
1200 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 10, OCTOBER 1996

Harvest Rate of Reconfigurable Pipelines

Weiping Shi, Member, IEEE, Ming-Feng Chang,

and W. Kent Fuchs, Fellow, IEEE

Abstract-For a reconfigurable architecture, the harvest rate is the
expected percentage of defect-free processors that can be connected
into the desired topology. In this paper, we give an analytical
estimation for the harvest rate of reconfigurable multipipelines based
on the following model: There are n pipelines each with m stages,
where each stage of a pipeline is defective with identical independent
probability 0.5 and spare wires are provided for reconfiguration. By
formulating the "shifting" reconfiguration as weighted chains in a partial
ordered set, we prove when n : @(m), the harvest rate is between 34%
and 72%.

Index Terms-Harvest rate, yield, reconfigurable arrays, defect
tolerance, pipelines, random graphs, percolation.

+
1 INTRODUCTION
A multipipeline processor array is a set of one-dimensional pipe-
lines running in parallel, where processors at different stages of
the pipeline may be different; see Fig. 1. Multipipeline processor
arrays are important for highly parallel architectures and vector
supercomputer architectures [61. VLSI and WSI technology makes
it possible to fabricate a multipipeline processor array on a single
chip or wafer. However, since it is likely that some processor ele-
ments will be defective, defect-tolerance for pipeline processor
arrays can be important.

Harvest rate analysis for reconfigurable processor arrays is of-
ten difficult for two reasons. The first reason is that for most
structures, it is NP-hard to compute the reliability; see Provan and
Ball [SI. The second reason is that the reconfiguration algorithm
may use complicated procedures to configure the system thereby
making the resulting structure highly irregular. When all proces-
sors are of the same type, Greene and Gamal 121, Leighton and
Leiserson [7], and other researchers have developed algorithms to
reconfigure a single-pipeline array from a two-dimensional wafer.
Their harvest rate analysis is only for extreme cases where the
harvest rate either goes to 0 or goes to 1. Stornetta, Huberman, and
Hogg [ll] analyzed the harvest rate of multipipeline arrays, but
since the problem is difficult, they used a phenomenological the-
ory, combining analytical scaling equations with experimental
measurements. Gupta, Zorat, and Ramakrishnan published an
analysis of multipipeline processor arrays [51 based on the fol-
lowing technical assumption. They not only assumed each proces-
sor is defective with independent identical probability, but also
assumed each processor is utilized with independent identical
probability. They concluded that the harvest rate is independent of
the shape of the array. To see the probability that one processor is
utilized is related to the probability that an adjacent processor is
utilized, consider the simplest example where the multipipeline
array is a single pipeline with many stages. Therefore, one stage

W. Shi is with the Department of Computer Science, University of North Texas,
Denton, TX 76203. E-mail: wshi@cs.unt.edu.
M.-F. Chang is with the Department of Computer Science and Information
Engineering, National Chiao-Tung University, Taiwan, Republic of China.

e W.K. Fuchs is with the School of Electvical and Computer Engineering, Purdue
University, West Lafayetfe, IN 47907.

Manuscript received June 17,1994; revised June 8,1995.
For information on obtaining repvints of this article, please send e-mail to:
transcom@comptitev.org, and reference IEEECS Log Number C95161.

n rows

n rows

m stages

m stages

Fig. 1. A multipipeline array before and after reconfiguration

can be utilized if and only if all other stages can be utilized. Other
examples can be constructed accordingly. As a result, the prob-
ability that each stage is used is dependent on the probability that
other stages can be used, no matter how one defines the probabil-
ity space.

In this paper, we study the harvest rate of multipipeline
processor arrays. There are n 2 1 pipelines each with m 2 1 stages.
Each stage of a pipeline is defective with identical independent
probability p. (This assumption, also used by 151 and [lll, is a re-
striction of this model. However, we can take the maximum yield
of all stages as p to get an upper bound on the harvest rate of the
array using the result of this paper. Similarly, we can take the
minimum yield of all stages to get a lower bound on the harvest
rate.) Vertical wires are provided for reconfiguration. We assume
wires and switches are defect-free, an assumption also used by
Greene and Gamal [2], Leighton and Leiserson [7], Gupta, Zorat,
and Ramakrishnan [5], and many other researchers. The recon-
figuration is done by routing around defective stages using verti-
cal wires, and each vertical wire and switch can be used only once.
Fig. 1 shows five horizontal pipelines before and after an example
reconfiguration.

