
Using Asynchronous Writes on Metadata to 
Improve File System Performance 

Li-Chi Feng 
Institute of Computer and Information Science, National Chiao Tung University, Hsinshu, Taiwan, 
Republic of China 

Ruei-Chuan Chang 
Institute of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan, and Institute of 
Information Science, Academia Sinica, Nankang, Taipei, Republic of China 

Due to the increasing gap between CPU and disk I/O 
speeds, the file system is becoming the performance 
bottleneck in computer system design. How to im- 
prove file system performance is increasingly impor- 
tant. There are two types of entities in a file system: 
data and metadata. Data mean the actual contents of 
files. Metadata include access control and other de- 
scriptive information about files. Previous research 
indicates that metadata writes account for 38 -40% of 
disk I/O operations. These large numbers of control 
request I/OS are usually ignored in traditional file 
system study, which concentrates only on file-level 
access patterns. We propose the design and imple- 
mentation of a metadata-ordering mechanism and its 
corresponding asynchronous write facility. With such 
a facility, we can eliminate many synchronous meta- 
data writes, and have the flexibility of choosing a 
better way to update these metadata modifications to 
disk asynchronously. Extensive performance evalua- 
tion shows that substantial performance improvement 
can be achieved under various benchmarks. Some 
other tests are also used to demonstrate the benefits 
and behaviors of this approach. 

1. INTRODUCTION 

Recently, technology improvements in CPU speeds, 
memory sizes, and network bandwidths have changed 
the characteristics of job execution in computer sys- 
tems. CPU processing capability is no longer the 

Address correSpOndence to Ruei-Chuan Chang, Department of 
Computer and lnfotmation Science, National Chiao Tung lJniuersi& 
Hsinchu, Taiwan, Republic of China. e-mail: rc@ii.s.sinica.edu.tw 

J. SYSTEMS SOFTWARE 1996; 3543-54 
0 1996 by Elsevier Science Inc. 
655 Avenue of the Americas, New York, NY 10010 

performance bottleneck, as before; instead, file I/O 
delays are making the file system the bottleneck. 
How to improve file system performance is becom- 
ing more and more important. 

The file system is one of the most visible compo- 
nents of operating systems. Particularly, in the UNIX 
operating system, it is the most important interface 
exported to the outside world. Because the UNIX 
operating system uses file convention to access most 
available resources, the performance of a file system 
is a critical component of overall system perfor- 
mance. 

If we classify the requests to a file system, we find 
two kinds of requests. The first kind, called data 
request, mainly operates on that part of the file 
system storage containing the actual contents of files 
(the data). For example, read and write system calls 
belong to this class. The second type, control request, 
accesses these file system storage containing access 
control and other descriptive information about files 
(metadata about data). Requests such as file cre- 
ation, deletion, truncation, and directory manipula- 
tion are examples of control requests. 

Muller and Pasquale (1991) analyzed the perfor- 
mance of the Berkeley UNIX fast file system (FFS) 
(McKusick et al., 1984). Using trace data collected at 
both system call and disk level under intensive disk 
I/O workloads, they found that data requests only 
account for 39% of all file system requests, whereas 
the remaining 61% of requests are control requests 
(related to metadata including open, close, mkdir, 
rmdir, create, unlink, chmod, stat, etc.). At the disk 

0X4-1212/%/$15.00 
SSDI 0164-1212(95IOOO84-E 



44 J. SYSTEMS SOFTWARE 
1996; 35143-54 

L.-C. Feng and R.-C. Chang 

level, control requests cause 64% of all disk opera- 
tions, in particular, the write operations coming from 
these control requests cause 56% of all disk opera- 
tions, and the rate of disk writes due to control 
requests is much greater than the rate of disk writes 
due to write system calls. 

Ruemmler and Wilkes (1993) also obtained simi- 
lar results when they studied the disk access pattern 
of the HP-UX/4.3BSD FFS. It is reported that user 
data I/OS represent only 13-41% of the total ac- 
cesses; the majority of disk accesses (57%) are writes, 
and 67-78% of the writes are to metadata; 50-75% 
of disk requests are synchronous. Synchronous re- 
quest means issuing the I/O request and waiting for 
its completion before any further processing. 

Based on the observations presented in Muller 
and Pasquale (1991) and Ruemmler and Wilkes 
(19931, metadata writes account for 3840% of all 
disk I/O, and metadata synchronous writes account 
for 19-33% of total disk I/O operations. These 
large numbers of metadata synchronous writes are 
due to the write-through metadata cache on the 
systems traced. In the UNIX file system, there are 
many write operations, such as inode and directory 
updates, which operate synchronously to maintain 
consistency on the disk. The file system uses syn- 
chronous write to ensure an absolute order (McVoy 
and Kleiman, 1990, but synchronous I/O has many 
drawbacks, such as forcing the process to endure the 
I/O delay, reducing concurrency between CPU pro- 
cessing and I/O operations, and issuing many re- 
dundant disk operations that frequently rewrite the 
same location. 

In this article, we use the concept of asynchronous 
I/O to improve file system performance. Asyn- 
chronous Z/O (Buck and Coyne, 1991) means pro- 
cessing the I/O request asynchronously with the 
computation request. It has the effect of overlapping 
CPU processing with I/O operation and reducing 
the delay time of I/O operation from the applica- 
tion’s response time. We build a metadata-ordering 
mechanism to maintain the order of critical meta- 
data writes and then change these metadata updates 
from synchronous to asynchronous operation. With 
this approach, we can eliminate many synchronous 
metadata writes, and we have the flexibility of choos- 
ing a better way to update these metadata modifica- 
tions to disk asynchronously, under the constraint of 
not compromising file system consistency. Extensive 
performance evaluation has been done to demon- 
strate the benefits of this approach. 

