
 

摘要 

在無線感測器網路系統下，現存有關於整合通道資訊之偵測法設計皆假設融

合中心(Fusion Center)具有本地感測器偵測機率的資訊，但在實際狀況下，本地感

測器對事件發生的偵測機率多隨時間和環境不同而變化。本計劃中，假設本地感

測器偵測率未知的情況下，吾人透過二元對稱通道(BSC)傳送本地之一位元判斷

報告給融合中心。為解決此類存有未知的問題，傳統上多利用廣義似然比檢驗法

(GLRT)，然而此方法並無法達到最佳效能，且難以分析。本計劃乃針對此兩缺點，

先是提出了最大似然估計法(ML estimate)的化簡，接著根據此化簡，為融合中心

設計出較 GLRT 簡單之判斷法，並加以分析其效能。吾人由效能公式中觀察出通

道效應對整體效能的影響，更進而設計出分配本地感測器傳送功率之方法。吾人

所提出的判斷法輔以傳送功率之分配，和 GLRT 相比，不但大幅降低複雜度，效

能更有顯著的改善，甚至接近偵測系統所能達到的理論最佳值。 

 



 

Abstract 

In the field of wireless sensor networks, existing works of channel-aware fusion 

rule design assume that the fusion center (FC) knows the local sensor detection 

probabilities. However, this paradigm ignores the possibility of unknown sensor alarm 

responses to the event occurrences. This work focuses on the case where the local 

detection probability is unknown and assumes sensors transmit their one-bit reports 

through binary symmetric channels to FC. Traditionally, Generalized Likelihood Ratio 

Test (GLRT) can tackle this scenario, but it does not guarantee optimal performance 

and is too complicated to analyze. To solve these problems, a simpler fusion rule is 

proposed based on the simplified ML estimate, and its performance is analyzed. By 

investigating the channel effects, a power allocation scheme is then proposed to further 

improve the performance. Being far less complicated than GLRT, the proposed fusion 

rule with power allocation outperforms GLRT significantly and can even achieve the 

performance of LRT, which is the optimal rule for any possible detectors. 
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Acronym Glossary 
AWGN additive white Gaussian noise 

BER bit error rate 

BSC binary symmetric channel 

CDMA code division multiple access 

CSI channel state information 

EGC equal gain combining 

FDMA frequency division multiple access 

FC fusion center 

GLRT generalized likelihood ratio test 

LRT likelihood ratio test 

MIMO multiple-input multiple-output 

ML Maximum likelihood 

MRG Maximum ratio combining 

MSE mean square error 

PDF probability density function 

PBPO person-by-person optimization 

ROC receiver operating curve 

SNR signal-to-noise ratio 

TDMA time division multiple access 

WSN wireless sensor network 

 



 

Notations 
/0 1H H  the state of absent/present event 

N  total number of sensors 

is  1-bit report from sensor i 

iε  cross-over probability of BSC between sensor i and FC 

ir  the hard decision of is  at FC 

0s  global decision made by FC 

/d fp p  local detection/false-alarm probability 

/d fP P  global detection/false-alarm probability 

γ  threshold used in fusion rule 

{ }Pr i  probability of an event 

( )Q i  Q function 

P  total transmit power 

ip  Transmit power for sensor i 

0N  two times the power of noise 



 

Chapter 1  

Introduction 
 

Distributed detection systems are typically composed of many sensors and an FC, 

working collaboratively to detect an event of interest. With significant progresses in 

wireless communications, networking and microprocessors, distributed detection using 

wireless sensor networks (WSN) has become an active research area, [1-3]. In WSN, 

sensors are connected by wireless channels to each other and FC so that they can be 

flexibly deployed, enhancing the surveillance coverage and the sensing potential, 

especially in applications like battlefield and monitoring for security or environment. 

In contrast to traditional communication systems, sensors are usually cheap device 

with low power usage; together with limited channel capacity, the stringent 

communication resources make the system design quite challenging. Conventionally, 

signal processing algorithms are treated as independent part of the communication 

block, and thus most of the earlier studies are based on the idealized assumption that 

the sensor reports can be received at FC without errors [3, 4], which are so-called 

classical distributed detection problems. As is proved that designers should integrate 

the signal processing algorithms design and the communication aspect to reach the 

optimal performance, it is especially true in WSN where channels cannot be assumed 

reliable anymore compared to those in classical distributed detection. Recently there 

have been several proposals further taking into account the communication channel 

impairments [5-9]; see [10] for a tutorial introduction to distributed detection in the 

presence of non-ideal channel links. A common assumption made in these 

channel-aware schemes is that the local sensor detection performance, characterized by 



 

the detection and false-alarm probabilities, is known at the FC. This, however, ignores 

the possibly unknown sensor alarming responses to the occurrence of events. Consider, 

for example, that a sensor network is deployed for monitoring the increase in the room 

temperature, as in the scenario of home security against fire. The local detection 

probability (under a fixed threshold) could be unknown due to the response to the 

uncertain temperature of fire events. As the local detection probability being 

indispensable in most fusion rule design, to reflect the variation of the sensing field 

conditions, a conceivable approach is thus to model the local detection probability as 

an unknown parameter, and to accordingly design the global decision rule for tackling 

such uncertainty. 

In this report, we propose a channel-aware distributed detection scheme for the 

above-mentioned scenario. The communication links between the sensor nodes and the 

FC are modeled as binary symmetric channels. In the proposed approach each sensor, 

when triggered, just sends a single bit to inform the FC of its local decision; no further 

communication overhead is needed for conveying the message about the current local 

detection performance. The FC treats the local detection probability as an unknown 

parameter. Based solely on the received sensor reports, the global decision rule is 

naturally formulated as GLRT [11]. The implementation of GLRT calls for the 

maximum likelihood (ML) estimate of the unknown parameter which, in our case, 

does not lead to a closed-from solution. Under the high signal-to-ratio (SNR) 

assumption this work derives an approximate ML estimate that is affine in the received 

data. It is seen that, even with the approximation of the ML solution, the performance 

of GLRT remains quite difficult to characterize. Based on the approximated ML 

scheme, we then propose a simple alternative fusion rule in which the test statistic is 

affine in the received data. The main advantages of this alternative are threefold. 

Firstly, it allows deriving closed-form performance results for facilitating analytic 



 

characterization of the channel effect. Secondly, it is shown that, under certain 

conditions, the global detection performance can be improved by enhancing the 

communication-link quality, e.g., reducing the average link bit-error rate (BER). Hence, 

this work then proposes an optimal power allocation scheme to minimize the mean 

BER subject to a total power budget. Thirdly, simulations show that the proposed 

alternative scheme outperforms GLRT. The rest of this report is organized as follows. 

