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摘要 
 

在本計劃中，我們研究如何從某些隨機來源萃取出真正的隨機元(random 

bits)。針對函數 f(x)與分布 χ ，某來源具有計算觀點最小熵 k 的意思是說，當我

們依據分佈 χ 來取樣出 x 時，任何大小為 2k 的電路可以猜對 f(x)的機率會低於

(1/2k)。我們首先證明：如果不使用種子，則無法從單獨計算最小熵的來源萃取出

隨機元。但如果我們可以使用具有弱隨機性的種子，此種子不必具有完美隨機性，

但包含統計觀點的最小熵，則萃取器存在。甚至，當我們使用的種子雖不具有統計

觀點最小熵，但具有某些計算觀點最小熵時，對應的萃取器仍然存在。由於這個結

果，我們可以將傳統的萃取器推廣為考慮計算觀點最小熵的萃取器。在建造這一種

萃取器時，我們也發現可以將問題轉化為計算學習理論的問題，也就是考慮在任意

機率分布且具有對手雜訊的情況下，如何學習一個線性函數的問題。我們也針對這

個學習問題提出了一個學習演算法。 

 

接著考慮計算觀點的獨立符號隨機源(computational independent-symbol 

sources)；所謂獨立符號隨機源是在({0,1}d)n 上的分布 ( )1, , nX X X= ⋯ ，其中

1, , nX X⋯ 是彼此獨立的，且 X 的 min-entropy 是 k。計算觀點的獨立符號隨機源

與獨立符號隨機源類似，都包含 n個獨立的符號 (f1(X1)|X1)，…，(fn(Xn)|Xn)，其

中每個 fi(Xi)都是分布在{0,1}d上，使得當輸入 xi是依照分布 Xi所產生時，任何一

個大小為 s 的電路最多只有 2-k
i 的機率可以猜對 fi(Xi) 對某個數 ki≤d，且

k1+…+kn=k。我們將 Impagliazzo 的核心集引理[Imp95]加以推廣，並用來證明：

[LLT06]中針對獨立符號隨機源的萃取器其實也可作用於計算的獨立符號隨機源，

使得所萃取出的隨機性就小電路而言是非常隨機的。事實上，此針對計算的獨立符

號隨機源的萃取器之結果隱含延伸的 XOR 引理。最後，我們亦提供一個在核心集

的黑箱子建造法中，二元的核心集大小的上限。 

 

關鍵詞: 隨機元萃取器，計算觀點的最小熵，學習線性函數，獨立符號來源，計算

觀點的獨立符號來源，延伸的核心集引理，延伸的 XOR 引理，黑箱子建

造法，核心集大小。 
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Abstract 
 
We study how to extract randomness from some sources. For some function  f(x) 
and some distribution χ , we say that such a source has computational min-entropy 
k if any circuit of size 2k can only predict f(x) correctly with probability at most 
(1/2k) given input x sampled from χ . We first show that it is impossible to have a 
seedless extractor to extract from one single source containing computational 
entropy. Then we show that it becomes possible if we are allowed a seed which is 
weakly random (instead of perfectly random) but contains some statistical min-
entropy, or even a seed which is not random at all but contains some 
computational min-entropy. This can be seen as a step toward extending the study 
of multisource extractors from the traditional, statistical setting to a computational 
setting. We reduce the task of constructing such extractors to a problem in 
computational learning theory: learning linear functions under arbitrary 
distribution with adversarial noise, and we provide a learning algorithm for this 
problem. In fact, this problem is a well-recognized one in computational learning 
theory and variants of this problem have been studied intensively before. Thus, in 
addition to its application to extractors, our learning algorithm also has 
independent interest of its own. 
 

   Then, we consider computational independent-symbol sources. Just as an 
independent-symbol source, which is a distribution X=(X1,…,Xn) over the set 
({0,1} d)n where these n symbols X1,…,Xn are independent, and the whole min-
entropy of X is k, a computational independent-symbol source consists of n 
mutually independent parts, (f1(X1)|X1)，…，(fn(Xn)|Xn), each fi(X i) of length d 
such that for each i if given input xi sampled from Xi, any circuit of size s can only 
predict fi(X i) with probability at most 2-ki for some ki≤d, and the sum of ki's is k. 
We generalize Impagliazzo’s well-known hardcore set lemma [Imp95] to show 
that the extractor for independent-symbol sources in [LLT06] still works for 
computational independent-symbol sources. In fact, the result of computational 
extractors for computational independent-symbol sources implies a generalization 
of the well-known XOR lemma. Finally, we provide a size upper bound on a 
binary hardcore set in any black-box construction of hardcore set. 
 
Keywords: randomness extractors, computational min-entropy, learning linear 
functions, independent-symbol sources, computational independent-symbol 
sources, generalized hardcore set lemma, generalized XOR lemma, blak-box 
construction, size of hardcore set.
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一一一一、、、、前言前言前言前言::::背景與文獻探討背景與文獻探討背景與文獻探討背景與文獻探討    
在資訊科學的許多領域裡，隨機性(Randomness)既是非常有用的工具，也

是非常重要的計算資源。例如，就許多難以處理的問題而言[MR95, Gol98]，隨

機演算法(probabilistic algorithm)往往是效率較高的解決辦法，這是因為相

較於決定性演算法(deterministic algorithm)，當加入隨機性之後，使得時間

以及空間的複雜度(time and space complexity)可能會更有效率。又例如，在

密碼學的應用裡，我們常藉由隨機的特性來隱藏秘密，以避免在傳輸的過程中

被第三者竊聽而洩露資訊。因此，是否能取得真正的隨機元(truly random 

bits)對於相關應用的影響非常深遠，但遺憾的是，真正的隨機元並非垂手可

得。類似於我們製造亂數表的情況，在真實世界中，我們幾乎只能退而求其次

地使用一個決定性的函數(deterministic function)從一些可取樣的弱隨機源

(weak random sources)中萃取出真正的隨機元，其中，所謂的弱隨機源只能保

證任一個字串出現的機率都不會非常高。我們說一個弱隨機源的「統計觀點最

小熵(statistical min-entropy)」為 k則表示每個字串出現的機率都不會超過

2 k− ，直覺上我們會認為這樣的弱來源「包含」k個隨機元。 
 

• 萃取器萃取器萃取器萃取器 (Extractors (Extractors (Extractors (Extractors))))    

1988 年時，Chor 等人證明不存在任何決定性的函數(deterministic 

function)可以從單一個 statistical min-entropy < n 的弱隨機源中萃取出

一個隨機元[CG88]。於是，研究者們試圖在單一個弱隨機源外，再加上一個很

短(相較於弱隨機源的長度)的真正隨機元，以萃取出隨機元。我們稱這個很短

的 真 正 隨 機 元 為 種 子 (seed) ， 而 這 種 萃 取 器 為 種 子 萃 取 器 (seeded 

extractor)。在近幾十年來，國內外的理論學家們都致力於建造出使用最少種

子，而能從各種弱隨機源中萃取出非常靠近真正隨機元的種子萃取器，如

[ILL89、Zuc97、RSW00、RVW00、TSZS01、TSUZ01]等。最後終於造出了幾近完

美的種子萃取器[LRVW03]。 

然而在使用種子萃取器時，我們仍然需要種子，其為一些真正的隨機元。

在一些應用中，我們可以解決此問題(比如在解隨機 BPP 問題中列舉所有可能的

種子)，而在其他應用中，則又回歸到最初的問題: 如何獲得一些真正的隨機元

呢? 這個爭議讓學者們轉而建造不需種子輔助的萃取器，即決定性萃取器

(deterministic extractors or seedless extractors)。 

當弱隨機源擁有某些特殊的性質時，我們確實可以從一個隨機源中萃取隨

機元。一個(n, k)-固定某些位元的來源 (A (n,k)-bit fixing source) 為一

個在{ }0,1
n
的分布 ( )1, , nX X X= ⋯ ，其中 n-k 個位元是固定的，而其餘的 k個

位元則是均等的(uniform)且彼此獨立的(independent)。Kamp 等人[KZ03]提出

從一個固定某些位元的來源中萃取出一些隨機元的方法，而 Gabizon 等人則在

2004 年提出改進的方法使之萃取出幾乎所有隨機源所含的隨機性[GRS04]。 
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此外，我們亦可從兩個甚至多個弱隨機源中不使用種子而直接萃取出很靠

近均等分布(uniform distribution)的隨機元。針對兩個弱隨機源，研究者們

致力於放寬對此兩個隨機源的 statistical min-entropy 的限制[CG88、DO03、

DEOR04、LLTT05、Raz05]，最後，Bourgain 造出只要兩個 statistical min-

entropy 均略小於 n/2 的弱隨機源即可萃取出Ω(n)個隨機元的萃取器

[Bou05]。而另一方面，理論學家們也設法從越少個且含有越少 statistical 

min-entropy 的隨機源中萃取出隨機元[BIW04、BKS+05、Raz05]。 

事實上，固定某些位元的來源以及多個隨機源的來源可以下列觀點看成是

兩種極端。這兩種來源均包含多個部分而且這些部份彼此都是獨立的。固定某

些位元的來源可看成是包含許多個部份，且每個部分只有單一個隨機或者為固

定的位元。而多個隨機源的來源則可看成包含相對少數個部份，可是每個部份

為多個位元且含足夠數量的隨機元。本計劃考慮一個介於其中的來源，稱為獨

立符號的來源(independent-symbol source)，寫成 (n,D,k)-來源，其為一個

在[D]n ([D]={1,2,…,N}) 上的分布 ( )1, , nX X X= ⋯ ，其中 1, , nX X⋯ 是彼此獨

立的，且 X 的 min-entropy 是 k。 我們不難看出一個(n, k)-固定某些位元的

來源其實就是一個(n,2,k)-來源。換句話說，固定某些位元的來源只是我們所

考慮的獨立符號來源的一個特例。而對較小的 n 及較大的 D，此種來源即可涵

蓋多個隨機源的來源。Kamp 等人[KRVZ06]及 Lee 等人[LLT06]均提出從一個獨

立符號來源中萃取出幾乎所有隨機性的萃取器。 

 

• 計算觀點的最小計算觀點的最小計算觀點的最小計算觀點的最小熵熵熵熵 ( ( ( (Computational minComputational minComputational minComputational min----entropyentropyentropyentropy))))    

在過去的文獻中，大多是考慮那些在統計上仍有隨機性(亦即 statistical 

min-entropy 不為 0)的隨機源。在本計劃中，我們將換個角度，考慮那些在統

計上並不具有任何的隨機性，但在那些計算複雜度有所限制的觀察者而言仍有

些許隨機性的隨機源。換句話說，我們將從傳統的統計觀點，轉換為計算觀

點。由於這些隨機源在統計上本就不具任何的隨機元，因此我們也必須將萃取

器的輸出限制稍作修改。相對於在原本的定義中，我們要求萃取器的輸出要在

統計上(亦即不限制計算複雜度的觀察者眼中)極靠近真正的隨機元，現在我們

只要求這些輸出在那些計算複雜度有限的觀察者眼中看似隨機即可。值得注意

的是，這些輸出有可能在統計上是距離真正隨機元極遠的，甚或是根本不具任

何隨機性的。事實上，在密碼學中，尤其是有關利用 one-way functions 建造

pseudo-random generators 的研究中，已經有一些隱含的結果存在[Yao82, 

GL89, HILL99]。 

何謂「看似隨機」呢? 事實上，已經有一個非常好的「看似幾乎隨機」的

定義[Yao82]，但關於一個隨機源「看來有些隨機」的定義以及衡量此隨機源中

隨機性之測量值的定義仍不清楚。目前有一些看似合理的定義，但目前已有些

證據可以證明這些定義之間有不一致之處[BSW03, HLR07]。 

 



 3 

• 學習學習學習學習 parityparityparityparity函數的演算法函數的演算法函數的演算法函數的演算法    

(Algorithms for learning parity functions)(Algorithms for learning parity functions)(Algorithms for learning parity functions)(Algorithms for learning parity functions)    

在計算學習理論(computational learning theory)中，學習 parity 函數

是一個最基本的問題。令 ( ) { }1, , 0,1
n

nx x x= ∈⋯ ，則一個 parity 函數是一個對

某個 { }1,2, ,T n⊆ ⋯ 的函數 ( ) i
i T

f x x
∈

= ⊕ 。在此學習模型(learning model)中，我

們有一個想學習的函數 { } { }: 0,1 0,1
n

f → ，以及一個在{ }0,1
n
上的分佈 W，從中

我們可以取樣 w並獲得訓練樣本(training example)(w,q(w))，其中 q 為某個

函數。如果我們得到的樣本都是正確的，亦即 ( ) ( ) ,q w f w w= ∀ 時，則我們可以

對 W作多次取樣後利用所獲得的訓練樣本作高斯消去法(Gaussian elimination)

則可獲得我們想要學習的函數 f。但是當我們所獲得的樣本可能被雜訊影響而

變得不一定正確時，如何從此種模型中學習函數 f就變成一個具有挑戰性的問

題了。一般廣被討論的是以下的兩種雜訊模型: 隨機雜訊(random noise)跟對

手雜訊(adversarial noise)。在隨機雜訊的模型中，針對每一個訓練樣本都是

獨立的並且最多有η 的機率使得 q(w)≠f(w)。而在對手雜訊的模型中則是當 w

是依照分布 W所取樣時，最多有η 比例的 w使得 q(w)≠f(w)。不難看出，隨機

雜訊模型要比對手雜訊模型更容易分析。另外，對手雜訊的模型亦可看成是不

可知的模型(agnostic model)[KSS94]，而此種模型確實符合我們在現實生活中

所可能遭遇的現象。 

針對在隨機雜訊模型中學習一個有 n個變數的 parity 函數且

( )1/ 2 1η ≤ − Ω 的問題，目前最好的結果為 Blum, Kalai,和 Wasserman[BKW03]