Our main focus is to analyze how many pipelines we can har-
vest on average if processors are defective at random. We will
show the harvest rate h(m, n), defined as the percentage of defect-
free processors that can be connected into pipelines through the
optimal reconfiguration, is between 34% and 72%, when ?I is the
same order as m. We formulate the "shifting" phenomenon of
reconfiguration (some researchers call it fault stealing or compen-
sation paths) as maximum weighted chains in a partial ordered set
with random weights. Then, we use a mathematical result on the
size of the chain to get our final result. Since the shifting phe-
nomenon appears in many reconfiguration problems, we expect
the method of analysis can be applied to other reconfigurable
structures as well.
2 ANALYSIS
To formulate the problem, define a rectangular graph R(m + 1, n) =
(V, E), where

0018-9340/96$05.00 01996 IEEE

mailto:wshi@cs.unt.edu
mailto:transcom@comptitev.org

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 10, OCTOBER 1996

Y,] =

1201

XI,,

1 1 1 + ma~{Yl,!-l~~t+l,l-l} i f j > l , i = 1

',I +max{Y,,;-l~Y~~r,i-r.Y,+l,il} i f i > 1rm > i > 1

%,] + max{Yt,/-lJ-l,/-l} i f j > l,i = m

V = {(i,j):1 < i < m + l and 1 2 j I n},

The set ((1, j) : 1 5 j 5 n) is called the left side, and the set { (m + 3, j) :
1 2 j 5 n] is called the right side.

Define X, , (m + 1, n) as a random graph, where each horizontal
edge appears with probability p , and each vertical edge appears
with probability 1. Fig. 2 is an instance of Xp,1(8, 10). It is clear that
the number of pipelines we can harvest equals the maximum
number of mutually vertex-disjoint paths from the left side to the
right side in Xp,l(m + 1, n). In contrast to our Manhattan model,
Gupta, Zorat, and Ramakrishnan [51 assumed a knock-knee
model. However, the results for the two models are within a con-
stant factor of 2.

left side right side

Fig. 2. An R(8, 10) with some horizontal edges missing.

REMARK. The random graph X p , p (~ , n) is known in percolation
theory as the Bernoulli Square Lattice Bond Model [3].
However, since the vertical edge probability is 1, our prob-

Therefore,

&
lim h(m,n) 4 - = 0

ni,n--fm + n

Now we present our main result. The reconfiguration shown in
Fig. 1 is obtained by the greedy algorithm that always takes the bot-
tom edge whenever possible, that is, if neither of the vertices on the
left and right side of the edge was required in a previously built path.
The following lemma proves the greedy reconfiguration always gives
us the maximum number of pipelines after reconfiguration. Notice
that we can obtain less interstage delay by distributing the pipeline
stages evenly. However, since we are only concemed with the maxi-
mum number of pipelines, we use the greedy algorithm. See Libesk-
ind-Hadas 181 for algorithms on reducing interstage delays.

LEMMA 1. The greedy algorithm defined below can always find a maxi-
mum set of vertex-disjoint L-R paths.

Algorithm.
Repeat
1) Take the lowest horizontal edge at each column;
2) Connect these edges into a path P;
3) Delete all horizontal edges in P from the graph;
4) Delete all horizontal edges ((i, j) , (i + 1,j)) from the

Until step 1 fail.
graph if vertex (i, j) or (i + 1, j) is in P.

lem is different from those studied in percolation theory.
PROOF. The proof is by induction on k, the number of vertex-disjoint

paths in the graph. We also keep an invariant assertion that
for every vertex (i, I) E P, if there is no vertex (i, 7) E P such

The harvest rate k(m, n) is defined as follows:
-/number of vertex - disjoint')
'(L - R paths in X,,,(m +.l,n))

p . n
k(m, n) =

The function h(m, n) is well defined for all m, n 2 1. It is easy to
show 1 2 h(m, n) 2 0 and h(m, n) is monotonically decreasing in m,
and monotonically increasing in n. We are interested in the as-
ymptotic value of k(m, n). The existence of the limit can be proved
using a similar argument by Grimmett and Kesten [41. Grimmett
and Kesten proved that when both horizontal edges and vertical
edges appear with probability p , then the limit exists 141. However,
estimating the limit is still an open problem in percolation theory.

For simplicity, we assume p = 1/2. The proof can be easily
changed for any value of p . We first show that when the number of
stages is too large compared to the number of pipelines, then the
harvest rate is 0.

THEOREM 1. For any constant k, if m = Q(2"/nk) , then lim,fl,,,,
h(m, 72) = 0.

