% 3F
R 3F

e

FREATREELR RB RS 2 Y

SRE BN ZIRT AN E RS

(Leakage Energy Management for Multithreaded Programs)

STUE EUEE BN SR
4 %% NSC97—2218—E—009—043 —MY3
H@EHpF: 97 & 11 % 1 px 98 & 7% 31 p

SEFLFA(REF PUTER) I EEE O gwd

AN ERARL FF T RE 2

AR £ 8 ¢ o 4R 2

(AL~ e R LAY Hfrﬁ—- - i

(IR R EEE R FHREEZF L 2% -7
Rz e T s WAmg L3 - &

BOLS R IR AR LY RDAERIFE LI RTATFE
FlEE 2T S E b 2T]
Wiz deamdpig |- W27 2F 43

-~ :‘é;}%_@

AP E IR HAESZRTAENFE S 2P E 25 - B A R P RN S
PEGARS Y DR TAEG PIL 2 B FRFEARY > AR - BATH RN T R

17 (Predicated Power Gating) & 8 # 4] > & & * %HF B H v > f| * ¢ & MHP
(May-Happen-in-Parallel) L jir > 45 4258 ¥ ae e (T % F > TR/ I - TR * W EE T RMB
dlang ™ o 5 5% T RM 4 7 (Multithreaded power-gating analysis,
MTPGA)S % « bhERH Y » AP 5 SR FREN BTN § LR - 228

AR % APATALIBRS FEFEMNIE (1) NI HEFHOT AT FEY
/v\Jf’?lpLJ/r)\mliﬁ ﬁ;m’,/g*g;}i,{ﬁng ’T:l&-ﬁ)'@?fj_ —\J_ﬁ:x:’ o(z)ﬁj;ﬁgﬁ;t

TRA AR L > R S HEE B T 57 AR R T LA F IR
Lo DML AY By Y N - (3) fI% MHP 2 i3 g chadr il e - £ PR
FHETRRBEA S Z Y WE LA G OE X2 TR 24 4 (Predicated-power-gating
instructions) o # P R-BF M TR TRV FTHED S AR Jf# o

WA BB SR FHAS RTEL TR
= ~ Abstract

This is the first year of our three-year project, called Leakage Energy Management for
Multithreaded Programs. The objective of this project is to design a methodology for leakage
energy management for multithreaded programs. In this project, we proposed a novel hardware
mechanism, called predicated power gating. We also used compiler techniques with the previous
proposed MHP (May-Happen-in-Parallel) analysis to propose a scheme, called multithreaded
power-gating analysis (MTPGA), for managing predicated-power-gating instructions. In the
first year of the project, we developed a solution for employing leakage energy management for
multithreaded programs. We achieved some significant results: (1) we have deeply investigated
into multithreading analyses on the literature and applied the techniques to the proposed
approach. (2) We proposed the concept of predicated-power-gating mechanism in order to solve
the problem that normal power-gating mechanism cannot be applied to multithreaded programs.
This is a brand new concept and was not appeared in the literature. (3) We reused the
information obtained from MHP and previously proposed analyses and proposed a multithread
power gating analysis to manage predicated power-gating instructions. We will keep doing

research on this subject and extend our research to multi-core architectures.

Keywords: Compilers, Multithreaded programs, Leakage energy management

—

:\,Eﬁi‘ngﬁj

BRI EHBET BT P A Y e S B R R 0 RFIAT KAl
) ETEEL A R AP BT BT 2 L R A R i B R 1R T
Fo R LS EFESNFAAND AN YR AR BRI R
Ao BB TR S F A T v H - R EReRS o BRI
FAEFRTER FL AP RATOH AR E MR R RS RO AL AP L T g H
BRI ARARSS B AL ARALR TR 3BTRS T AR R R AR R
Pethicnd d GRAER S TS SHEET UREA ALK R Y CPUBR > 4 F R
AT URBEFRFRF LT PR BB POy TR ISR RS
TR S RE 0 ST A AIE N E R R B R E o Gl 5 3 S i s 3