Chapter 2 traces the main developments in the field of distributed detection and gives 

reviews of related works in WSN. Chapter 3 starts with the problem formulation, 

presents the GLRT based detection scheme and then derives the approximate ML 

solution. Chapter 4 introduces the alternative approach and derives the associated 

analytic performance results. The issue of channel impairment mitigation for 

improving the detection performance is then addressed. In Chapter 5 the simulation 

results are shown and interpreted. Finally, Chapter 6 concludes this report and suggests 

some future works. 



 

Chapter 2  

Wireless Sensor Network for 

Detection 
WSN have received greater research interests in recent years. Depending on 

various applications and environment settings, many different system models have 

been proposed, dedicating to solve different problems inherent in their environmental 

assumptions. In this chapter, the concepts and models of the development of 

distributed detection systems are reviewed. In the beginning, this report introduces the 

classical detection problem, which assumes reliable transmission from sensors to the 

center controller. A popular model called canonical distributed detection systems is 

illustrated, which is similar to the model settings in this work. 

WSN are distributed detection systems built on the wireless infrastructure, and 

many new design challenges emerge. We investigate some fundamental works in areas 

of WSN and point out the possible room for improvements which motivates our work.  

 

2.1 Review of Distributed Detection Systems 

Distributed detection systems refer to the systems where multiple sensors work in 

some way to distinguish between two or more hypothesis, which is also often denoted 

as the states of the environments. As can be traced back to the precedent human-like 

activities such as voting when people try to make decisions, the first formal treatments 

can be found in the work of Radner [12], where the problem of decision making from 

multiple persons is addressed. Afterwards, many applications and the corresponding 



 

problem formulations are proposed, and one kind of the prevailing applications is the 

system involving both distributed sensors and an FC. Specifically, the fusion center 

makes the final decision based on the information gathered from local sensors. In the 

following context, let’s confine the notation “distributed detection systems” to such 

systems without otherwise noted. If the raw observations of the local sensors are 

accessible at FC, this scenario is just the classical hypothesis testing problem [13]. 

Unfortunately, due to the limited communication resources such as channel capacity 

between sensors and FC, the observations are often compressed at local sensors and 

then transmitted to FC.  

In distributed detection systems, the classical distributed detection had been an 

active research field following the seminal work of Tenney and Sandell in 1981 [14], 

where the so-called canonical distributed detection system is established. This system 

assumes that the distributed sensors communicate directly through parallel channels, as 

illustrated below, 

 

Figure 2.1: Canonical distributed detection systems 

 

0 1/H H

Sensor 1 

Sensor 2 

Sensor N

Fusion 
Center 

1s

2s

Ns

( )0 0s γ= i

#

1x

2x

Nx

( )1γ i

( )2γ i

( )Nγ i



 

Note that canonical distributed detection systems assume local sensor outputs can be 

received reliably at FC, and the only uncertainty comes from the observation noise. In 

such systems, two problems are to be solved: one is the decision rule (or fusion rule) at 

FC and the other is the signal processing schemes at the local sensors. These two 

problems are wined with each other and have to be jointly designed. 

For the first problem, if FC knows perfectly the PDF of the gathered information 

under every hypothesis, then the optimal fusion rule is the Likelihood Ratio Test (LRT) 

[11]. This rule holds no matter the received signals at FC are soft or hard decided, as 

long as FC knows the PDF of the soft/hard decided signals. However, when there are 

unknown parameters in these PDF’s under different hypothesis, a commonly used 

heuristic approach is GLRT [11], although it is not really the optimal fusion rule in 

such cases. LRT and GLRT are relevant to our works and they are introduced in more 

detail in Chapter 2.2. The second problem is a more complicated one. Under the 

conditional independence assumption, the optimality of LRT at local sensors is 

established. However, the LRT thresholds for the sensors are connected with each other. 

The dominating approach finding the thresholds for local sensors is the 

person-by-person optimization (PBPO) [15], where every sensor’s threshold is 

optimized assuming the decision rules of all other sensors and FC are fixed. This report 

does not deal with the second problem so we are not going any further here. 

 

2.2 Neyman-Pearson Detection Rule 

The performance of detectors can be measured in many ways, and one popular 

indicator is the Receiver Operating Characteristic (ROC) curve. The ultimate goal of 

distributed detection systems is to make a global decision 0s  as in Figure 2.1, and 

or0 1  0s =  correspond to claiming 1H  or 0H , respectively. There are four relevant 



 

values describing the accuracy of the global decision, which are { }0 1Pr 1 |s = H , 

{ }0 0Pr 1 |s = H , { }0 1Pr 0 |s = H  and { }0 0Pr 0 |s = H . The first one and the 

second one is called the detection probability dP  and the false-alarm probability fP , 

respectively. In most cases of detector designs, the values of dP  and fP  are a 

trade-off, which means that designers can hardly increase dP  but decrease fP  at the 

same time. The ROC curve plots these two values of the global decision, with fP  

being the x-axis and dP  being the y-axis. A typical ROC curve is illustrated as 

follows: 
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Figure 2.2: An example of ROC curve 

 

According to classical distributed detection theory, a detector generally calculates a 

statistic as a function of the received reports from all sensors and then compares the 



 

statistic with a predetermined threshold. If the statistic is larger than the threshold, the 

detector claims the event happens, vice versa. The dP  and fP  of the detector move 

along the ROC curve as the threshold changes, that is, the detector operates along the 

ROC curve. A reasonable detector design always leads to a concave ROC curve above 

the straight line connecting points (0,0) and (1,1). To see this, consider a detector 

which tosses a biased coin in making decision whether the event happens. The 

performance of the detector moves along the straight line connecting points (0,0) and 

(1,1) as the bias of the coin changes, without using any information of observations. 

Therefore, any detectors utilizing the information of observations guarantees a better 

performance, which in turn results in an ROC curve above the straight line. 

In the cases of binary hypothesis test, namely the detector decides only between 

0H  and 1H , a popular detection rule LRT proposed by Neyman-Pearson [11]. It 

guides how to obtain the maximum detection probability given a value of acceptable 

false alarm probability. Specifically, denote x  the received signal. The probability 

distributions of x  depend on the underlying hypotheses, which are denoted as 

( )0;p x H  and ( )1;p x H . The theory is stated as follows: 

To maximize dP  for a given fP α= , decide 1H  if 

( )
( )
( )

1

0

;

;

p
L

p
γ= >

x
x

x
H
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where the threshold γ  is found from  

( )
( ){ } 0:

;f L
P p d

γ
α

>
= =∫ x x

x xH  

The function ( )L x  is indeed the ratio between the two likelihood functions, and that 

is why the entire test is called Likelihood Ratio Test. 

LRT assumes the prior knowledge ( )0;p x H  and ( )1;p x H  is available. However, 



 

in many cases there are unknown parameters in the prior knowledge, for example the 

prior knowledge is probably ( )0 0; ,p θx H  and ( )1 1; ,p θx H , where 0θ  and 1θ  are 

unknowns. LRT then serves as the foundation of modification in such cases. Two 

major approaches to these situations are Bayesian approach and GLRT. 