於 2003 年提出的一個需要
( )log2

n
nO
個樣本且時間複雜度為

( )log2
n

nO
的演算法，更值

得一提的是此演算法對任何分布 W都是有效的。而在對手雜訊模型中，此問題

跟條列解碼(list decode) Hadamard codes 有關。然而目前已知的結果都只能

作用在 W 為一個均等分布的情況[GL89, FGKP06]。最近，Feldman 等人[FGKP06]

証明當 W 為一個均等分布時，則可以利用針對隨機雜訊模型的演算法來造出針

對對手雜訊模型的演算法。因此利用上述[BKW03]的演算法，則可以得到一個需

要
( )log2

n
nO
個樣本且時間複雜度為

( )log2
n

nO
的演算法，但其中 W 為一個均等分布。 
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二二二二、、、、研究目的研究目的研究目的研究目的    
本計劃主要目的是藉由探討 Cayley圖以及循環矩陣(circulant matrix)的特性，進而

從只擁有計算觀點最小熵 (computational min-entropy) 的隨機來源(source)中，萃取

出真正的隨機元 (random bits)。 

• 探討循環矩陣探討循環矩陣探討循環矩陣探討循環矩陣(circulant matrices)(circulant matrices)(circulant matrices)(circulant matrices)與獨立符號來源萃取器的特與獨立符號來源萃取器的特與獨立符號來源萃取器的特與獨立符號來源萃取器的特

性與關係性與關係性與關係性與關係    

在[LLT06] 中，我們知道針對獨立符號來源的萃取器即是利用在一個圖形

上作隨機散步 (random walk) 的方法來萃取隨機元。我們發現在此隨機散步中

每一步所對應的矩陣為一個特殊的矩陣，稱為循環矩陣(circulant 

matrix)[Dav79]，其為一個形式為 

1 2

1 1

2 3 1

n

n n

p p p

p p p
P

p p p

−

 
 
 =
 
  
 

⋯

⋯

⋮ ⋮ ⋮

⋯
 

的矩陣，其中 1ii
p =∑ 。我們希望能利用已知的關於循環矩陣的特性來簡化針

對獨立符號來源萃取器的分析，並希望能獲得一個更好的結果。 

 

• 建造出針對建造出針對建造出針對建造出針對 computational mincomputational mincomputational mincomputational min----entropy entropy entropy entropy 的的的的隨機源的萃取器隨機源的萃取器隨機源的萃取器隨機源的萃取器::::    

由於之前針對只擁有 computational min-entropy 的隨機源的萃取器都是

種子萃取器，我們希望在計算的角度更進一步地研究是否存在決定性萃取器。

首先本計畫會先探討在計算架構中是否會如同在統計架構中，無法從單一個隨

機源中萃取隨機元。接著我們也將探討如果將原本的種子替換成另一個只擁有

些許 statistical min-entropy 的隨機源時，是否亦可從只擁有

computational min-entropy 的隨機源中萃取隨機性。更進一步地，我們也會

試著從兩個或多個只擁有 computational min-entropy 的隨機源中萃取隨機

性。 

在本計劃中，我們考慮採用[HLR07]中的定義來計算一個隨機源在計算上

的隨機量。我們在這裡所考慮的來源是一個條件的型式(f(X)|X)，其中 X是一

個在 1{0,1} n 的分布，而 1:{0,1} {0,1}n nf → 為某個函數。假設當輸入是依照分布 X

所產生時，任何大小為2k
的電路最多只有2 k−

的機率可以猜對 f的函數值時，

則我們說這種條件分布(f(X)|X)擁有 computational min-entropy k。當 f是

一個決定性的函數時，亦即 f(x)的值完全由 x 所決定，則當給定 x之後，f(x)

並不具有任何在統計上的隨機性。然而，依照我們的定義，只要函數 f是很難

計算的，則(f(X)|X)還是可以擁有很大的 computational min-entropy，使得

我們可以從中萃取隨機元。更準確地說，從一個分佈 f(X)中，我們希望能萃取
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出一些隨機性，使得即使在給定 X時，這些隨機性在某些大小的電路看來幾乎

是非常隨機的。本計劃考慮放寬對隨機源的限制，試著從一個擁有

statistical min-entropy 以及另一個只擁有 computational min-entropy 的

兩個隨機源中萃取出隨機元。最後希望能從兩個都只擁有 computational min-

entropy 的隨機源中萃取出隨機元。 

 

 

• 考慮利用任何分布來學習一個線性函數考慮利用任何分布來學習一個線性函數考慮利用任何分布來學習一個線性函數考慮利用任何分布來學習一個線性函數    

在之前的研究結果中，要在對手雜訊模型中學習一個 parity 函數都需

要分佈 W為一個均等分布。因此，在學習理論中，如何在對手雜訊模型以及

W 為任意一個分布時學習一個 parity 函數是一個令研究者們很感興趣的問

題。在本計劃中，我們希望能解答這個問題，甚至更進一步地，我們希望即

使在 W為任意一個分布時，仍能在對手雜訊模型中學習一個線性函數。 

事實上，由之前的研究我們可以得知在此種模型下的學習演算法跟從一

個擁有 statistical min-entropy 的隨機源和另一個獨立但只擁有

computational min-entropy 的隨機源中萃取隨機性有很大的相關性。 

 

 

• 從只擁有從只擁有從只擁有從只擁有計算計算計算計算觀點觀點觀點觀點獨立符號獨立符號獨立符號獨立符號的隨機的隨機的隨機的隨機來源來源來源來源萃取隨機元萃取隨機元萃取隨機元萃取隨機元    

在統計的觀點中，我們已經知道可以從單一個獨立符號來源中萃取隨機

性。在本計劃中，我們考慮計算的獨立符號來源(computational independent-

symbol source)。如同獨立符號來源，每個計算的(n,D,k,s)-來源 

(computational (n,D,k,s)-source) ( ) ( ) ( )1 1 n nV X V X V X= �⋯� ，包含 n個彼

此獨立的部分 ( ) ( )1 1 , , n nV X V X⋯ ，其中每個 iV 都是分布在[D]={1,2,…,D}中，

而 iX 則是分布在{ }0,1 iℓ 上，且對每一個 { }1,2, ,i n∈ ⋯ ，和每一個大小為 s的電

路 C， ( )Pr 2 ik
i iC X V − = ≤  對某個值 logik D≤ ，並滿足

1

n

ii
k k

=
=∑ 。我們將試

著證明在統計觀點中針對獨立符號來源的萃取器亦可從此種計算的獨立符號來

源中萃取出隨機元。 
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1 
1 

2 

3 

4 5 

經過編號的經過編號的經過編號的經過編號的Z5555    

3 

2 

4 

三三三三、、、、研究方法研究方法研究方法研究方法    

• 利用循環矩陣的特性來簡化針對獨立符號來源萃取器利用循環矩陣的特性來簡化針對獨立符號來源萃取器利用循環矩陣的特性來簡化針對獨立符號來源萃取器利用循環矩陣的特性來簡化針對獨立符號來源萃取器的證明的證明的證明的證明::::    

在[LLT06]中我們觀察到每個

{ }0,1
d

Mi ∈ ⊂ Z 都會對應到一個在

MZ 上排列(permutation)。例如以

右圖為例，M=5，則 1會對應到排列

1 2 3 4 5

2 3 4 5 1

 
 
 

，而 2會對應到排

列
1 2 3 4 5

3 4 5 1 2

 
 
 

。因此，可以對

應出一個圖，其中每個點對應一個

在 MZ 中的元素，並且滿足如果存在

一個排列使得 a映到 b則存在邊

(a,b)。而[LLT06]的萃取器即是在

此種圖上做隨機散步(只是這裡所用

的並不是真正的隨機元)，並證明只要獨立符號來源的 statistical min-

entropy k 夠大時，就可以很快地收斂到均等分布。在過去許多研究中已經

證明在 expander 上做真正的隨機散步可以很快的收斂到均等分布[HLW06]，

他們的証明方法大多是考慮此 expander 的鄰接矩陣(adjacency matrix)的

第二大(取絕對值後)的特徵值(eigenvalues)。然而當 expander 是有向圖

時，其所對應的特徵值不一定會是實數，因此上述的特徵值方法就不適用

了。事實上，Wilmer 提出了一些其他在無法使用特徵值法時，可以證明收斂

速度的方法[Wil99]。在[LLT06]中，其隨機散步所對應的矩陣之特徵值並不

保證一定是實數，因此亦無法用上述特徵值的方法証明，而另採其他的方

法。我們希望能將[LLT06]中的証明方法用來證明某些 expander 的收斂性，

比如說 Cayley 圖(Cayley graph)，而提供一種新的不同於[Wil99]的証明收

斂速度的方法。 

 

• 建造出針對擁有建造出針對擁有建造出針對擁有建造出針對擁有 computational mincomputational mincomputational mincomputational min----entroentroentroentropy py py py 的隨機源的萃取的隨機源的萃取的隨機源的萃取的隨機源的萃取

器器器器::::    

我們首先會考慮是否可以從單一個只擁有 computational min-entropy 

的隨機源中萃取出隨機元。接下來，由於已經知道如何從兩個擁有

statistical min-entropy 的隨機源的萃取出隨機元，接著，考慮放寬對隨

機源的限制，試著從一個擁有 statistical min-entropy 以及另一個只擁有

computational min-entropy 的兩個隨機源中萃取出隨機元。跟著我們進一
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步放寬對隨機源的限制，希望能從兩個都只擁有 computational min-

entropy 的隨機源中萃取出隨機元。我們利用隨機方法證明無法從單一個長

度為 n，computational min-entropy 為 n-2 的隨機源中萃取出隨機元，即

使我們僅希望萃取出一個隨機元。 

考慮[LLTT05]中針對兩個弱隨機源的萃取器 { } { } { }mnnExt 1,01,01,0: →× ，

其中 m|n。在 [LLTT05]中，我們把任何一個 { }nv 1,0∈ ，看成一個 ℓ-

dimensional vector ( )lvv ,...,1 ， 其 中 ℓ=n/m ， 而 定 義

( ) ( )∑ ⋅=≡
i

iim
myxyxyxExt mod,, 。我們希望能證明對任何一個只擁有

computational min-entropy 的隨機源(V|X)與另一個擁有 statistical min-

entropy 的隨機源 W，任何的小電路都無法分辨 ( )
m

WVWX ,,, 以及

( )UWX ,, 。我們利用反證法，假設存在一個小電路可以分辨 ( )
m

WVWX ,,,

以及 ( )UWX ,, 。則可以推得會存在一台推測器 (predictor) Q 使得對許多

的 ( )vx, ，給定 x,w 之後，Q 有足夠的機率可以猜對
m

wv, 的值。給定一對此

種 ( )vx, ，我們希望能有足夠的機率可以從 x 猜對 v。而這個問題可以轉化成

由一些有誤差的訓練樣本，即(w,q(w))其中 q(w)=Q(x,w)，中學習一個線性

函數
m

v ⋅, 的問題。對此，我們建造了一個可以輸出所有可能的線性函數之學

習演算法。最後我們從這些可能的線性函數中隨機選一個當我們的輸出，我

們可以證明此輸出所包含的函數並不會太多，因此有足夠的機率會猜中正確

的 v，而這就會跟(V|X)有足夠 computational min-entropy 的假設相矛盾。

由以上的方法，我們可以證明[LLTT05]中的萃取器可以從一個擁有

computational min-entropy 為 ( )kkOknk log1 +−= 的隨機源與另一個擁有

statistical min-entropy 為 k的隨機源中萃取出隨機元。 

最後我們考慮由兩個只擁有 computational min-entropy 的隨機源萃取出

隨機元。我們發現如果一個隨機源 (W|Y) 擁有 computational min-entropy 

k，則 W 所擁有的 statistical min-entropy 至少為 k。經由以上的觀察，我

們就可以利用上述的証明方式證明[LLTT05]的萃取器亦可從一個擁有

computational min-entropy 為 ( )kkOknk log1 +−= 的隨機源與另一個擁有

computational min-entropy 為 k的隨機源中萃取出隨機元。 

 

• 利用任利用任利用任利用任何分布來學習一個線性函數何分布來學習一個線性函數何分布來學習一個線性函數何分布來學習一個線性函數    

在建造這一種萃取器時，我們也發現可以將問題轉化為計算學習理論的問

題，也就是考慮在任意機率分布且具有對手雜訊的情況下，如何學習一個線

性函數的問題。我們也針對這個學習問題提出了一個學習演算法。具體而

言，在之前的研究結果中，要在對手雜訊模型中學習一個 parity 函數都需要

分佈 W 為一個均等分布。因此，在學習理論中，如何在對手雜訊模型以及 W

為任意一個分布時學習一個 parity 函數是一個令研究者們很感興趣的問題。

在本計劃中，我們希望能解答這個問題，甚至更進一步地，我們希望即使在
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W 為任意一個分布時，仍能在對手雜訊模型中學習一個線性函數。 

事實上，由之前的研究我們可以得知在此種模型下的學習演算法跟從一個

擁 有 statistical min-entropy 的 隨 機 源 和 另 一 個 獨 立 但 只 擁 有

computational min-entropy 的隨機源中萃取隨機性有很大的相關性。 
 

• 將將將將核心集引理核心集引理核心集引理核心集引理    (hardcore set lemma)(hardcore set lemma)(hardcore set lemma)(hardcore set lemma)加以推廣加以推廣加以推廣加以推廣    

Impagliazzo 的核心集引理 [Imp95] 告訴我們，如果一個布林函數

{ } { }: 0,1 0,1f →ℓ ， 其 滿 足 對 每 個 大 小 為 s 的 電 路 h ，

{ }
( ) ( )

