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Abstract—A novel chromogenic calix[4]arene 3, which has within a molecule both the triazoles and the hydroxyl azophenols as the
metal-binding sites and the azophenol moiety as a coloration sites was designed and synthesized. Calix[4]arene 3 is highly sensitive to
Ca2+ and Pb2+ ions, which can be detected by the naked eye. Furthermore, the association constants for the 1:1 complexes of 3ÆCa2+

and 3ÆPb2+ were determined to be 7.06 · 104 M�1 and 8.57 · 103 M�1, respectively.
� 2007 Elsevier Ltd. All rights reserved.
The design and synthesis of new chemosensors for metal
ions is an important subject in the field of supramolecu-
lar chemistry due to their fundamental role in biological,
environmental, and chemical processes.1 Chromogenic
ionophores have been intensively investigated as a spe-
cific metal ion indicator since Vögtle reported the use
of 4-(4-nitrophenyl)azo-coupled crowns and azacrowns
as chromoionophores, which showed large UV/vis band
shifts when cations were added.1a

Calix[4]arenes have been shown to be useful molecu-
lar scaffold in the development of chromoionophores,
especially for metal ion recognition.2 Shinkai and
co-workers reported that calix[4]arene having a 4-(4-
nitrophenyl)azophenol unit with three ethyl ester groups
showed a perfect lithium ion selectivity with respect to
the UV/vis band shift.2a,b Chang et al. reported a batho-
chromic shift of a p-tert-butylcalix[4]arene bearing a 1,3-
diazophenol unit upon calcium ion complexation.2d

Reinhoudt et al. also reported that a calix[4]arene with
monoalkylated azophenol unit and triamides on the
lower rim is a highly selective Pb2+ sensor, in which
the direction of the shift was dependent on the confor-
mation of the calix[4]arenes.2e
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we report here the synthesis of a novel chromogenic
calix[4]arene using the Click chemistry7 of an azide and
an alkyne to form a triazole cationic binding site.

The synthesis of host 3 is illustrated in Scheme 1. Our
synthesis began with 25,27-bis(O-propargyl)calix[4]-
arene 18 followed by diazo coupling reaction using p-
anisidine in HCl and NaNO2 in acetone and pyridine
gave the desired product 2 in 62% yield.9 Cu(I)-catalyzed
1,3-dipolar cycloaddition reaction of 2 with 1-(azido-
methyl)-benzene in the Click condition afforded the
5,17-bis(p-methoxy-phenyl)azo-25,27-bis(1,2,3-triazole)-
calix[4]arene 3 in 71% yield.10 Control compound 411

was synthesized in 79% yield using a method similar to
that used in the preparation of 2. Besides traditional
organic spectroscopic identification (1H and 13C
NMR, MS, and HRMS spectra) of all these calix[4]ar-
enes, single-crystal X-ray analysis of 2 and 3 confirmed
the structures to be in cone conformations (Fig. 1).12

The absorption maxima (kmax) and molar extinction
coefficients of the chromogenic calix[4]arenes and con-
trol compound synthesized in this work are summarized
in Table 1. Next, we then investigated the affinities of
these azo-compounds 2–4 for a series of groups 1A,
2A, and transition-metal ions in MeCN/CHCl3 (v/v =
1000:4).

Excess perchlorate salts (10 equiv) of Li+, Na+, K+,
Mg2+, Ca2+, Ba2+, Cr3+, Pb2+, Cd2+, Ag+, Ni2+,
Mn2+, and Zn2+ions were tested to evaluate the metal
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Scheme 1. Synthesis of chromogenic calix[4]arene 3. Reagents and
conditions: (i) p-anisidine/acetone, NaNO2/4 N HCl, pyridine, 0 �C,
18 h; (ii) 1-(azidomethyl)benzene, CuI, THF/H2O, 50 �C, 18 h.
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Figure 1. X-ray single-crystal structures of 2 and 3.

Table 1. kmax and corresponding extinction coefficients of azo-
compounds 2–4 in MeCN/CHCl3 (1000:4, v/v)

Compound kmax (nm) e (M�1 cm�1)

2 364 61,000
3 365 55,000
4 360 88,000
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ion binding properties of 2–4. Ligand concentration in
all titration experiments was fixed at 10�5 M in
MeCN/CHCl3 (v/v = 1000:4). Free hosts 2, 3, and 4
exhibited absorption bands at 364, 365, and 360 nm in
MeCN/CHCl3 (v/v = 1000:4), respectively. The tri-
azole–azophenol host 3, having triazoles as the metal
ligating groups, is found to exhibit remarkable selectiv-
ity toward Ca2+ and Pb2+ ions over all other metal ions.
For example, the addition of 10 equiv of Ca2+ and Pb2+

ions induced a bathochromic shift of triazole ionophore
3 from kmax 365 nm to 527 and 541 nm, respectively
(Fig. 2). However, the UV/vis spectra of control com-
pounds 2 and 4 showed a weak bathochromic shift to
Cr3+ ion only, and the rest of the metal ions did not
show any change (see Figs. S7 and S8).

The two triazole moieties of 3 are proven to form an effi-
cient metal ion binding site, whereas compounds 2 and 4
are in lack of such an efficient metal ion binding site.
Furthermore, the geometry of the binding site of the
host, comprising the two nitrogen atoms of triazole
units and two hydroxyls of the azophenol units, seems
to be ideal in terms of size and arrangement for recogni-
tion of doubly charged metal cations. Of primary impor-
tance is the electrostatic interaction of metal cations
with two azophenol moieties as well as the ion–dipole
interaction of metal ions with the triazole unit.