Bayesian approach considers the unknown parameters as realizations of random 

variables and assigns to each of them a prior PDF. Following the previous example of 

binary hypothesis, it has 

( ) ( ) ( )0 0 0 0 0; | ;p p p dθ θ θ= ∫x xH H  

( ) ( ) ( )1 1 1 1 1; | ;p p p dθ θ θ= ∫x xH H  

It then applies the optimal LRT and decides 1H  if  

( )
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( ) ( )
( ) ( )

1 1 1 11

0 0 0 0 0

| ;;

; | ;
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θ θ θ
γ
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This approach has to make further assumption about the unknowns 0θ  and 1θ , and it 

often require multidimensional integrations, which are often too complicated to 

implement in practice. 

GLRT still borrows the way LRT detects because it is the optimal rule when the 

prior knowledge of probability distribution is known. Instead of making the 

probabilistic assumption of the 0θ  and 1θ , GLRT replaces the unknown parameters 

by their maximum likelihood estimates. This replacement is straight forward but there 

are no optimal criteria involved, and it has been shown that GLRT is generally not the 

best detector in the cases where unknown parameters are present. Although it is 

probably not optimal, it is still a popular approach in practice due to easy 

implementations. 

In analyzing detectors for situations with unknown parameters, one often generates 

the optimal LRT by replacing the estimates of the unknowns with the real values, 



 

which are inaccessible in practice. It is the so-called clairvoyant detector, which is of 

theoretical interests for it serves as the performance upper bound for all possible 

detectors. 

 

2.3 Review of Wireless Sensor Networks 

WSN for detection are distributed detection systems using wireless technology, and 

sensors are not physically wired to FC. Each sensor is equipped with an antenna and 

transmits its report through the air. We still focus on the model of canonical distributed 

detection system, and note that the parallel channels from sensors to FC can be 

realized using orthogonal wireless transmission schemes such as TDMA, FDMA or 

CDMA. In developing the signal processing algorithms in WSN for detection, the 

designer often confronted not only the scarce resource constraints already appearing in 

the classical distributed detection systems, but also the unreliable channels. The effects 

of channel fading and interference in wireless channels invoke another uncertainty to 

WSN, and open up another dimension for the system design. The system block 

diagram is illustrated below, 



 

 

Figure 2.3: Canonical distributed detection systems with channel blocks 

 

In the block diagram, the blocks in the dotted line can be regarded as the 

communication block. A practical and straightforward approach [16] is to separate the 

global decision task into a two stage process – first, îs  is used to infer about is , and 

then apply the optimum fusion rule based on is . This methodology treats the 

communication block and the classical distributed detection system as two independent 

parts so that once the communication problems are solved, the fusion rules developed 

in the field of classical distributed detection can be applied directly. 

A more basic question arises whether one can design the wireless communication 

block alone irrespective of the signal processing algorithm at the local sensors and FC. 

The answer is unfortunately negative. When one designs the communication block, all 

the efforts are actually placed in recovery the is ’s from the îs ’s. However, the 

ultimate goal is not to recover the is ’s but to infer the underlying hypothesis, and any 

deviating intermediate processing of the signal flow is vulnerable to losing information 

for inference. It means that the signal processing algorithms designed for the classical 
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distributed detection systems cannot be implemented directly to the systems with 

unreliable channels, such as WSN. Designers have to regard the detection problem and 

the unreliable communication block as a whole integration, and then derive the optimal 

strategy in terms of the detection performance. 

Similar problems appear in detection using WSN that signal processing algorithm 

at FC and at local sensors should be redesigned taking into account the channel state 

information (CSI). Some channel-aware algorithms have been proposed and indeed 

perform better than directly applying the classical detection methods. For the former 

problem, if the local sensor decision rules are given, the fusion rule design goes back 

to the centralized detection problem and classical detection rules apply, for example 

the LRT rule. The previously mentioned two-stage process is shown to approximate 

the optimal LRT rule when SNR is high, which is often a demanding requirement for 

WSN. Note that the degree of knowledge of channel actually affects the corresponding 

fusion rules, for example, whether FC can coherently detects or not results in different 

fusion rules. 

The proposal [5] gives an important example of fusion rule design incorporating 

CSI. In its scenario of canonical WSN, in addition to knowing full CSI, FC has to 

know the performances of all local sensors in terms of local detection and false alarm 

probability. Remind that given the local sensor performance, the fusion rule design 

goes back to the centralized detection problem, and the optimal fusion rule is LRT. 

However, the formula of LRT is too complicated and the paper then proposes its 

approximations in high and low SNR, termed 1Λ  and 2Λ . The low-SNR fusion rule 

assembles MRC statistic for diversity combining, which in turn motivates a heuristic 

fusion rule assembling EGC, termed 3Λ . The paper also provides a new fusion rule 

called LRT-CS which requires only the channel statistics instead of the instantaneous 

CSI. Surprisingly, the high-SNR approximation of LRT-CS turns to 1Λ  and low-SNR 



 

approximation of low-SNR turns to the heuristic alternative 3Λ . Simulations show 

that the proposed LRT-CS rule outperform 1Λ  and 3Λ , and it performs better than 

2Λ  for most practical SNR values.  

After surveying relevant papers, we find that in general, most papers in 

channel-aware fusion rule assume that the local sensors’ decision rules, or alternatively 

their local detection performance characterized by detection probabilities and 

false-alarm probabilities, are known to FC. However, these scenarios ignore the 

possibly unknown sensor responses to the occurrence of the interested event. In our 

work, the false-alarm probability of sensors is properly assumed not to change 

significantly with the environments because false-alarm probability is defined under 

the condition where the event is not happening. However, the detection probability is 

probably varying with the intensity of the event. For example, consider a sensor 

network deployed to monitor the rise in temperature in a room to detect the outbreak of 

a fire. In practice, the characteristics of a fire are uncertain, e.g. the mean temperature 

may vary from 100 to 1000 degrees depending on the severity of the fire or the type of 

the fire. Moreover, the characteristics of the fire are probably time-varying. As is 

introduced above, when there are unknowns in the PDF of the received signals, the 

optimal LRT rule is not applicable anymore and the alternative method GLRT puts the 

ML estimate of the unknown into the original LRT statistic and then compare it with 

the predetermined threshold. Our work starts from this popular GLRT and tries to 

simplify the complex ML estimates. However, the birth of GLRT is from heuristic 

thoughts so that it works fine in practice but not optimally in theory. Moreover, the 

formulation of GLRT statistic inherited from LRT is too complicated to analyze even if 

the ML estimates are simplified. These two main reasons motivate our design of new 

simple detection rule, which even performs far better than GLRT. In the following 

sections, the performance of the proposed simple detection rule is analyzed and the 



 

effects of channel impairments on the performance are also investigated. Finally, the 

corresponding power allocation strategy is proposed, which further improves our 

system in terms of ROC curves. 