B AEGYRE > RRERE
LIS A

B MR B KBS PR R 4R 7 5 0T R R F(power gating) E 8T 7 3R 2
3 P AR AR Mt 0 0 B4e 2002 # LCPC (Workshop on Languages and Compilers for Parallel
Computing) ¢ 3% ® “7% % ¥ # % ”Compiler analysis and supports for leakage power
reduction on microprocessors” » £ 2002 # . CC(Conference on Compiler Construction) ¢ %
vt & LA 57 Optimizing static power dissipation by functional units in superscalar
processors”» £ 2003 # = DATE(Design Automation and Test in Europe Conference) ¢ 3% © *1
% ¢ # 5 "Compiler support for reducing leakage energy consumption”s 2005 # i
EMSOFT(International Conference On Embedded Software) ¢ % * #7% # & L 57
Sink-N-Hoist Framework for Leakage Power Reduction”# 2006 # % ACM TODAES (ACM
Transactions on Design Automation of Electronic Systems) #p 7] ¢ “73 % % 4L 5 Compilers
for Leakage Power Reduction”# 2007 # . ACM TODAES (ACM Transactions on Design
Automation of Electronic Systems) # T ¢ #r 2 & % £ % “Compilation for Compact
Power-Gating Controls” % ¢ 2 ¢ » 3 &7 MR IR i7dp 4 907 S HE e 7 R RA
Frdp 4 BB KM ERIEABHKET B H P TIRM 4 £ (power-gating
instruction) % & 7 T ik k< # 4 4 (power-on instruction) ¥ % ik B B 45 4 (power-off
instruction) o T iETHdp 4 T AL B A RJL A AR (7T Es ohds 1T 0 RRM P Ap 4
G TR B R L EE TR B (T R o m b R BT AL F IS R Wy
W H — 3 {7 42378 (single-thread program) » 3% % 34 {7 & 42 ;% (multithreaded programs) B F]
TR REZEIERNFEF I FME G A2 FREE o At mig * fna f £ &

AL
o

-
A

Ny =2 ;L* D
Predicated-Power-Gating Mechanism

We import the idea of conditional execution into power-gating devices for solving the
improper power-gating control among a set of concurrent threads. Suppose that there are N
power-gating candidate units: Candidatel, Candidate2, ..., CandidateN. Figure 1 and Figure
2 show the block diagram of a normal power-gating mechanism and a
predicated-power-gating mechanism. In Figure 1, the block diagram with normal
power-gating devices, there is a N-bit power-gating control register (pgcl, pgc2, ..., pgcN),
which controls the power state of the N power-gating candidates, and a power-gating
controller, which takes power-gating instructions and revises the power-gating control
register accordingly. The proposed predicated-power-gating mechanism (Figure 2) is similar
to regular power gating, but a N-bit power-gating predicate register (pgpl, pgp2, ..., pgpN)
and N switches are added for predication support. In addition, we define the
predicated-power-gating operations as follows for the implementation details. Note that these
operations must be atomic with respect to each other in order to prevent multiple threads

from accessing control at precisely the same time.

Power-Gating Iy
Control Register | ’i‘ 'i‘ Virtual ¥, Virtual ¥, Virtual V,,
i pecl i pgce2 | pge3 i ----- pchH
i i iI i — —
Vaa Vi

Power-Gating

Controller
Power-Gating ower-Gating | . Power-Gating
Candidate 1 Candidate 2 Candidate N

—4— GND — 44— GND — 44— GND

Figure 1: Power-gating mechanism

Power-Gating I
Control Register I 'i‘ 'i‘ Virtual ¥V, Virtual 7, Virtual 7,
ipgci ipchipgc.%i---- ingNH

Ny

Power-Gating
Controller
Power-Gating Power-Gating Power-Gating
Candidate 1 Candidate 2 Candidate N
ipgpl ipng ipgp3 i T ipgpNH
Power-Gating —e—GND —— GND —e— GND

Predicate Register

Figure 2: Power-gating mechanism with predication support
® Predicated-power-on operation:
» Power on Candidatei if predicate bit pgpi is set.
» Increase the reference counter of Candidatei (rci), which keeps track of the
number of threads that reference the power-gating candidate at this time, by one.