The rest of the article is organized as follows. In 
Section 2, we review related work. The concept of 
asynchronous metadata update is introduced in Sec- 

tion 3. The design and implementation of our meta- 
data asynchronous write facility are described in 
Section 4. An extensive performance evaluation is 
given in Section 5. Concluding remarks are given in 
Section 6. 

2. RELATED WORK 

File system performance improvement is one of the 
most important research topics in the operating sys- 
tems research community. Various approaches have 
been proposed. 

The original UNIX file system is elegant in its 
simplicity. It has a single block size and a simple- 
list-based allocation policy. The Berkeley FFS 
(McKusick et al., 1984) solved many performance 
problems. It proposed the concept of cylinder group, 
using a more flexible allocation policy, and provided 
two block sizes to allow fast access to large files 
without wasting large amounts of space for small 
files. File access rates up to 10 times faster than the 
traditional UNIX file system are experienced. Berke- 
ley’s FFS is the predecessor of many file systems 
developed by various venders. It is also the base of 
the UNIX File System (UFS) (Leffler et al., 1989; 
McVoy and Kleiman, 1991). 

McVoy and Kleiman (1991) measured the existing 
SUN UFS and showed that about half the process- 
ing power of a 1ZMIPS CPU was used to get only 
half of the disk bandwidth. To meet the increasing 
throughput demands made both by applications and 
higher performance hardwares, they suggested a file 
system clustering technique that groups I/O opera- 
tions into clusters instead of dealing in individual 
blocks. Based on their reports, a factor of two in- 
creased sequential performance was achieved. 

Some researchers tried to increase file system 
performance through improvement of disk subsys- 
tems (Staelin and Garcia-Molina, 1991; Akyiirek and 
Salem, 19931, using diverse disk block rearrange- 
ment techniques. The disk driver was modified to 
copy frequently referenced blocks from their origi- 
nal locations to some reserved space near the center 
of the disk to reduce seek times. Measurements 
showed that the seek time was reduced by more 
than half, and the response time was improved sig- 
nificantly. 

Another approach adopted by many researchers is 
to record user-level activities in tracing files and 
analyze these data to find the file access behaviors of 
the system (Ousterhout et al., 1985; Floyd and Ellis, 
1989; Baker et al., 1991). Through these techniques, 
much valuable information was derived. For exam- 
ple, they found that most files had very short life- 



File System Performance J. SYSTEMS SOFTWARE 45 
1996; 35:43-54 

times (between 65 and 80% live <30 seconds), 
N 78% of all read-only accesses were sequential 
whole-file transfers, and > 90% of all data were 
transferred sequentially. 

But it is claimed that file-level trace analysis 
may not be enough (Muller and Pasquale, 1991; 
Ruemmler and Wilkes, 1993). Because of the exis- 
tence of the UNIX buffer cache, most file accesses 
never reach the disk. So these file-level studies can- 
not exactly model what happens at the disk I/O 
level. These studies ignore the effects of traffic gen- 
erated by file systems, such as metadata update and 
read-ahead. 

Several researchers have noticed the importance 
of metadata-related I/O operations. For example, 
McVoy and Kleiman (1991) suggested that if there 
were a way to ensure the order of critical writes, 
then the file system would be able to do many 
operations asynchronously. The performance of 
some metadata-related commands would be im- 
proved substantially. There is another related ex- 
perience mentioned in Peacock (1992). As an ex- 
periment, he changed all of the synchronous inode 
operations to delayed writes to separate them from 
disk I/OS. It was found that this change improves 
the I/O performance substantially. But the problem 
of file system consistency was ignored in his test. 

3. ASYNCHRONOUS METADATA UPDATES 

As introduced in the first section, asynchronous I/O 
means processing the I/O requests asynchronously 
with the computation requests. It is not a new con- 
cept, and has been adopted as a common solution to 
improve system performance in hardware and soft- 
ware. Although many modem operating systems, 
such as ConvexOS, UNICOS, SunOS 4.1, and USL 
SVR4 ES/MP, include support for application-level 
asynchronous I/O facility, none of them recognize 
the importance of metadata writes. In this section, 
we introduce the metadata update behaviors of UFS 
(Leffler et al., 1989; McVoy and Kleiman, 1991) and 
demonstrate how to change these metadata writes to 
ordered asynchronous operations. 

In UFS, metadata include inode, directory, indi- 
rect block, superblock, and other bookkeeping infor- 
mation. UFS uses inode to represent a file. The 
inode contains various fields to describe the file type, 
file size, access time, ownership, access permission, 
number of links to the file, and a file-content map 
used to record the disk block numbers for the file’s 
contents. The directory is like a regular file; the 
system treats the data in a directory as a byte 
stream, but the data contain the names of the files in 

the directory in a predictable format so that the 
operating system and programs such as Is can dis- 
cover the files in a directory. Indirect block is a disk 
block that contains many pointers that link to real 
data blocks or other indirect blocks. It is useful 
when the file size grows beyond the limits that can 
be represented using only normal directly mapped 
blocks. The superblock contains information about 
the file system itself, such as the size and status of 
the file system, the number of free blocks, the num- 
ber of free inodes, etc. (Bach, 1986; Leffler et al., 
1989). The relationships between the inode, indirect 
block, and data block are shown in Figure 1. 

