v3)will be transformed
into sequences S1=S2=S3=S4=a6 and S5=a3, with occurrence sets occur1(1)=occur2(1)=occur3(1)=occur4(1)=
{[1, 1], [1, 4], [4, 4]}, occur5(1) = {[1, 1]}, occur1(2) = occur2(2) = occur3(2) = occur4(2) = {[2, 2], [2, 5], [5, 5]},
occur5(2) = {[2, 2]}, occur1(3) = occur2(3) = occur3(3) = {[3, 3], [6, 6]}, occur4(3) = {[3, 3], [3, 6], [6, 6]}, and
occur5(3) = {[3, 3]}.

Note that for i < �, we have only three kinds of intervals in occuri (k); they are designed as indicators for the states
of clauses’ satisfaction. More specifically, our purpose is that, in an optimal constrained alignment of f�(〈U, C, w〉),
S̄i[j] = [j, j] indicates that variables v1 through vj are set to values unable to satisfy clause ci , S̄i[j] = [j, j + m]
indicates that vj is the first variable satisfying ci , and S̄i[j]= [j +m, j +m] indicates that ci has already been satisfied
by some vk , k < j . If both vk and ¬vk are not in ci , the value of vk can never affect the satisfaction of ci , and hence
occuri (k) is constructed to contain only [k, k] and [k +m, k +m]. On the other hand, as we shall see, S� is responsible
for the score of an optimal solution to f�(〈U, C, w〉) for 〈U, C, w〉 satisfiable to be some value of particular use, namely,
to be the same as the value of the optimal solution to 〈U, C, w〉. This will be used to prove the NPO-completeness of
the bounded version of RCSA, rather than the inapproximability of RCSA itself.

We need to ensure the consistency of the values of variables, e.g., if vk ∈ ci and ¬vk ∈ ci′ , then vk cannot be used
to satisfy both ci and ci′ . This is done by the construction of the cost function �; inconsistent cases will incur a high

2478 Y.-S. Chung et al. / Discrete Applied Mathematics 155 (2007) 2471–2486

cost, hence prohibited in an optimal solution for satisfiable instances. By our discussion in the preceding paragraph,
for the value of vk to be consistent, we design symmetric function � as follows. For i, i′ < �, [k, k] ∈ occuri (k) and
[k, k + m] ∈ occuri′(k),

�([k, k], [k, k + m]) =
{���mwmax if vk in ci and ci′ , or ¬vk in ci and ci′ ,

0 otherwise.

For [x1, x2] ∈ occuri (k) and [y1, y2] ∈ occuri′(k), [x1, x2] = [y1, y2] being [k, k] or [k, k + m], and i, i′ < �,

�([x1, x2], [y1, y2]) =
{���mwmax if vk ∈ ci and ¬vk ∈ ci′ , or ¬vk ∈ ci and vk ∈ ci′ ,

0 otherwise.

For any [x1, x2] ∈ occuri (k), [k + m, k + m] ∈ occuri′(k) and i, i′ < �, we let �([x1, x2], [k + m, k + m]) = 0. Finally,
if [k, k] ∈ occur�(k) and [x1, x2] ∈ occuri (k),

�([k, k], [x1, x2]) =
{

w(vk) if [x1, x2] = [k, k + m], vk ∈ ci and vk /∈ ci′ for all i′ < i,

0 otherwise.

Following the above ideas, for a satisfiable instance, we expect to see in an optimal constrained alignment that each
S̄i contains exactly one symbol representing an interval of the form [k, k + m], reflecting the fact that each clause is
satisfied, and that there can be only one “first” variable satisfying a clause. For this aim, for a, b ∈ � ∪ {-} we define
�(a, b) to be a constant of value ���mwmax. In this manner, there will be no characters or spaces in each S̄i in an
optimal constrained alignment for a satisfiable instance. As we shall see, this, along with the definition of feasibility of
a constrained alignment, then ensures the existence of a unique pattern occurrence of the form [k, k+m] in each S̄i . The
construction is now complete; we let f�(〈U, C, w〉)=〈(S1, . . . , S�), �,P〉, whereP=〈occuri (k) : 1� i��, 1�k�m〉.

We can now establish the following property. For 〈U, C, w〉 ∈ IW3SAT, we denote the set of all solutions to 〈U, C, w〉
as solW3SAT(〈U, C, w〉). A similar notation is used for instances in IRCSA.

Lemma 2. Given 〈U, C, w〉 ∈ IW3SAT, if there is a satisfying truth assignment � for 〈U, C, w〉, then there exists a
feasible constrained alignment A for f�(〈U, C, w〉) with score(A)�

∑
vk :�(vk)=truew(vk).