PROOF. The probability that at least f i + 1 edges in stage 1 are
good is

Therefore, the probability that each of the m stages contains
at least f i + 1 edges is at most

Since

1202

of Stages
m
10
20
30

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 10, OCTOBER 1996

of Pipelines Harvest Rate
n h(m, n)
10 0.483
20 0.484
30 0.51 3

Fig. 3. Random variables of two lowest paths.

Pr{x,,/ = k } = ('1, T fork = 1, 2,

Intuitively, xi] is the distance we have to move up to find the ith
stage of the jth path, from the (j - 1)th path. Let Yk = max::,{y,,,),

then there are k vertex-disjoint L-R paths if and only if Y, 5 n.
Therefore the problem of estimating the number of pipelines be-
comes the problem of estimating the random variable y,.

To estimate Yk directly is hard, because yIds are not mutually
independent, and are defined recursively. However, since x,,/s are
mutually independent, we construct a directed graph D(k) = (X, E) ,
where X = (x~,,: 1 < i < m and 1 2 j 5 k) and E is a set of directed
edges defined as follows. For every vertex x,,], there are edges from
X,,] to

if j = lc
xz,/+l X r + l , j + ~ i f j < k a n d i = l
X , - ~ , ~ + , , X , ,/,. l,xt+,,j+l i f j < /candl < i < m 1 x,-l,/+lfxi,,+l if j < ic and i = m.

See Fig. 4. Now, y,,] becomes the value of the maximum-weighted
directed path to x,,] in the graph D(k) , where each vertex x,,, has a
geometrically distributed weight w(x,,), and

maximum weighted
directed path in D(k)

"1,2 "2,2 "3,2 "4,2 "5,2 "6,2 "7,2

X l J X 2 , l x3,l 24,l 25,l 26,l 27,1

Fig. 4. Directed graph D(k) with k = 4

To estimate the maximum-weighted path in D(k), it first seems that
if we add the maximum xi,/ from each row, it might give us an upper
bound. Unfortunately, this bound will not be good enough. The key
here is to use the underlying combinatorial structure to argue that the
maximum weighted directed paths cannot be too large.

Embed D(k) into grid L(m + k - 1, m + k - 1), see Fig. 5, and as-
sign each element x in L with an integer random variable w(x) that
has a geometric distribution with parameter 1 /2. The grid L(m + k - 1,
m + k - 1) = {(i, j) I 1 < i, j < m + k ~ 11 is a special kind of partially
ordered set. A partially ordered set, or poset, is a set of elements
and a binary relation > that is reflexive, antisymmetric, and tran-
sitive. In L, two elements, a = (xa, ya) and b = (xb, yb), have the bi-
nary relation a z b if x, 2 xb and ya 2 yb. A chain in a poset is a set of
pairwise comparable elements. In L, a chain is a set of elements

0 0 0 0

0 0 0 3 7
>

Fig.5.EmbedD(k)ongridL(m+k-l, m + k - 1)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. I O , OCTOBER 1996 1203

3 CONCLUSION
In this paper, we analyzed the harvest rate of reconfigurable mul-
tipipeline processor arrays. We showed that the ”shifting” or
”fault stealing” phenomenon during reconfiguration can be de-
scribed as the maximum weighted chains in a poset with random
weights, and we used a combinatorial argument to give a bound
on the size of the maximum weighted chain. Our method is the
first purely analytical approach to analyzing reconfiguration of
linear arrays. We propose as an open problem to find the exact
value of h(m, n).

Load Sharing
in Hypercube-Connected Multicomputers

in the Presence of Node Failures

ACKNOWLEDGMENTS
The authors thank Douglas B. West for valuable discussions con-
cerning this research, Ran Libeskind-Hadas for suggestions, Harry
Kesten, Peter Winkler for providing references, and an anonymous
referee (D) for improving the presentation. This research was sup-
ported in part by the SDIO/IST and managed by the US. Office of
Naval Research under contract N00014-89-K-0070. Weiping Shi
was also supported in part by the US. National Science Founda-
tion under grant MIP-9309120.