There are many system calls that may change the 
contents of an inode or a directory. For example, a 
read system call will change the inode’s access time; 
a create system call will alter the contents both of its 
parent’s inode and directory and create a new inode 
to represent the new file; a mkdir system call 
will create a new inode and its directory data 
block, altering the contents of its parent’s inode and 
directory data. 

In the following, we use the mkdir operation of 
UFS to show typical metadata update operations. 
Let C be the newly created directory, and P be the 

Inode 

tile size 
mxess time 
permission 
ownership 

Data 
BlO&S 

direct 0 

direct 1 - 

I 

Indirect H- 
Blocks 

Figure 1. Inode, data blocks, and direct and indirect 
blocks. 



46 J. SYSTEMS SOFTWARE 
1996; 3543-54 

L.-C. Feng and R.-C. Chang 

-_ 
in memorv 

(4 @I 

(4 

Parent directory 
data synchronous 
write 

W 

Figure 2. Metadata update in the mhdir operation. Let C 
be the newly created directory and P be the parent 
directory of C. Let Pi and Pd (Ci and C,) be the inode 
and directory data block of P (C), respectively. Solid 
circles and rectangles are used to represent synchronous 
writes. A dotted circle represents a dirty inode, and a 
dotted line means the link is not yet updated to disk. 

parent directory of C. Let pi and Pd (Ci and Cd) 
be the inode and directory data block of P (C), 
respectively. 

As shown in Figure 2a, the first step of mkdir C is 
to create the new inode Ci, which is filled with initial 
information such as file mode, link count, user ID, 
etc. This inode is written to disk synchronously. In 
the second step, as sketched in Figure 2b, an empty 
and zero-filled 512-byte child directory data C, is 
created and written to disk synchronously, but the 
dirty inode Ci is left in memory. In the third step, as 
shown in Figure 2c, a synchronous write is issued to 
update the link count of the parent inode (increased 
by 1). Then, in the fourth step, shown in Figure 2d, 
the system initials the child directory structure, fills 
two directory entries dot (,‘.“) and dot-dot (,‘..“) 
(IEEE, 1990), and writes the child directory data to 
disk synchronously. The dirty inode Ci is left in 
memory. An inode is dirty if its memory contents are 
modified but not yet updated to disk. Finally, as 
shown in Figure 2e, a synchronous write is issued to 
update the parent directory data (this involves the 

directory entry that points to the child inode). Two 
dirty inodes Pi and Ci are left in memory. 

As illustrated above, there is one synchronous 
write for Ci, two for C,, one for Pd, one for Pi, and 
there are two dirty inodes Pi and Ci in memory that 
need to be written to disk later. Hence, five syn- 
chronous writes and two delayed writes are needed. 
Synchronous write will block the calling process and 
increase the response time; however, UFS needs 
these synchronous writes to keep the file system 
consistent. 

The file system contains many data structures 
(those metadata described in Section 3) to keep the 
status information. A file system is in a consistent 
state if the status information kept in those struc- 
tures does not conflict. For example, a disk block is 
either on the free list or assigned to a single inode; if 
a block number is not on the free list of blocks nor 
contained in a file, then the file system is inconsis- 
tent. To give another example, if an inode number 
appears in a directory entry but the inode is free, 
then the file system is also inconsistent. because an 
inode number that appears in a directory entry 
should be that of an allocated inode (Bach, 1986; 
Tanenbaum, 1992). 

Most file systems read blocks, modify them, and 
write them out later. Besides, many file operations 
require multiple phases (suboperations) to be ac- 
complished. If the system crashes before all the 
modified blocks have been written out, then the file 
system can be left in an inconsistent state. A utility 
program called fick is used in most UNIX systems 
to count, compare, adjust various metadata, and 
bring the file system back to the consistent state 
(McKusick and Kowalski, 1985; Tanenbaum, 1992). 
But if an arbitrary writing sequence is used to com- 
plete these operations, then the integrity problem 
will occur. This situation can be avoided by ordering 
the write operations properly (Bach, 1986; McKusick 
and Kowalski, 1985; Tanenbaum, 1992). For exam- 
ple, in the rename operation, if we remove its old 
name from old directory entry first and the system 
crashes before we add the new name to the new 
directory entry, the file will be totally lost. But if we 
write the new directory entry first, at least one 
version of the file will exist. 

Several ordering criteria can assist the processing 
of the fsck utility and are helpful for file system 
consistency. For example, when removing a file name 
from its parent directory, the modified directory is 
written to disk synchronously before it destroys the 
contents of the file and frees the inode. When re- 
moving the contents of a file and clearing its inode, 
the system frees and writes out the inode first (Bach, 



File System Performance 

1986). A data structure must exist and be initialized 
before any pointer is pointed to it. In the n&dir 

operation described above, the synchronous write of 
Ci in Figure 2a is issued to make sure that the newly 
created inode goes to disk before directory data and 
entries point to it. Similarly, the link count of Pi is 
increased and synchronously written to disk (Figure 
2c) before we add the dot-dot (“..“I (IEEE, 1990) 
directory entry into C, (Figure 2d). 

Most UNIX file systems write metadata modifica- 
tions to disk in a carefully chosen order to minimize 
file system corruption in the event of system failure. 
Due to the absence of any ordering mechanism in 
UFS, these metadata writes as written to disk syn- 
chronously as they happen to keep the required 
ordering (McVoy and Kleiman, 1991). 