Proof. Construct A = {S̄1, . . . , S̄�} as follows. For all i < � let ji = min{j : vj satisfies ci}. Then one of vji
and

¬vji
is in ci , hence [ji, ji + m] ∈ occuri (ji). For i < �, we set S̄i[ji] = [ji, ji + m], S̄i[j] = [j, j] for all j < ji , and

S̄i[j] = [j + m, j + m] for all j > ji , where m = |U |. Also let S̄�[j] = [j, j] for all 1�j �m. Clearly |S̄i | = m for all
i. The feasibility of A is easy to see.

For any 1� i < i′ < � and 1�j �m, we claim that �(S̄i[j], S̄i′ [j])=0. First, this holds if S̄i[j] or S̄i′ [j] corresponds
to [j + m, j + m]. If both S̄i[j] and S̄i′ [j] are [j, j], then by construction of S̄i and S̄i′ , vj is prior to the first variable
satisfying ci or ci′ . It follows that the sign (i.e., negated or not) of vj in ci and ci′ must be the same, since if not, one of ci

and ci′ is satisfied. The claim then holds in this case by the definition of �. Now consider the case when S̄i[j]=[j, j +m],
and S̄i′ [j] is [j, j] or [j, j +m]. If S̄i′ = [j, j], then vj satisfies ci but not ci′ , which suggests that none of vj and ¬vj is
in ci′ , or that the sign of vj in ci is different from that in ci′ ; both of these lead to �(S̄i[j], S̄i′ [j])=0. If S̄i′ = [j, j +m],
then both ci and ci′ are satisfied by vj , and again �(S̄i[j], S̄i′ [j]) = 0 by construction.

On the other hand, we have

m∑
j=1

∑
1� i<�

�(S̄�[j], S̄i[j]) =
m∑

j=1

w(vj) × 	(j),

where 	(j) = 1 if for some i, S̄i[j] = [j, j + m] and vj ∈ ci , and 	(j) = 0 otherwise. By construction of S̄i , 	(j) = 1
only if �(vj) = true. Hence,

score(A) =
m∑

j=1

w(vj) × 	(j)�
∑

vk :�(vk)=true

w(vk),

and the lemma follows. �

Y.-S. Chung et al. / Discrete Applied Mathematics 155 (2007) 2471–2486 2479

To complete our reduction, we define function g to transform a feasible constrained alignment A= {S̄1, . . . , S̄�} of
f�(〈U, C, w〉) to a truth assignment � for U. For vj ∈ U , let

�(vj) =
{

true if for some i, S̄i[j] = [j, j + m] and vj ∈ ci,

false otherwise.

Then let g(〈U, C, w〉,A) = �. Our purpose of defining g is the following lemma.

Lemma 3. Let 〈U, C, w〉 ∈ IW3SAT, and A be a feasible solution of f�(〈U, C, w〉), where � > 1. Let � = g(〈U,

C, w〉,A). If score(A) < ���mwmax, then � satisfies C, and
∑

vk :�(vk)=true w(vk) = score(A).

Proof. Let A= {S̄1, . . . , S̄�}. As noted before, since �(a, b) = ���mwmax for a, b ∈ � ∪ {-}, score(A) < ���mwmax
implies that each S̄i[j] corresponds to a pattern, and |S̄i |=m for all i. Then for each i < �, S̄i[j]=[j, j +m] for exactly
one j. If S̄i[j]=[j, j +m] and vj ∈ ci , then �(vj)= true, and ci is satisfied. If S̄i[j]=[j, j +m] and ¬vj ∈ ci , then for
all other i′ such that S̄i′ [j] = [j, j + m], it must also be that ¬vj ∈ ci′ , since if not, then �(S̄i[j], S̄i′ [j]) = ���mwmax,
which cannot hold by premise. We then have �(vj) = false in this case, and ci is satisfied. It follows that all ci’s are
satisfied.

By the definition of � and score(A) < ���mwmax, if �(S̄i[j], S̄i′ [j]) > 0 then i or i′, say i′, must be �, and S̄i[j] =
[j, j +m] with vj ∈ ci , hence �(S̄i[j], S̄i′ [j])=w(vj) and �(vj)=true. Define function 	 as in the proof of the previous
lemma. The equality of score(A) and

∑
vk :�(vk)=true w(vk) then follows by observing that 	 and � are equivalent, and

that score(A) = ∑m
j=1 w(vj) × 	(j). �

The following corollary is used in the proof of NPO-completeness of the bounded version later. For 〈U, C, w〉 ∈
IW3SAT, let opt(〈U, C, w〉) be the score of an optimal solution to 〈U, C, w〉. The same notation is used for instances of
other problems.

Corollary 4. Given a satisfiable instance 〈U, C, w〉 of W3SAT, we have opt(〈U, C, w〉) = opt(f�(〈U, C, w〉)) for
any � > 1.

Proof. By Lemma 2, we have opt(f�(〈U, C, w〉))�opt(〈U, C, w〉). On the other hand, Lemma 3 suggests that
opt(f�(〈U, C, w〉))�opt(〈U, C, w〉). �

Our main result regarding the hardness of RCSA is stated as follows. For an instance of RCSA, let m, n and �
denote the number of patterns, length of the longest input sequence, and number of input sequences of the instance,
respectively.