 



 

Chapter 3  

GLRT Based Detection Method 
 

3.1 System Model 

Consider WSN of N identical sensors for detecting the occurrence of the event of 

interest. Specifically, the sensors monitor a certain parameter in this event. If this 

parameter exceeds a certain value, they should claim the event happening and transmit 

their decisions to the FC. The FC then combines all these decisions from the sensors 

and makes a global decision on whether the event is happening. Detailed system model 

description for each stage is introduced as follows. In the first stage, the status of the 

event can be regarded as binary hypothesis with 0H  and 1H  denoting the absence 

and presence of the event, respectively. Each sensor makes its binary decision on the 

hypothesis, transmitting 1is =  if it claims 1H  and remaining silent if it claims 0H , 

i.e., { }0,1is ∈ . That is, the reports to FC are hard decisions. Assume uniformity of the 

phenomenon of interests in the area where WSN is deployed, so that each sensor 

subjects to a known identical false-alarm probability { }0 0Pr 1 |f ip s π= = �H , 

which can be measured before deploying the WSN. Assume also that each sensor 

possesses an unknown identical detection probability { }1 1Pr 1 |d ip s π= = �H , 

which has to be estimated at FC. 

The sensors then transmit their 1-bit decisions is  through binary symmetric 

channels with different cross-error probabilities. Assume FC knows the CSI and is in 



 

turn aware of these cross-error probabilities. The signals received by FC are denoted as 

ir  and  
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Receiving [ ]1 2, ,..., Nr r r=r  the FC then applies the fusion rule and makes global 

decision 0 ( )s f= r  on the event. The system then has a global performance featured 

by the global detection probability { }0 1Pr 1 |dP s= = H  and global false-alarm 

probability { }0 0Pr 1 |fP s= = H . Detector performance of the system is evaluated 

using the ROC curve. The block diagram is illustrated as follows:  

 

Figure 3.1: System model 

 

3.2 GLRT based detection method 

Assume that the set of Bernoulli random variables { }ir  are conditionally 
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0 1/H H

Sensor 1 

Sensor 2 

Sensor N 

Channel 1 

Channel 2 

Channel N 

Fusion 
Center /d fp p

/d fp p

/d fp p

1s

2s

Ns

1r

2r

Nr

( )0s f= r

# #



 

[ ]1 2, ,..., Nr r r=r  under 0π  and 1π  are 
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The binary hypothesis thus reforms as 
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As described in Chapter 2, a commonly used detection method is GLRT, which 

claims 1H  if 
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where 1̂π  is the ML estimation of 1π , and γ  is the predetermined threshold. The 

ML estimation solves 1

1

ln ( ; )
0

p π

π

∂
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∂

r
, which turns to  

 
[ ] [ ]1 11 1

1
0

/(1 2 ) (1 )/(1 2 )

N N
i i

i ii i i i

r r
π ε ε π ε ε= =

−
+ =

+ − − − −
∑ ∑  (3.5) 

 

3.3 Proposed Simplified ML solution 

To obtain the ML solution of 1π , one has to solve certain roots of the polynomial 

with order 1N − . It can probably be achieved by numerical techniques, but no 

analytic solution exists. Thus for higher SNR, an approximated solution is proposed. 

In the high SNR case, iε ’s are small and we has 
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by neglecting the high order terms. With (3.6), Equation (3.5) approximates to 
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Again by keeping only the first-order term in the denominator in each summand and 

with rearrangement, (3.7) then becomes 
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Also assume that iε ’s are small so that 2 2
1 1 1 1iπ π ε π π− − ≈ − , and (3.8) is further 

simplified to  
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Thus, as long as { }1 0,1π ≠ , 1̂π  is obtained by solving 
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and the resulting approximated ML scheme is 
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3.4 Computer Simulations 

To examine the accuracy of the proposed simplified ML estimate, this work uses 

mean square error (MSE) as the indicator of accuracy. The parameter to be estimate 

{ }1 1Pr 1 |is π= =H  is set to be 0.4, and we normalize the MSE to this value. Figure 

3.2 shows the normalized MSE versus the mean cross-error probability.   



 

0 0.2 0.4 0.6 0.8 1
-10

2

-10
1

-10
0

Mean cross-over probability

N
or

m
al

iz
ed

 M
S

E
 (d

B
)

The accuracy of simplified ML estimate

 

Figure 3.2: Accuracy of the proposed simplified ML estimate 

 

Simulations tell that the proposed ML estimate approximates closely to the real one 

when the mean cross-error probability is small, for example below 0.2. 

 

3.5 Discussion 

Although the proposed Formula (3.11) is only an approximation of the true ML 

solution, the property of being affine in the data ir ’s makes it more attractive and 

potentially amenable for analysis. Simulations show that the mean square error 

between Equation (3.11) and the true ML solution is quite small when mean 

cross-error probability is small. Accordingly, the performances of GLRT by 1̂π  and 

the true ML solution are also quite close. The solution (3.10) also has an appealing 



 

interpretation. Let’s consider the case where each communication link subjects to an 

identical cross-over probability, i.e., iε ε=  for 1 i N≤ ≤ . The received data ir ’s 

are thus regarded as i.i.d. Bernoulli random variables with “success probability” 

{ } ( ) ( )1 1Pr 1 1 1ir π ε π ε= = − + −  when change is present. According to [17] and 

the invariant property of the ML estimate [18], the exact ML solution is obtained as 
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In high SNR case where ε  is small, we have ( ) ( )1 21 2 1 2 4ε ε ε−− = + + +"  

Keeping only the zero-th and first order terms, (3.12) becomes 
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≈ + −∑ . (3.13)               

Hence, the proposed approximate ML estimate (3.11) can be regarded as a direct 

modification of ( )
1̂
επ  in (3.12) to take non-uniform communication link errors into 

consideration. 

We can also interpret the simplified ML estimate as a modification of the voting 

scheme. If the sensors report their signal through perfect channels, the fusion center 

actually receives i ir s=  and then makes an estimate on { }Pr 1is = . The 

corresponding best unbiased estimator uses the voting strategy, which uses the mean 

value as the estimate of { }Pr 1is = . Assume now is ’s pass through BSC’s with 

identical cross-over probability ε , we have { } 1 1Pr 1 2ir π επ ε= = − +  when 1H  

is true. The voting rule or the mean of ir ’s is thus 1 12π επ ε− + , i.e., 
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To obtain 1π  from (3.14), after manipulation we arrive at 



 

 

( )( )

( )( )

1

1
1

1

1
1

1 2 1 2 1 2

1
   1 2

N
Nii i

i
N

i
i

r rN
N

r
N

ε ε
π

ε ε ε

ε ε

=

=

=

− ⎛ ⎞⎟⎜= = − ⎟⎜ ⎟⎝ ⎠− − −

≈ + −

∑
∑

∑

 (3.15) 

We arrive at the same conclusion as (3.13), which suggests the simplified ML estimate 
is actually nothing but a modification from the natural voting scheme. 

