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Harvest Rate of Reconfigurable Pipelines 

Weiping Shi, Member, IEEE, Ming-Feng Chang, 

and W. Kent Fuchs, Fellow, IEEE 

Abstract-For a reconfigurable architecture, the harvest rate is the 
expected percentage of defect-free processors that can be connected 
into the desired topology. In this paper, we give an analytical 
estimation for the harvest rate of reconfigurable multipipelines based 
on the following model: There are n pipelines each with m stages, 
where each stage of a pipeline is defective with identical independent 
probability 0.5 and spare wires are provided for reconfiguration. By 
formulating the "shifting" reconfiguration as weighted chains in a partial 
ordered set, we prove when n : @(m), the harvest rate is between 34% 
and 72%. 

Index Terms-Harvest rate, yield, reconfigurable arrays, defect 
tolerance, pipelines, random graphs, percolation. 

+ 
1 INTRODUCTION 
A multipipeline processor array is a set of one-dimensional pipe- 
lines running in parallel, where processors at different stages of 
the pipeline may be different; see Fig. 1. Multipipeline processor 
arrays are important for highly parallel architectures and vector 
supercomputer architectures [61. VLSI and WSI technology makes 
it possible to fabricate a multipipeline processor array on a single 
chip or wafer. However, since it is likely that some processor ele- 
ments will be defective, defect-tolerance for pipeline processor 
arrays can be important. 

Harvest rate analysis for reconfigurable processor arrays is of- 
ten difficult for two reasons. The first reason is that for most 
structures, it is NP-hard to compute the reliability; see Provan and 
Ball [SI. The second reason is that the reconfiguration algorithm 
may use complicated procedures to configure the system thereby 
making the resulting structure highly irregular. When all proces- 
sors are of the same type, Greene and Gamal 121, Leighton and 
Leiserson [7], and other researchers have developed algorithms to 
reconfigure a single-pipeline array from a two-dimensional wafer. 
Their harvest rate analysis is only for extreme cases where the 
harvest rate either goes to 0 or goes to 1. Stornetta, Huberman, and 
Hogg [ll] analyzed the harvest rate of multipipeline arrays, but 
since the problem is difficult, they used a phenomenological the- 
ory, combining analytical scaling equations with experimental 
measurements. Gupta, Zorat, and Ramakrishnan published an 
analysis of multipipeline processor arrays [51 based on the fol- 
lowing technical assumption. They not only assumed each proces- 
sor is defective with independent identical probability, but also 
assumed each processor is utilized with independent identical 
probability. They concluded that the harvest rate is independent of 
the shape of the array. To see the probability that one processor is 
utilized is related to the probability that an adjacent processor is 
utilized, consider the simplest example where the multipipeline 
array is a single pipeline with many stages. Therefore, one stage 
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Fig. 1. A multipipeline array before and after reconfiguration 

can be utilized if and only if all other stages can be utilized. Other 
examples can be constructed accordingly. As a result, the prob- 
ability that each stage is used is dependent on the probability that 
other stages can be used, no matter how one defines the probabil- 
ity space. 

In this paper, we study the harvest rate of multipipeline 
processor arrays. There are n 2 1 pipelines each with m 2 1 stages. 
Each stage of a pipeline is defective with identical independent 
probability p. (This assumption, also used by 151 and [lll, is a re- 
striction of this model. However, we can take the maximum yield 
of all stages as p to get an upper bound on the harvest rate of the 
array using the result of this paper. Similarly, we can take the 
minimum yield of all stages to get a lower bound on the harvest 
rate.) Vertical wires are provided for reconfiguration. We assume 
wires and switches are defect-free, an assumption also used by 
Greene and Gamal [2], Leighton and Leiserson [7],  Gupta, Zorat, 
and Ramakrishnan [5], and many other researchers. The recon- 
figuration is done by routing around defective stages using verti- 
cal wires, and each vertical wire and switch can be used only once. 
Fig. 1 shows five horizontal pipelines before and after an example 
reconfiguration. 

Our main focus is to analyze how many pipelines we can har- 
vest on average if processors are defective at random. We will 
show the harvest rate h(m, n),  defined as the percentage of defect- 
free processors that can be connected into pipelines through the 
optimal reconfiguration, is between 34% and 72%, when ?I is the 
same order as m. We formulate the "shifting" phenomenon of 
reconfiguration (some researchers call it fault stealing or compen- 
sation paths) as maximum weighted chains in a partial ordered set 
with random weights. Then, we use a mathematical result on the 
size of the chain to get our final result. Since the shifting phe- 
nomenon appears in many reconfiguration problems, we expect 
the method of analysis can be applied to other reconfigurable 
structures as well. 
2 ANALYSIS 
To formulate the problem, define a rectangular graph R(m + 1, n)  = 
(V, E), where 
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1 1 1  + ma~{Yl,!-l~~t+l,l-l} i f j  > l , i  = 1 

',I +max{Y,,;-l~Y~~r,i-r.Y,+l,il} i f i  > 1rm > i > 1 

%,] + max{Yt,/-lJ-l,/-l} i f j  > l,i = m 

V = {(i,j):1 < i < m + l  and 1 2  j I n}, 

The set ((1, j )  : 1 5 j 5 n) is called the left side, and the set { (m  + 3, j )  : 
1 2 j 5 n ]  is called the right side. 