Theorem 5. RCSA is not approximable within r(m, n, �), where r(m, n, �) > 1 is any function computable in poly-
nomial time, unless P = NP.

Proof. Assume for contradiction that ALG is a polynomial time r(m, n, �)-approximation algorithm for RCSA. We
show that we can use ALG and f� to decide the satisfiability of any given 3-CNF boolean formula, with set C of clauses
over set U of variables, in polynomial time.

Let w be any weight function defined on U. Then 〈U, C, w〉 ∈ IW3SAT, and let m=|U |, n=2m and �=|C|+1. Com-
pute �=2r(m, n, �). By Lemmas 2 and 3, if 〈U, C, w〉 is satisfiable, then f�(〈U, C, w〉) has a feasible solution with score
at most mwmax, while if not, any feasible solution of f�(〈U, C, w〉) has a score at least ���mwmax > r(m, n, �)mwmax.
Consequently, 〈U, C, w〉 is satisfiable if and only if score(ALG(f�(〈U, C, w〉)))�r(m, n, �)mwmax. In addition,
r(m, n, �), and hence �, is computable in polynomial time, and given �, the computation of function f� takes poly-
nomial time. In this way, the satisfiability of any 3-CNF boolean formula can be decided in polynomial time, which
cannot hold unless P = NP. �

It is clear that RCSA is a special case of CSA. We then have the following conclusion.

Corollary 6. CSA is not approximable within r(m, n, �), where r(m, n, �) > 1 is any function computable in polyno-
mial time, unless P = NP.

2480 Y.-S. Chung et al. / Discrete Applied Mathematics 155 (2007) 2471–2486

The classic MSA problem is MAX SNP-hard when the score function is given as a part of an instance [14], which
implies that it cannot have a polynomial time approximation scheme (PTAS) unless P = NP [1]. Good constant ratio
approximation algorithms have been proposed for MSA with the distance function satisfying triangle inequality [12,4],
which is NP-hard [22,5]. It is interesting to see that, when constraints defined here are imposed, sequence alignment
becomes not approximable in general.

3.3. A bounded version

In this section we study a bounded version of RCSA, whose definition is given as follows.
Restricted Constrained Sequence Alignment with Bound (RCSAB)
Instance: Sequences S1, . . . , S�, nonnegative integer function �, a constraint P, and a positive integer B.
Solution: A constrained alignment A = (S̄1, . . . , S̄�) satisfying P with 0 < score(A) < B.
Measure: score(A).
Goal: min.
Observe that, given an instance of RCSAB, the test of whether the instance has any feasible solution is just the

decision version of RCSA, which is NP-hard. The following result is thus immediate.

Proposition 7. Given an instance of RCSAB, the test of whether it has a feasible solution cannot be done in polynomial
time, unless P = NP.

In what follows we show that RCSAB is a member of the family of NPO-complete problems by giving an
AP-reduction [3] from W3SAT to RCSAB. For this purpose, we define function h : IW3SAT × (1, ∞) → IRCSAB
to be h(〈U, C, w〉,
) = 〈f2(〈U, C, w〉), B〉, where B = 2|U |wmax. Also, for a feasible solution A to h(〈U, C, w〉,
),
where 〈U, C, w〉 ∈ IW3SAT, let h′(〈U, C, w〉,A,
) = g(A). In the following theorem, we show that (h, h′, 1) is a
valid AP-reduction, and the NPO-completeness of RCSAB then follows. Since functions h and h′ are defined to be
independent of
, in the proof we shall omit it for notational brevity.

Theorem 8. RCSAB is NPO-complete.

Proof. We check the five items of Definition 20 in the Appendix (or [3, Definition 8.3]) one by one. First, given
〈U, C, w〉 ∈ IW3SAT, it is clear that h(〈U, C, w〉) is an instance of RCSAB. Second, if 〈U, C, w〉 ∈ IW3SAT is satisfiable,
then by Corollary 4, we have opt(h(〈U, C, w〉)) = opt(〈U, C, w〉)�mwmax < 2mwmax = B, hence h(〈U, C, w〉) also
has some feasible solution. Third, let A be a feasible solution to h(〈U, C, w〉). Then score(A) < 2mwmax, and by
Lemma 3, h′(〈U, C, w〉,A) = g(A) is a feasible solution to 〈U, C, w〉. Fourth, it is clear that both h and h′ are
computable in polynomial time. Finally, since opt(〈U, C, w〉) is equal to opt(h(〈U, C, w〉)), if score(A) is within

times opt(h(〈U, C, w〉)), we must have by Lemma 3 that h′(〈U, C, w〉,A) has a score within
 = 1 + 1 · (
 − 1) times
opt(〈U, C, w〉). Hence (h, h′, 1) is a valid AP-reduction from W3SAT to RCSAB, and the theorem follows. �

Clearly, testing whether a given instance of W3SAT has some feasible solution amounts to testing whether the
given boolean formula is satisfiable, which cannot be done efficiently unless P = NP. Since AP-reduction preserves
feasibility of the involved instance, and since W3SAT is in NPO, any NPO-complete problem cannot admit an efficient
algorithm for testing whether a given instance has feasible solutions, unless P=NP. Theorem 8 therefore justifies again
Proposition 7.

