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Abstract—In this paper, a biologically inspired, CNN-based,
multi-channel, texture boundary detection technique is presented.
The proposed approach is similar to human vision system. The
algorithm is simple and straightforward such that it can be
implemented on the cellular neural networks (CNNs). CNN con-
tains several important advantages, such as efficient real-time
processing capability and feasible very large-scale integration
(VLSI) implementation. The proposed algorithm also had been
widely tested on synthetic texture images. Those texture images
are randomly selected from the Brodatz textures database [1].
According to our simulation results, the boundaries of uniform
textures can be detected quite successfully. For the nonuniform
or nonregular textures, the results also indicate meaningful prop-
erties, and the properties also are consistent to the human visual
sensation. The proposed algorithm also has been implemented on
the CNN Universal Machine (CNN-UM), and yields similar results
as the simulation on the PC. Based on the efficient performance of
CNN-UM, the algorithm becomes very fast.

Index Terms—Cellular neural networks (CNNs), early vision
system, Gabor filter, retinex model, texture segregation.

I. INTRODUCTION

ESEARCHERS in recent decades have elucidated signal
Rtransduction in the retina and the function of the visual
cortex. The highly flexible nature of the neural circuits in the
visual cortex, especially during the critical period (the early vi-
sion period) has been an interesting subject for studying and de-
veloping the neural plasticity.

Early vision, also known as the pre-attentive vision, repre-
sents a set of information processing mechanisms of the first
stage of the visual processing. These mechanisms are operated
in parallel across the visual field, and are believed to be used for
detecting the most basic visual features, such as contrast, edge,
contour, grouping, corner, junction, brightness and lightness
computation for surface perception. On the other hand, Jain and
Farrokhnia [2] proposed their research results as follows: the
human vision system included two fundamental features: one is
that the difference of light intensity that projects into the retina,
the other is that the behavior of the retina is similar to the band-
pass filtering 0. Those facts implicate that the abrupt changes
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on the intensity of light will bring the visual cortex stronger
stimulation, and those abrupt changes become the so-called
boundaries. Sometimes those boundaries have been called the
first-order features. In general, the first-order features equal the
average of the local areas. According to some investigations,
the boundary detection algorithms based on this features are
related to the zero crossing of the Laplacian of Gaussian (LoG)
and, sometimes, the Canny’s boundary detector [2]. There is
one common issue in computer vision that it does not make a
distinction between the contours of objects which are the actual
primitives needed in the most application. It reveals that there
are still some other mechanisms during the visual perception.
Thus, this paper will focus on the texture segregation.

The segregation of the visual scenes (better known as
boundary detection) is the fundamental process of the early
vision. That is also an important and fundamental issue in
image processing. Boundary detection can be applied in many
areas, such as object tracking, stereo vision, pattern recogni-
tion, etc. Basically, boundary detection is used to separate the
specific partition of the images into related regions, and thus
the boundaries will be extracted. Or in other words, boundary
detection is used to compare the difference between the spatial
related local features of the images. The procedure of those
processing is not an easy problem in the image processing area.
However, it seems to be an intuitive ability in the human vision
system, obviously.

The human visual system is able to effortlessly integrate the
local features to construct our rich perception of patterns, de-
spite the fact that the visual information is discretely sampled by
the retina and the cortex. According to some biological and com-
putational evidences, some kinds of data compression procedure
occur at a very early stage in the human vision system [2]. More-
over, many physiological evidences imply that some form of this
compression mechanism is involved in the mechanism locating
the boundaries in the image [3]. In the early 1960s, there was
a research result which implied that the majority of neurons in
the primary visual cortex respond to a line or a boundary of a
certain orientation in a given position of the visual field [2]. In
1981, Hubel and Wiesel found two types of orientation-selective
neuron, one of that is sensitive to the areas of lines and bound-
aries, called simple cells, and the other is not, called complex
cells [4]. The receptive field (RF) of the simple cells can be
modeled by the Gabor function, and it has been widely used
for information extraction, which is the so-called second-order
feature [3], [5]. The mechanism of second-order feature extrac-
tion is more commonly known as the filter-rectify-filter cascade.
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This consists of the early linear filtering subunits, a nonlinearity
(e.g., rectification), and a late linear filter.