REFERENCES
M. Aigner, Combinatorial Theory. Springer-Verlag, 1979.
J.W. Greene and A. Gamal, ”Configuration of VLSI Arrays in the
Presence of Defects,” 1. ACM, vol. 41, no. 4, pp. 694-717, 1984.
G. Grimmett, Percolation. New York: Springer-Verlag, 1989.
G. Grimmett and H. Kesten, “First Passage Percolation, Network
Flows and Electrical Resistances,” Z. Wahrscheinlichkeitstheor.
Verw 66, pp. 3355366,1984,
R. Gupta, A. Zorat, and 1. V. Ramakrishnan, ”Reconfigurable
Multipipelines for Vector Supercomputers,” I E E E Trans. Comput-
ers, vol. 38, no. 9, pp. 1,297-1,307, Sept. 1989.
K. Hwang, Advanced Computer Architecture: Parallelism, Scalability,
Programmability. New York: McGraw-Hill, 1993.
F.T. Leighton and C.E. Leiserson, “Wafer-Scale Integration of
Systolic Arrays,” I E E E Trans. Computers, vol. 34, no. 5, pp. 448-
461, May 1985.
R. Libeskind-Hadas, ”Reconfiguration of Fault Tolerant VLSI
Systems,” PhD thesis, Dept. of Computer Science, Univ. of Illinois
at Urbana-Champaign, Oct. 1993.
J.S. Provan and M.O. Ball, ”The Complexity of Counting Cuts and
of Computing the Reliability That a Graph Is Connected,” S I A M J.
Computing, vol. 12, no. 4, pp. 777-788, Nov. 1983.
W. Shi, ”Design, Analysis and Reconfiguration of Defect-Tolerant
VLSI and Parallel Processing Arrays,” PhD thesis, Dept. of Com-
puter Science, Univ. of Illinois at Urbana-Champaign, June 1992.
Coordinated Science Laboratory Technical Report CRHC-94-21,
Sept. 1994.
W.S. Stornetta, B.A. Huberman, and T. Hogg, ”Scaling Theory for
Fault Stealing Algorithms in Large Systolic Arrays,” IEEE Trans.
Computer-Aided Design, vol. 9, no. 3, pp. 290-298, Mar. 1990.

Yi-Chieh Chang and Kang G. Shin, Fellow, IEEE

Abstract-This paper addresses two important issues associated with
load sharing (LS) in hypercube-connected multicomputers: 1) ordering
fault-free nodes as preferred receivers of “overflow” tasks for each
overloaded node and 2) developing an LS mechanism to handle node
failures. Nodes are arranged into preferred lists of receivers of overflow
tasks in such a way that each node will be selected as the Mh
preferred node of one and only one other node [l]. Such lists are
proven to allow the overflow tasks to be evenly distributed throughout
the entire system. However, the occurrence of node failures will
destroy the original structure of a preferred list if the failed nodes are
simply dropped from the list, thus forcing some nodes to be selected as
the Mh preferred node of more than one other node. We propose three
algorithms to modify the preferred list such that its original features can
be retained regardless of the number of faulty nodes in the system. It is
shown that the number of adjustments or the communication overhead
of these algorithms is minimal. Using the modified preferred lists, we
also proposed a simple mechanism to tolerate node failures. Each
node is equipped with a backup queue which stores and updates the
information on the tasks arrivingkompleting at its most preferred node.

Index Terms-Load sharing, hypercube-connected multicomputers,
real-time systems, node failures, backup queues.

1 INTRODUCTION
LOAD sharing (LS) in general-purpose distributed systems has
been studied extensively by numerous researchers and many LS
algorithms proposed [2], [3], 141, [5] . These LS algorithms are usu-
ally designed to minimize the average task-response time. By con-
trast, LS in distributed real-time systems has been addressed far
less than that in general-purpose distributed systems.

In [61, we have proposed a decentralized, dynamic LS method
for real-time applications. In this method, each node maintains the
state of a set of nodes in its proximity, called a buddy set. Three
thresholds of queue length (QL), denoted by TH,,, THf, and TH,,
are used to define the (load) state of a node. A node is said to be
underloaded if Q L 5 TH,, medium-loaded if TH, < Q L 5 THp fully-
loaded if THf < Q L 2 TH,, and overloaded if Q L > TH,. Whenever a
node becomes fully-loaded due to the arrival and/or transfer of
tasks, it will broadcast this change of state to all the nodes in its
buddy set; so will it when a node becomes underloaded as a result
of completing the execution of tasks. Every node that receives this
state-change broadcast will update its state information by mark-
ing the node as fully-loaded or underloaded in its ordered list
(called a preferred list) of available receivers. When a node becomes
overloaded, it can then select, without probing other nodes, the
first underloaded node from its preferred list. Note that the pre-
ferred list of each node does not change over the time, but the
nodes will be dynamically marked as underloaded or overloaded
according to their load states, so that an overloaded node may
select the first underloaded node from its preferred list.

The authors are with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48109-2122. E-mail: ksshiiz@ercs.umich.edu.

Manuscript Yeceived July 11,1994; revisedJuly 10,1995.
For information on obtaining Yeprints o f this article, please send e-mail to:
transcom~comyuter.org, and reference IEEECS Log Number C95165.

001 8-9340/96$05.00 01996 IEEE

mailto:ksshiiz@ercs.umich.edu