0,1
Pr

x
h x f x δ

∈
 ≠ > ℓ

，則對每個ε>0，存在一個大小至少為 2δ ℓ的 hardcore 

set { }0,1H ⊆ ℓ

使 得 對 任 何 大 小 為 ( )2 2sε δΩ 的 電 路 C ， 

( ) ( ) 1
Pr

2x H
C x f x ε

∈
 ≠ > −  。我們延伸此結果考慮一個函數 { } [ ]: 0,1f D→ℓ ，

其滿足對每個大小為 s 的電路 h，
{ }

( ) ( )
0,1

Pr
x

h x f x δ
∈

 ≠ > ℓ
，並證明此時依然

存在一群總大小至少為 ( )2 2δ ℓ 的二元核心集(binary hardcore sets) 

1, , rT T⋯ ，亦即對每一個 [ ]i r∈ ，存在一個大小為 2 的子集合 [ ]iI D⊆ 使得

( )1
i iT f I−⊆ ， 且 對 每 個 大 小 為 ( )2 2 6s Dε δΩ 的 電 路 C ，

( ) ( ) 1
Pr

2ix T
C x f x ε

∈
 ≠ > −  。 

我們發現上述針對計算獨立符號來源的萃取器的結果其實可以推得延伸的

XOR 引理。Yao 的 XOR 引理 [Yao82] 告訴我們，如果一個布林函數

{ } { }: 0,1 0,1f →ℓ ， 其 滿 足 對 每 個 大 小 為 s 的 電 路 h ，

{ }
( ) ( )

0,1
Pr

x
h x f x δ

∈
 ≠ > ℓ

，則對 ( )2 1
tε δ> − ，任何大小為 ( )2sεΩ ℓ 的電路 C， 

 

 

我們延伸此結果考慮 n 個函數 1, , nf f⋯ ，其中每個函數 { } [ ]: 0,1 i

if D→ℓ

，

其滿足對每個大小為 s 的電路 h，
{ }

( ) ( )
0,1

Pr
i

i

i i i i
x

h x f x δ
∈

 ≠ > ℓ
，並證明如果

( )2

1
log

n

ii
M Dδ δ

=
= ≥ Ω∑ ，則對每個大小為 ( )( )2

logs n nDδΩ 的電路 C， 

{ } { }
( ) ( )

1
1

2

1
0,1 , , 0,1 1

1 log
Pr , ,

n
n

n

n i i
x x i

M n
C x x f x

M δ∈ ∈ =

 = ≥ + 
 

∑ℓ ℓ
⋯

⋯ 。 

 

 

{ }
( ) ( )

1

1
, , 0,1

1
Pr , ,  

2t

t i
x x i

C x x f x ε
∈

 = < + 
 

∑ℓ
�

⋯

⋯
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• 建造建造建造建造針對計算獨立符號來源的萃取器針對計算獨立符號來源的萃取器針對計算獨立符號來源的萃取器針對計算獨立符號來源的萃取器    

我們首先利用[STV01]的方法以及延伸的核心集引理證明對每一個來源

( )i iV X 都存在一個來源 iY ，使得任何小電路都無法分辨 ( ),i iX V 以及

( ),i iX Y ， 且 來 源 ( )i iY X 的 statistical min-entropy 與 ( )i iV X 的

computational min-entropy 有關。所以給定一個計算的(n,D,k,s)-來源

( ) ( ) ( )1 1 n nV X V X V X= �⋯� ， 其 中 ( )2 22 logmk D≥ Ω ， 對 任 何 大 小 為

( )( )2
logs n nkDΩ 的電路 C， 

( ) ( )
2

1 1 1 1

2 log
Pr , , , , , 1 Pr , , , , , 1

m

n n n n

n
C X X V V C X X Y Y

k
   = − = ≤   ⋯ ⋯ ⋯ ⋯ 。 

進一步地，我們可以證明對任何大小為 ( )( )2
logs n nkDΩ 的電路 C，  

2

1 1
1 1

2 log
Pr , , , 1 Pr , , , 1

mn n

n i n i
i i

n
C X X V C X X Y

k= =

      = − = ≤      
      

∑ ∑⋯ ⋯ 。 

另 一 方 面 ， 有 ( )log1 k De−Ω− 的 機 率 ， 即 使 在 知 道 1, , nX X⋯ 後 ， 來 源

1 nY Y Y= �⋯� 的 min-entropy 至 少 也 有 ( )logk DΩ 。 再 加 上

( ) ( )1 1 , , n nV X V X⋯ 是彼此獨立的，我們可推得 1, , nY Y⋯ 也是彼此獨立的。因

此，我們可以利用[LLT06]中， 

( )1 1
, ,

n

n ii
Ext V V V

=
=∑⋯  

 是針對獨立符號來源的萃取器的結果，證明 

( ) ( )( ) ( )22 log

1 11
, , , , , , ,

mk Dn

n i n mi
X X Y X X U e

−Ω

=
∆ ≤∑⋯ ⋯ 。 

結合以上的結果，我們推得對任何大小為 ( )( )2
logs n nkDΩ 的電路 C，  

( ) ( )
2

1 11

2 log
Pr , , , 1 Pr , , , 1

m
n

n i n mi

n
C X X V C X X U O

k=

    = − = ≤       
∑⋯ ⋯ ， 

亦即 ( )1 1
, ,

n

n ii
Ext V V V

=
=∑⋯ 為針對計算獨立符號來源的萃取器。 

 

 

• 黑箱子建造法中二元核心集大小的上限黑箱子建造法中二元核心集大小的上限黑箱子建造法中二元核心集大小的上限黑箱子建造法中二元核心集大小的上限    

在延伸的核心集引理中，我們證明存在若干個二元核心集，其大小總和

至少為 ( )2 2δ ℓ。大家可能會猜想是否存在單一個夠大的核心集，比如說大小

為 ( )2Dδ ℓ。我們最後證明一個對任何黑箱子建造法的二元核心集大小的上

限。假如一個演算法 Dec(⋅)滿足對任意的函數 { } [ ]: 0,1f D→ℓ ，以及任何的函

數集合 [ ]{ }, 2IG g I D I= ⊆ = ，其中任何在G 裡面的函數 Ig ，以及任何大小
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為 s的子集 ( )1H f I−⊆ ， ( ) ( ) ( )Pr 1 2I
x H

g x f x ε
∈
 ≠ ≤ −  ，可推得 

{ }
( ) ( )

0,1
Pr G

x
Dec x f x δ

∈
 ≠ ≤ ℓ

， 

則我們說演算法 Dec(⋅) 是一個核心集的黑箱子 (δ, ε, D)-建造法 (black-

box (δ, ε, D)-construction of a hardcore set)，而其中 s 為黑箱子建造

法的大小複雜度(size complexity)。 

我們最後一個結果即利用機率方法證明當δ ≥ Ω(1/Dc) 對某個常數 c ，D 

≥ 4，以及ε < 1/5 時，任何核心集的黑箱子(δ, ε, D)-建造法的大小複雜度

為 ( )22O Dδ ℓ 。 
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四四四四、、、、結果與討論結果與討論結果與討論結果與討論    

• 獨立符號源萃取器獨立符號源萃取器獨立符號源萃取器獨立符號源萃取器的建造與的建造與的建造與的建造與簡化版本簡化版本簡化版本簡化版本的證明的證明的證明的證明 

(此部份之結果發表於畢業論文 [Lee 10]) 
由於在[LLT06]中的隨機散步其每一步所對應的矩陣即為一個循環矩陣

(circulant matrix)，且此種矩陣的特徵向量 (eigenvectors) 是互相垂直的，我

們即可利用此矩陣的特徵值 (eigenvalues) 來幫助我們證明每走一步後所得到的

分布都會比原先的分布更接近均等分布，且得到一個比[LLT06]更好的結果。更精

確 地說， 我們考 慮在 ZM 上做隨機散步，目前的分布為 P=(P1,…, PM), 

U=(1/M,…,1/M)為均等分布，而利用一個 min-entropy 為 k 的來源 Xi 走一步隨機

散步之後所得到的分布為 P’。在[LLT06]中，我們可以證明 

.
log4

1' log42

22

2

2

2

2

2 DM

k

eUP
DM

k
UPUP

−

⋅−≤







−⋅−≤−  

然而，利用循環矩陣的特性，我們可以證明 

.' 1

12
22

2

2

2

2

2

−
−

−
⋅−≤− M

k

eUPUP  

我們針對獨立符號源建造與證明萃取器時，雖然結果與 [KRVZ06] 類似，但所採

取的方法卻相當不同。我們也發現傳統上為了增加最小熵都會同時使用加法與乘

法，但這個證明卻顯示其實只要使用加法即可增加最小熵，雖然缺點是最小熵增加

的速度相對之下比較慢。 

 

• 關於計算觀點關於計算觀點關於計算觀點關於計算觀點 minminminmin----entropyentropyentropyentropy的不可能結果的不可能結果的不可能結果的不可能結果 

(此部份之結果發表於 [LLT11a]，原文請參看附錄) 

 

[定理] 對於任何自然數 n與 1n ，且對於任何函數 :{0,1} {0,1}nEXT → ，只要 1 3n n>
成立，則必存在決定性的函數 1:{0,1} {0,1}n nf → ，使得對於所有

1nUχ = ，有

( ( ) | ) 2cH f nχ χ = − ，且 ( ( ))EXT f x 的值在任何 x都會一樣。因此，我們可以很容

易區別隨機元與 ( ( ))EXT f x 。 

 

這個結果顯示：在沒有種子的前提下，即使 computational min-entropy 高達

2n − ，我們也無法從弱隨機源萃取出真正的隨機元。另外，這個結果可以和已知

的統計式萃取器[CG88]相互比較。 
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• 混合型與計算觀點型式的萃取器混合型與計算觀點型式的萃取器混合型與計算觀點型式的萃取器混合型與計算觀點型式的萃取器 

(此部份之結果發表於 [LLT11a]，原文請參看附錄) 

 
我們先定義一個函數 :{0,1} {0,1} {0,1}n n mEXT × → 如下： 

( , ) ,EXT v w v w=  

則針對這種內積型式的函數，有下列結果： 

 

[定理] 對於所有任何符合下列條件的參數 ( , , , )k m sε ： 2(log )k n≥ Ω ， |m n且

( / log )m O k k≤ ， ( /log )2 O k kε −≥ ，以及 ( /log )2n k O k ks − +≥ ，存在適合的 1k (其估計值為

1 ( / log )k n k O k k= − + )，使得上述所定義的 :{0,1} {0,1} {0,1}n n mEXT × → 同時兼具

「 1( , , , )k k sε -混合型萃取器」，以及「 1( , , , )k k sε -計算觀點型式萃取器」的特徵。 

 

[定理] 對於所有任何符合下列條件的參數 ( , , )k m δ ： 2(log )k n≥ Ω ， |m n且

( / log )m O k k≤ ， ( /log )2 O k kδ −≥ ，存在一個具備下列性質的學習演算法 A： 

針對佈於{0,1} n lF= 的給定來源W ，若 ( )H W k∞ ≥ 且對於任意函數 : lq F F→ ，演

算法 A根據分佈 ( , ( ))W q W 取出 ( / log )2O k k 個訓練範例，並且執行時間在 ( / log )2n k O k k− + 以

內，可輸出一串長度為 ( / log )2n k O k k− + 的結果，而且該串結果有1 (1)o− 的機率會包含所

有滿足下列條件式的 v F∈ ： 

1
Pr [ ( ) , ]

2w W m
q w v w δ∈ = ≥ + 。 

• 學習含有雜訊的線性函數學習含有雜訊的線性函數學習含有雜訊的線性函數學習含有雜訊的線性函數 

(此部份之結果發表於 [LLT11a]，原文請參看附錄) 

給定任何一個 statistical min-entropy 為 k 的隨機源 W，我們提出一個需要

K= ( )kkO log2 個訓練樣本(w,q(w))，時間複雜度為 ( )kkOkn log2 +− ，且有很大機率會輸出

一個包含所有滿足 ( ) ( )[ ] ( )kkO
Ww wvwq log21Pr −

∈ −≤≠ 的線性函數 v 的學習演算法。我

們注意到，把 v 看成(v1,…,vℓ)，則每一個訓練樣本(w,q(w))，可以給我們一個線

性方程式 w1v1+…+wℓvℓ=q(w)，所以我們的問題可以轉化成是去解一個有 ( )kkO log2 個

方程式的線性方程組[W(0)|q(0)]，其中 W(0)是一個 K× ℓ 的矩陣，而 q(0)是一個 K-

dimensional vector，且滿足對每一個訓練樣本(w,q(w))，W(0)有一列為 w，而 q(0)

有一個元素為 q(w)。我們的學習演算法(如下一頁所示)包含兩個階段: Forward 

phas 和 Backward Phase，其中 d=k/mT，而 T及 L為適當的參數。 

 

最後我們證明任何一個滿足 ( ) ( )[ ] ( )kkO
Ww wvwq log21Pr −

∈ −≤≠ 的 v都有足夠的機率會

被包含在 V(0)中，而我們可以經由重複以上過程多次且輸出所有 V(0)之聯集的方法來

提高此成功機率。 
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• 核心集的推廣核心集的推廣核心集的推廣核心集的推廣 

(此部份之結果發表於 [LLT11a]，原文請參看附錄) 

 
我們將 Impagliazzo 著名的 hardcore lemma 加以推廣，得到下列結果： 

 

[Lemma] 令 : [ ]f X V→ 為(δ,s)-hard 的函數，其中 11 (1 )Lδ γ≥ − − ， [ 1]L V∈ − 且

(0,1)γ ∈ 。則對於任何 0ε > ，都存在 ' / ( ,1/ , log(1/ ))s s poly V ε γ= 與
1

V
I

L

 
∈ + 

使得

f 具有密度為 1| | / | |
1

V
H X

L
γ  

≥  + 
且難度為 ( , , ')I sε -hard 的核心集 IH 。 

 

我們可以進一步將上述的想法推廣到一般的函數 : [ ]f X V→ ，其中 3V ≥ 。 

 