 

3.6 Summary 

An accurate approximation formula (3.11) to the true ML solution is derived and it 

has a natural interpretation related with the straightforward voting scheme. This 

formula is more tractable in that it is an affine function in the received signal ir ’s. To 

accomplish the GLRT test, the FC then adopts this simplified ML estimate in the LRT 

statistic and compares it with a predetermined threshold. However even with the 

simplified formula, the achievable detection performance of GLRT, in particular the 

impact from channel impairments, remains quite difficult to characterize especially 

when the number of sensors is finite. It motivates us to propose an alternative detection 

rule which can exploit the affine nature of 1̂π  and result in analytic study of the link 

error effects. 



 

Chapter 4  

Proposed Detection Method 
 

4.1 Proposed Simple Detection Rule 

It is shown that GLRT is merely a heuristic approach, nor does it involve any 

optimality criteria in deriving this rule. Even if the proposed ML approximation is 

simple, it helps little after being adopted into the GLRT statistic, which motivates 

another simpler fusion rule that can benefit from the ML approximation. Note that at 

receiving ir ’s, the FC is actually applying the ML estimate π̂  for Pr{ 1}is = . 

Because 1 1Pr{ 1 | }is π= =H  and { }0 0Pr 1 |is π= =H , ideally, 1π̂ π≈  when 

1H  occurs and 0π̂ π≈  when 0H  occurs. A simpler and more natural alternative is 

to obtain π̂  first and then compare it with the known 0fp π= . More specifically, the 

FC can be designed to make the following decision 
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where γ  was the predetermined threshold. 

The main advantage of the proposed decision rule (4.1) is that, unlike the GLRT in 

(3.4), the test statistic in (4.1) is affine in the estimate π̂ , and hence is affine in the 

received data ir ’s. The proposed method also directly utilizes the parameter that really 

reflects the different hypotheses. Based on these attractive features, performance can 

be characterized analytically as shown below. 

 



 

4.2 Performance Analysis 

To proceed, let’s write π̂  as 
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and T is substantially the equivalent test statistic. Since { }0,1ir ∈ , T assumes a finite 

number of alphabets, which are to be specified. First, for each 0 k N≤ ≤ , define 

{ }( ) ( ) ( )( )
1 2, , N

k

k k kk
CI I I I� "  to be the collection of all distinct k-element subsets of 

{1, , }N" , where !/[ !( )!]N
kC N k n k−�  and (0) { }I φ= . Each element in ( )kI  

maps to a possible value of T , thus for each 0 k N≤ ≤ , let’s define ( )kS  be the set 

consisting of all possible values of T when k sensors are active, that is, 
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Note from (4.4) that there are totally 0 1 (1 1) 2N N N N N
N
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possible values of T.  

To facilitate further investigation, assume without loss of generality that, for each 

1 k N≤ ≤ , the elements in ( )kS  are arranged so that ( ) ( ) ( )
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C
S S S≤ ≤ ≤" , i.e., 
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Also, let 1
l
k N≤ ≤  be such that 
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By definition of the detection probability 0 1
1

1
Pr  

N

d i
i

P T
N

π ε γ
=

⎧ ⎫⎪ ⎪⎪ ⎪= ≥ + +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑ H , the 

lower bound for dP  is then 
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Similarly, for the false-alarm probability 0 0
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associated lower bound can be obtained as 
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Observe that the performance bounds in (4.8) and (4.10) depended on the link error 

probability iε ’s. This allows for further discussions on the impact of the channel 

effect on the detection performance, as in the next sections. 

The performance a thirty-sensor WSN is simulated as the blue ROC curve in 

Figure 2.1. The channel model is the same as that in Chapter 4.4 and the average 

cross-over probability is 0.023, which is small enough to validate the bound derivation. 

The local detection and false-alarm probability are 0.6 and 0.4, respectively. The 

proposed bound is plotted as the red ROC curve. It can be seen that the proposed 

bound is tight enough to evaluate the performance of the proposed fusion rule. 
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Figure 4.1: Accuracy of the proposed performance bound 

 

4.3 Impact due to Channel Effects 

The performance formulas in (4.8) and (4.10) remain non-linear functions of iε ’s. 

It is still difficult to assess the effects of non-ideal communication channels. 

Remember that the proposed ML solution is derived under the high-SNR assumption. 

By further exploiting the assumption that iε ’s are small, (4.8) and (4.10) can be 

simplified considerably, as in the next lemma. 

Lemma 4.1: For small iε ’s, 
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Similarly, 
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Proof:  

Based on (4.8) and (4.10), (4.11) and (4.13) are obtained by neglecting the high-order 

terms of iε ’s and then some manipulations. The binomial coefficient comes from the 

summation of all possible combinations given k sensors are active.       □ 

While the bounds (4.8) and (4.10) are quite complicated functions of iε ’s, in the 

high-SNR regime, the detection performance is closely related to the summed 

cross-error probabilities, namely 
1

N

i
i

ε
=
∑ . Still, the fact that ( )L

dP  and ( )L
fP  depend on 

1

N

i
i

ε
=
∑  does not explicitly indicate how the variation of 

1

N

i
i

ε
=
∑  influences the detection 

performance. However, under some reasonable assumptions on dp  and fp , this work 

proves that minimizing 
1

N

i
i

ε
=
∑  guarantees a better detector performance in terms of the 

ROC curve, as precisely stated in the following theorem. 

Theorem 4.2: Assume 0 10.5π π< < . Given a fixed false-alarm probability fP , let 
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dP ′  be two detection probability lower bounds associated with two 

different summed link errors 
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= ∑  and 
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d dP P′ > .                □ 

Proof: See Appendix A 

Theorem 4.2 suggests that, when the condition 0 10.5π π< <  is fulfilled, the 

global detection performance improves if the summed link error rate can be made 

small. The assumption 0 10.5π π< <  is actually not too demanding for any 

reasonable sensors. Inspired by Theorem 4.2, a sensor power allocation scheme for 

enhancing the global detection performance is developed next. 