To complete our discussion, we investigate whether RCSA, the unbounded problem, admits an efficient feasibility
test algorithm. Given an instance of RCSA, it has feasible solutions if and only if in each Si there exist nonoverlapping
[x1, x

′
1], . . . , [xm, x′

m] such that [xk, x
′
k] ∈ occuri (k) and x′

k < xk+1. This test can be done in polynomial time in a
greedy manner by favoring occurrences with smaller ending indices. Interestingly, this implies that, unlike its bounded
counterpart, RCSA is not complete in class NPO.

4. Sequence alignment with unordered constraint

In this section we establish the hardness result of SAUC. As before, we force the problem to be a member of NPO
by imposing a restriction on the range of the function �. The function score is defined in Eq. (2). To distinguish from
the original formulation, this version will be referred to as restricted SAUC (RSAUC).

Y.-S. Chung et al. / Discrete Applied Mathematics 155 (2007) 2471–2486 2481

Restricted Sequence Alignment with Unordered Constraint
Instance: Sequences S1, . . . , S�, nonnegative integer function �, and an unordered constraint Pu.
Solution: A constrained alignment A = {S̄1, . . . , S̄�} satisfying Pu with score(A) > 0.
Measure: score(A).
Goal: min.
In this section we consider the pairwise case when � = 2, whose hardness implies that of the general case. We shall

give a reduction from the shortest Hamiltonian path problem [23] to pairwise RSAUC.
Shortest Hamiltonian Path (SHP)
Instance: A weighted graph G = (V , E) with weight function w : E → N. Let V = {v1, . . . , vN }.
Solution: A simple path in G, i.e., a sequence 〈v�(1), v�(2), . . . , v�(N)〉 of vertices, where � is a permutation on

{1, . . . , N}, �(1) = 1, and �(N) = N , such that for any 1� i < N , (v�(i), v�(i+1)) ∈ E.
Measure: The length of the path, i.e.,

∑N−1
i=1 w(v�(i), v�(i+1)).

Goal: min.
For a path P, let len(P) be its length. Without loss of generality, it is assumed that for all e ∈ E, w(e) > 0, since

if not, one can add a constant to w(e) for all e ∈ E without affecting the shortest Hamiltonian path. The decision of
whether the set of feasible solutions is empty is the Hamiltonian path between two points problem, abbreviated simply
as HP2, whose hardness is well known [11].

Lemma 9 (Garey and Johnson [11]). HP2 is NP-complete.

In what follows, we give a reduction from SHP to RSAUC, which will be used to prove that RSAUC is not approx-
imable and that a bounded version of RSAUC is complete in the class of NPO. The reduction is done by two functions,
as in the reduction from W3SAT to RCSA. For notational convenience, the two functions are denoted as before, namely,
f� and g. For an instance 〈G, w〉 of SHP, construct f�(〈G, w〉) = 〈(S1, S2), �,Pu〉 as follows. Let G = (V , E) and
V = {v1, . . . , vN }. Let n = N2, and construct S1 = an and S2 = bn, where the alphabet � is set to be {a, b}.

Let m = N . Construct Pu = 〈occuri (k) : i = 1, 2 and 1�k�m〉 as follows. For i = 1, 2 and for all 1�k�m,

occuri (k) =

⎧⎪⎪⎨
⎪⎪⎩

⋃
p: (v1,vp)∈E{[1, N + p − 1]} if k = 1,

⋃N−2
q=1

⋃
p:(vk,vp)∈E{[qN + k, (q + 1)N + p − 1]} if 1 < k < m,

{[N2, N2]} if k = m.

For example, consider the following graph:

This graph will be transformed into sequences S1 = a16 and S2 =b16, and occurrence sets occuri (1) = {[1, 5], [1, 6]},
occuri (2) = {[6, 8], [6, 10], [6, 11], [10, 12], [10, 14], [10, 15]}, occuri (3) = {[7, 8], [7, 9], [7, 11], [11, 12], [11, 13],
[11, 15]}, and occuri (4) = {[16, 16]}, for i = 1, 2.

The index pairs in occuri (k) are used to represent edges in E. For an integer x, let x denote x mod N . Then index
pair [x1, x2] ∈ occuri (k) for k < m corresponds to edge (vx1 , vx2+1). Under proper arrangement, the index pairs are
concatenated to encode paths from v1 to vN . Note that occur1(k) = occur2(k) for all k; in an optimal constrained
alignment for a positive instance, all the occurrences used to satisfy the constraint are intended to be identical on the
two sequences.