In this article, we propose a metadata-ordering 
mechanism and its asynchronous write facility. Once 
we have such a facility, many synchronous metadata 
writes become unnecessary (McVoy and Kleiman, 
1991). All metadata-related operations are repre- 
sented as carefully arranged linearly ordered lists. 
As these file operations are processed, only the 
corresponding critical writing orders are kept. We 
reduce the number of these synchronous writes and 
improve file system performance by changing them 
to a sequence of ordered asynchronous writes. Be- 
cause the critical write ordering is kept, fick can be 
used to return the system to a consistent state when 
the system crashes before all related operations are 
accomplished (McKusick and Kowalski, 1985; UNIX, 
1990). 

For example, we can treat the entire mkdir opera- 
tion as a transaction, and transfer the results to disk. 
The transfer process (writing the ordered list to disk) 
must be robust enough to keep the file system con- 
sistent even if the system crashes during the transfer 
process. We consider the direct graph sketched in 
Figure 2e as a precedence graph and derive a linear 
order from it to prevent improper write ordering. As 
shown in Figure 2e, there are three cycles (P,-Pi%, 

C&,-C,, and P,-P&-Cd-Pi). To get the required 
linear order, we resketch Figure 2e as the acyclic 
graph shown in Figure 3. 

Two differences exist between the graphs illus- 
trated in Figures 2e and 3. First, the pointer pointing 
from Pd to Pi is ignored because it already exists on 
the disk or in the memory, and we ensure that Pi 

will appear on the disk before Pd points to it. The 
second difference is that update of the child inode is 
divided into two parts, Ci and Cf, to break the cycle. 
The first synchronous write illustrated in Figure 2a is 
reserved and named Ci. As a newly created directory 
inode, Ci is certainly not related to others besides its 

J. SYSTEMS SOFTWARE 47 
1996: 35:43-54 

Figure 3. Direct acyclic graph derived from Figure 2e. The 
directed links represent “depends on ” relations (e.g., Pd 
depends on Ci: Ci must arrive to disk before Pd). Com- 
pared with Figure 2e, the pointer pointing from Pd to P, 
is ignored, and the child inode’s update is divided into two 
parts Ci and C[, preventing formation of a cycle. 

parent, so this synchronous write does not violate 
existing linear ordering. The other modifications 
concerning the child inode, including its file content 
map, are written by the Ci operation. 

If we apply a topological sort to the graph shown 
in Figure 3, the required linearly ordered represen- 
tation illustrated in Figure 4a is derived. The first 
element in Figure 4a needs to be written to disk 
synchronously; the other four elements can be done 
asynchronously. We write the first element Ci in 
Figure 4a synchronously, because we do not want to 
maintain two copies of the child inode in memory. 
This means that Ci and Cl use the same in-memory 
data structure (child inode) but describe the state of 
the child inode at different times. Ci represents the 
state of the child inode at the stage illustrated in 
Figure 2a, and C[ represents the state of the child 
inode at the stage illustrated in Figure 2e. 

With this approach, only one synchronous write 
and four ordered asynchronous writes are required 

ci ---) P, --) Pi ---) Cd--, Ci’ 

(a) 

/p\ 

cl,i 

: 

Pd 

Cl c2 c. 
2,) 

(b) 

k C 1, d 

+ Pi 

C 2. d 
- 

) c, i’ 

+ c, i’ 

Figure 4. (a) A linearly ordered representation of the 
mkdir operation. (b) Merging two related mkdir opera- 
tions to reduce the number of disk operations. C, and C, 
are two newly created directories, and P is the parent 
directory of them. C,,i and C,,d (C, i and C,,,) represent 
the inode and directory data of C, CC,>, respectively. 



48 J. SYSTEMS SOFTWARE 
1996; 35:43-54 

L.-C. Feng and R.-C. Chang 

to accomplish the mkdir operation. Because the 
critical write order is kept, this approach does not 
compromise file system consistency (Bach, 1986; 
McKusick and Kowalski, 1985; McVoy and Kleiman, 
1991; Tanenbaum, 1992). The linearly ordered rep- 
resentation of other operations are derived case by 
case in a similar way. 

We list and compare the synchronous, asyn- 
chronous, delayed, and ordered asynchronous writes 
of several file system operations of UFS and our 
approach in Table 1. Synchronous write means issu- 
ing the write request and waiting for its completion. 
Asynchronous write means sending the write request 
to the driver strategy routine and returning immedi- 
ately. Delayed write means writing the data when 
the buffer space will be reclaimed by the system for 
other purposes. Ordered asynchronous write, pro- 
posed by us, is a flexible asynchronous write that can 
be issued at any proper time, but the critical write 
order is enforced. 

Representing metadata update operations as lin- 
early ordered lists yields other benefits besides 
reducing the number of synchronous writes. For 
example, as shown in Figure 4b, we make two new 
directories C, and C, under an existing parent 
directory P. If we use the original update policy, we 
need 10 synchronous disk writes and still leave three 
dirty inodes Pi, Cl,i, C,,i in memory. If we apply the 
asynchronous I/O concept and keep the corre- 
sponding linear orders, then we can merge these two 
mkdir operations and have the flexibility of choosing 
a better time (e.g., low disk load period) for updat- 
ing. In this way, we only need two synchronous 
writes and six ordered asynchronous writes that can 
be accomplished at the appropriate time. 

The only potential loss in our approach is that 
some metadata modifications may come to their disk 

locations a little later than in the original scheme. 
But it seems that few meaningful benefits are de- 
rived from such urgent synchronous writes. Because 
the data writes are usually delayed in most popular 
UNIX operating systems, we can shorten the timing 
difference of write operations between metadata 
and data, and so not update these metadata so 
urgently. Instead, we only keep the meaningful writ- 
ing orders of these updates and arrange a more 
effective and reasonable update policy. 