» Unset predicate bit pgpi.

® Predicated-power-off operation:
> Decrease the reference counter of Candidatei (rci) by one.
» Set predicate bit pgpi if reference counter rci is zero.

» Power off Candidatei if predicate bit pgpi is set.

Moreover, there should be an initialization process for unsetting all the predicate bits (pgpl,
pgp2, ..., pgpN) and emptying all the reference counters (rcl, rc2, ..., rcN) when the

processor is activated.

Multithreaded Power-Gating Analysis (MTPGA)

The leakage-power-reduction framework presented in “Compilation for Compact
Power-Gating Controls” is inapplicable to multithreaded programs since the interleaved
execution of threads most likely ruins the concept developed in the framework. However, it
does reveal valuable information about the potential control concepts of each single thread
within a program. It provides the information of the component activities of each thread and
tells whether power-gating controls should be applied within each thread. Once the problem
of incorrect power-gating controls among threads becomes solved, power-gating
management for multithreaded programs will be achievable.

The proposed MTPGA is proceeded on top of the results of the CADFA with
Sink-N-Hoist (proposed in “Compilation for Compact Power-Gating Controls””) and MHP
(May-Happen-in-Parallel) analyses. The basic idea is to combine both the CADFA with
Sink-N-Hoist and MHP information with the predicated-power-gating mechanism. More
specifically, MTPGA generally inserts a pair of predicated-power-on and -off operations at
the positions that a power-gating candidate is first activated and last deactivated within a
thread upon a proposed cost model.

However, predicated-power gating is not cost-free and has more side effect than
normal power gating. Sometimes applying predicated-power-gating control might result in
less energy reduction than applying normal power-gating control. We take this into
consideration and build a model for determining whether predicated-power gating should be
employed. The model is based on the comparison of the energy cost between normal power
gating and predicated-power gating in a MHP region. Suppose that there are power-gating
candidate units: Candidatel, Candidate2, ..., CandidateN and K threads in a MHP region:
Thread1, Thread2, : : :, ThreadK. We define two functions, named A() and A(), which take
a thread and a power-gating candidate as their parameters, as follows for computing the
inactive period of the power-gating candidate before/after the candidate operates for the
first/last time within the thread.

A(Threadi,Candidatej) = start(Threadi,Candidatej) — start(Threadi)
and
A(Threadi,Candidatej) = end(Threadi) — end(Threadi,Candidatej),

where start(Threadi,Candidatej) returns the time Candidatej is first used in Threadi and

start(Threadi) returns the start time of Threadi, and on the contrary, end(Threadi,Candidatej)
returns the time Candidate;j is last used in Threadi and end(Threadi) returns the end time of
Threadi.

start(Threadl)
e

[T A(Thread1, Candidatel)
7\start(Thread1, Candidatel)

/end(Threadl, Candidatel)

T E T A(Thread1, Candidatel)

™ end(Thread1)

Figure 3: Illustration of A and A computation

Figure 3 portrays the implications of the above functions with Threadl and Candidatel, the
candidate in yellow, as parameters. Furthermore, we define that M (Candidatej) and
M(Candidatej) return the minimum of A(Threadi, Candidatej) and A (Threadi, Candidatej)
in terms of all Threadi:

M(Candidatej) = MIN,,A(Threadi,Candidatej)
and
M(Candidatej) = MIN,A(Threadi,Candidatej).

M(Candidatej) represents the earliest time that Candidatej might be used after the MHP
region starts and M(Candidatej) the latest time that Candidatej might be operated prior to
the MHP region ends. Accordingly, the energy is