Some paths from v1 to vN , when represented by occurrences in occuri (k), cause overlaps and hence result in infeasible
constrained alignments. Other paths can be encoded in valid constrained alignments. Among these, we are interested
in Hamiltonian ones. They are distinguished from others by alignment scores; those not Hamiltonian will incur a high
cost. This will be achieved by setting �(a, b) = ���Nwmax for any a, b ∈ � ∪ {-}, where wmax = maxe∈E {w(e)}.

2482 Y.-S. Chung et al. / Discrete Applied Mathematics 155 (2007) 2471–2486

For occurrences [x1, x2] ∈ occur1(k) and [y1, y2] ∈ occur2(k), implying that both are expected to satisfy pattern k
by the construction of occuri (k),

�([x1, x2], [y1, y2]) =
{

w(vx1 , vx2+1) if [x1, x2] = [y1, y2] and k < m,

0 otherwise.

Then we let f�(G, w) = 〈(S1, S2), �,Pu〉, which completes the construction.
Now we construct function g as follows. Given a feasible solution A = {S̄1, S̄2} for 〈(S1, S2), �,Pu〉 ∈ IRSAUC, let

indices j1 < · · · < jm be such that S̄1[jk] = [yk, zk]. Then, we construct g(A) as 〈v1, vy2 , . . . , vym−1 , vN 〉.
For the example shown previously, the optimal alignment A∗ of the instance is

[1, 6][7, 9][10, 15][16, 16],
[1, 6][7, 9][10, 15][16, 16]

with score 3, and g(A∗) = 〈v1, v3, v2, v4〉 is the shortest Hamiltonian path.

Lemma 10. Given 〈G, w〉 ∈ ISHP, letA={S̄1, S̄2}be a feasible solution forf�(〈G, w〉) such that score(A) < �Nwmax,
where ��1. Then g(A) is a feasible solution for 〈G, w〉, and len(g(A)) = score(A).

Proof. Let jk , yk and zk be as defined above.As noted before, by the construction of occuri (k), we have (vyk
, vzk+1) ∈ E

for all k < m. Since score(A) < �Nwmax, all positions in S̄1 and S̄2 must correspond to pattern occurrences. Hence
zk+1=yk+1 for all k < m. Consequently, zk+1=yk+1 and hence (vyk

, vyk+1) ∈ E for all k�m−2, and (vym−1 , vN) ∈ E.
Since [yk, zk] ∈ occuri (yk) for k < m, it is implied by the satisfaction of all m patterns that yk �= yk′ for k �= k′. It then
follows that 〈v1, vy2 , . . . , vym−1 , vN 〉 is a Hamiltonian path in G.

Let S̄2[jk] = [y′
k, z

′
k] ∈ occur2(y

′
k). The same as above, we have z′

k + 1 = y′
k+1 for k < m and z′

k + 1 = y′
k+1 for all

k�m− 2. Since S̄1[jk] and S̄2[jk] must satisfy the same pattern, we have yk =y′
k for all k, hence zk = z′

k for k�m− 2.
Also, [ym, zm] = [y′

m, z′
m] = [N2, N2] and zm−1 = z′

m−1. We claim that actually [y′
k, z

′
k] = [yk, zk] for all k. Suppose

not, and let k∗ be the smallest k < m such that inequality holds. Then y′
k∗ = z′

k∗−1 + 1 = zk∗−1 + 1 = yk∗ and hence
z′
k∗ �= zk∗ . By the construction of the occurrence sets, since both [yk∗ , zk∗] and [yk∗ , z′

k∗] are in occuri (yk∗), we must

have z′
k∗ �= zk∗ , a contradiction. The claim follows.

From the above, we have �(S̄1[jk], S̄2[jk]) equal to w(vyk
, vyk+1) for k�m−2, equal to w(vym−1 , vN) for k =m−1,

and equal to 0 if k = m, and hence

score(A) =
m∑

j=1

�(S̄1[j], S̄2[j]) =
m−2∑
k=1

w(vyk
, vyk+1) + w(vym−1 , vN) = len(g(A)).

This completes the proof. �

Lemma 11. Given 〈G, w〉 ∈ ISHP and ��1, if solSHP(〈G, w〉) �= ∅, then opt(f�(〈G, w〉)) = opt(〈G, w〉).

Proof. Let 〈v�(1), . . . , v�(N)〉 be an optimal path for 〈G, w〉, where �(1) = 1 and �(N) = N . Let A = {S̄1, S̄2}
be an optimal solution for f�(〈G, w〉). Construct S̄i

′
for i = 1, 2 to be such that |S̄i

′| = m, S̄i
′[k] = [(k − 1)N +

�(k), kN + �(k + 1) − 1] ∈ occuri (�(k)) for k < m, and S̄i
′[m] = [N2, N2] ∈ occuri (�(N)). Let A′ = {S̄1

′
, S̄2

′},
and then we have score(A′) = ∑N−1

i=1 w(v�(i), v�(i+1)). Hence score(A)�score(A′) = opt(〈G, w〉). By Lemma 10,
score(A)�opt(〈G, w〉), which completes the proof. �

We can now establish the main result for RSAUC.