[Lemma] 假設對於某個 [ ]I V⊆ ， : [ ]f X V→ 在 X 上不具有難度為 ( , , ')I sε -hard 的

核心集。則存在輸入的一個子集合 1( )IT f I−⊆ ，該子集在 X 中的密度小於ρ，也

存在尺寸大小為 2| | ((1/ ) log(1/ ))IA O ε ρ≤ 的電路集合 ( ')IA SIZE s⊆ 使得對於所有
1( )x f I−∈ 下列成立: 

1
Pr [ ( ) ( )]

| |IA A A x f x
I∈ = > 。 
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• 核心集的密度核心集的密度核心集的密度核心集的密度 

(此部份之結果發表於 [LLT11b]，原文請參看附錄) 

很自然的一個問題是：能否保證有更大的核心集？基本上，下列結果顯示無法有這

樣的保證： 

[定理] 對任何
1

1 (1 )
L

δ γ= − − ，其中 1
2( 1)(0, )Lγ +∈ 且 1L V≤ − ，都存在一個難度為

( , )sδ -hard 的函數 :{0,1} [ ]nf V→ ，使得針對某個 1( , ,2 )n
Ls poly γ≥ ，下列性質成

立： 

對於所有
[ ]

1

V
I

L

 
∈ + 

與
1

2L
ε < ，存在某個 ' ( )s poly n≤ ，使函數 f 在{0,1} n上不具有

密度為 4( 1)

1

L
V

L

γ+
 
 + 

的 ( , , ')I sε -hard 核心集。 

這個結果說明即便我們有一個函數，且此函數相對於尺寸大如指數等級的電路而言

是難以計算的，都只能夠保證該函數相對於多項式等級大小的電路可以具有低密度

的核心集。 

 

另一方面，這個定理和前一小節「核心集的推廣」裡所提到的結果相比較，兩者之

間有4( 1)L + 的倍數差異。 

 

 

• 計算觀點隨機元的萃取計算觀點隨機元的萃取計算觀點隨機元的萃取計算觀點隨機元的萃取 

(此部份之結果發表於 [LLT11b]，原文請參看附錄) 

 

[Lemma] 令 : [ ]f X V→ 是一個難度為 ( , )sδ -hard 的函數，其中 11
2kδ ≥ − ，而 k 是

某個固定的正實數。令 χ 是 X 上的均等分布。則對於任何 (0,1)ε ∈ ，存在
1' / ( , )s s poly V ε≥ 與分佈ν (與 χ 相關)會使下列兩條件成立： 

(1)針對分布 ( , ( ))fχ χ 與分布 ( , )χ ν 不存在 ( , ')sε -distinguisher(識別器)。 

(2) 3 ( /3)
1Pr ( | )
2

k
kx H xχ ν χ∈ ∞ = < ≤    。 

 

[定理] 令 : [ ]f X V→ 是一個難度為 ( , )sδ -hard 的函數，其中 11
2kδ ≥ − ，而 k 是

某個固定的正實數。令 χ 是 X 上的均等分布。則對於任何可以被大小為 0( )SIZE s

的電路計算，且具有種子的 ( / 3, )k ε -萃取器 :{0,1} {0,1} {0,1}l d mEXT × → 而言，會有

某一組 /32 2 kε ε −≤ + 與 / (2 ,1/ )ls s poly ε≥ ，使得分布 ( , ( ( ), ))dEXT f Uχ χ 與 ( , )mUχ
不存在 ( , )sε -distinguisher(識別器)。 

 

[定理] 令 [ ]i t∈ ，且 ( ) ( ): {0,1}i i lf X → 是一個難度為 ( )( , )i sδ -hard 的函數，其中
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( )( ) 1 2
ii kδ −≥ − 且 ( )

[ ]

i

i t

k k
∈

=∑ 。令 (1) ( )( , , )tχ χ χ= … ，其中每一個 ( )iχ 都是在 ( )iX 上的獨

立均等分布。令 (1) (1) ( ) ( )( ) ( ( ), , ( ))t tf f fχ χ χ= … 。對於任何不具有種子的 t-來源

( / 7, )k ε -萃取器 : ({0,1} ) {0,1}l t mEXT → ，若此萃取器可被大小為 0( )SIZE s 的電路計

算，則存在某一組
2 2( / )( 1) 2 k tltε ε −Ω≤ + + 與 0/ (2 ,1/ )ls s poly sε≥ − ，使得分布

( , ( ( ), ))dEXT f Uχ χ 與 ( , )mUχ 不存在 ( , )sε -distinguisher(識別器)。 

 

• 電路大小的差距電路大小的差距電路大小的差距電路大小的差距 

(此部份之結果發表於 [LLT11b]，原文請參看附錄) 

 

[定理] 假設 (1)V ω≥ ，0 1 (4log ) /V Vδ< ≤ − ，0 1/ 3ε< ≤ ，0 1ρ< < ，且
1 3 2(( / ) log(1/ ))kS V k ε ρ+≥ Ω 。考慮任何配備有 oracle 的演算法，該演算法使用長

度 ( | |)o Xτ δ≤ 的 advice(建議)，並針對 ,X VF 中的函數實現一個核心集的

( , , , , )k Sδ ε ρ -黑箱子證明。則此演算法詢問 oracle 的次數至少為
2(( / ) log(1/ ))Vk ε δΩ 。 
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計畫成果自評計畫成果自評計畫成果自評計畫成果自評    
 
一、我們利用循環矩陣的特性來簡化針對獨立符號來源萃取器的證明並獲得一個

更好的結果。 

二、由計算的角度，我們發現無法從一個只擁有 computational min-entropy 的

隨機源中萃取出一個隨機元。 

三、我們能證明[LLTT05]所提出的針對兩個弱隨機源的萃取器也是一個針對兩個

只擁有 computational min-entropy 的隨機源的萃取器。 

四、我們提出一個可利用任何分布來學習線性函數的學習演算法。 

五、我們延伸核心集引理從原本只考慮函數 f 為布林函數的情況到考慮

{ } [ ]: 0,1f D→ℓ 。 

六、我們利用延伸的核心集引理證明[LLT06]中針對獨立符號來源的萃取器亦可從

計算的獨立符號來源中萃取出隨機元，其在小電路的眼中看起來是非常隨機

的。 

七、我們亦利用證明針對計算獨立符號來源之萃取器的方法證明延伸的 XOR 引

理，其將原本只考慮函數 f 為布林函數的情況延伸到考慮 { } [ ]: 0,1f D→ℓ 。 

八、最後我們證明一個核心集的黑箱子建造法中二元核心集大小的上限。 

九、前述結果已分別整理並發表於期刊：IEEE Transactions on Information 

Theory, Vol.57(8) 5485-5496, 2011 以及國際會議 18th International 

Symposium on Fundamentals of Computation Theory, Oslo, NORWAY. 
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Extracting Computational Entropy and Learning
Noisy Linear Functions

Chia-Jung Lee, Chi-Jen Lu, and Shi-Chun Tsai, Member, IEEE

Abstract—We study the task of deterministically extracting
randomness from sources containing computational entropy. The
sources we consider have the form of a conditional distribution
� � � �, for some function and some distribution , and we
say that such a source has computational min-entropy if any
circuit of size � can only predict � � correctly with probability
at most � given input sampled from . We first show that it
is impossible to have a seedless extractor to extract from one single
source of this kind. Then we show that it becomes possible if we
are allowed a seed which is weakly random (instead of perfectly
random) but contains some statistical min-entropy, or even a
seed which is not random at all but contains some computational
min-entropy. This can be seen as a step toward extending the study
of multisource extractors from the traditional, statistical setting
to a computational setting. We reduce the task of constructing
such extractors to a problem in computational learning theory:
learning linear functions under arbitrary distribution with adver-
sarial noise, and we provide a learning algorithm for this problem.
In fact, this problem is a well-recognized one in computational
learning theory and variants of this problem have been studied in-
tensively before. Thus, in addition to its application to extractors,
our learning algorithm also has independent interest of its own,
and it can be considered as the main technical contribution of this
paper.

Index Terms—Computational min-entropy, randomness extrac-
tors, learning linear functions, computational complexity.

I. INTRODUCTION

R ANDOMNESS has become a useful tool in computer sci-
ence, as the most efficient algorithms known for many

important problems are randomized. However, when analyzing
the performance of a randomized algorithm, we usually assume
that the algorithm has access to a perfectly random source. In re-
ality, the random sources we have access to are usually not per-
fect but may contain some amount of randomness. The amount
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of randomness in a source is usually measured by its min-en-
tropy, where a source has min-entropy at least if every element
occurs with probability at most . From a source with some
min-entropy, we would like to have a procedure, called an ex-
tractor [30], [22], to extract almost perfect randomness, which
can then be used for randomized algorithms.

Most works on extractors focused on seeded extractors,
which can utilize an additional seed to aid the extraction. There
has been a long and fruitful line of results on constructing
seeded extractors (see [25] for a nice survey), which culmi-
nated in [21] and [13] with an optimal construction (up to
constant factors). However, there is an issue with using seeded
extractors. Namely, we need a seed which is perfectly random
and independent of the source we extract from. How do we
get such a seed? For some applications, this can be taken care
of (e.g., by enumerating through all possible seed values), but
for others, this seems to go back to the problem which we
try to solve using extractors. Can we get rid of the need for
a seed and have seedless extractors? For general sources, the
answer has been known to be negative [7]. On the other hand,
when the sources are restricted and have special structure, it
becomes possible to have seedless extractors. Examples of such
sources include samplable sources [28], bit-fixing sources [8],
[18], [10], independent-symbol sources [17], [19], and multiple
independent sources [7], [2], [3], [24], [6], [23].

In this paper, we would like to look for a more general class of
sources from which seedless extraction is still possible. In par-
ticular, we will consider sources which may contain no random-
ness at all in a statistical sense, but look slightly random to com-
putational-bounded observers, such as small circuits. That is, we
will go from a traditional, statistical setting to a computational
one. It is conceivable that in many situations when we consider
a source random, it may in fact only appear so to us, while its ac-
tual statistical min-entropy may be much smaller (or even zero)
especially if we take into account some correlated information
which we can observe. Another application of this notion is in
cryptography, and in fact the idea of extracting computational
randomness has appeared implicitly long ago since [29], [11],
[14], for the task of constructing pseudorandom generators from
one-way functions. The idea is that given a one-way function ,
it is hard to invert to get , and this means that given the
(correlated) information still looks somewhat random,
from which one can extract some bits that look almost random.
However, while there is a natural and well-accepted definition
for what it means that a distribution looks almost random [29], it
seems less clear how to define that a distribution looks slightly
random and how to measure the amount of randomness in it.
In fact, there are several alternatives which all seem reasonable,

0018-9448/$26.00 © 2011 IEEE
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but there are provable discrepancies among them [4], [15]. To
extract randomness from a source with so-called HILL-entropy
[4], the strongest among them, one can simply use any statis-
tical extractor, but we would like to extract randomness from
a broader class of sources. Here we consider a weaker (more
general) notion of computational randomness, which appears in
[15], and we call it computational min-entropy. A comparison
with other notions of computational randomness can be found
in [15].

A. Computational Min-Entropy

To model the more general situation that one may observe
some correlated information about the source, we consider the
setting with a pair of jointly distributed random variables and

, where is the source from which we want to extract and
(could be empty) is some information which one can observe. To
stress that we want to measure the randomness of conditioned
on and to extract randomness from given the information

, we use the notation to denote such a joint distribution.
The correlation between and is modeled by for
some function . In the example of one-way permutation, is
the inverse function , which is hard to compute, and is the
distribution of over a random . Here in our definition, we
allow to be probabilistic and we even do not require it to have
an efficient (or even computable) algorithm, and furthermore,
we do not require to be efficiently samplable either. We say
that such a source has computational min-entropy
if given input sampled from , any circuit of size can only
predict correctly with probability at most .1 From the
distribution , we would like to extract randomness which
when given still looks random to circuits of a certain size.
Note that a source with statistical min-entropy can be seen
as such a source with computational min-entropy ,
where we can simply have no or just have taking a fixed
value, and let be a probabilistic function with as its output
distribution. This means that extractors for sources with com-
putational min-entropy can immediately work for sources with
statistical min-entropy, and thus results in the computational set-
ting can be seen as a generalization of those in the traditional,
statistical setting. On the other hand, for a deterministic func-
tion , has no statistical min-entropy at all when given .
Still, according to our definition, as long as is hard to compute,

in fact can have high computational min-entropy.
Extractors for such sources were implicitly proposed before

[11], [14], and they are seeded ones. That is, they need an addi-
tional seed which must be perfectly random and independent
of the source. In fact, it is known that any seeded statistical
extractor with some additional reconstruction property (in the
sense of [27]) gives a seeded extractor for such sources [4], [26],
[15]. However, just as in the statistical setting, several natural
questions arise in the computational setting too. To extract from
such sources, do we really need a seed? Can we use a weaker
seed which is only slightly random, instead of perfectly random,
in a statistical sense, or an even weaker seed which only looks
slightly random in a computational sense but may contain no

1A more general definition is to have the circuit size as a separate parameter,
but our extractor construction does not seem to work for this more general def-
inition.

randomness in a statistical sense? Seeing the seed as an addi-
tional independent source, a general question is: Can we have
seedless extractors for multiple independent sources in which
each source contains some computational min-entropy? We will
try to answer these questions in this paper. One can see this as a
step toward extending the study of multisource extractors from
the traditional, statistical setting to a new, computational setting.
One can also see this as providing a finer map for the landscape
of statistical extractors, according to the degree of their recon-
struction property.

B. Our Results

First, we show that it is impossible to have seedless extractors
for one single source, even if the source of length can have a
computational min-entropy as high as and even if we only
want to extract one bit.