At first, give a definition to texture. Unfortunately, in the au-
thor’s knowledge, there are not any precise and identical defi-
nitions to texture. Although there doesn’t have any best defini-
tion for texture, those features are so obvious that it can not be
neglected. Some researchers have proposed different texture de-
scriptions. The “definition” of texture is formulated depending
on the particular application and there is no generally agreed
upon definition. Some perceptually motivated examples have
been given as follows.

* “We may regard texture as what constitutes a macroscopic
region. Its structure is simply attributed to the repetitive
patterns in which elements or primitives are arranged ac-
cording to a placement rule [6].”

* “Aregion in an image has a constant texture if a set of local
statistics or other local properties of the picture function are
constant, slowly varying, or approximately periodic [7].”

* “The notion of texture appears to depend upon three ingre-
dients: i) some local *order’ is repeated over a region which
is large in comparison to the order’s size; ii) the order con-
sists in the nonrandom arrangement of elementary parts;
iii) the parts are roughly uniform entities having approx-
imately the same dimensions everywhere within the tex-
tured region [5].”

Bovic et al. (1990) give a very detailed analysis of the
Gabor function which uses localized spatial filters for the tex-
ture feature extraction [8]. Bovic mentioned three supervised
approaches to select the filter locations using the empirical
information based on the power spectrum characteristics of
the individual textures: first, for stronger oriented textures, the
most significant spectral peak along the dominant orientation
direction is used as a filter location. Second, pick the lower
fundamental frequency to identify periodic textures. Third, for
nonoriented textures, using the center frequencies of the two
largest maximum is recommended. It is clear that an automated
method is more attractive.

Dunn and Higgins developed a method for selecting optimal
filter parameters [9]. This is a supervised approach that focused
mainly on using the minimal number of filters. Only the specific
filter, that separates two textures optimally, is used to partition
an image. The optimal filter responds strongly to one class, and
a lack of textural information of the other class may be also
expressed. This kind of class is not identified to have a particular
characteristic but lacking a characteristic of another. A more
global solution to the problem is spreading filters throughout
the frequency-domain field to capture salient information.

By providing the uniform coverage of the spatial-frequency
domain with the Gabor filters, the problem of the selected
central frequency is avoided. Jain and Farrokhnia [2] imple-
mented the real Gabor filters for the texture segmentation
using frequency bandwidth of one octave, center frequency
spacing of one octave, angular bandwidth of 45°, and an-
gular spacing of 45° 0. The frequencies used for filters are as
follows:1v/2, 2v/2, 4v/2,...,(N./4)v/2 (cycles per image
width).

For the textures with distinct spectral peaks which correspond
to some global regularity, Tan proposed a useful method [10 ] to
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design the Gabor filters automatically. The central step in the al-
gorithm is a spectral detection. It detects a global spectral peak,
and repeatedly detects conspicuous peaks by erasing-operation
on the spatial frequency plan. The power spectrum of a small
neighborhood (e.g., 7 x 7) around the detected peak is set to
zero. The iteration of the peak detection terminates when the
ratio of the magnitude of the current peak to that of the first
(e.g., the highest) peak is less than a pre-specified value (e.g.,
80%).

In this paper, first, the related knowledge from physiology and
psychophysics will be introduced. Next, proposed algorithm,
so-called CNN-based hybrid-order texture segregation will be
presented. Third, some experiments will be shown. Finally, the
conclusions follow.