Theorem 12. RSAUC is not approximable within r(m, n, �), for any function r(m, n, �)�1 computable in polynomial
time, even when � = 2, unless P = NP.

Y.-S. Chung et al. / Discrete Applied Mathematics 155 (2007) 2471–2486 2483

Proof. Suppose otherwise. Then there exists a polynomial time algorithm ALG that can approximate pairwise RSAUC
within some r(m, n, �) computable in polynomial time. Then for any instance 〈(S1, S2), �,Pu〉 ∈ IRSAUC whose set
of feasible solutions is not empty,

score(ALG(〈(S1, S2), �,Pu〉))�r(m, n, 2) × opt(〈(S1, S2), �,Pu〉),
where n = max{|S1|, |S2|} and m is the number of patterns defined in Pu.

Let 〈G, w〉 be an instance of SHP with no Hamiltonian path on G from v1 to vN , where N is the number of nodes
in G. Let A = ALG(f�(〈G, w〉)), where � = 2r(N, N2, 2). By Lemma 10, if score(A) < �Nwmax, then g(A) ∈
solSHP(〈G, w〉). It follows that score(A)��Nwmax, since solSHP(〈G, w〉) = ∅.

Conversely, let 〈G, w〉 be an instance of SHP with Hamiltonian path on G from v1 to vN . Again, let A = ALG

(f�(〈G, w〉)). By Lemma 11, opt(f�(〈G, w〉)) = opt(〈G, w〉), and we have score(A)�r(N, N2, 2)opt(〈G, w〉)
< �Nwmax.

Hence ALG(f�(〈G, w〉)) has score less than �Nwmax if and only if 〈G, w〉 has feasible solutions. Since ALG and
r(m, n, �) are computable in polynomial time, it follows that the determination of whether there is a Hamiltonian path
from v1 to vN in G can be done in polynomial time. This contradicts Lemma 9 if P �= NP, hence such an approximation
algorithm for RSAUC cannot exist unless P = NP. �

The hardness of general SAUC is then immediate.

Corollary 13. SAUC cannot be approximated within r(m, n, �) for any function r(m, n, �) computable in polynomial
time, unless P = NP.

Interestingly, unlike CSA, even approximating the pairwise case of SAUC is hard.
In the following, we show that, just as the bounded version of RCSA, the bounded version of RSAUC is also a

member of the family of NPO-complete problems.
RSAUC with Bound, RSAUCB
Instance: Two sequences S1 and S2, nonnegative integer function �, an unordered constraint Pu, and a positive

integer B.
Solution: A constrained alignment A = {S̄1, S̄2} satisfying Pu with 0 < score(A) < B.
Measure: score(A).
Goal: min.
Wu et al. showed that the longest Hamiltonian path problem is NPO-complete [23]; MAX-W3SAT is strictly reduced

to the problem. If W3SAT is used instead, then SHP can be shown in the same way to be NPO-complete.

Lemma 14. The shortest Hamiltonian path problem is NPO-complete.

As before, we specify an AP-reduction from SHP to RSAUCB; the same notations are used for convenience. Define
function h : ISHP × (1, ∞) → IRSAUCB by h(〈G, w〉,
) = 〈f1(〈G, w〉), B〉, where B = Nwmax. Also, for a feasible
solution A to h(〈G, w〉,
), define h′(〈G, w〉,A,
) = g(A). We then have that (h, h′, 1) is a valid AP-reduction, as
shown in the following theorem. As before, since our definition of h and h′ are actually independent of
, for notational
brevity we shall omit it in the proof.

Theorem 15. RSAUCB is NPO-complete.

Proof. Let 〈G, w〉 ∈ ISHP. It is clear that h(〈G, w〉) can be computed in polynomial time and is an instance of RSAUCB.
If 〈G, w〉 has feasible solutions, then by Lemma 11, opt(h(〈G, w〉))= opt(〈G, w〉)�(N − 1)wmax < Nwmax =B, and
hence h(〈G, w〉) also has some feasible solution. Let A be a feasible solution to h(〈G, w〉). Since score(A) < Nwmax,
by Lemma 10, we have that h′(〈G, w〉,A), computable in polynomial time, is a feasible solution to 〈G, w〉. By
Lemma 11, opt(〈G, w〉)= opt(h(〈G, w〉)), while by Lemma 10, we have len(g(A))= score(A), hence if any solution
A to h(〈G, w〉) has performance ratio
, h′(〈G, w〉,A) must also have performance ratio
 = 1 + 1 · (
 − 1). Hence
(h, h′, 1) constitutes an AP-reduction from SHP to RSAUCB. �

The following result is then immediate by Theorem 15.