Next, we show that with the help of a weak seed, it becomes
possible to extract randomness from such sources. We use a
two-source extractor of Lee et al. [20], denoted as EXT, which
takes two input strings , sees them as vectors
from , where for some with , and
outputs their inner product, denoted as , over . As shown
in [20], it works for any two independent sources both con-
taining some statistical min-entropy. Moreover, it is also known
to work when one source contains some computational min-en-
tropy and the other, the seed, is perfectly random (in a statis-
tical sense) [12]. Our second result shows that it even works
when the seed only contains some statistical min-entropy. More
precisely, we show that given any source with com-
putational min-entropy and an-
other independent source with statistical min-entropy , the
output given cannot be distinguished from

random with advantage by circuits of size
. That is, for any such Boolean circuit

, where
denotes the uniform distribution. Then we proceed to show

that the extractor even works when the seed only contains com-
putational min-entropy. More precisely, when we replace the
source by a source with computational min-en-
tropy given still cannot be distin-
guished with advantage by circuits of size about . This can be
seen as a seedless extractor for two independent sources, both
with computational min-entropy.

We do not know if the statistical extractors of [2], [3], [24],
[6], and [23] for multiple independent sources can also work in
the computational setting, since to work in this setting, we need
them to have some reconstruction property. For the extractors
from [11] and [12], this property can be translated to a task in
learning theory, and the proofs there can be recast as providing
an algorithm for learning linear functions under uniform distri-
bution with adversarial noise. Our second result can be seen as
a generalization of [11] and [12], but we are facing a more chal-
lenging learning problem: learning linear functions under arbi-
trary distribution with adversarial noise. Our third result pro-
vides an algorithm for this problem, which, in addition to being
used to prove our second result, may have interest of its own.

In the learning problem, there is some unknown linear func-
tion , defined as , which we want
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to learn, and there is a distribution over from
which we can sample to obtain a training example ,
for some function . The function can be seen
as a noisy version of with some noise rate , and there are
two noise models. In the adversarial-noise model, is a deter-
ministic function such that . In the
random-noise model, is a probabilistic function such that in-
dependently for any . We consider the
more difficult adversarial-noise model, and our algorithm works
for an arbitrary distribution , while its complexity depends on
the min-entropy of . More precisely, our algorithm samples

training examples, runs in time ,
and with high probability outputs a list containing every linear
function satisfying , for

. The factor in our running
time is in fact unavoidable because one can easily find a distribu-
tion (e.g., the first bits perfectly random and the rest fixed)
for which the number of such ’s, and thus the running time, is
in fact at least . Note that when is the uniform distribu-
tion (with ), our algorithm runs in time and
takes samples.

Previously, the algorithm of Blum, Kalai, and Wasserman [5]
can learn under arbitrary distribution but in the random-noise
model, while that of Feldman et al. [9] can learn in the ad-
versarial-noise model but under the uniform distribution. Both
algorithms learn the parity functions on variables, tolerate a
noise rate , run in time , and take

samples. Very recently, Kalai, Mansour, and Verbin
[16] gave an algorithm which can learn the parity functions
under arbitrary distribution in the adversarial-noise model, but
the hypothesis they produce is not in the linear form, so it cannot
be used for our extractors. Furthermore, their algorithm only
produces one hypothesis instead of all the legitimate ones, and
their technique does not seem to generalize from the parity func-
tions to the linear functions over larger fields. Thus, to the best of
our knowledge, the task our learning algorithm achieves has not
been accomplished before. Finally, just as the result of [11] can
yield a list-decoding algorithm for Hadamard codes, so can ours,
while that of [16] cannot. In fact, our list-decoding algorithm
can work even when all but symbols from the codeword are
erased and an fraction of the remaining symbols are corrupted.
It can also be seen as list-decoding a punctured Hadamard code,
where a punctured code is obtained from a code by deleting all
but a small number of symbols from the codeword.

C. Our Techniques

For our impossibility result, we show that for any function
, there exists a function

such that has computational min-entropy
, but takes an identical value for all . We show

the existence of such a function by a standard probabilistic
argument: in fact, a random function from to
is likely to work, for the with the larger .

To show that our extractor works in the computational set-
ting, we follow the approach of [11] and reduce it to the task
of learning linear functions as we just discussed. More pre-
cisely, for the case when the source has computa-
tional min-entropy and the seed has statistical min-entropy,

the reduction works as follows. Assume our extractor EXT does
not work, and thus some efficient distinguisher can tell the dis-
tribution of from random given

, for a large fraction of from . For any such , we can
then predict the value with a good probability, given
the ability to sample from , which can then be used by the
learning algorithm to learn . This would give us an effi-
cient algorithm for predicting for those ’s, if we could in
fact sample efficiently. However, this may not be the case in
general as could be any arbitrary distribution. Still, by an av-
erage argument, there must exist a small set of samples from
which preserve this predicting probability, so we can hard-wire
them in to get a circuit which predicts well. If the function
is hard, this is impossible, so the assumed distinguisher cannot
exit, and EXT indeed works. For the case that the seed comes
from a distribution with computational min-entropy,
observe that alone (without conditioning on ) must have
some statistical min-entropy, because otherwise it becomes easy
to predict. Then a very similar argument as above can be used.

Note that our results on extractors still depend on the exis-
tence of a good learning algorithm, and our main technical con-
tribution can be seen as providing such an algorithm. Our algo-
rithm can be seen as extending that of [5] from the random-
noise model to the adversarial-noise model. Note that in the
random-noise model, it is possible to predict the value of
with confidence for an input by taking the majority vote on
several independent predictions, while in the adversarial-noise
model, this does not seem so and the learning task becomes
much harder.

Our learning algorithm works as follows. We start by sam-
pling some number of training examples from

. Note that each example gives us a linear
equation for the unknown , so the examples
gives us a system of linear equations, some of which may
be wrong. We reduce the original problem of learning the un-
known to the problem of solving such a noisy system of linear
equations. To solve the system, we proceed in two phases. In
the forward phase, we start from the system, and use several it-
erations to produce smaller and smaller systems with fewer and
fewer variables, until we have a small enough system which we
can afford to solve using brute force. Then we enter the back-
ward phase, and starting from the last system produced by the
forward phase, we work backward on larger and larger systems
produced in the forward phase to obtain solutions for more and
more variables. Since the possible solutions may not be unique,
we keep them all in a list in each iteration, and the list in the
final iteration of the backward phase is our output, which we
hope contains the correct .

The forward phase is similar in spirit to an approach in [5]. The
key is to guarantee that after each iteration, the solution is still
good for the new system in the sense that the new system still con-
tains a good fraction of correct equations with respect to , so that

will not be lost when solving this new system. Using an argu-
ment similar to that in [5], we can show that this does hold with a
significant probability. On the other hand, it is not clear whether
or not some iteration in the forward phase would turn many origi-
nally bad solutions into good ones for the new system (satisfying
a good fraction of its equations). That is, not only is a good so-
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lution for the system, there are in fact too many good solutions
for it. If this happens, then in the backward phase when we try to
solve this system, we cannot afford to keep all such solutions, and
we have the risk of losing the actual solution . This tricky situa-
tion does not arise in the random-noise model considered in [5],
so a much simpler algorithm works there. However, in the adver-
sarial-noise model, this seems unavoidable. Fortunately, we can
show that with high probability, the systems we produce indeed
do not have too many good solutions. This turns out to rely on the
fact that our extractor is also a good statistical extractor, together
with the property, which we will show, that each system is likely
to have a distribution which is close to some good distribution
with high statistical min-entropy.

II. PRELIMINARIES

For any , let denote the uniform distribution over
. Let be the class of functions computable by

Boolean circuits of size . We say that a function
is an -distinguisher for two distributions and over

if

All logarithms in this paper will have base two.
We consider two types of min-entropy: statistical min-en-

tropy and computational min-entropy. The notion of statistical
min-entropy is a standard one, usually just called min-entropy.

Definition 1: We say that a distribution has statistical min-
entropy at least , denoted by , if for any

.
Next, we define the notion of computational min-entropy.

Here, we consider the more general setting of measuring the ran-
domness of a distribution given a correlated distribution ,
and we use to denote such a joint distribution. The cor-
relation between and is modeled by for some
function , which could be either probabilistic or deterministic.

Definition 2: We say that a distribution has compu-
tational min-entropy , denoted by , if for any

.
We consider three kinds of extractors: statistical extractors,

hybrid extractors and computational extractors. The notion of
statistical extractors is a standard one for 2-source extractors,
usually just called 2-source extractors, while we introduce the
notions of hybrid extractors and computational extractors.

Definition 3: A function
is called a

• -statistical-extractor if for any source with
and any source , independent of , with
, there is no -distinguisher (without any

complexity bound) for the distributions
and .

• -hybrid-extractor if for any source
with and any source , independent of

, with , there is no -distinguisher
in for the distributions and

.

• -computational-extractor if for any source
with and any source ,

independent of , with , there
is no -distinguisher in for the distributions

and .

Remark 1: Note that the definition above corresponds to the
notion of strong extractors in the setting of seeded statistical ex-
tractors, which guarantees that even given the seed (the second
source), the output still looks random.

We will need the following statistical extractor from [20],
which generalizes the construction from [7]. For any
with , let , and see any as an -dimen-
sional vector over . Then for
any , let be their inner product over defined as

Theorem 1: [20] The function
defined as is a -statis-

tical-extractor when .
We will need the following fact about statistical extractors.

Lemma 1: Let be
any -statistical-extractor. Then for any source over

with and any function
, there are at most different ’s satisfying

Proof: Let be the set consisting of such ’s and let
be the uniform distribution over . Consider the distinguisher

defined as if and
otherwise. Then, the difference

is equal to

which is at least

This implies that , because otherwise it
would contradict the fact that EXT is a good statistical extractor.

Finally, we will need the following lemma about obtaining
predictors from distinguishers. The Boolean case is
well known, and a proof for general can be found in [12].

Lemma 2: For any source over and any function
, if there is an -distinguisher for the

distributions and , then there is a predictor
with as oracle which calls once and runs in time

such that
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III. AN IMPOSSIBILITY RESULT

Just as in the statistical setting [7], we show that seedless
extractors do not exist either in the computational setting. In
fact, we show the impossibility result even for sources with a
computational min-entropy as high as .

Theorem 2: For any with and for any
function , there exists a deterministic
function such that

for but takes the same value for all
(so can be easily distinguished from random).

Proof: Consider any function .
Assume without loss of generality that .
Then we will show the existence of a function such that

but for all . In fact, a
standard argument can show that a random function is likely to
work, as we will describe next.

Consider a random function . Fix
any , and for each

, define a binary random variable such that
if and only if . Observe that is the

number of satisfying . Note that

and let . Then by a Chernoff bound (see e.g.,
[1]), we have

Since and , a union bound
gives

Hence, there exists some , such that
for any , but

for any . This completes the proof.

IV. HYBRID AND COMPUTATIONAL EXTRACTORS

In this section, we show that the function
defined in Theorem 1 as

which is known to be a good statistical extractor, is also a good
hybrid extractor and a good computational extractor.

Theorem 3: For any , any

dividing , any , any ,
and for some , the function

defined above is both
a -hybrid-extractor and a -computa-
tional-extractor.

The proof for Theorem 3 relies on the following result, which
gives an algorithm for the problem of learning linear functions
under arbitrary distribution with adversarial noise.

Theorem 4: For any , any

dividing , and any , there exists a learning
algorithm with the following property. Given any source
over with and any function

, the algorithm samples training exam-
ples from the distribution and then runs in time

to output a list of size which
with probability contains every satisfying

Note that as in a standard learning-theoretical setting, we do
not count the complexity of sampling the training examples (or
just count each sampling as unit cost) in Theorem 4. We will
prove the theorem in the next section, and now let us see how it
is used to show Theorem 3.

Proof: (of Theorem 3)
First, we prove that the function EXT is a good hybrid ex-

tractor. Consider any source with and any
source , which is independent of , with .
Assume for the sake of contradiction that there exists an -dis-
tinguisher for the distributions
and . By Lemma 2, this implies the existence of a
predictor with

Let , and call any heavy if

Then a Markov inequality shows that

Given any heavy , we want to predict from with a
good probability. This can be reduced to the task of learning
the linear function , through noisy training examples

, with , under the distribution
. Consider the algorithm which on input calls the

algorithm in Theorem 4 using the function ,
and outputs a random element in the list produced by . It
samples independent elements, denoted as , from

, makes calls to , and for any heavy it
outputs with probability .
Then is at least

which is at least
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That is, we have

We are almost done except that we still cannot bound the
complexity of the algorithm because it needs a way to sample
elements from the source which may not have an efficient
sampling algorithm, unlike in the learning setting where one
does not count the complexity of sampling. Fortunately, by an
average argument, the bound above still holds for some fixed

, and we can simply hard-wire it into . Similarly, we can do
this for other random choices of , and it is not hard to show
that one can have a resulting circuit of size

which is at most

Thus, for some large enough , we have
a circuit of size smaller than which can predict correctly
with probability at least

This contradicts the assumption that , which
means that the distinguisher assumed at the beginning cannot
exist, so EXT is a good hybrid extractor as claimed.

Next, we prove that EXT is also a good computational ex-
tractor, and the proof is almost identical. Consider two inde-
pendent sources and , with and

. Observe that the distribution of must have
statistical min-entropy at least , because otherwise the pre-
dictor which always outputs the value with the largest mea-
sure can predict correctly with probability larger than ,
a violation of the assumption that . Then we
can follow the proof above: assuming the existence of a distin-
guisher for EXT, we can obtain a predictor of size smaller than

, with some elements from hard-wired
in it, which can predict correctly with probability larger than

. This contradicts the fact that , so EXT is a
good computational extractor.

V. LEARNING NOISY LINEAR FUNCTIONS

In this section, we prove Theorem 4. Recall that given any
source over with , any

, and any function , we would like
to learn some unknown such that

(1)

Since such may not be unique, we will list them all. Let us
first imagine one such fixed .

We start by randomly choosing indepen-
dent training examples (with replacement) from the distribution

, for some large enough constant (depending on
). Let denote the matrix and the -dimen-

sional vector, both over , such that for each training example
has as a row and has

Fig. 1. FORWARD PHASE.