Eon(Candidatej) + Eoff (Candidatej) + Kj x (Epred-on + Epred-off)+
(M(Candidatej) + M(Candidatej)) x Prieak(Candidatej),

where functions Eon(Candidatej) and Eoff (Candidatej) return the energy consumption of
issuing a power-on and a power-off instruction for component Candidatej respectively; Kj
represent the number of threads in the MHP region that require Candidatej to operate; Epred-on
and Epred-off stand for the energy consumption of operating a set of predicated-power-on and
predicated-power-off manipulation operations, excluding the power-on and power-off
operations, respectively; Prieak(C) represents the leakage-power consumption of component
Candidatej in a cycle when the power supply is gated. On the contrary, when we employ
normal power-gating control at the beginning and end of the MHP region, rather than
applying the predicated-power-gating management, the energy consumption of such

operations and the potential leakage dissipation is

Eon(Candidatej) + Eoff (Candidatej)+
(M(Candidatej) +M(Candidatej)) x Pieak(Candidate;j);

where Pleak(C) represents the leakage-power consumption of unit Candidatej in a cycle.
Accordingly, we can derive the following inequality for ensuring the worthiness of

predicated-power gating:

Eon(Candidatej) + Eoff (Candidate;j) + Kjx (Epredion + Epredioff)+

(M(Candidatej)+M(Candidatej)) x Prieak(Candidatej) < Eon(Candidatej)+

Eoft (Candidatej)+(M(Candidatej)+M(Candidatej)) x Piea(Candidatej),

and thus we have

i K % (Bpred—on + Eprei-ofy)

M(C'andidate)) + M(Candidate)) > - - - - —~
(Candidatej) + M(Candidate)) Por (Candidate)) — Pyun (Candidate))

as the criterion for deterring whether predicated-power gating should be applied. Figure 4
sketches the algorithm of the proposed multithreaded-power-gating analysis. Basically, it
determines whether predicated-power gating should be employed for each MHP region.

Multithreaded-Power-Gating Analysis

Input: A multithreaded program and its MHP and CADFA with
Sink-N-Hoist information.

Output: The program with power-gating controls.

for each MHP region
for each power-gating candidate C'
if M(C)+M(C) < THRESHOLD' then
Place a power-on and a power-off instruction for
(' at the beginning and the end of the MHP
region, respectively.
else
for each thread
Place a predicated-power-on and a predicated-
power-off operation before/after the candidate
operates for the first/last time within the
thread.
end for
end if
end for
end for

]ij >< (E‘p?aedfon + E.‘m,ejdioff)

"THRESHOLD =
P!eak ((‘) - ngﬂ,k ((‘)

Figure 4: Algorithm of the multithreaded-power-gating analysis

= 2L by =2 1 2
oy BER Y

AERPED AP LR

(-) May-Happen-in-Parallel (MHP) Analysis

i éil%" SR EA AT F AL T AR Y T oA T (T AR N R L o A ’ér_Q')E’%“ 53

MHP A2 45 J 2538 ¢ & & ehT 5 3% o T4 AT 0 (£ 5 AJEAT 5 (h MHP A 45 A

<> R. N. Taylor, “Complexity of analyzing the synchronization structure of concurrent
programs,” Acta Informatica, vol. 19, pp. 57 - 84, 1983.

<> D. Callahan and J. Sublok, “Static analysis of low level synchronization,” in

Proceedings of the 1988 ACM SIGPLAN and SIGOPS Workshop on Parallel and
Distributed Debugging, Madison, Wisconsin, January 1989, pp. 100 - 111.

<> E. Duesterwald and M. L. Soffa, “Concurrency analysis in the presence of procedures
using a data-flow framework,” in Proceedings of the Symposium on Testing, Analysis,
and Verification (TAV’ 91), British Columbia, Canada, October 1991, pp. 36 - 48.

<> S. P. Masticola and B. G. Ryder, “Non-concurrency analysis,” in Proceedings of the

fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’ 93), San Diego, California, May 1993, pp. 129 - 138.

<> G. Naumovich and G. S. Avrunin, “A conservative data flow algorithm for detecting
all pairs of statements that may happen in parallel for rendezvous-based concurrent
programs,” in Proceedings of the 6th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE’ 98), Lake Buena Vista, Florida, November 1998, pp.
24 - 34.

<> G. Naumovich, G. S. Avrunin, and L. A. Clarke, “An efficient algorithm for computing
MHP information for concurrent Java programs,” in 7th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE" 99), ser. Lecture Notes in Computer

Science. Springer, 1999, vol. 1687, pp. 338 - 354.