II. METHOD

A. Cellular Neural Networks

The cellular neural network (CNN), also known as the cel-
lular nonlinear network, first introduced by Chua and Yang [11]
as an able to implement alternative to fully connected neural net-
works, has evolved into a paradigm for those types of array [12].
The CNN paradigm provides the framework for the computa-
tion of an algorithmically programmable array computer on a
chip: named the CNN Universal Machine (CNN-UM). Its pow-
erfully computing characteristic enables the realization of com-
plex image processing tasks. However, it is not necessary to con-
struct complex analog-logical circuits, such as the CNN-UM for
a special CNN application. Thus, this study aims at the prop-
erty of the proposed algorithm to design a suitable CNN-based
circuit.

1) CNN-Based Hybrid-Order Texture Segregation: In this
paper, a new boundary detection algorithm is proposed. This
algorithm combines the first and the second-order features for
modeling the pre-attentive stage of human visual system. Fig. 1
shows the flow chart of the proposed approach: first, the first-
order features have been extracted by the Gaussian low-pass fil-
ters and the second-order features have been extracted by the
Gabor filters, respectively. Assume that each pixel of the output
is defined by an N + 1 dimensional vector. After the first-order
features extraction, the vector contains N Gabor filters and /
Gaussian filter. Next, measure the difference of each pixel with
its neighbor. Since the pixels, which belong to the same region
have similar features, the level of difference among those pixels
should be smaller than the difference to pixels existing in other
regions of the image. Third, these pixels with values larger than
a specific threshold are kept, and set the others to zero. Coarse
boundaries which are look like Bell-shaped distribution would
be got. Consequently, these boundaries can be thin by local peak
detection. Finally, the boundaries which are similar to human
visual system can be obtained. Followed sections are going to
introduce each block of the proposed algorithm.

First-Order Feature Extraction: As the introduction in the
previous section, the ganglion is accomplished by the so-called
“center-surround” organization of the RF, in which it’s excita-
tory and inhibitory subfields are organized into circularly sym-
metric regions. This fact implies the RF of the ganglion is sim-
ilar to the Difference of two Gaussians (DoG).
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Fig. 1. Proposed algorithm. First-order features fi, fs, f3, ..., f, are gen-

erated by a Full-wave Rectifier, and a set of Gabor-type filtering. The first-
order feature f,,+; is generated by a Gaussian Mask. The second-order features
Fy,Fy, F;, ..., F, are generated by a set of Gaussian Mask. The following
processors, including Distance Measure, Saturation, Threshold, Local Peak De-
tection, and Hybrid Edge, use the features Fy, F», F5, ..., F,,and f, asthe
input and determine the boundaries as the description in the proposed algorithm.

Subsequently, this paper describes how the DoG function de-
tects boundaries: first, two Gaussian filters with different values
of o are applied in parallel to the images. Afterwards the dif-
ference of the two smoothed instances is computed. It can be
shown that the DoG operator approximates the LoG one which
has been widely used in boundary detection.

The RF of the ganglion cells can be considered as the linear
spatial weighting function. That is, the retinal ganglion cell can
be modeled as a linearized function, where the RF implies where
the weights are. Using the function to characterize the shape
of the RF based on the DoG model, the output of the retinal
ganglion cells can be calculated as follows:

0= R(z,y)I(x,y)

ey

where I(-) is the input image and R(-) represents the opera-
tion of the retinal ganglion cell. R(-) in (1) and (2) represents
a biological structure named the RF of retinal ganglion cells.
Unfortunately the exactly model of this biological structure is
still unknown. Some physiological experiments indicated that
the RF of the ganglion cells exhibits a center/surround charac-

2279

(b) (©)

Fig. 2. Example which demonstrated the effect of first-order feature in
boundary detection. (a) Input images which can be obtained from Brodatz
texture database (D101-D102) [1]. (b) Boundary has been detected by
second-order feature. (c) Boundary has been detected by first-order feature.

teristic. Furthermore, Thiem state that the RF of ganglions cells
can be modeled as

R(z,y) = A(go (7,y))

where A(-) represents a Laplace operator and g,(-) is a
Gaussian function. According to Hubel, under the optimum
lighting condition, the central part of the RF is about 10 pym (4
csp) [5]. Thus, Thiem also recommends a standard deviation of
o = (5 pm)/(v/2) = V2 (csp) [6].