2484 Y.-S. Chung et al. / Discrete Applied Mathematics 155 (2007) 2471–2486

Proposition 16. Given an instance of RSAUCB, the test of whether it has some feasible solution cannot be done in
polynomial time, unless P = NP.

5. Conclusion and discussion

In this paper, we proposed a general model for constrained sequence alignment, and demonstrated the brevity
and uniformity of viewing previous formulations in this framework. The hardness results of CSA and SAUC for both
pairwise and general cases were proposed. CSA is polynomial time solvable for the pairwise case and not approximable
within any polynomial time computable function in general. SAUC is much harder in that it cannot be approximated
even in the pairwise case. The bounded versions of CSA and SAUC are shown to be NPO-complete.

For the original formulation, due to the lack of a polynomial time approximation algorithm, it would usually be more
feasible to adopt a progressive procedure, as in [20,21,16]. In fact, that the time complexity of the 2-approximation
algorithm proposed in [6] is not bounded by a polynomial may be a hint for the hardness of approximation of the original
formulations. The results in this paper ensure the inapproximability for the general model, and somehow support the
guess of the inapproximability of the original problem. It is expected that the techniques used in this paper help to
gain insights into the structure of the original formulation and may be modified to prove the hardness of the original
formulation.

Certainly, the hardness of the original formulation remains to be of theoretical interest. Algorithmically, there are
also some generalizations worth doing; for example, how to find a good constrained alignment if each satisfaction
of the patterns need not be supported by all sequences, or if a proportion of the patterns need not be satisfied. These
constitute future directions of research on this topic.

Acknowledgment

The authors would like to thank the anonymous reviewers for their useful comments which help to improve the
clarity of this paper.

Appendix A. The class NPO and approximation algorithms

In this appendix, we give definitions regarding the class NPO and approximation algorithms. They are adapted from
[8,3].

Definition 17. An NP optimization problem A is a fourtuple (IA, sol, m, goal) such that

(1) IA is the set of the instances of A and it is recognizable in polynomial time.
(2) Given an instance x of IA, sol(x) denotes the set of feasible solutions of x. These solutions are short, that is,

a polynomial p exists such that, for any y ∈ sol(x), |y|�p(|x|). Moreover, it is decidable in polynomial time
whether, for any x and for any y such that |y|�p(|x|), y ∈ sol(x).

(3) Given an instance x and a feasible solution y of x, m(x, y) denotes the positive integer measure of y. The function
m is computable in polynomial time and is also called the objective function.

(4) goal ∈ {max, min}.
The class NPO is the set of all NP optimization problems. The goal of an NPO problem with respect to an instancex is
to find an optimum solution, that is, a feasible solution y such that

m(x, y) = goal{m(x, y′) : y′ ∈ sol(x)}.
Let opt denote the function mapping an instance x to the measure of an optimum solution.

Definition 18. Let A be an NPO problem. Given an instance x and a feasible solution y of x, we define the performance
ratio of y with respect to x as

R(x, y) = max

{
m(x, y)

opt(x)
,

opt(x)

m(x, y)

}
.

Y.-S. Chung et al. / Discrete Applied Mathematics 155 (2007) 2471–2486 2485

Definition 19. Let A be an NPO problem and let T be an algorithm that, for any instance x of A, returns a feasible
solution T (x) of x. Given an arbitrary function r : N → (1, ∞), we say that T is an r(n)-approximate algorithm for
A if, for any instance x, the performance ratio of the feasible solution T (x) with respect to x verifies the following
inequality:

R(x, T (x))�r(|x|).
If an NPO problem admits an r(n)-approximate polynomial-time algorithm we say that it is approximable within r(n).

Definition 20. Let A and B be two NPO problems. A is said to be AP-reducible to B, in symbols A�APB, if two
functions f and g and a positive constant ��1 exist such that:

(1) For any instance x ∈ IA and for any rational r > 1, f (x, r) ∈ IB .
(2) For any instance x ∈ IA and for any rational r > 1, if solA(x) �= ∅ then solB(f (x, r)) �= ∅.
(3) For any instance x ∈ IA, for any rational r > 1, and for any y ∈ solB(f (x, r)), g(x, y, r) ∈ solA(x).
(4) Each of f and g is computable by an algorithm, whose running time is polynomial for any fixed rational r.
(5) For any x ∈ IA, for any rational r > 1, and for any y ∈ solB(f (x, r)),

RB(f (x, r), y)�r implies RA(x, g(x, y, r))�1 + �(r − 1).

Definition 21. A problem A ∈ NPO is NPO-complete if, for any B ∈ NPO, B �APA.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verification and the hardness of approximation problems, J. ACM 45 (1998)
501–555.

[2] A.N. Arslan, Regular expression constrained sequence alignment, in: A. Apostolico, M. Crochemore, K. Park (Eds.), Proceedings of the 16th
Annual Symposium on Combinatorial Pattern Matching (CPM 2005), Lecture Notes in Computer Science, vol. 3537, Springer, Berlin, 2005,
pp. 322–333.