 

4.4 Proposed Power Allocation Strategy 

Recall that the ith sensor transmits 1is =  when it claims 1H  and transmits 

nothing when it claims 0H . Namely, the sensors report their one-bit decisions using 

on-off keying to conserve energy. After incorporating the power allocation strategy, the 

ith sensor actually transmits { }0,1is ∈  multiplied with an amplitude factor ia , 

which is to be designed later on, and the corresponding power allocated to this sensor 

is 2
i ip a= . Assume the communication channel between the ith sensor and the FC is 

flat and Rayleigh distributed with the current channel coefficient ih , with the average 

power normalized to 1. Knowing these current channel coefficients, the FC can then 

apply the coherent detection and the received signal iy  from the ith sensor could be 

described by a commonly used discrete-time baseband model 
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where in  is the zero-mean Gaussian noise of variance 0 2N . The corresponding 

cross-over probability of the ith link is then 
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Under a total transmit power budget P , the optimization problem can be formally 

stated as  
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The optimization problem of the form (4.16) has been addressed in the context of 

MIMO wireless communications [19, 20]. Note that the cost function and the 

inequality constraint are convex and the equality constraint is linear. The optimization 

problem is thus convex and the Kuhn-Tucker conditions are necessary and sufficient 

conditions for finding 1{ }
i

N
ip

∗
= . 

Define the Lagrangian function as: 
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where 1{ }Ni iu =  and λ  are KKT multipliers and Lagrange multiplier, respectively. 

According to the theory of optimization, 1{ }
i

N
ip

∗
= , 1{ }Ni iu =  and λ  should satisfy the 

following conditions: 
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(4.)   0iu ≥ ,  1 i N≤ ≤  
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u p∗ = , 1 i N≤ ≤  

Condition (1.) turns to 
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λ
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For a fixed value of λ , iu  and 
i
p∗  can be chosen for every i as follows 

1.  If there is a 0iP p≥ ≥  that solves (4.18), then choose 0iu =  and 
i ip p∗ =  

2.  If there is no such ip , choose 0
i
p∗ =  and iu = ∞  

Thus, the minimizer 1{ }
i

N
ip

∗
=  can be expressed as ( )max 0,i ip p∗ = .  

To clarify further, demonstrated below is the flow chart of the power allocation 

procedure: 

 

 

Figure 4.2: Flow chart of power allocation strategy 
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4.5 Summary 

To solve the problems that GLRT is not optimal and the GLRT statistic is too 

complicated, a simpler and more straightforward fusion rule is proposed. The proposed 

fusion rule conserves the affine properties of the approximated ML estimate and is in 

turn affine in the received signals, which enables the performance analysis. A tight 

bounds of dP  and fP  are proposed and then simplified under the assumption that 

the SNR is moderately high. These bounds are derived not only to evaluate the 

performance, but also to facilitate investigation of the channel effects, which is 

accomplished by locating the simple channel-related term 
1

N
ii
ε=∑  in the 

approximation formulas. However, it remains unclear how to improve the ROC curve 

because both of these approximations remain complicated functions of 
1

N
ii
ε=∑ . 

Despite of the fact, it is proved that under some more reasonable assumptions, 

minimizing 
1

N
ii
ε=∑  guarantees a better performance. At the end, a power allocation 

strategy aiming at minimizing 
1

N
ii
ε=∑  is proposed. Simulations of this work are 

demonstrated in the next chapter.  



 

Chapter 5  

Computer Simulations and 

Discussions 
 

5.1 Computer Simulations 

The performances are simulated for the proposed detection rule with and without 

transmit power allocation, and then are compared with those for GLRT. The 

simulations of the LRT performance are also provided, which serve as the upper bound 

of any possible detector designs. In all simulations, the channel coefficients are 

assumed flat and Rayleigh distributed with the average power normalized to 1. 

Figure 5.1 shows the ROC curve for an WSN of twenty sensors with uniform local 

detection probability 0.6dp =  and local false-alarm probability 0.4fp = . The 

noise power is 0 0.05N = . The blue line is the performance of the LRT detector with 

power allocation proposed in this work. The black solid and the red dash curves are the 

ROC curves of the proposed fusion rule with and without power allocation, 

respectively. The black solid and the red dash curves with circles are the ROC curves 

of GLRT with and without power allocation designed for the proposed fusion rule, 

respectively. 



 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pf

P
d

ROC curve

 

 

LRT 
Proposed scheme with power loading
Proposed scheme without power loading
GLRT with power loading
GLRT without power loading

 

Figure 5.1: ROC curve of twenty-sensor network 

 

From the above figure, the proposed fusion rule without power allocation (red dash 

line) outperforms GLRT in dP  by 10 to 15 percent given a value of fP  small 

enough to have practical interests. After power allocation, the performance of the 

proposed fusion rule even approaches the optimal LRT bound (blue solid line).  

Figure 5.2 and Figure 5.3 are based on similar environment settings as Figure 5.1, 

but the number of sensors changes to 30 and 50, respectively. As can be seen, similar 

results appear but the extent of increase in dP  becomes smaller. The phenomenon 

will be described shortly in this section. 
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Figure 5.2: ROC curve of thirty-sensor network 
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Figure 5.3: ROC curve of fifty-sensor network 



 

 

Figure 5.4 illustrates the influence of the number of sensors on the relative increase 

in dP  of the proposed fusion rule with power allocation over GLRT, given the global 

0.1fP = . As the number of sensors increases, the detector is expected to perform 

better because it has more information-bearing reports to make a correct decision. 

Asymptotically, when the number of sensors grows to infinity, all detector designs that 

use the information in the received signals have so much information available that 

their ROC curves approach to the left-upper corner, same for GLRT. That is why the 

improvement of the proposed fusion rule over GLRT diminishes as the number of 

sensors increases, and the proposed fusion rule improves dP  significantly for smaller 

number of sensors. 
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Figure 5.4: Relative increases in dP  over GLRT vs. number of sensors 

 



 

Figure 5.5 demonstrates the relations of the relative increase in dP  of the 

proposed rule with power allocation over that without power allocation versus the 

average transmit power per sensor. The fP  is fixed to 0.1, and other environment 

settings remain the same, i.e., 0.6dp = , 0.4fp =  and 0 0.05N = . Interestingly, 

the improvement in dP  is smaller when the average transmit power is too high or too 

low, and there is a peak improvement when the average transmit power is equal to 

about 0.8. 
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Figure 5.5: Relative increase in dP  from power allocation 

vs. average power for 0 0.05N =  
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Figure 5.6: Relative increase in dP  from power allocation 

vs. average power for 0 0.15N =  

 

Figure 5.6 also demonstrates the relations of the improvement in dP  from power 

allocation versus the average transmit power per sensor, but this time the noise 

variance increases by three times, i.e., 0 0.15N = . Note that the peak of the 

improvement in dP  now moves to the average power of about 2.4, which is three 

times larger than the peak average power in Figure 5.5. The reason for the relation 

between Figure 5.5 and Figure 5.6 is explained as follows. In Equations (4.11) and 

(4.13), the channel effects only go into the value of iε ’s. Given a realization of ih ’s, 

( )2
02i i iQ h p Nε =  only depends on ip  and 0N . If the average power ip  and 

0N  keeps the same ratio, they would produce the same value of iε ’s. The cross-error 

probabilities before and after power allocation will be the same for all the same ratio of 



 

ip  to 0N . The effects of fixing ip  and changing 0N  match that of fixing 0N  and 

changing ip . Specifically, the improvement in dP  at average power 0.8 in Figure 5.5 

matches that at average power 2.4 in Figure 5.6. 