For the whole of retinal ganglion cells with identical RFs, the
output of each cell in the array can be obtained as follows:

O(ﬂ?o,yg) = Z R(x —To0,Y — yO)I(xvy)

@)

where O(z, yo) is one of the output of the retinal ganglion cells,
whose RF is centered at position zo and yg.

The operation of DoG function can be divided into two
stages: the Gaussian convolution and the gradient operation. The
Gaussian convolution is like extracting the mean of the local
region which is the so-called first-order feature, and the gradient
operation as a measure for the variation of the first-order feature.

For the sake of combining of the first-order and the second-
order features, first, use the Gaussian convolution for extracting
the first-order features. And then, the gradient processing will
be applied after combining the second-order features. Fig. 2 il-
lustrates the coarse boundary between two patterns based on
first-order features.

There is more than one type of features that are mixed, and
only the first- and second-order features are insufficient. Fig. 2
demonstrates the situation for the patterns (D101-D102 from
Brodatz textures [1]) with hybrid-order feature. Note that the
first-order feature is dominant.

For convenience, a general low-pass operation has been used
to emulate the Gaussian function in the CNN. The template can
be defined as follows [13]:

0.1 015 0.1 00 0
A=[015 0 015|,B=[0 0 0].2=0. (3)
0.1 015 0.1 00 0
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Fig. 3. Example of 2-D Gabor type filtering. (a) Standard 2-D Gabor type filter in time domain. (b) In frequency domain.

Second-Order Feature Extraction: As the description in the
previous section, the RFs of V1 cells are orientation selective,
and it can be modeled by the Gabor function [3], [5]. The Gabor
function is an adaptive bandpass filtering method which con-
structs a complete but nonorthogonal basis set. On the other
hand, the Gabor function consists of a Gaussian function which
is modulated by a sinusoidal function and can be described as
follows [14]:

1 1 /22 42
9K,s (z,y) = <27r0 JJ) exp |:—§ (ﬁ + 2 4)
Uy s by

and the Fourier transform of (4) is as follows:

where o, = 1/ (270,) and 0, = 1/ (270y).

An example of the Gabor function has been presented in
Fig. 3, where Fig. 3(a) is the impulse response of a stan-
dard Gabor filtering in time domain, and Fig. 3(b) is its
frequency-domain representation. Expanding the signal using
this basis provides a localized frequency description.

In practice, the Gabor function can be divided into real (even)
part and imaginary (odd) part as follows:

ge (z,y) =h(z,y)cos(2mFz') (6)
gs (z,y) =h (z,y)sin(2r Fz’) (7

where 2’ = x cos ¢4y sin ¢, and h(x, y) is a Gaussian function.

Clearly, (6) and (7) are very similar to the each other. In fact,
(7) is just a phase shifted version of (6) Both of them can be used
to extract the local features of the spatial domain. Based on some
of the psychophysical theories, Malik and Perona provide justi-
fications which indicate that only even-symmetric filters can be
used. In this paper, real-valued, even-symmetric Gabor filters
are used.

For implementation of the 2-D Gabor-type filtering, ac-
cording to Shi [15], the template in the CNN for the 2-D Gabor-
type filtering can be represented as follows [15]:

0 e~ JWyo 0
A= |elw=0 _ (4 + )\2) e~ Iw=0
| O elWyo 0
[0 0 0
B=10 X o0
|10 0 0
z=0. ®)

Shi’s CNN-based Gabor-type filtering provides good re-
sults. However, the complex template becomes a problem in
the implementation on the CNN-UM. Thus, a linear-region
CNN-based Gabor-type filtering is proposed. The proposed
algorithm can be separated into a two steps CNN processing .
These can be presented as follows.