4. DESIGN AND IMPLEMENTATION OF THE 
ORDERED METADATA ASYNCHRONOUS 
WRITE FACILITY 

To implement the ordered metadata asynchronous 
write, many problems must be solved. First, we need 
to construct a linearly ordered representation of 
every file system operation that involves metadata 
modification. Once we have the linearly ordered 
representations, the second problem is how to de- 
sign an ordering mechanism to maintain the order of 
these disk writes. In particular, it is very important 
when we want to merge one or more related opera- 
tions to reduce the number of disk I/O. The last 
question (update policy) is how and when to accom- 
plish these ordered metadata writes to achieve good 
performance. 

Because of the popularity and attractive features 
of UFS, we preserve the original interface and exist- 
ing code as much as possible. This approach has the 
advantage of maintaining the modularity of UFS and 
inheriting all of the optimizations that have been 
done. Based on this decision, we designed and im- 
plemented an asynchronous metadata write order 
manager that keeps the required linear ordering. It 
is introduced in the following section. 

Table 1. The Synchronous, Asynchronous, Delayed, and Ordered Asynchronous Writes of Several Metadata-Related 
File System Operations in UFS and Our Approach 

UFS Our Approach 

Ordered 
Synchronous Asynchronous Delayed Synchronous Asynchronous Asynchronous Delayed 

Operations write write write write write write write 

mkdir 5 2 1 4 
close 1 1 1 1 
create 1 2 1 2 
link 1 1 1 1 
link 2 1 2 1 
unlink 1 2 1 2 
dir 1 2 1 2 
ml& 2 2 2 2 
chnwd 1 1 
chow 1 1 



File System Performance J. SYSTEMS SOFTWARE 49 
19%; 35:43-54 

4.1 Asynchronous Metadata Write 
Order Manager 

There are two main components of the asynchronous 
me&data w&e order manager (AMOM). The upper 
half is an order keeper, and its function is to manage 
those ordered update lists that come from the file 
system. It intercepts the incoming metadata write 
requests and merges them into the already existing 
ordered relations. We add several flags in the inode 
structure to assist the merging decision directly. For 
independent operation (not related to any previous 
unaccomplished operation), the overhead of this 
check is negligible. Certainly, we also need to elimi- 
nate any unnecessary metadata synchronous write in 
UFS and generate the corresponding linearly or- 
dered lists for those metadata-related operations. 
The lower half belongs to the asynchronous metudutu 
update mechanism, which is discussed later. Its func- 
tion is to write the next batch of ordered asyn- 
chronous metadata writes to the device driver inter- 
face (DDI). The relationship between AMOM and 
UFS is shown in Figure 5. 

Two data structures are used in AMOM: asyn- 
chronous write element and write ring buffer (Fig- 
ure 6). Each asynchronous write element represents 
either inode or directory data. For inode, we simply 
keep the inode pointer. For directory data, we need 
to record the vnode pointer and the directory’s length 
and offset in this vnode. 

The asynchronous write ring buffer uses different 
entries to represent different orders of precedence. 
The entries near the ring head take precedence over 
other entries. For those unrelated metadata updates, 
they can appear anywhere in the asynchronous write 
ring buffer. For example, they can appear in the 

UFS 

Device Driver 

Tllil 

Asynchronous Write Ring Buffer 

asynchronous Write Element 

Figure 6. The data structure used by the AMOM. 

same linked list under the first ring buffer entry in 
order to be updated to disk quickly. But for those 
related metadata updates, we must keep proper write 
order. This means that the predecessor must be in 
some linked list closer to the current ring buffer 
head than the successor. They cannot appear in the 
same linked list, because we don’t know which one 
will be completed sooner. 

We still use the mkziir operation sketched in 
Figure 2 as an example. After the completion of a 
successful mkdir operation, the file system will pass 
a four-element ordered list to the asynchronous 
metadata write order manager (Figure 7a). Assum- 
ing the original ring buffer is empty, the order 
manager will keep this request, as illustrated in 
Figure %. 

Figure 7c illustrates a situation in which we make 
two new directories C and E under the same parent 
P. When the second ordered list corresponding to 
the mkdir E comes to the order manager, the previ- 
ous operation mkdir C has not been completed. 
Thus, we can merge these two ordered lists and save 
two disk write operations. For those overlapped ele- 
ments Pd and Pi, we say that they have a hit. Figure 
7d illustrates another situation in which we make a 
new directory C under P, then make a new direc- 
tory E under C. In this case we hit both C, and Ci. 

Compared with mkdir, other metadata-related op- 
erations are easier. In most cases, the result is a 
one-element list indicating that the content of the 
inode is changed. For example, file size change will 
generate an inode synchronous write in UFS. 

Figure 5. AMOM. 

4.2 Ordered Metadata Asynchronous Write 

We have introduced the ordering behaviors of 
AMOM and its relationship with UFS. The second 
problem is how and when to write those ordered 
metadata write requests to disk. 



50 J. SYSTEMS SOFTWARE 
1996; 35:43-54 

Pd 

(a) 

Ci 

Ring Buffer 

Head 

Tail 

(b) 

U- P 

Tail 

Tail 

p\ 
C 

\ 
E 

(4 

Figure 7. The ordering behavior of the AMOM. (a) An 
ordered list passed from the file system mkdir operation. 
(b) Data structure used in AMOM and the internal repre- 
sentation of AMOM after inserting the list sketched in ~1. 
(c) Make two directories C and E under the same parent 
P; two requests Pd and Pi are overlapped. (d) Make a 
new directory C under P, then make a new directory E 
under C. Two requests C, and Ci are overlapped, but in a 
different way than in c. 