Define X, , (m + 1, n)  as a random graph, where each horizontal 
edge appears with probability p ,  and each vertical edge appears 
with probability 1. Fig. 2 is an instance of Xp,1(8, 10). It is clear that 
the number of pipelines we can harvest equals the maximum 
number of mutually vertex-disjoint paths from the left side to the 
right side in Xp,l(m + 1, n). In contrast to our Manhattan model, 
Gupta, Zorat, and Ramakrishnan [51 assumed a knock-knee 
model. However, the results for the two models are within a con- 
stant factor of 2. 

left side right side 

Fig. 2. An R(8, 10) with some horizontal edges missing. 

REMARK. The random graph X p , p ( ~ ,  n )  is known in percolation 
theory as the Bernoulli Square Lattice Bond Model [3]. 
However, since the vertical edge probability is 1, our prob- 

Therefore, 

& 
lim h(m,n) 4 - = 0 

ni,n--fm + n  

Now we present our main result. The reconfiguration shown in 
Fig. 1 is obtained by the greedy algorithm that always takes the bot- 
tom edge whenever possible, that is, if neither of the vertices on the 
left and right side of the edge was required in a previously built path. 
The following lemma proves the greedy reconfiguration always gives 
us the maximum number of pipelines after reconfiguration. Notice 
that we can obtain less interstage delay by distributing the pipeline 
stages evenly. However, since we are only concemed with the maxi- 
mum number of pipelines, we use the greedy algorithm. See Libesk- 
ind-Hadas 181 for algorithms on reducing interstage delays. 

LEMMA 1. The greedy algorithm defined below can always find a maxi- 
mum set of vertex-disjoint L-R paths. 

Algorithm. 
Repeat 
1) Take the lowest horizontal edge at each column; 
2) Connect these edges into a path P; 
3) Delete all horizontal edges in P from the graph; 
4) Delete all horizontal edges ((i, j ) ,  (i + 1,j)) from the 

Until step 1 fail. 
graph if vertex (i, j )  or (i + 1, j )  is in P. 

lem is different from those studied in percolation theory. 
PROOF. The proof is by induction on k, the number of vertex-disjoint 

paths in the graph. We also keep an invariant assertion that 
for every vertex (i, I )  E P,  if there is no vertex (i, 7 )  E P such 

The harvest rate k(m, n )  is defined as follows: 
-/number of vertex - disjoint') 
'(L - R paths in X,,,(m +.l,n)) 

p . n  
k(m, n )  = 

The function h(m, n) is well defined for all m, n 2 1. It is easy to 
show 1 2 h(m, n)  2 0 and h(m, n)  is monotonically decreasing in m, 
and monotonically increasing in n. We are interested in the as- 
ymptotic value of k(m, n). The existence of the limit can be proved 
using a similar argument by Grimmett and Kesten [41. Grimmett 
and Kesten proved that when both horizontal edges and vertical 
edges appear with probability p ,  then the limit exists 141. However, 
estimating the limit is still an open problem in percolation theory. 

For simplicity, we assume p = 1/2. The proof can be easily 
changed for any value of p .  We first show that when the number of 
stages is too large compared to the number of pipelines, then the 
harvest rate is 0. 

THEOREM 1. For any constant k,  if m = Q(2"/nk) ,  then lim,fl,,,, 
h(m, 72) = 0. 

PROOF. The probability that at least f i  + 1 edges in stage 1 are 
good is 

Therefore, the probability that each of the m stages contains 
at least f i  + 1 edges is at most 

Since 
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# of Stages 
m 
10 
20 
30 
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# of Pipelines Harvest Rate 
n h(m, n) 
10 0.483 
20 0.484 
30 0.51 3 

Fig. 3. Random variables of two lowest paths. 

Pr{x,,/ = k }  = ('1, T fork = 1, 2, 

Intuitively, xi] is the distance we have to move up to find the ith 
stage of the jth path, from the (j - 1)th path. Let Yk = max::,{y,,,), 

then there are k vertex-disjoint L-R paths if and only if Y, 5 n. 
Therefore the problem of estimating the number of pipelines be- 
comes the problem of estimating the random variable y,. 

To estimate Yk directly is hard, because yIds are not mutually 
independent, and are defined recursively. However, since x,,/s are 
mutually independent, we construct a directed graph D(k)  = (X, E ) ,  
where X = (x~,,: 1 < i < m and 1 2 j 5 k) and E is a set of directed 
edges defined as follows. For every vertex x,,], there are edges from 
X,,] to 

if j = lc 
xz,/+l X r + l , j + ~  i f j < k a n d i = l  
X , - ~ , ~ + , , X ,  ,/,. l,xt+,,j+l i f j  < /candl < i < m 1 x,-l,/+lfxi,,+l if j < ic and i = m. 