First Step:
a b c 0 0 O

Ai=|d —(24X?) d|.,Bi=|0 X 0|, =0 (9
c b a 0 0 O

c d a 0 0 O
Ay=|b (2422 By= [0 A 0|,[b=0
a d 0 0 0
(10)

where a, b, ¢, and d is used to determine the orientation of the
Gabor-type filtering. Here A can be used to determine the band-
width of the filtering. For example, Fig. 4 presents the frequency
response of the proposed CNN-based Gabor-type filtering with
the following parameters: a = 0,b = 1,¢ = 0,d = 0, and
A = 0.9. The frequency response is given by the following.
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Fig. 4. Example of proposed Gabor-type filtering.

First Step:
. . 22
H, (6]“’17@'7“)1/) =3 T = 2eos ()] forall w, (11)
Second Step:
. . 22
H, (e]“’”,ej‘“y) = , forallw,. (12)

—2— X2 —2cos (wy)

Thus, the frequency response of the proposed CNN-based
Gabor-type filtering can be represented as shown in (13) at the
bottom of the page. An example of proposed Gabor-type fil-
tering is shown in Fig. 4

In fact, the proposed linear-region, CNN-based Gabor-type
filtering is not able to adjust the frequency-related parameters.
However, it can be implemented by the CNN-UM. Conse-
quently, the entire proposed approach can be realized.

Gabor Filtering Bank Set: Besides the orientation selec-
tivity, the Gabor filters are also frequency selective. With these
two properties, Daugman extended the original Gabor filter
to a two-dimensional (2-D) representation [16]. There are
many researches which focus on the Gabor filter bank. Jain
and Farrokhnia (1981) suggested a bank of Gabor filters, i.e.,
Gaussian shaped bandpass filters, with dyadic coverage of
the radial spatial frequency range and multiple orientations 0.
Fig. 5 shows an example of the Gabor filtering bank set.
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Gabor has first recognized and introduced a time-frequency
version of Heisenberg’s inequality as follows:

oo > =

(14)

where o, and o are the time and frequency standard devia-
tions, respectively. The Gabor filter is just the modulation of the
Gaussian function. For the Gabor function it has been proven
that the action only causes a shift in the frequency domain, and
it wouldn’t affect the resolution of the Gaussian function in both
the spatial and the frequency domain. It means that the Gabor
function inherit the properties of the Gaussian possessing op-
timal resolution in both domains, and those properties imply the
Gabor filter is suitable for the texture segregation.

Since the goal of this paper is designing an algorithm which
can be implemented on the CNN-UM, the structure could not
be complex-valued. In this paper, four Gabor filters are used
for extracting the second-order features in the experiments. All
of these Gabor filters have the same Gaussian shape in the fre-
quency domain and scatter uniformly in four orientations.

Full-Wave Rectification: Just like the other filter-rectify-filter
model, the rectifying operation is taken after the operation of the
Gabor filters. It has been generally acknowledged that V1 cells
have a property which looks like the half wave rectification. The
intervening rectification ensures that the fine-grain positive and
negative portions of the carrier will not disable another when the
smoothing operation is performed.

Fig. 6(b) demonstrates the output of the Gabor filtering
without rectification, and Fig. 6(c) is the result of the same
operation but with rectification. The white pixels in the image
represent the pixels that the matching features have been
detected by the Gabor function. This result is similar to the
behavior of the V1 cells. Because of the restriction of display,
there are some pixels with negative response which do not
appear in Fig. 6(b). In Fig. 6(c), the boundary of the regions is
more apparently, and that is because of the rectification turning
the negative response to positive.