Two critical components are required in our or- 
dered metadata asynchronous write mechanism. 
First, an asynchronous write demon is necessary to 
trigger the lower half of AMOM to write the re- 
quests linked on the list under the current head 
entry of the ring buffer asynchronously. Another 
important component is a condition sensor. Its func- 
tion is to wake up the asynchronous write demon to 
write the next batch of jobs asynchronously when 
the previous batch of ordered asynchronous meta- 
data writes have been accomplished. 

L.-C. Feng and R.-C. Chang 

The asynchronous write demon is designed as a 
system process. Its main body is an infinite loop that 
writes the next batch of jobs on the ring buffer to 
disk asynchronously (sending them to DDI and re- 
turning immediately), and then it goes to sleep again. 
The demon process will be created as an asyn- 
chronous UFS (AUFS) file system is mounted. 

For the condition sensor, the problem is more 
complicated. As mentioned above, there are two 
kinds of asynchronous write elements. For an inode 
element, only one disk write will be generated. For a 
directory element, one or more disk writes may be 
generated depending on its range and contents. We 
cannot determine the actual number of disk opera- 
tions before searching the mapped memory region 
belonging to this vnode and finding out which pages 
are dirty. To make sure that all the work issued by 
the previous batch of the ordered asynchronous 
writes is accomplished, some bookkeeping mecha- 
nisms are required to identify which write requests 
have not yet been completed. 

To reduce implementation overhead, we take ad- 
vantage of the disk-scheduling algorithm. The SCSI 
disk driver is SVR4/MP uses an elevator algorithm 
to schedule disk requests. It uses two queuing lists, 
next and batch, both of which are sorted according 
to the requests’ disk addresses. The disk services 
those requests linked on the next list one by one. 
New requests are added to the batch list. When all 
of the jobs in the next list have been serviced, it 
changes head movement direction, moves all jobs in 
the batch list to the next list, and begins its service 
again. Now empty, the batch list begins collecting 
new incoming requests as usual. So it is safe to 
trigger a new batch of ordered asynchronous writes 
when the disk arms change direction, because any 
requests coming from this new batch only go to the 
batch list, and will not arrive at disk after all re- 
quests on the next list, including those jobs written 
in the previous batch, are accomplished. Therefore 
the critical writing orders are maintained. We add 
one line of code in the disk driver to wake up the 
asynchronous write demon when the disk service 
changes direction. 

Now we switch to the problem of update policy. 
The flexibility to choose any appropriate update 
policy to meet different user requirements is one of 
the most important advantages of our design. Those 
users who view reliability as the most important 
issue can adjust system parameters to write all meta- 
data updates as soon as possible, or write them 
synchronously. Those users who view performance 
as an imp&tant issue can get more file system 
performance by adopting delayed or periodic update 



File System Performance 

policies when the system writes their metadata up- 
dates to disk. 

Besides, the asynchronous write demon uses some 
system parameters, such as CPU load and disk queue 
length, to make decisions. This improves overall 
system performance. 

5. PERFORMANCE EVALUATION 

To understand the benefits of our mechanism and 
the performance behaviors of various update poli- 
cies, extensive performance evaluation was per- 
formed. The evaluation consisted of two parts. In 
the first part, we compared file system performance 
between the UFS and our modified UFS, which we 
named AUFS. Then, we used various update policies 
and evaluated their effects. 

5.1 Evaluation Environment 

Our testbed consisted of an AcerFrame 30OO/MP 
computer with a 50 Mhz Intel 486 processor. It 
contained 32 megabytes of main memory and a 
Seagate ST2383 SCSI disk. The 317-megabyte SCSI 
disk had two partitions. The first was a root partition 
that contained the operating system, and the other 
was an 80-megabyte test partition mounted on the 
directory/home2. The SCSI host adaptor was an 
Adaptec 1740 in standard mode. The system was 
running the USL SVR4/MP version 2 operating 
system, and all measurements were taken without 
network attachments. During each test, we umount 
and remount the test partition to eliminate the 
effects of memory caching. The root file system was 
running UFS, and the test partition was running 
either AUFS or UFS, according to the requirements 
of our experiments. The block size was 4 kilobytes in 
all file systems. 

5.2 Benchmarks 

Two benchmarks, the Andrew and Connectathon 
test suites, were used to evaluate our work. The 
Andrew benchmark (Howard et al., 1988) contains 

Table 2. Andrew Benchmark Results 

J. SYSTEMS SOFTWARE 51 
1996; 35:43-54 

five phases, which include the various file system-re- 
lated operations described as follows. 

Phase 1: many subdirectories are recursively cre- 
ated. 

Phase 2: stresses the file system’s ability to trans- 
fer large amounts of data by copying files. 

Phase 3: recursively examines the status of every 
file under the testing directory, without actually 
examining the data in the files. 

Phase 4: examines every byte of every file under 
the testing directory. 

Phase 5: is computationally intensive through the 
compilation of a large amount of files. 

The Connection test suites from SunSoft test the 
functionality of UNIX file systems by exercising all 
the file system-related system calls. It consists of 
nine tests: 

Test 1: file and directory creation test. 

Test 2: file and directory removal test. 

Test 3: does a sequence of get& and stat on the 
test directory. 

Test 4: executes a sequence of chmod and stat on 
a group of files. 

Test 5: read and write test. It writes a l-megabyte 
file sequentially and then reads it. 

Test 6: reads entries in a directory. 

Test 7: calls rename and link on a group of files. 

Test 8: calls 400 symlink and readlink on 10 files. 