Fig. 2. BACKWARD PHASE.

as an entry. Note that each training example , with
, gives us a linear equation

for . Thus from these training ex-
amples, we obtain a system of linear equations, denoted as

, and we would like to reduce the task of learning
to that of solving this system of linear equations. However, this
system is highly noisy as about fraction of the equa-
tions are likely to be wrong, according to (1). We will roughly
follow the approach of Gaussian elimination (which works for
noiseless systems of linear equations), but will make substantial
changes in order to deal with our noisy case.

Our algorithm consists of two phases: the forward phase,
shown in Fig. 1, and the backward phase, shown in Fig. 2. The
forward phase works as follows, which is similar to an ap-
proach of Blum et al. [5]. Starting from the system
of linear equations, we use several iterations to produce smaller
and smaller systems with fewer and fewer variables, until we
have a small enough system which we can afford to solve using
brute force. More precisely, we choose the parameters

divide each row of into blocks, with each block con-
taining elements in , and proceed in iterations, as shown in
Fig. 1. Note that after iteration , we have the system
which has variables and equations, with
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for a large enough constant . The key is to guarantee that the
system still contains a good fraction of correct equations. Let

A simple induction shows that for

for a large enough constant . We say that any is
-good for the system if it satisfies at least

fraction of equations in the system. Let denote
without its first blocks, and we call the forward phase good
if for every is -good for . Lemma 3 below,
which will be proved in Section V-A, guarantees that the for-
ward phase is good with a significant probability.

Lemma 3: The forward phase is good with probability at least
.

For the backward phase, we start from the last system
produced by the forward phase, and work back-

ward on larger and larger systems produced in the forward
phase to obtain solutions for more and more variables. More
precisely, we go from down to , and while in
iteration , we try to find all possible solutions which extend
solutions from iteration and are -good for , as
shown in Fig. 2. However, in order to bound the running time,
we will stop including the solutions once their number grows
beyond the threshold

If this happens, we may fail to include the actual solution in
our final list. Call the backward phase good if for every , the
number of such -good solutions for is at most ,
or equivalently, it never reports “error.” Lemma 4 below, which
will be proved in Section V-B, guarantees that the backward
phase is indeed good with a high probability.

Lemma 4: The backward phase is not good with probability
at most .

From Lemma 3 and Lemma 4, the probability that both the
forward and backward phases are good is at least

Assuming that both phases are good, a simple induction shows
that for any and hence . Thus, we have
shown that any fixed satisfying the bound in (1) is contained in
the list of size at most with probability . We
can further reduce the probability of missing this to
by repeating the process times, and take the union
of the produced lists. Then a union bound shows that some
satisfying (1) is not included in the final output with probability
only .

Finally, let us measure the complexity of our algorithm. First,
training examples are sampled from the dis-

tribution . Next, each iteration of the forward phase

works on a system of at most equations with at most vari-
ables and runs in time , and hence the whole forward
phase runs in time

since . Then, each iteration of the backward
phase runs in time

so the whole backward phase runs in time

Finally, the process is repeated for times, and thus
the total running time is

As a result, we have Theorem 4. To complete the proof, it re-
mains to prove Lemma 3 and Lemma 4, which we do next.

A. Proof of Lemma 3

First, by a Chernoff bound, we know that satisfies
less than fraction of equations in with
probability at most . That is, is -good
for with probability . Next, we need the
following lemma.

Lemma 5: In the forward phase, if is -good for
, then is -good for with prob-

ability at least .
Proof: Let . Assume that is -good,

so it satisfies at least fraction of equations in the
system . Partition equations in the system

into groups according to their first blocks,
as in Step 1(a) of the forward phase. Suppose group con-
tains fraction of equations in and
satisfies fraction of equations in the group, for some

. Then we have

(2)

We would like to count the expected fraction of new equa-
tions satisfied by , where we count equations in their
multiplicity. Before doing that, let us first count the fraction
with respect to the system obtained before Step 1(d) (before re-
moving pivots). Let us denote a generic equation of the system

by . Consider any group . For
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, let denote the fraction of equations
in the group which are off by a value in the sense that

Note that for to satisfy a new equation, which is the dif-
ference between two equations, these two involved equations
must be off by the same value. Therefore, the expected frac-
tion of new satisfied equations in this group is , which
under the constraint achieves its minimum when

for all other . Hence, after one itera-
tion, the expected fraction of new equations in group (before
removing pivots) satisfied by is at least

Combing all groups together, the expected fraction of satisfied
equations overall (before removing the pivots) is at least

where the first inequality is due to Jensen inequality, and the
second inequality uses the bound implied by that
in (2).

To get the expected fraction of satisfied equations in the final
system , after performing Step 1(d), observe that we
only need to discard at most equations, each
with measure , so the total discarded measure, de-
noted as , is at most

for a large enough constant . As a result, the expected fraction
of equations in satisfied by is at least

by recalling that and . Finally, by a
Markov inequality, we have the lemma.

Then by Lemma 5 and an induction, the forward phase is good
with probability at least

This proves Lemma 3.

B. Proof of Lemma 4

Recall that a solution is -good for the system if
it satisfies at least fraction of the equations. For any

such that , consider the following event:
• : the number of -good solutions for ex-

ceeds .
Thus, our goal is to show that

We will prove this by a union bound, so our goal is reduced to
bounding each for .

To get a quick idea, let us first consider how to bound
. Note that since EXT is a good statistical ex-

tractor and has a high min-entropy, Lemma 1 guaran-
tees that the number of satisfying the probability bound

is at most . Any
other is very unlike to be -good for by a
Chernoff bound because each row of is sampled indepen-
dently from . Since happens only when any such (not
satisfying that probability bound) is -good, a union bound
shows that is indeed small.

Now for , to follow this idea to bound , we
would also like the distribution of , denoted as , to
have the nice property that each of its rows comes indepen-
dently from a high min-entropy source. Unfortunately, this is not
true in general,2 and a much more involved analysis is needed.
Our approach is to consider the distribution conditioned on
the choice of pivots in the first iterations. We call a particular
choice of the pivots a restriction of the pivots, which includes
fixing the indices and the values of some rows as pivots while
leaving other rows free. We will show that the distribution
conditioned on most restrictions is close to a distribution with
the nice property. For our purpose here, instead of using the
standard definition of “closeness” (which would be measured
according to the statistical distance), we consider the following
one.

Definition 4: We say that two distributions are -close if the
probabilities of any event according to the two distributions are
within a multiplicative factor of from each other.

Observe that one can generate the matrix in an alterna-
tive way by first choosing the pivots in iterations and then gen-
erating the matrices consistent with the pivots.
Formally, the distribution (the distribution of the matrix

) can be generated in two passes as follows. In the first pass,
we select a restriction of pivots in the first iterations, denoted
as , by running the forward phase on the matrix

sampled from and collecting the pivots, which include
the indices and the values of rows as pivots, in each iteration. In

2This is true in the simple case considered by [5] that one has � � � to
start with. In this case, for each �, one can easily show that each row of �
does come independently from the uniform distribution � .
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the second pass, we again sample a matrix from and
then run the forward phase accordingly for iterations to derive
the matrix , under the condition, denoted as ,
that the pivots selected in the iterations match .
Let denote such a conditional dis-
tribution of with respect to the restriction .
Now consider the following event about , over the distribu-
tion of selected in the first pass.

• : the distribution is -close to some distribu-
tion which has rows, each coming independently
from a distribution with ,
for some .

The following lemma, which will be proved later, shows that
when conditioned on , the probability of is indeed
small.

Lemma 6: For any such that

Next, we would like to show that happens with high
probability. Note that for , the event always happens
because the initial distribution has the nice property itself,
so we have and . For , we
use induction to show that

and then we rely on the following lemma, which will be proved
later.

Lemma 7: For any such that

From these two lemmas, we have that for any such that

For , we have

As a result, a union bound gives us

which proves Lemma 4. Thus, it remains to prove Lemma 6 and
Lemma 7, which we do in the next two subsections.

C. Proof of Lemma 6

Let us first count the number of solutions such that

Let denote the set of such ’s. Note that is a source over
with . Thus

by Theorem 1 and Lemma 1, we have

This means that for the event to happen, some must
be -good.

Consider any restriction such that the event
happens. If we sample the matrix according to the

distribution , which has each row coming independently
from , then any fixed is -good (satisfying at least

fraction of equations in ) with probability
at most by a Chernoff bound, and a union bound
shows that

Now if we sample according to the distribution
, which is -close to (given that

happens), the probability is only scaled up by a factor . Thus,
we have

Since the bound holds for any restriction such
that the event happens, we have the lemma.

D. Proof of Lemma 7

Let us consider any restriction such that the
event happens, and we will show that happens with
high probability, over the selection of . More precisely, the
assumption that happens means that we start iteration
from the distribution which is close to some nice distri-
bution , and our task is to show that with high probability
over the selection of , the resulting conditional distribution

after iteration is close to another nice distribution ,
so that happens. For this, we need to figure out which of
these ’s make happen.

Note that for a restriction , the corresponding distribution
is obtained by applying Steps 1(c) and 1(d) on the matrix

sampled from under the condition that it is con-
sistent with . The restriction fixes some rows
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Fig. 3. If �� is close to � , then �� is close to � , conditioned on � .

of the matrix as pivots and it has the effect on the dis-
tribution that all the rows of must belong to the

groups of those rows. We would like the effect to be small,
and we consider the following event, over the selection of .

• : those elements in the support of which would
belong to those groups of when selected as rows
of (i.e., those with their first blocks matching one
of the first blocks of the rows in ) have a combined
measure of in the distribution .

We will show that if happens then happens. For this,
let us consider any fixed restriction such that happens,
and let us use to denote the event that the pivots chosen in
iteration match those in . Our approach is illustrated in
Fig. 3.

First, let us consider the case of starting iteration from the
nice distribution , instead of , conditioned on

, and let be the resulting distribution after iteration .
The following claim shows that is in fact close to a nice
distribution.

Claim 1: For some , the distribution is
-close to some nice distribution described in the event

(i.e., has rows, each coming independently from
a distribution with ).

Next, let us go back to the actual situation of starting itera-
tion from the distribution , instead of as we did
in the above claim. Using the assumption that is close
to , our next claim shows that when we start iteration
from the distribution conditioned on , the resulting
distribution is close to the distribution .

Claim 2: The distribution is -close to the distribu-
tion .

From these two claims, we can conclude that is -close
to , for , which by induction is at
most

This implies that for any restriction such that the event
happens, the event must happen as well. Therefore, the
probability that does not happen is at most the probability
that does not happen, which we bound by the following
claim.

Claim 3: The probability over the selection of that
does not happen is at most .

We have shown that for any restriction such
that the event happens, the probability, over the selection
of , that the event does not happen is at most .
This implies that , which proves
Lemma 7. Thus, it remains to prove the three claims above,
which we do next.

Proof: (of Claim 1)
Recall that we have fixed a restriction which fixes some

rows as pivots such that the event happens, and we use
to denote the event that the pivots selected during iteration
match those in the restriction . In this claim, we consider the
situation of starting iteration from the nice distribution
conditioned on the event .

First, let us see how the distribution is affected by the
conditioning on . Consider any fixed matrix of

rows, insert the rows of at the proper places to
get a fixed matrix of rows, and let us use
to denote the event that a randomly sampled matrix from
equals this matrix . If the matrix has a row not in the
groups of , then . Otherwise,

is

where is the measure of the ’th row of in
is the number of rows of in group , and is

the measure of group in . Note that for some
, the numerator equals

while the denominator equals
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where as we assume that the event
happens. As a result, for , we have

Note that the first factor above can be seen as the probability
when we sample each row of the matrix independently ac-
cording a new distribution , which is the distribution

restricted to those groups of and normalized
by their measure . Thus, although the conditioning on the
event may destroy the independence so that we can no
longer see each row as coming independently from , we
can somehow have the independence restored by considering
another distribution with some distortion factor .
More precisely, we have shown that the distribution
conditioned on the event is -close to a nice distribution,
denoted as , which has each of its remaining row (not
fixed by ) coming independently from , with

Next, let us see what the resulting distribution will be when
Steps 1(c) and 1(d) are performed on the distribution
conditioned on . Again, we first consider the case of ap-
plying the two steps on the nice distribution instead.
When we perform Step 1(c) to subtract from each row its cor-
responding pivot, which is a fixed value, each resulting row
still remains independent from others. However, the distribu-
tion of each resulting row is now changed to another distribution
which may have a smaller min-entropy than that of , be-
cause different initial rows after subtracting their corresponding
pivots may result in the same value. Still, the number of such
initial rows can be at most since no two such rows can
come from the same group, which implies that the min-entropy
only decreases by at most . Then after performing Step 1(d)
to remove the pivots and delete the first blocks, the resulting
matrix has each row coming independently from some distribu-
tion with min-entropy at least

That is, after performing Steps 1(c) and 1(d) on the distribution
, the resulting distribution, denoted as , satisfies the

condition in event . Finally, let us get back to the actual case
of starting with the distribution conditioned on .
Since it is -close to , the resulting distribution after
applying the two steps is -close to the corresponding resulting
distribution , which proves the claim.

Proof: (of Claim 2)
In this claim, we go back to the actual situation of starting

iteration from the distribution , instead of as we
just did. We would like to show that the resulting distribution

when starting from is -close to the distribution
when starting from . For this, it suffices to show

that for any event , the probabilities of

and are within a multiplicative factor of
. This is true because from the fact that and

are -close, we know that and
are within a multiplicative factor of , and

so are and .

Proof: (of Claim 3)
Note that the restriction can be selected by sampling a

matrix according to the distribution and then ap-
plying Steps 1(a) and 1(b) to select the pivots. Thus, the prob-
ability that does not happen is at most the probability that
all the rows of lie in some groups with a com-
bined measure of in the distribution .