For the implementation of the full-wave rectification by the
CNN, the template can be defined as follows:

0 0 O 0 0 O
A=10 0 0|.,B=|0 b 0],2=0 (5)
0 0 O 0 0 O
where
1, ifvy,; 20
b= { —1, otherwise. (16)

Gaussian Post Filtering: After the cells were stimulated by a
specific signal, for example, a bar with specific orientations, the

H (7 e?“v) = Hy (7%, /) Hy (7, 7v)

)\4

— A% —4X2 — 2X2 cos (wy) + 6 cos (wy) — 4 cos (wy) + 4 cos (wy ) cos (wy) — 4

13)
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Fig. 5. Example of Gabor filter dictionary. (a) Gabor-type filter bank set, and (b) Feature space of Gabor filter dictionary.

Fig. 6. Example demonstrates the effect of rectifying. (a) Input. (b) Output
without rectifying. (c) Output with rectifying.

output of the V1 cells responding to same direction will aggre-
gate together. The region of cells which contain the same prop-
erties will respond stronger than the other regions. It is consis-

Fig. 7. (a) Input. (b) Output before rectification. (c) Output after rectification.

tent with the “localization” properties of the textures. This effect
can be simulated by a Gaussian post filters. It looks like the av-
eraging with different weighting which is inverse proportional
to the distance from the center of the post filter.

Fig. 7(b) shows the result after the processing of rectification,
and Fig. 7(c) is the result that Fig. 7(b) has been processed by the
Gaussian post filtering. Note that in Fig. 7(c) there is a ramp-like
feature profile. The next step is for detecting the position where
the variation of difference is maximal.

For the implementation of the Gaussian post function in the
CNN, the template can be defined as the same as in (3) [13].

Difference Measure: The features which have been extracted
by Gaussian post filtering can be described by an N-dimen-
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sional vector. Each feature vector can be regard as a point in
N-dimensional space. According to Chen [17], the difference
is represented by the distance in N-dimensional space [17].

There is an important property of the textures. That is the
pixels which are aggregated together usually contain similar fea-
tures. Based on this property, some algorithms use gradient for
extracting the features [10]. In this paper, only the difference be-
tween the features of each pixel to pixels right behind and below
to it has been calculated.

Saturation: In the proposed algorithm, when there are more
than two kinds of textures in the test patterns, there will be more
than one boundary. Because these boundaries usually do not
have similar intensity, choosing threshold becomes an important
problem.

For the sake of finding the threshold, the mean of the differ-
ence of the total pixels is used as the threshold. Usually, some
boundaries with relative lower magnitude are eliminated. This
is because first, a relative huge region be considered for mea-
suring the local feature. Next, the scale of difference between
different patterns varies enormously. Obvious boundaries and
cause relatively larger difference and raise the mean of differ-
ence. The boundaries which are not so obvious causing relative
lower difference will be eliminated.

For attacking this problem, a natural-log transform can be
used for simulating the saturation effect. It can suppress stronger
responses which may affect the threshold too much. Meanwhile,
it still keeps the location of maximum difference where the
boundaries lying.

The strength of the responses reflects the level of differences
between two local regions, but it may be not so linearly con-
sistent to our perceptional feeling. According to some biolog-
ical theories, in the human vision system, the dynamic range
of response is limited, and the range of response is not linearly
proportional to stimulate [18]. Natural log transform is an ordi-
nary and important operation and it stretch the range of lower
responses where it need to judge whether there are boundaries
or not.

Local Maximum Detection: The coarse boundaries detected
after taking threshold generates a range where the boundaries
are probably located on. Thus, local maximum detection is used
to detect the best assumption of the location of the boundaries.
It assumes that the difference among different patterns should
be maximal at their boundary.

Local maximum detection can be implemented by the CNN
quiet easily. Fig. 8 is an example which demonstrates the
peak detection in the algorithm. Fig. 8(a) is an input image,
and Fig. 8(b) is the detected coarse boundary. Fig. 8(c) is the
3-D version of Fig. 8(b), and in this figure the vertical axis
is intensity. Fig. 8(d) is the result of Fig. 8(c) by taking peak
detection. Fig. 8(e) is the superposition of Fig. 8(a) and (c).
From Fig. 8(e) the detected boundaries have high accuracy
which is consistent to our assumption can be observed.