Test 9: calls 1,500 stat+ on the test directory. 

5.3 Performance Results 

The result of the Andrew benchmark is illustrated in 
Table 2 and Figure 8. Our AUFS outperforms UFS 
in phases 1,2,3, and 5. In phase 1, the primary 
operation is mkdir, which we have reduced from five 
synchronous operations to one. So, we achieved the 
maximum enhancement (70% improvement). Al- 
though the dominant operations in phase 3 are 

Phase 1: Phase 3: Phase 4: 
Create Phase 2: Stat Grep Phase 5: 

directories Copy files touch inode touch byte oompile Total 

UFS 2.57 8.14 4.86 6 47.14 68.71 
AUFS 0.71 7.71 4 6.14 44.57 63.13 

This table shows the elapsed time (seconds) for each phase of the benchmark on each file system. Reported times are the average across 10 
iterations. 



52 

50 

5 

0 

J. SYSTEMS SOFIWARE 
1996; 35:43-54 

i 
1 2 3 4 5 

Various Phases 

Figure 8. The performance result of the Andrew bench- 
mark. 

metadata related, no synchronous writes are issued 
in either UFS or AUFS. Because the dominant 
operations in all other phases are not concerned 
with metadata, the improvement of AUFS is small. 
In sum, our scheme yields an 8% improvement over 
UFS. 

The results of the Connectathon test suite are 
illustrated in Table 3. We divide the nine tests into 
two groups as in Chutani et al. (1992). The first 
groups are metadata-related operations. The AUFS 
is better than UFS for all metadata-related opera- 
tions except test 4. No synchronous writes are gener- 
ated by chmod and stat in either UFS or AUFS. 
Because of the overhead of the asynchronous write 
facility, the performance of AUFS is lower than UFS 
in this test. Test 7, rename and link on a group of 
files, has many synchronous writes in original UFS; 

L.-C. Feng and R.-C. Chang 

our approach achieves maximum enhancement in 
this test. Although test 6 is classified in the Other 
group, there are 200 create and 200 rmdir calls 
before and after the readdir test. So, we achieved 
performance improvement. In sum, AUFS demon- 
strates 60% better performance than UFS. 

5.4 Update Policy 

We evaluate several update policies. The first policy 
writes the metadata to disk asynchronously but as 
soon as possible. Our experience indicates that in 
the worst case, our scheme accomplishes those 
metadata update requests just slightly later than 
UFS does. It is the least successful aspect of AUFS 
performance, but still meets the requirements of 
users who view reliability as the most important 
issue. Besides, various delayed and periodic update 
policies are also used in our experiments. 

We use the Connectathon test suites to evaluate 
various update policies. The performance results are 
summarized in Table 4 and Figure 9. 

Scheme 1 (immediate update policy) writes the 
metadata to disk asynchronously but as soon as 
possible. As mentioned above, under this scheme, 
AUFS accomplishes jobs just slightly later than UFS 
does. This version can satisfy those users who view 
reliability as the most important issue. Schemes 2 
and 3 are delayed update policies. Scheme 2 (3) 
wakes up our asynchronous write demon after a MO- 
(300-j tick timing delay after we detect a situation in 
which the previous batch of ordered asynchronous 
writes have all been accomplished. Schemes 4-6 are 
periodic update policies. Scheme 5 (4, 6) wakes up 
the asynchronous write demon every 300 (4,500) 
ticks (- 3 seconds). 

Based on these test results, the performance of 
AUFS is better than UFS in most tests, especially 
those tests emphasizing synchronous metadata write 
operations. Even the immediate policy outperforms 
UFS. As is illustrated in Table 4 and Figure 9, when 
the timing restriction is released, the performance is 
further improved. 

Table 3. Connectathon Test Suite Results 

Metadata Updates Others 

Test 1 Test 2 Test 4 Test I Test 8 Test 3 Test 5 Test 6 Test 9 

UFS 10.425 5.65 0.373 8.82 12.795 1.13 4.295 3.665 0.275 
AUFS 4.32 0.19 0.4 0.42 3.808 1.16 3.998 0.933 0.28 

This table shows the elapsed time (seconds) for each test of the benchmark on each file system. Reported times are the average across several 
iterations. 



File System Performance J. SYSTEMS SOmARE 53 
1996; 35:43-54 

Table 4. Connectathon Test Suite Results of Various Update Policies 

Metadata Updates Other 

Scheme Test 1 Test 2 Test 4 Test 7 Test 8 Test 3 Test 5 Test 6 Test 9 

UFS 10.246 5.926 0.388 6.66 10.182 1.142 3.976 3.74 0.264 
1 8.818 0.393 0.435 1.87 3.648 1.228 2.843 1.4 0.308 
2 4.727 0.197 0.408 0.442 4.134 1.22 3.966 1.122 0.284 
3 4.65 0.19 0.392 0.44 3.845 1.207 3.918 0.94 0.278 
4 8.47 0.245 0.4 1.13 3.645 1.205 3.99 0.945 0.275 
5 4.514 0.19 0.414 0.43 4.056 1.172 3.984 0.95 0.282 
6 4.526 0.19 0.39 0.42 4.283 1.138 3.948 0.934 0.268 

This table shows the elapsed time (seconds) for each test of the benchmark on each file system. Reported times are the average across several 
iterations. Scheme 1 accomplishes these metadata updates as soon as possible. Schemes 2 and 3 are delayed update policies with lOO- and 300-tick 
timing delays respectively. Schemes 4-6 are periodic update policies. Scheme 4 wakes up the asynchronous write demon every 4 ticks. Scheme 5 (6) 
wakes up the demon every 300 (500) ticks. 