Again, let us first consider the case of sampling ac-
cording to the distribution , instead of . Note that
there are at most ways of choosing the groups with a
combined measure of in , and the probability
that all the independent rows lie in any partic-
ular choice of such groups is at most . Then a union
bound shows that the probability of having is at most

Next, let us go back to actual case of sampling ac-
cording to the distribution . Note that the probability of
having according to can only be larger than that
according to by at most a factor of , and hence it is
still at most
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Abstract. The seminal hardcore lemma of Impagliazzo states that for
any mildly-hard Boolean function f , there is a subset of input, called the
hardcore set, on which the function is extremely hard, almost as hard as a
random Boolean function. This implies that the output distribution of f
given a random input looks like a distribution with some statistical ran-
domness. Can we have something similar for hard functions with several
output bits? Can we say that the output distribution of such a general
function given a random input looks like a distribution containing several
bits of randomness? If so, one can simply apply any statistical extractor
to extract computational randomness from the output of f . However, the
conventional wisdom tells us to apply extractors with some additional
reconstruction property, instead of just any extractor. Does this mean
that there is no analogous hardcore lemma for general functions?

We show that a general hard function does indeed have some kind
of hardcore set, but it comes with the price of a security loss which is
proportional to the number of output values. More precisely, consider a
hard function f : {0, 1}n → [V ] = {1, . . . , V } such that any circuit of size
s can only compute f correctly on at most 1

L
(1 − γ) fraction of inputs,

for some L ∈ [1, V − 1] and γ ∈ (0, 1). Then we show that for some
I ⊆ [V ] with |I | = L + 1, there exists a hardcore set HI ⊆ f−1(I) with
density γ/

(
V

L+1

)
such that any circuit of some size s′ can only compute

f correctly on at most 1+ε
L+1

fraction of inputs in HI . Here, s′ is smaller
than s by some poly(V, 1/ε, log(1/γ)) factor, which results in a security
loss of such a factor. We show that it is basically impossible to guarantee
a much larger hardcore set or a much smaller security loss. Finally, we
show how our hardcore lemma can be used for extracting computational
randomness from general hard functions.

1 Introduction

Impagliazzo’s hardcore lemma [9] is a fundamental result in complexity theory
which states that any mildly-hard function has a subset of inputs on which it
is extremely hard. More precisely, consider a function f : {0, 1}n → {0, 1} such
that any circuit of size s disagrees with f on at least δ fraction of inputs, and

O. Owe, M. Steffen and J.A. Telle (Eds.): FCT 2011, LNCS 6914, pp. 78–89, 2011.
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we call such a function (δ, s)-hard where the parameter δ is called the hardness
of f . Then the hardcore lemma asserts that there exists a subset H ⊆ {0, 1}n

of density δ such that any circuit of size s′ must disagree with f on at least
1−ε
2 fraction of inputs from H , for some s′ slightly smaller than s. This means

that given a random input x in H , although the value of f(x) is fixed and thus
has no randomness at all in a statistical sense, it still looks like a random bit to
small circuits. Because of this nice property, the hardcore lemma has become an
important tool in the study of pseudo-randomness. For example, it was used in
[9] for an alternative proof of Yao’s XOR lemma [20], used in [17] for constructing
a pseudo-random generator directly from a mildly-hard function without going
through the XOR lemma, and more recently used in [15,18,19,6] for amplifying
hardness of functions in NP. The parameters of the hardcore lemma were later
improved by [10,7,2].

Note that Impagliazzo’s hardcore lemma works for Boolean functions. It says
that the output of a hard function given a random input looks like a random bit
and thus contains statistical randomness, when the input falls in the hardcore set.
When using the lemma, the hard function is usually evaluated at several inputs
in order to obtain several output bits, which together can be argued to contain
some sufficient amount of randomness. Usually, the amount of randomness in
a distribution is measured by its min-entropy, where a distribution has min-
entropy at least k if every element occurs with probability at most 2−k. Then
from a distribution with some min-entropy, one applies a so-called randomness
extractor [21,14] to extract a distribution which looks almost random.

On the other hand, there are natural functions with many output bits which
are believed to be hard, such as factoring and discrete logarithm, and one may
be able to extract several bits at once from one output value. This is also related
to the problem of extracting randomness from sources with computational ran-
domness, studied in [3,8,12]. One may wonder if there is an analogous hardcore
lemma for a general non-Boolean function, which can guarantee that the out-
put distribution given a random input will look like one with some min-entropy,
hopefully much larger than one. For example, assume that a one-way permu-
tation g : {0, 1}n → {0, 1}n exists, whose inverse function f = g−1 is hard to
compute by small (say, polynomial-size) circuits. Then, if one could show that the
distribution of x = f(y) given a random y looks like having some min-entropy to
small circuits, one could simply apply any extractor on x. However, the conven-
tional wisdom does not suggest so and the following counter example seems to be
known as a folklore. Given an efficiently-computable extractor E and a one-way
permutation g, the function Ext defined as Ext(x, u) = E(g(x), u) is still an ex-
tractor, but its output can be easily computed (and hence does not look random
at all) given y = g(x) and u. To extract such computational randomness, pre-
vious works all resorted to extractors with some reconstruction property, which
roughly corresponds to error correcting codes with efficient decoders (see, e.g.,
[16] for a definition).

Does this mean that there is no analogous hardcore lemma for general func-
tions? If we consider a hard function f : {0, 1}n → {0, 1}2 with two, instead of
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one, output bits, it may be hard to believe that we can no longer have any kind
of hardcore lemma for it. But can we guarantee the existence of a hardcore set
H such that f(x), for a random x ∈ H , looks like a random value in {0, 1}2?
The answer is no in general because f may in fact have at most three possible
output values, so we have to settle for something weaker. One approach is to see
each output bit of a (δ, s)-hard function f : {0, 1}n → {0, 1}d as a Boolean func-
tion, so some of these d Boolean functions must have hardness Ω(δ/d) and they
have Boolean hardcore sets (with two output values) of density Ω(δ/d) using
Impagliazzo’s lemma. Unfortunately, this only gives a very weak result because
even if f is extremely hard, with δ close to 1 − 2−d, one may still only be able
to guarantee one bit of randomness in the output of f if those Boolean hardcore
sets are disjoint.

We are looking for something stronger, in which more bits of randomness
can be guaranteed. We consider a general (δ, s)-hard function f of the form
f : {0, 1}n → [V ] = {1, . . . , V }. We discover that a good way to see its hardness
is to express it in the form of δ = 1 − 1

L(1 − γ), for some L ∈ [1, V − 1] and
γ ∈ (0, 1), and we obtain the following results.

First, we show that any function with such hardness has a hardcore set with
L + 1 output values. More precisely, we show that for such a hard function f ,
there exist some I ⊆ [V ] with |I| = L + 1 and some HI ⊆ f−1(I) of density
|HI |/2n ≥ γ/

(
V

L+1

)
such that any circuit of size s′ can only compute f correctly

on 1+ε
L+1 fraction of the inputs in HI , where s′ is smaller than s by a factor of

poly(V, 1/ε, log(1/γ)). Let us call such a set HI an (I, ε, s′) hardcore set, and
let us take a close look at what our result says as L varies. At one end of the
spectrum with L = V − 1, our result guarantees the existence of a hardcore set
HI , with I = [V ], such that f restricting to the set HI has almost the largest
possible hardness and it looks like a random function from HI to [V ]. Note that
when V = 2 (and L = 1), we have Impagliazzo’s hardcore lemma as our special
case. As L becomes smaller, the hardness decreases, and it is no longer possible
to always have a hardcore set with V output values. Nevertheless, our result
shows that one can still have a hardcore set HI with |I| = L + 1 output values,
such that f restricting to HI looks like a random function from HI to I.

Notice that in our first result, we can only guarantee a hardcore set of density
γ/

(
V

L+1

)
, and one may wonder if it is possible to guarantee a larger one. Our

second result shows that this is basically impossible. More precisely, we show the
existence of a (δ, s)-hard function f : {0, 1}n → [V ], with δ = 1− 1

L(1−γ) and s ≥
poly(γ, 1/L, 2n), which has no (I, ε, s′) hardcore set of density 4(L + 1)γ/

(
V

L+1

)

for any I ⊆ [V ] with |I| = L + 1, where s′ = poly(n). Note that the density
achieved by out first result and that ruled out by our second result are off by an
O(L) factor, and we believe that the bound of our second result may be improved.
On the other hand, our second result is strong in the sense that even when we
start from a function which is hard against very large circuits of exponential
size, it is still impossible to have a hardcore set of a small density against small
circuits of polynomial size.



Computational Randomness from Generalized Hardcore Sets 81

With a small hardcore set, one can only say that the output of a hard function
f looks somewhat random when the input falls into that small set. This alone
is not good enough for the purpose of randomness extraction because the vast
majority of inputs are outside of the hardcore set and may contribute a large
error. Our next result shows that in fact we can have not just one but a collection
of disjoint hardcore sets, and they together cover all but a small fraction of the
inputs, which implies that the output of f looks somewhat random for most
input. More precisely, we show that for a (δ, s)-hard function, with δ ≥ 1− 2−k,
its output distribution given a random input looks close, within some distance ε,
to a distribution with min-entropy Ω(k), by circuits of size s′ = s/poly(V, 1/ε).
This implies that we can simply apply any seeded statistical extractor to extract
computational randomness from the output of f as long as s is large (say, super-
polynomial) or V is small (say, polynomial). This also works for seedless multi-
source extractors, and in particular, it fits nicely with the setting of independent-
symbol sources studied in [12] in which each symbol is considered to come from a
small set. Therefore, we can generalize the result of [12] from a statistical setting
to a computational one: given multiple independent sources, over a small set of
symbols, which look slightly random to polynomial-size circuits but may have
no min-entropy at all, the statistical extractor there can be used to produce an
output which looks almost random to polynomial-size circuits.

Note that in our hardcore set result, there is a security loss of some factor
poly(V, 1/ε) in circuit size. That is, starting from a function which is hard against
circuits of size s, we can only guarantee the hardness of a hardcore set against
circuits of size s′, with s′ smaller than s by that factor. Consequently, with s =
poly(n), we can only extract randomness from a function with V ≤ poly(n) (or
equivalently, with O(log n) output bits). One may wonder if such a security loss of
circuit size can be avoided. Our final result shows that this is basically impossible,
if the proof is done in a certain black box way. Here, we use the notion of black-
box proofs for hardcore sets introduced in [13]. Informally speaking, a black-box
proof is realized by an oracle algorithm R such that for any function f and any
collection G of circuits, if G breaks the hardcore set condition, then R breaks the
hardness of f by using G only as an oracle. In this black-box model, we show that
any algorithm R must make at least q = Ω((V k/ε2) log(1/δ)) queries in order
to show the existence of a hardcore set with k output values. This translates to
a loss of a q factor in circuit size, because the resulting circuit of RG is larger
than those in G by this factor. This explains the need of using reconstructive
extractors, instead of just any extractors, on the input of a one-way permutation
discussed before, since there we have a large V = 2n. Finally, we would like
to clarify a potential confusion with the security loss of using reconstructive
extractors in previous works. When applying reconstructive extractors on the
output of a hard function f , previous results also suffered some loss of circuit
size in the same sense: the outputs of extractors only look random to smaller
circuits compared to those which the hardness of f is measured against. However,
the loss is in terms of the output length m of extractors, instead of the output



82 C.-J. Lee, C.-J. Lu, and S.-C. Tsai

length of f . More precisely, the loss factor is poly(2m), which again limits us to
extracting O(log n) bits when f is hard against circuits of size s = poly(n).

2 Preliminaries

For n ∈ N, let [n] denote the set {1, . . . , n}, and let Un denote the uniform
distribution over {0, 1}n. For a set X , we let |X | denote the number of elements
in X , and for a subset S ⊆ X , we say that S has density |S|/|X | in X . For a
set X and an integer n ∈ N, we use the notation

(
X
n

)
to denote the collection of

subsets S ⊆ X such that |S| = n. When we sample from a finite set, the default
distribution is the uniform one. All logarithms used in this paper will have base
two. Let SIZE(s) be the class of functions computable by circuits of size s. We
measure the hardness of computing a function in the following way.

Definition 1. A function f is (δ, s)-hard if any circuit in SIZE(s) must fail to
compute f correctly for at least a δ fraction of inputs.

Impagliazzo [9] considered Boolean functions and show that any hard function
must have a hardcore set such that the function restricted to the hardcore set
is extremely hard. In this paper, we consider general functions of the form f :
X → [V ], for some input set X and for the output set [V ] with integer V ≥ 2.
For such general functions, we introduce our notion of generalized hardcore sets
as follows.

Definition 2. For a function f : X → [V ] and some I ⊆ [V ], we say that
a subset of inputs H ⊆ f−1(I) is an (I, ε, s) hardcore set if for any circuit
C ∈ SIZE(s), Prx∈H [C(x) = f(x)] ≤ (1 + ε)/|I|. We say that such an H is a
hardcore set with |I| output values.

Note that f(x) ∈ I for any x ∈ H , so the above probability bound says that
f restricted to H looks like a random function from H to I. We say that a
distribution looks like another one if there is no distinguisher for them, defined
as follows.

Definition 3. A function D : X → {0, 1} is an ε-distinguisher for two distri-
butions X and Y over X if |Pr[D(X ) = 1] − Pr[D(Y) = 1]| ≥ ε, and we call
such a function D an (ε, s)-distinguisher if D ∈ SIZE(s).

We measure the amount of randomness in a distribution X by its min-entropy,
and we say that X has min-entropy at least k, denoted by H∞(X ) ≥ k, if for
any x, Pr[X = x] ≤ 2−k. From a source which is only weakly random (with some
min-entropy), we would like to have a procedure called an extractor to extract a
distribution which is almost random. When trying to extract randomness from a
single source, one usually needs an additional short seed, and such an extractor
is called a seeded one, which is defined as follows.