For the implement of the local maximum detection in CNN,
the template can be defined as follows:

,2=23.5

7)

b

Il
coo
o wo
coo
&

Il
S~ o O
o~ O o
S o O
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Fig. 8. (a) Inputimage. (b) Coarse boundary. (c) 3-D version of (b). (d) Results
after peak detection.

where

if Vuyy = Vuyy = 0

otherwise. (18)

0.5,

b= {07

Equation (17) and (18) performs what the algorithm

needs. However, that can not be implemented in CNN-UM

because of nonlinear features. Thus, some other solu-

tions for CNN-UM have been required. In this paper,

BLACK_AND_WHITE_SKELETONIZATION has been

suggested for this operation if the algorithm needs to imple-
ment this operation in CNN-UM [19].

III. EXPERIMENTS

In this paper, the images which consist of a number of dif-
ferent test patterns have been applied to the algorithm. Most
of those test patterns are synthesized by textures from Brodatz
album [1], and it also has become a standard for evaluating tex-
ture algorithms. Each texture pattern that has been used here are
640 *x 640 pixel 8-bit gray-scale images, respectively.

In the experiments, proposed algorithm has been simulated
both on MATLAB and CNN-UM. Followed section will discuss
the results, respectively.

A. Simulations

In our experiments, first, implement proposed algorithm in a
computer. There are some parameters need to be selected:

The number of Gabor filters and their parameters (U, V, o)
which decide the shape and orientation of the Gabor filters in
the frequency domain. The Gabor filtering is computation inten-
sive, and increasing the number of the Gabor filters will increase
computation loading dramatically. On the other hand, unneces-
sary and useless feature extracted by the wrong-designed Gabor
filters may cause wrong boundaries.
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Input Images

Fig. 9. Simulation results of proposed algorithm.

The o, of the post Gaussian filter, which decides the
smoothing level. Increasing o can eliminate more noise, but
the accuracy of the boundary may decrease. Because both the
Gabor filters and the Gaussian filters have spatial information,
the values of o, must cooperate with o to obtain a better result.

Designing above parameters is an important but sophisticated
issue. Designing center frequencies of the Gabor filters is dis-
cussed in filter-design approaches. There is including the unsu-
pervised methods; such as the algorithm proposed by Jain, and
supervised methods; such as algorithm proposed by Dunn [20].
The algorithm in this paper is a kind of unsupervised method.
That means all of the information of input patterns is unknown.
Nevertheless, the emphasis of this paper is not on optimizing
the design of the Gabor filters, but rather proposing a simple
algorithm modeling early vision and being able to implement
on CNN. Parameters as follows are empirically chosen and they
are all the same in the following experiments without indicating
specifically:

pattern size(Brodatz texture): 640 * 640 pixels;
orientation ¢: 0°, 45°, 90°, 135°;

center frequency F: 1/32, 1/16, 3/32, 1/8 cycles/pixel;
o of Gabor filter: 16 pixels;

down sampling rate M: 3;

o4 of post Gaussian filter: 25 pixels;

mask sizes of Gabor and Gaussian: 30, 30.

The simulation results have been shown in Fig. 9. In the re-
sults, most cases of texture boundaries are able to be extracted.
Only few cases are not. On the other hand, in the cases which
boundaries are not able to be extracted, the results also indi-
cate meaningful properties which consistent to human visual
sensation.
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Fig. 10. Example of dividing of the input images.

B. Implementation on CNN-UM

In the experiments, proposed algorithm has been imple-
mented on ACE4K Chip. Because of the limitation of current
technology, the size of cell array has been limited. That be-
comes to the major problem in the implementation of proposed
algorithm on CNN-UM. For example, the chip that has been
used for implementing proposed algorithm contains cell array
64 by 64. It is too small to analyze the texture. For the sake
of higher resolution for obtaining better performance, some
necessary operations have been performed before proposed
approach: first, each input image has been divided into several
sub-images. Next, process each sub-image, respectively, with
same parameters. Fig. 10 shows how to divide the input images.
Note that there are overlapped areas between sub-images be-
cause the boundary effects of the cell array have to be avoided.
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Fig. 11. Implementation results of proposed algorithm.