(=) Predicated-Power-Gating Mechanism

AR FE P o AP/ AR * 25 Predicated Execution 4] 0% AW e ¥ AR -
MHP # ‘e eh® - 3 {7 % % {8 £ #& Predicated Power-Gating Instruction % if § 7
Predication g 324p 4 > M E IR R 4S8 BILOP ehe BIRG ¥ })%J% L R N N
A FE Y o

(=) Multithreaded Power-Gating Analysis (MTPGA)

hAE Y > A PR - B A MR SRR Y kT SR T
R iAn 4 R AR ET BT RS REER T 8

FAE S &2 G A IR T PR AL P R B G B4 5 BT AN i T A
wE e

N L

FIgRI G e AR LR R R 7 L SR BB RS R e E R - e

PR BRDRRE > FoAPELhs 22 25 mT R EFHRS PBET N FRG et
FoREP g P EERR AR AT HRIMPFEHIAFERS BT TR

#Bfﬁgf&;i@f%%/iﬁz;”ipzﬁﬁ e e

r
4
\\\?{r

4o

1. Steven Dropsho, Volkan Kursun, David H. Albonesi, Sandhya Dwarkadas, and Eby G.
Friedman. **Managing static leakage energy in microprocessor functional units," In
Proceedings of the 35th International Symposium on Microarchitecture (MICRQO'02),
pages 321-332, Istanbul, Turkey, November 2002.

2. Yen-Hsiang Fan, Yuan-Shin Hwang, Yi-Ping You, and Jeng-Kuen Lee,
“"Compiler-based vs. Hardware-based Power Gating Techniques for Functional Units,"
in Proceedings of the 6th Workshop on Optimizations for DSP and Embedded Systems
(ODES-6), pp. 26-35, Boston, MA, April 6, 2008.

3. Siddharth Rele, Santosh Pande, Soner Onder, and Rajiv Gupta. **Optimizing static
power dissipation by functional units in superscalar processors," In Proceedings of the
11th International Conference on Compiler Construction (CC'02), pages 261-275,
Grenoble, France, April 2002.

4. Yi-Ping You, Chingren Lee, and Jeng-Kuen Lee, "*Compiler Analysis and Supports for
Leakage Power Reduction on Microprocessors," in Proceedings of the 15th Workshop
on Languages and Compilers for Parallel Computing (LCPC'02), College Park, MD,
July 25-27, 2002. (also in Lecture Notes in Computer Science, Vol. 2481,
Springer-Verlag, Germany, pp. 45-60, 2005.)

5. Yi-Ping You, Chingren Lee, and Jenq Kuen Lee, **Compilers for Leakage Power
Reduction," ACM Transactions on Design Automation of Electronic Systems, Vol. 11,
Issue 1, ACM, New York, pp. 147-164, January 2006.

6. Yi-Ping You, Chung-Wen Huang, and Jenq Kuen Lee, A Sink-N-Hoist Framework for
Leakage Power Reduction," in Proceedings of the ACM International Conference on
Embedded Software (EMSOFT'05), pp. 124-133, Jersey City, NJ, September 18-22,
2005.

7. Yi-Ping You, Chung-Wen Huang, and Jenq Kuen Lee, **Compilation for Compact
Power-Gating Controls," ACM Transactions on Design Automation of Electronic
Systems, Vol. 12, Issue 4, Article 51, ACM, New York, September 2007.

8. Yi-Ping You and Jenq Kuen Lee, **Compiler Frameworks for Leakage Power
Reduction," in Student Poster Session of ACM SIGPLAN/SIGBED 2005 Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES'05), Chicago, IL,
June 15-17, 2005.

9. W. Zhang, Mahmut T. Kandemir, Narayanan Vijaykrishnan, Mary Jane Irwin, and V.
De. “"Compiler support for reducing leakage energy consumption," In Proceedings of
the 6th Design Automation and Test in Europe Conference (DATE'03), pages
1146-1147, Messe Munich, Germany, March 2003.