To illustrate why too high or too low average power leads to smaller improvement 

in dP , two ROC curves are illustrated for these two extreme scenarios. Figure 5.7 

shows the case where the average transmit power is 0.1, which is extremely small, and 

Figure 5.8 shows the case where the average transmit power is 3, which is 

comparatively high. 
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Figure 5.7: ROC curve of thirty-sensor network with average power 0.1 
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Figure 5.8: ROC curve of thirty-sensor network with average power 3 

 

As expected, when there is no power allocation, the performance of the proposed 

fusion rule with higher transmit power is already better than that with lower transmit 

power. Also note that in the case of higher average power, the gap between the 

proposed fusion rule without power allocation and LRT (with power allocation) is 

already smaller than that in the low-average-power case. It is reasonable because when 

the average transmit power is high, even if there are no power allocations, the iε ’s are 

already quite small. Power allocation cannot make the performance of the proposed 

detector better than that of LRT and thus the increase in dP  is small. It can also be 

explained as follows: the improvement in dP  becomes small because the power 

allocation changes iε ’s from already small ones to smaller ones. 

When the average transmit power is small, it is seen from Figure 5.7 that the 

proposed fusion rule without power allocation performs much poorly than LRT with 



 

power allocation. In contrast to high-average-power case where the improvement in 

dP  is somewhat “upper bounded” by LRT, the low average transmit power deprives 

the FC of the margin to tackle with the channel impairments. Thus, the iε ’s decrease 

insignificantly after power allocation, which make the improvement in dP  small. 

 

5.2 Discussion on Proposed Method 

Simulations indicate that the proposed detection rule outperforms GLRT 

significantly, in terms of ROC curve. After the transmit power allocation, the ROC 

curve of the proposed rule moves to the left-upper corner and even approaches the 

LRT bound. It means that the proposed method with power allocation is nearly optimal. 

Also, we can see that for any given value of fP , the improvement in dP  has a peak 

at a certain average transmit power, termed peakp . Average transmit power lower than 

peakp  is too small to have large improvement in dP , and the ROC curve of the 

proposed method after power allocation still has gap from that of LRT. Average 

transmit power greater than peakp  is large enough to raise the ROC curve of the 

proposed fusion rule to the LRT’s ROC curve. But as the performance gap between 

LRT and the proposed fusion rule without power allocation becomes less, the extent of 

improvement is thus less. The ROC curve of the proposed rule with power allocation is 

somewhat “upper bounded” by that of the optimal LRT. Although peakp  generates the 

peak improvement, it is not really the so-called optimal transmit power from the global 

perspective. Indeed, this work suggests using the average power greater than peakp  

because the system performance can approach that of the optimal LRT, but note that 

while the transmit power is larger, the ROC curve of LRT still moves to left-upper 



 

corner. Since the performance of our work with power allocation approaches that of 

LRT, the resulting dP  is still increasing with the total power, although the extent of 

improvement in dP  is decreasing. After all, designers can choose a certain transmit 

power larger than peakp  to obtain the desired optimal ROC curve. 

To find the reason GLRT performs poorly, we first notice that in LRT all the 

parameters in ( )1;p r H  and ( )0;p r H  are assumed known by FC, which can directly 

adopt these parameters in calculating the likelihood ratio. Most importantly, these 

values of parameters do not depend on whether the underlying situation is 0H  or 1H . 

However in GLRT, we only obtain the formula for estimating these parameters and 

these estimates are different in 0H  and 1H . Take the system in this work for example, 

although GLRT asks for { }Pr 1is =  given that 1H  is true, the derived ML estimate 

approximates 1π  only when 1H  is actually happening. In other words, it is not 

possible to obtain the estimate of 1π  if it is 0H  that is happening. In such case, the 

FC can only obtain { }0Pr 1 |is = H , which is close to 0π . Consequently, although 

GLRT takes a similar form as LRT, it does not actually behave the same.  Even in 

asymptotic case, i.e. through extensive computer simulations, there is still a gap 

between the ROC performance of LRT and GLRT.  

 

5.3 Summary 

Simulations indicate that the proposed simple fusion rule with power allocations 

outperforms GLRT rule significantly, especially when the number of sensors is small. 

With average transmit power moderately large, the performance of the proposed fusion 

rule with power allocations can even approach the ROC curve of the optimal 

clairvoyant LRT detector. When the transmit power is too low, power allocation does 



 

not improve much and there is still a gap from the optimal ROC curve of LRT. When 

the transmit power is larger than a threshold, power allocations can raise the ROC 

curve of the proposed fusion rule to that of LRT. However, the relative increase in dP  

diminishes because the performance with power allocation is upper bounded by the 

ROC curve of LRT. 



 

Chapter 6  

Conclusions and Future Works 
 

In the beginning, this report traces some important developments of distributed 

detection systems, and a popular system model called canonical distributed detection 

system is introduced, where sensors transmit their reports reliably and directly to FC 

through parallel channels. Two problems in canonical distributed detection systems are 

to be solved: the fusion rule design and the signal processing algorithm at local sensors, 

and our work focuses on the first one. In the WSN cases where channels cannot be 

assumed reliable anymore, following the important concept that fusion rule design and 

the channel effects should be considered jointly, this report surveys many works of 

channel-aware fusion rule design and finds out that most of these works do not address 

the problems where sensor performances are not known to FC. If the sensor 

performances are necessary in fusion rule design, estimations must be conducted at FC. 

Although GLRT can be applied to tackle these problems, there are rooms for 

improvement because firstly, the GLRT statistic is too complicated and secondly, 

GLRT does not guarantee the optimal performance. 

In Chapter 3, the system model in our work is described in detail. The probability 

distributions of the received signal at FC are derived, which are indispensable in many 

fusion rule design, including GLRT. The formula of GLRT statistic is then derived for 

our system, and as is mentioned above, it is too complicated to analyze; moreover, the 

ML solution in the GLRT statistic is also complicated. This report then proposes an 

accurate approximation of the ML solution in high SNR, which is an affine function in 

the received signals, and can be reasonably interpreted as a modification of the voting 



 

scheme. However, even after replacing the simplified ML solution in the GLRT 

statistic, the GLRT statistic remains complicated. 

Aiming at reducing the complexity of GLRT and at seeking for a better 

performance, this work then proposes a simpler fusion rule in Chapter 4. The greatest 

advantage of the proposed fusion rule is that it is simple and retains the affine 

properties of the proposed ML approximation, making it easy to analyze. The rule also 

uses the core information reflecting the state of the environments. A tight bound for the 

ROC curve is proposed and for high SNR, it further indicates that the channel effects 

come into the bound of global detection and false-alarm probability only through the 

summation of cross-over probability. A proof is also given under some reasonable 

assumption, claiming that minimizing the summation term guarantees better 

performance in ROC curve, and a power allocation strategy is then proposed to meet 

this goal. Simulations show that the proposed fusion rule outperforms GLRT, and after 

power allocation, the ROC curve of the proposed fusion rule can even approach the 

optimal LRT benchmark.  