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi, Complexity and Approximation: Combinatorial
Optimization Problems and their Approximability Properties, Springer, Berlin, 1999.

[4] V. Bafna, E.L. Lawler, P.A Pevzner, Approximation algorithms for multiple sequence alignment, Theoret. Comput. Sci. 182 (1997) 233–244.
[5] P. Bonizzoni, G.D. Vedova, The complexity of multiple sequence alignment with SP-score that is a metric, Theoret. Comput. Sci. 259 (2001)

63–79.
[6] F.Y.L. Chin, N.L. Ho, T.W. Lam, P.W.H. Wong, Efficient constrained multiple sequence alignment with performance guarantee, J. Bioinform.

Comput. Biol. 3 (2005) 1–18.
[7] Y.-S. Chung, C.L. Lu, C.Y. Tang, Efficient algorithms for regular expression constrained sequence alignment, in: M. Lewenstein, G. Valiente

(Eds.), Proceedings of the 17th Annual Symposium on Combinatorial Pattern Matching (CPM 2006), Lecture Notes in Computer Science,
vol. 4009, Springer, Berlin, 2006, pp. 389–400.

[8] P. Crescenzi, V. Kann, A compendium of NP optimization problems, Available at: 〈http://www.nada.kth.se/∼viggo/wwwcompendium/
wwwcompendium.html〉, 2000.

[9] P.A. Evans, Algorithms and complexity for annotated sequence analysis, Ph.D. Thesis, Department of Computer Science, University of Victoria,
Canada, 1999.

[10] S. Fesselea, H. Maierb, C. Zischeka, P.J. Nelsona, T. Werner, Regulatory context is a crucial part of gene function, Trends Genet. 18 (2002)
60–63.

[11] M.R. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman & Company, New York,
1979.

[12] D. Gusfield, Efficient methods for multiple sequence alignment with guaranteed error bounds, Bull. Math. Biol. 30 (1993) 141–154.
[13] T. Jiang, Y. Xu, M.Q. Zhang (Eds.), Current Topics in Computational Molecular Biology, MIT Press, Cambridge, MA, 2002.
[14] W. Just, Computational complexity of multiple sequence alignment with SP-score, J. Comput. Biol. 8 (2001) 615–623.
[15] A. Kel, O. Kel-Margoulis,V. Babenko, E. Wingender, Recognition of NFATp/AP-1 composite elements within genes induced upon the activation

of immune cells, J. Mol. Biol. 288 (1999) 353–376.
[16] C.L. Lu, Y.P. Huang, A memory-efficient algorithm for multiple sequence alignment with constraints, Bioinformatics 21 (2005) 20–30.
[17] L.J. McGuffin, K. Bryson, D.T. Jones, The PSIPRED protein structure prediction server, Bioinformatics 16 (2000) 404–405.
[18] G. Myers, S. Selznick, Z. Zhang, W. Miller, Progressive multiple alignment with constraints, J. Comput. Biol. 3 (1996) 563–572.
[19] P. Orponen, H. Mannila, On approximation preserving reductions: complete problems and robust measures, Technical Report C-1987-28,

Department of Computer Science, University of Helsinki, 1987.

http://www.nada.kth.se/viggo/wwwcompendium/wwwcompendium.html
http://www.nada.kth.se/viggo/wwwcompendium/wwwcompendium.html

2486 Y.-S. Chung et al. / Discrete Applied Mathematics 155 (2007) 2471–2486

[20] C.Y. Tang, C.L. Lu, M.D.-T. Chang, Y.-T. Tsai, Y.-J. Sun, K.-M. Chao, J.-M. Chang, Y.-H. Chiou, C.-M. Wu, H.-T. Chang, W.-I. Chou,
Constrained sequence alignment tool development and its application to RNase family alignment, J. Bioinform. Comput. Biol. 1 (2003)
267–287.

[21] Y.-T. Tsai,Y.P. Huang, C.T.Yu, C.L. Lu, MuSiC: a tool for multiple sequence alignment with constraints, Bioinformatics 20 (2004) 2309–2311.
[22] L. Wang, T. Jiang, On the complexity of multiple sequence alignment, J. Comput. Biol. 1 (1994) 337–348.
[23] Q.S. Wu, K.-M. Chao, R.C.T. Lee, The NPO-completeness of the longest Hamiltonian cycle problem, Inform. Process. Lett. 65 (1998)

119–123.

	Constrained sequence alignment: A general model and the hardness results
	Introduction
	Preliminaries
	Constrained sequence alignment
	An algorithm for the pairwise case
	Inapproximability of the general case
	A bounded version

	Sequence alignment with unordered constraint
	Conclusion and discussion
	Acknowledgment
	Appendix A. The class NPO and approximation algorithms
	References