See Fig. 4. Now, y,,] becomes the value of the maximum-weighted 
directed path to x,,] in the graph D(k) ,  where each vertex x,,, has a 
geometrically distributed weight w(x,,), and 

maximum weighted 
directed path in D(k)  

"1,2 "2,2 "3,2 "4,2 "5,2 "6,2 "7,2 

X l J  X 2 , l  x3,l 24,l 25,l 26,l 27,1 

Fig. 4. Directed graph D(k) with k =  4 

To estimate the maximum-weighted path in D(k), it first seems that 
if we add the maximum xi,/ from each row, it might give us an upper 
bound. Unfortunately, this bound will not be good enough. The key 
here is to use the underlying combinatorial structure to argue that the 
maximum weighted directed paths cannot be too large. 

Embed D(k)  into grid L(m + k - 1, m + k - 1), see Fig. 5, and as- 
sign each element x in L with an integer random variable w(x) that 
has a geometric distribution with parameter 1 /2. The grid L(m + k - 1, 
m + k - 1) = {(i, j )  I 1 < i, j < m + k ~ 11 is a special kind of partially 
ordered set. A partially ordered set, or poset, is a set of elements 
and a binary relation > that is reflexive, antisymmetric, and tran- 
sitive. In L, two elements, a = (xa, ya) and b = (xb, yb), have the bi- 
nary relation a z b if x, 2 xb and ya 2 yb. A chain in a poset is a set of 
pairwise comparable elements. In L, a chain is a set of elements 

0 0 0 0  

0 0 0  3 7 
> 

Fig.5.EmbedD(k)ongridL(m+k-l, m + k - 1 )  
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3 CONCLUSION 
In this paper, we analyzed the harvest rate of reconfigurable mul- 
tipipeline processor arrays. We showed that the ”shifting” or 
”fault stealing” phenomenon during reconfiguration can be de- 
scribed as the maximum weighted chains in a poset with random 
weights, and we used a combinatorial argument to give a bound 
on the size of the maximum weighted chain. Our method is the 
first purely analytical approach to analyzing reconfiguration of 
linear arrays. We propose as an open problem to find the exact 
value of h(m, n). 

Load Sharing 
in Hypercube-Connected Multicomputers 

in the Presence of Node Failures 
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Abstract-This paper addresses two important issues associated with 
load sharing (LS) in hypercube-connected multicomputers: 1) ordering 
fault-free nodes as preferred receivers of “overflow” tasks for each 
overloaded node and 2) developing an LS mechanism to handle node 
failures. Nodes are arranged into preferred lists of receivers of overflow 
tasks in such a way that each node will be selected as the Mh 
preferred node of one and only one other node [l]. Such lists are 
proven to allow the overflow tasks to be evenly distributed throughout 
the entire system. However, the occurrence of node failures will 
destroy the original structure of a preferred list if the failed nodes are 
simply dropped from the list, thus forcing some nodes to be selected as 
the Mh preferred node of more than one other node. We propose three 
algorithms to modify the preferred list such that its original features can 
be retained regardless of the number of faulty nodes in the system. It is 
shown that the number of adjustments or the communication overhead 
of these algorithms is minimal. Using the modified preferred lists, we 
also proposed a simple mechanism to tolerate node failures. Each 
node is equipped with a backup queue which stores and updates the 
information on the tasks arrivingkompleting at its most preferred node. 

Index Terms-Load sharing, hypercube-connected multicomputers, 
real-time systems, node failures, backup queues. 

1 INTRODUCTION 
LOAD sharing (LS) in general-purpose distributed systems has 
been studied extensively by numerous researchers and many LS 
algorithms proposed [2], [3],  141, [ 5 ] .  These LS algorithms are usu- 
ally designed to minimize the average task-response time. By con- 
trast, LS in distributed real-time systems has been addressed far 
less than that in general-purpose distributed systems. 

In [61, we have proposed a decentralized, dynamic LS method 
for real-time applications. In this method, each node maintains the 
state of a set of nodes in its proximity, called a buddy set. Three 
thresholds of queue length (QL), denoted by TH,,, THf, and TH,, 
are used to define the (load) state of a node. A node is said to be 
underloaded if Q L  5 TH,, medium-loaded if TH, < Q L  5 THp fully- 
loaded if THf < Q L  2 TH,, and overloaded if Q L  > TH,. Whenever a 
node becomes fully-loaded due to the arrival and/or transfer of 
tasks, it will broadcast this change of state to all the nodes in its 
buddy set; so will it when a node becomes underloaded as a result 
of completing the execution of tasks. Every node that receives this 
state-change broadcast will update its state information by mark- 
ing the node as fully-loaded or underloaded in its ordered list 
(called a preferred list) of available receivers. When a node becomes 
overloaded, it can then select, without probing other nodes, the 
first underloaded node from its preferred list. Note that the pre- 
ferred list of each node does not change over the time, but the 
nodes will be dynamically marked as underloaded or overloaded 
according to their load states, so that an overloaded node may 
select the first underloaded node from its preferred list. 
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