Upon interaction with Ca(ClO4)2, the chromogenic sen-
sor 3 in MeCN/CHCl3 (v/v = 1000:4) solution experi-
enced a marked bathochromic shift in its kmax as
shown in Figure 3. The absorption maximum at
365 nm gradually decreased in intensity with the forma-
tion of a new absorption band at ca. 527 nm
(Dkmax = 162 nm). Three isosbestic points are 270, 305,
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Figure 2. UV/vis spectra of 3 (10 lM) before and after adding 100 lM
concentration of various metal perchlorates in MeCN/CHCl3 (1000:4,
v/v).
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Figure 3. UV/vis spectra of 3 (10 lM) upon titration by various
equivalents of Ca(ClO4)2 in MeCN/CHCl3 (1000:4, v/v).
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Figure 5. Benesi–Hilderbrand plot of 3 with Ca(ClO4)2.
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and 422 nm for the titration spectra of 3 by Ca(ClO4)2.
The spectral features in Figure 3 are consistent with a
1:1 binding ratio between calix[4]arene 3 with Ca2+

ion. Further support of the 1:1 binding ratio comes from
a Job plot experiment,13 where the absorptions of the
complex at 527 nm were plotted against molar fractions
of 3 under the conditions of an invariant total concen-
tration. As a result, the concentration of 3ÆCa2+ complex
approached a maximum when the molar fraction of [3]/
([3] + [Ca2+]) was about 0.5 (see Fig. 4).

Electrospray mass spectrometry also supports the for-
mation of complex 3ÆCa2+ and 3ÆPb2+, where a peak at
m/z = 1173.6 corresponding to the mass of [3 + Ca +
ClO4]+ and a double charged peak at m/z = 537.4 which
corresponds to [3 + Ca]2+ were observed. Furthermore,
a peak at m/z = 1241.6 corresponding to the mass of
[3 + Pb � H]+ and a double charged peak at
m/z = 621.2 which corresponds to [3 + Pb] 2+ were also
observed (see Figs. S9 and S10 for detail).

The association constant for 3ÆCa2+ in MeCN/CHCl3
(1000:4, v/v) was determined to be 7.06 · 104 M�1 by
Benesi–Hilderbrand plot14 (Fig. 5). Similar UV/vis titra-
tion behavior and 1:1 binding stoichiometry was also
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Figure 4. Job plot of a 1:1 complex of 3 and Ca2+ ion, where the
absorption at 527 nm was plotted against the mole fraction of 3 at
invariant total concentration of 10 lM in MeCN/CHCl3 (1000:4, v/v).
observed in the case of 3 with Pb2+ (see Figs. S11–S13
for details); and its association constant was estimated
to be 8.57 · 103 M�1.

Metal ion-induced chemical shift changes in the 1H
NMR (in CD3CN) spectra support that Ca2+ is bound
to the two nitrogen atoms of the triazole units and the
two hydroxyl azophenol groups of 3 (see Fig. 6). In
the presence of 10.0 equiv of Ca2+, chemical shifts of
protons Ha–He on the azophenol unit of 3 changed sig-
nificantly; the peaks of Ha–Hc were upfield shifted by
0.18, 0.17, and 0.42 ppm, respectively, but the peak of
He was downfield shifted by 2.74 nm. In particular, the
peak of Hd was split into two peaks, one was upfield
shifted by 0.23 ppm and the other was downfield shifted
by 0.03 ppm. However, the peaks of Hg and Hh were
each split into two sets of signals and upfield shifted.
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The protons Hi, Hj, and Hk were little influenced. Fur-
thermore, 13C NMR spectroscopy proved that iono-
phore 3 forms a complex with Ca2+ in a cone
conformation. The methylene carbon atoms bridging
the aromatic rings appear at d 31.2 and 32.1, which
are typical resonances for a cone conformation of
calix[4]arenes15 (see Fig. S14). These results suggest that
Ca2+ ion not only is bound by triazole–azophenol host
3, it also breaks the symmetry of the host molecule after
complexation.

Due to the poor solubility of complex 3ÆPb2+ in CD3CN,
the following titration was in CDC13/CD3CN (v/v =
3:1) co-solvent system. Upon adding 10.0 equiv of
Pb2+ to the solution of 3 (see Fig. S15 for detail), the
peak of Hd was downfield shifted by 0.21 ppm, but did
not split. The peaks of Hg and Hh stayed intact. The
peak of Hj on the triazole unit of 3 was downfield shifted
by 0.24 ppm, and the peaks of Hi and Hk were also
downfield shifted by 0.08 and 0.12 ppm. Interestingly,
the peak of He was upfield shifted by 3.58 ppm. These
results suggest that Pb2+ ion can also be bound by host
3, but was forming a symmetrical metal ion complex.16

In conclusion, we have developed a new calix[4]arene
sensor with bistriazoles and azophenols as the metal
ion binding sites and azo groups as the signal transduc-
tion unit, which showed selective coloration of Ca2+ and
Pb2+ ions.16 The Ca2+and Pb2+ ion detection gives rise
to a large bathochromic shift in the absorption spectrum
(from light yellow to red), which is clearly visible to the
naked eye.
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