6. CONCLUSIONS 

We have designed and implemented an ordered 
metadata asynchronous write facility in a UNIX 
system. Many synchronous metadata writes are elim- 
inated in our approach, and a sequence of ordered 
asynchronous writes is issued. Under the results of 
the Connectathon test suite, 60% performance im- 
provements are experienced. As demonstrated in the 
previous section, flexibility is one of the most impor- 
tant advantages of our asynchronous write facility. 
We can adjust system behavior to meet uses’ re- 
quirements. If urgent synchronous writes are not 
necessary, then we can trade them for further per- 
formance improvement. Because we choose the writ- 
ing order carefully when we write these ordered 

test1 lest2 lest4 test6 lest7 test6 

Figure 9. Results of metadata-related tests of Cormec- 
tathon test suites under various update policies. Immedi- 
ate/y means to accomplish these metadata updates as soon 
as possible. Delayed, delayed update policy. Periodic, peri- 
odic update policy. 

asynchronous metadata operations to disk, it does 
not compromise file system consistency. 

Some issues need to be studied further, for exam- 
ple, the behavior of the mechanism under various 
update policies. This can help us to control the 
mechanism more exactly and construct a high-per- 
formance adaptable update policy. Another interest- 
ing area is how to use this facility to get more 
benefits, especially by applying it to other related 
subsystems to achieve even higher performance. 

ACKNOWLEDGMENTS 

This research was partially supported by the National Sci- 

ence Council of the Republic of China under grant 
NSC-0408-EOO9-055, 

REFERENCES 

Akyiirek, S., and Salem, K., Adaptive block rearrangement 
under UNIX, in Proceedings of the I993 Summer 
USENIX Conference, 1993, pp. 307-321. 

Bach, M., fihe Design of the UNIX Operating System, 
Prentice-Hall, 1986, pp. 60-89, 133-140. 

Baker, M. G., Hartman, J. H., Kupfer, M. D., Shirriff, 
K. W., and Ousterhout, J. K., Measurements of a dis- 
tributed file system, in Proceedings of the 13th ACM 
Symposium on Operating System Principles, 1991, pp. 
198-212. 

Buck, A. L., and Coyne, R. A., An experimental imple- 
mentation of draft POSIX asynchronous I/O, in Pro- 
ceedings of the winter 1991 USENIX Conference, 1991, 

pp. 289-306. 
Chutani, S., Anderson, 0. T., Kazar, M. L., Leverett, 

B. W., Mason, W. A., and Sidebotham, R. N., Transarc 
Corporation, The episode file system, in Proceedings of 
the Winter 1992 USENIX Conference, 1992, pp. 43-60. 

Floyd, R. A., and Ellis, C. S., Directory Reference Patterns 
in Hierarchical File System, IEEE Trans. Knowf. Data 
Eng. 1, 238-247, (1989). 

Howard, J. H., Kazar, M. L., Nichols, S. G., Nichols, D. A., 
Satyanarayanan, M., Sidebotham, R. N., and West, 



54 J. SYSTEMS SOFTWARE 
1996; 3943-54 

L.-C. Feng and R.-C. Chang 

M. J., Scale and Performance in a Distributed File 
System, ACM Trans. Comp. Sys. 6,51-81, (1988). 

IEEE, POSIX-Part I: System Application Program Integace 
@PI) [C language], Standard 1003.1, IEEE, 1990. 

Leffler, S., McKusick, M., Karels, M., and Quarterman, J., 
The Design and Implementation of the 4.3BSD UNIX 
Operating System, Addison-Wesley, 1989. 

McKusick, M. K., and Kowalski, T. J., Fsck-the UNZXfile 
system check program, in UNIX System Manager’s Man- 
ual, 1985, pp. 5:1-522. 

McKusick, M. K., Joy, W. N., Leffler, S. J., and Fabry, 
R. S., A Fast File System for UNIX, ACM Trans. Comp. 
Syst. 2, 181-197 (1984). 

McVoy, L. W., and Kleiman, S. R., Extent-like perfor- 
mance from a UNIX file system, in Proceedings of the 
Winter 1991 USENIX Conference, 1991, pp. 33-43. 

Muller, K., and Pasquale, J., A high performance multi- 
structured file system design, in Proceedings of the 13th 
ACM Symposium on Operciting Systems Principles, 1991, 
pp. 56-67. 

Ousterhout, J., K., Da Costa, H., Harrison, D., Kunze, 
J. A., Kupfer, M., and Thompson, J. G., A trace-driven 
analysis of the UNIX 4.2 BSD file system, in Proceed- 
ings of the 10th ACM Symposium on Operating System 
Principles, 1985, pp. 15-23. 

Peacock, J. K., File system multithreading in system V 
release 4 MP, in Proceedings of the 1992 Summer 
USENIX Conference, 1992, pp. 19-29. 

Ruemmler, C., and Wilkes, J., UNIX disk access patterns, 
in Proceedings of the 1993 winter USENIX Conference, 
1993, pp. 405-420. 

Staelin, C., and Garcia-Molina, H., Smart file systems, in 
Proceedings of the winter 1991 USENIX Conference, 1991, 
pp. 45-51. 

Tanenbaum, A., S., Modem Operating Systems, Prentice- 
Hall, Englewood Cliffs, New Jersey, 1992, pp. 175-179. 

UNIX Software Operation, UNIX System V Release 4: 
System Administrator’s Guide, Prentice-Hall, Englewood 
Cliffs, New Jersey, 1990, pp. 5:77-5:118. 