The key reason GLRT performs poorly is that in contrast to LRT where the 

environmental parameters in LRT statistic are known and identical in all hypotheses, 

GLRT replaces these fixed parameters with the ML estimates, whose values vary 

between different hypotheses. In sum, GLRT only borrows the formula but behaves 

differently. Another interesting feature of the proposed fusion rule is that channel 

effects come into the performance by the summation of cross-over probabilities. It 

means that the sensors with poor channels should transmit more power as 

compensation, which is different from the conventional communication system that to 

maximize capacity, water-filling is applied so that some parts of system with poor 

channels are allocated less power or even turned off. Note that the basic difference 

between these two systems is that in conventional communication systems, the 



 

transmitted signals from the transmitter are the same; given limited communication 

resources, a plausible way is to use these resources as efficiently as possible. In 

contrast, sensors in WSN make their decisions independently and each sensor should 

have “the same rights to speak.” The formulas of the performance reflect this 

reasoning because it is the summation of the cross-error probabilities that have the 

strongest impact. To summarize, in the scenario where there are unknowns, instead of 

adopting the commonly used GLRT rule, this work highlights the potential of 

designing a simpler fusion rule that outperforms GLRT, and then indeed proposes one 

fusion rule whose performance can even approach that of LRT, which is the optimal 

fusion rule for the cases where there are no unknowns. 

Some issues are not addressed in this work. Recall that the sensor report is  and 

the received signal ir  at FC are elements of {0,1} , namely they are hard decisions. 

Hard decisions in many cases lose the original information and thus perform worse. 

Accordingly, we expect that changing from hard to soft decisions results in better 

performance, but the analyses will be more involved. Another issue is that in WSN, it 

is probably demanding to obtain the instantaneous CSI. In our work, utilizing the 

instantaneous CSI and applying power allocation lead to an ROC curve close to that of 

optimal LRT. However without CSI and the resulting power allocation, there is still 

gap between the performance of the proposed fusion rule and that of optimal LRT. One 

future work is thus to design another fusion rule that uses less CSI or just the statistic 

of the channel, while still performing better than the proposed fusion rule in this work. 
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APPENDIX A:  

PROOF OF THEOREM 5.2 
 

To prove the theorem, first define 
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where iA  and iB  are defined in (4.12), and iC  and iD  are defined in (4.14). The 

two technical lemmas shown next facilitate the proof of the theorem. 

 

Lemma A.1: Assume that 0 10.5π π< < . The following results hold. 

(1) Both 0A
kS >  and 0C

kS >  are monotonically decreasing in k. 

(2) 0B
kS ≤  and 0D

kS ≥  for all k.            □ 

Proof of Lemma A.1:  

Because 0iA >  and 0iC > , (1) follows immediately by definitions. 

To prove (2). Let’s write 
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it means 



 

        
1

0
0 0 0 1 0

0
N N N N N

B
i i i i i

i i i i i

S B Q R Q R
−

= = = = =
= = − = − =∑ ∑ ∑ ∑ ∑ .    (A.5) 

Furthermore, as 1 0.5π > ,  
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From (A.7) and definition of kB  in (4.12), it follows immediately that 

0kB >  for 1k Nπ< , and 0kB <  for 1k Nπ> .    (A.8) 

 

From (A.8), B
kS  decreases for 10 k Nπ≤ < , and increases for 1N k Nπ < ≤ . This 

result, together with (A.5) and (A.6), imply 0B
kS ≤ . Using the similar techniques, it 

can be verified that 0D
kS ≥ .              □ 

 

Lemma A.2: The following results hold. 
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Proof of Lemma A.2:  

We only proved (1), since (2) can be similarly verified. To proceed, first focus on these 

k’s such that 1k Nπ> . By assumption, 
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where the last equality follows due to 1
1

N N
k kC C−

− <  and 1k Nπ> . From (A.9) we 

immediately have 
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The last inequality in (A.11) equals to 
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Multiply both sides of (A.12) by 1 1(1 )N k kπ π−−  and by rearrangement, we obtain 
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By definition of the sequences kA  and kB  in (5.2), inequality (A.13) essentially 

asserts 
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which proves (1) for 1k Nπ> . If 1k Nπ<  then 
1 1

1

1 1

0
1

N N
k k
C C

π π

− −
−

⎡ ⎤
⎢ ⎥− <⎢ ⎥−⎢ ⎥⎣ ⎦

, and hence 

the last inequality in (A.11) still holds. By repeating the procedures as in 

(A.12)~(A.14), the relation (A.15) can also be obtained. The proof is thus completed. 

□ 

 

 



 

Proof of Theorem 5.2:  

Associated with total error rate E, let ( ,  ,  ,  )A B C D
k k k kS S S S  be accordingly defined as 

in (A.1). For a given threshold γ  and with the given E, we can then express the 

performance bounds in (5.1) and (5.3) as 

( )
1 1l l

L A B
k kdP S S E+ += +  and ( )

l l

L C D
k kfP S S E= + ,   (A.16) 

where lk  is some positive integer. Now if E is reduced to E E′ < , it follows from 

part (2) of Lemma A.1 that 

+ + 
l l l l

A B A B
k k k kS S E S S E ′<  and + +

l l l l

C D C D
k k k kS S E S S E ′> .  (A.17) 

Since 0 10.5π π< < , we have 1

1

0
2 1

π
π

>
−

 and 0

0

0
1 2

π
π

>
−

. Under the 

assumptions of Lemma A.2, we have +C D
k kS S E ′  is monotonically decreasing. Let 

l lk k′ <  be such that 

min{ | + + }
l l

C D C D
l k k k kk k S S E S S E′ ′= ≤ .   (A.18) 

For such lk ′ , it follows that ( ) ( )( ): +
l ll l

L LC D C D
l k k ff fk kP k S S E S S E P P′ ′′ ′= + ≤ = ≤ , and 

the corresponding detection probability lower bound shall satisfy 

( ) ( )( ) ( )( ): + + + 
l l l ll l

a bL LA B A B A B
l k k k kd dk kP k S S E S S E S S E P′ ′′ ′ ′= > > = ,  (A.19) 

where (a) holds since +A B
k kS S E  is also monotonically decreasing (see Lemma A.2), 

and (b) follows from the first inequality in (A.17). Hence, as E is reduced to E ′ , we 

have ( ) ( )( )L L
ld dP k P′ >  whenever ( )( )L

l ffP k P′ ≤ . This implies that the detection 

probability lower bound ( )L
dP ′  corresponding to fP  must exceed ( )L

dP .                          

□ 

 