Another issue in the implementation of proposed algorithm
on CNN-UM is that some nonlinear templates are not able to
be implemented on the chip. Thus, several proposed operation
is not able to be implemented directly. For those operations,
another operation which is able to be implemented on the chip
is chosen and the result is similar to the results of the simula-
tions. Even more, some operations in the proposed algorithm
need to be disabled and take the trade-off. For example, local
maximum detection operation contains nonlinear template
and thus, it can not be implemented on ACK4K Chip. Hence,
BLACK_AND_WHITE_SKELETONIZATION is chosen to
replace it. Fig. 11 shows the results of implementation of
proposed algorithm on ACE4K Chip.

C. Discussions

In this section, some properties of the proposed approach is
discussed. The following describes how to estimate the error.

Only the case that synthesizes two texture patterns in Brodatz
texture is considered. In the algorithm, every boundary is inde-
pendently. It is hard to judge the accuracy if multi-boundaries
simultaneously is considered. Especially when some boundaries
are detected and the others are not.

The distance between the answer and the result detected by
the algorithm is measured in the condition of boundary which
is detectable. The error by dividing measured distance into the
number of total pixels is defined.

For simplicity, 70 textures of Brodatz textures, which are gen-
erally consistent to our definition of textures, are picked. Each
test image is synthesized by choosing two textures from the 70
textures randomly, 500 of combinations have been tested. Some
examples have been shown in Fig. 12.
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Fig. 12. Example of error estimation. (a) Input. (b) Answer (middle line). (c)
Output.

Fig. 13 is a histogram of error estimation in our experiment,
and the results with error less than 5% is account for 85% for test
images. The average of the error is less than 5%. The smallest
error is 0.76%. Note that the images with bigger estimated er-
rors are reasonable. This kind of examples has been shown in
Fig. 14. In these examples, the boundaries between different tex-
tures (middle line) exist, but they are weaker than local bound-
aries caused by nonuniform regions. For the sake of simplicity,
only the largest peaks are kept during error estimation, so the
boundaries in the middle are not kept in the results. Although in
these examples, the outputs are consistent to human visual per-
ception. Their errors are quite big. It is hard to define a generally
“correct answer” for all test images in human vision system, and
the method that used to measure the error is probably not suited
for those kind of test images. For this reason, the measurement
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Fig. 13. Histogram of error estimation.
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Fig. 14. Three examples of test image with big estimation errors.

is not necessary for the input images synthesized by the rest 42
textures in Brodatz textures.

IV. CONCLUSION

In this paper, a simple framework for hybrid-order boundary
detection is proposed. It mimics the mechanism of the early
stage of the human vision, and experimental results are gener-
ally consistent to the human visual sensation. After post pro-
cessing, the detected boundaries also have adequate accuracy
for the other image processing applications such as stereo, and
pattern recognition. By implementing the proposed algorithm
on the CNNs, the computational time will greatly decrease. The
real-time processing capability is critical in some applications,
such as the object tracking.

Although the proposed algorithm is widely tested to detect
boundaries of synthetic textures successfully, there are still
some problems demanding to be overcome:
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As same as the other algorithms for textures analysis which
is also based on the Gabor filters, there are too many param-
eters need to be determined. Determining the parameters will
much more complex when the synthesized texture patterns
increased.

For the sake of keeping the structure simple and combining
the hybrid-order features easily without the clustering methods,
same resolution for all of the Gabor filters is used in the
approach.

In this approach, only the first- and the second-order features
are considered. According to some research results, there are
still some higher order features that can be utilized. For example,
color is one of them. The proposed approach can be extended to
color textures by integrating color information.
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