Definition 4. A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is called a (seeded)
(k, ε)-extractor if for any distribution X over {0, 1}n with H∞(X ) ≥ k, there is
no ε-distinguisher for the distributions Ext(X ,Ud) and Um.



Computational Randomness from Generalized Hardcore Sets 83

When there are at least two independent sources which are weakly random, it
becomes possible to have a seedless extractor, which is defined as follows.

Definition 5. A function Ext : ({0, 1}n)t → {0, 1}m is called a (seedless)
t-source (k, ε)-extractor if for any t independent distributions X1, . . . ,Xt over
{0, 1}n with

∑
i∈[t] H∞(Xi) ≥ k, there is no ε-distinguisher for the distributions

Ext(X1, . . . ,Xt) and Um.

3 Generalized Hardcore Set

In this section, we generalize Impagliazzo’s hardcore lemma [9] from the case of
Boolean functions to the case of general functions. More precisely, we have the
following.

Lemma 1. Let f : X → [V ] be a (δ, s)-hard function, with δ ≥ 1− 1
L(1− γ) for

some γ ∈ (0, 1) and some integer L ∈ [V − 1]. Then for any ε > 0, there exist
s′ = s/poly(V, 1/ε, log(1/γ)) and I ∈ (

[V ]
L+1

)
such that f has an (I, ε, s′)-hardcore

set HI of density |HI |/|X | ≥ γ/
(

V
L+1

)
.

To prepare for the proof of Lemma 1, let us first recall Nisan’s proof of Impagli-
azzo’s hardcore lemma (for Boolean functions) described in [9]. The proof is by
contradiction, which starts by assuming that a (ρ, s)-hard function f : X → I,
with |I| = 2, has no hardcore set of density ρ. Then the key step there is to
use the min-max theorem of von Neumann to show the existence of a subset of
inputs T ⊆ X of density less than ρ and a collection of circuits AI ⊆ SIZE(s′)
with |AI | ≤ O((1/ε2) log(1/ρ)) such that for any x /∈ T ,

Pr
A∈AI

[A(x) = f(x)] >
1
2
.

Then by letting C be the circuit computing the majority of those circuits in
AI , one has C(x) = f(x) for every x /∈ T , which contradicts the fact that f is
(ρ, s)-hard.

We would like to extend this idea to a general function f : X → [V ], with
V ≥ 3. First, it is straightforward to verify that a similar argument using the
min-max theorem can also prove the following lemma.

Lemma 2. Suppose f : X → [V ] does not have an (I, ε, s′)-hardcore set of
density ρ in X, for some I ⊆ [V ]. Then there exist a subset of inputs TI ⊆ f−1(I)
of density less than ρ in X and a collection of circuits AI ⊆ SIZE(s′) with
|AI | ≤ O((1/ε2) log(1/ρ)) such that for any x ∈ f−1(I) \ TI ,

Pr
A∈AI

[A(x) = f(x)] >
1
|I| .

However, unlike the Boolean case, it is not clear how to construct a circuit C
to approximate f from these collections of circuits. This is because for an input
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x with PrA∈AI [A(x) = f(x)] > 1
|I| , it is still possible that the majority value of

A(x), for A ∈ AI , differs from f(x). Moreover, given an input x, we do not know
which subset I contains f(x), so we do not even know which collection AI of
circuits might help. A more careful analysis is needed, and now we proceed to
prove Lemma 1.

Proof. Assume for the sake of contradiction that there is no (I, ε, s′)-hardcore
set of density γ/

(
V

L+1

)
in X for any I ∈ (

[V ]
L+1

)
. Then we know from Lemma 2

that for any I ∈ (
[V ]

L+1

)
, there exist a collection AI ⊆ SIZE(s′) with |AI | ≤

O((1/ε2) log(
(

V
L+1

)
/γ)) and a subset TI of inputs with density less than γ/

(
V

L+1

)

in X such that for any x ∈ f−1(I) \ TI , PrA∈AI [A(x) = f(x)] > 1
L+1 . Let T be

the union of all such TI ’s, and we have Prx∈X [x ∈ T ] <
(

V
L+1

) · γ/
(

V
L+1

)
= γ.

Note that for any x /∈ T , we can rule out the value v as a candidate for f(x) if
v is contained in some I ∈ (

[V ]
L+1

)
such that the following condition holds:

Pr
A∈AI

[A(x) = v] ≤ 1
L + 1

. (1)

This suggests the randomized algorithm R described in Figure 1, which tries to
compute f(x) by ruling out the candidates one by one.

1. Let Q = [V ].
2. While |Q| ≥ L + 1 do the following:

(a) Choose any I ⊆ Q with |I | = L + 1.
(b) Delete from Q any v ∈ I such that the condition (1) holds.

3. Output a random element in Q.

Fig. 1. The randomized algorithm R

Observe that each iteration of the while loop in algorithm R has at least
one v deleted from Q, because it is impossible that all the L + 1 outcomes
have probability more than 1

L+1 . Thus, R exits the while loop after at most
V iterations, and for any input x /∈ T , the value f(x) remains in the final Q,
with |Q| ≤ L, which implies that R outputs f(x) correctly with probability at
least 1

L . By an averaging argument, one can fix the randomness of R to obtain
a deterministic circuit C such that C(x) = f(x) for at least 1

L fraction of x /∈ T .
As a result, we have

Pr
x∈X

[C(x) = f(x)] ≥ Pr
x∈X

[x /∈ T ]· Pr
x∈X

[C(x) = f(x) | x /∈ T ] > (1−γ)· 1
L

≥ 1−δ.

On the other hand, the size of the circuit C is at most

poly(V ) · O
(

(1/ε2) log
((

V

L + 1

)
/γ

))
· s′ ≤ s,

for some s′ = s/poly(V, 1/ε, log(1/γ)), which contradicts the hardness condition
of f . This implies that the assumption of no hardcore set at the beginning is
false, which proves Lemma 1. ��
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4 Density of Hardcore Sets

For the generalized hardcore set lemma in Section 3, one may wonder whether
it is possible to guarantee the existence of a much larger hardcore set. In this
section, we show that this is basically impossible. Formally, we have the following.

Theorem 1. For any δ = 1− 1
L(1−γ), with γ ∈ (0, 1/2(L+1)) and L ≤ V −1,

there is a (δ, s)-hard function f : {0, 1}n → [V ], for some s ≥ poly(γ, 1/L, 2n),
such that the following condition holds:

– For any I ∈ (
[V ]
L+1

)
and ε < 1

2L , there exists some s′ ≤ poly(n) such that f

has no (I, ε, s′)-hardcore set of density 4(L + 1)γ/
(

V
L+1

)
in {0, 1}n.

Note that the theorem says that even for a function which is hard against very
large circuits of exponential size, one can only guarantee a hardcore set of a small
density against small circuits of polynomial size. However, there is a gap of a
4(L + 1) factor between the density of a hardcore set ruled out by Theorem 1
and the density achievable by our Lemma 1.

Proof. We show the existence of such a function f by a probabilistic method. Let
T denote the first 2(L+1)γ fraction of the input space {0, 1}n, and let us divide
T into

(
V

L+1

)
disjoint parts of equal size (assuming for simplicity of presentation

that T can be divided evenly), denoted by TI , for I ∈ (
[V ]
L+1

)
. Then we choose

the function f : {0, 1}n → [V ] randomly in the way such that independently for
each input x,

f(x) =
{

a random value in I, if x ∈ TI for some I ∈ (
[V ]

L+1

)
;

a random value in [L], if x /∈ T .

We need the following lemma; the proof is by a standard probabilistic argument
and is omitted here due to the page limit.

Lemma 3. Prf [f is not (δ, s)-hard] < 1, for some s = poly(γ, 1/L, 2n).

This lemma implies the existence of a function f which is (δ, s)-hard, and let
us fix one such f . It remains to show that this f satisfies the condition of the
theorem. For any I ∈ (

[V ]
L+1

)
and any H ⊆ f−1(I) of density 4(L + 1)γ/

(
V

L+1

)
in

{0, 1}n, consider the algorithm A which outputs a random value in I ∩ J when
x ∈ TJ for some J ∈ (

[V ]
L+1

)
, and outputs a random value in [L] when x /∈ T .

Then the probability, over x ∈ H and the randomness of A, that A(x) = f(x) is
at least

Pr
x∈H

[x ∈ TI ] · 1
L + 1

+ Pr
x∈H

[x /∈ TI ] · 1
L

=
1

L + 1
+ Pr

x∈H
[x /∈ TI ] ·

(
1
L

− 1
L + 1

)

which is at least 1
L+1 + 1

2 · 1
L(L+1) > 1+ε

L+1 for any ε < 1
2L . This means that

there exists a fixing of the randomness of A to get a deterministic circuit which
preserves the above bound. Since we can do this for every I and H , the condition
of the theorem is satisfied, which proves the theorem. ��



86 C.-J. Lee, C.-J. Lu, and S.-C. Tsai

5 Extracting Computational Randomness

In this section, we show that one can extract randomness from the output of a
hard function. For this, we first show that the output of a hard function looks
somewhat random, even given the input. More precisely, we have the following.

Lemma 4. Let f : X → [V ] be a (δ, s)-hard function, with δ ≥ 1 − 2−k for
some positive k ∈ R. Let X be the uniform distribution over X. Then for any
ε ∈ (0, 1), there exist some s′ ≥ s/poly(V, 1/ε) and a distribution V (correlated
with X ) such that the following two conditions hold.

– The distributions (X , f(X )) and (X ,V) have no (ε, s′)-distinguisher.
– Prx∈X [H∞(V|X = x) < 
k/3�] ≤ 2−k/3.

The proof of Lemma 4 is omitted here due to the page limit. The basic idea
is that by applying Lemma 1 repeatedly, we can find a collection of disjoint
hardcore sets covering a large fraction of inputs. Then by extending the idea in
[17], we can show that when a randomly sampled input x falls into one of these
hardcore sets, its output looks like a random value from some set.

According to Lemma 4, the output distribution of a hard function looks like
one with some min-entropy, given a randomly selected input. This suggests the
possibility that one can simply apply any extractor to extract randomness from
the output. Formally, we have the following theorem, for the case of seeded
extractors. Due to the page limit, the proof is omitted here.

Theorem 2. Let f : X → {0, 1}� be a (δ, s)-hard function with δ ≥ 1−2−k, and
let X be the uniform distribution over X. Then for any seeded (k/3, ε)-extractor
Ext : {0, 1}� × {0, 1}d → {0, 1}m computable in SIZE(s0), the distributions
(X ,Ext(f(X ),Ud)) and (X ,Um) have no (ε̄, s̄)-distinguisher, for some ε̄ ≤ 2ε+
2−k/3 and s̄ ≥ s/poly(2�, 1/ε)− s0.

Note that many constructions of seeded extractors are in fact computable by
small circuits, of size s0 ≤ poly(�/ε). Then, for example, when k ≥ Ω(�) and
ε = poly(2−�), we have ε̄ ≤ 2−Ω(�) and s̄ ≥ s/2O(�). This means that as long as
s is large enough (or � is small enough), any single-source seeded extractor can
be used to extract randomness in the computational setting.

For the case of seedless extractors, we have the following. Due to the page
limit, the proof is omitted here.

Theorem 3. For i ∈ [t], let f (i) : X(i) → {0, 1}� be a (δ(i), s)-hard func-
tion with δ(i) ≥ 1 − 2−k(i)

, and let k =
∑

i∈[t] k
(i). Let X = (X (1), . . . ,X (t)),

where each X (i) is an independent uniform distribution over X(i), and let
f(X ) = (f (1)(X (1)), . . . , f (t)(X (t))). Then for any seedless t-source (k/7, ε)-
extractor Ext : ({0, 1}�)t → {0, 1}m computable in SIZE(s0), the distribu-
tions (X ,Ext(f(X ))) and (X ,Um) have no (ε̄, s̄)-distinguisher, for some ε̄ ≤
(t + 1)ε + 2−Ω(k2/t�2) and s̄ ≥ s/poly(2�, 1/ε)− s0.

Let Ext be the seedless t-source extractor in [11], which is computable by a
small circuit, with s0 ≤ poly(t�/ε). Then, for example, when tε = poly(2−�)
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and k ≥ �c for a large enough constant c, we have ε̄ ≤ 2−Ω(�) and s̄ ≥ s/2O(�).
Again, this means that when s is large enough (or � is small enough), any seedless
multi-source extractor can also work in the computational setting.

6 Loss of Circuit Size

Recall that in our generalized hardcore set lemma (Lemma 1), there is a loss of
circuit size by a factor of poly(V ) for functions with V output values. That is,
from a (δ, s)-hard function, we can only guarantee the existence of an (I, ε, s′)-
hardcore set with s′ ≤ s/poly(V ). In this section, we show that such a loss of
circuit size is in fact unavoidable, if the proof is done in a black-box way. Before
we can formally state our result, we need to introduce some definitions. Let FX,V

denote the collection of functions from X to [V ].

Definition 6. Given a collection G ⊆ FX,V , we say that a function f ∈ FX,V is
(k, ρ, ε, G)-easy if for any I ∈ (

[V ]
k

)
and any H ⊆ f−1(I) of density |H |/|X | ≥ ρ,

there is a function g ∈ G such that Prx∈H [g(x) = f(x)] ≥ 1+ε
k .

Next, we define our notion of a black-box proof, which is realized by some oracle
algorithm R(·). We allow R to be non-uniform and randomized, and we use the
notation RG;α

r (x) to denote that R is given an oracle G, an advice string α, a
random string r, and an input x.

Definition 7. We say that an oracle algorithm R(·) realizes a (δ, k, ρ, ε, S) black-
box proof of hardcore sets for functions in FX,V , if the following holds. For any
f ∈ FX,V and any G ⊆ FX,V with |G| = S, if f is (k, ρ, ε, G)-easy, then there
exists some advice α such that

Pr
x,r

[
RG;α

r (x) �= f(x)
]

< δ.

Here we allow R to make adaptive queries, but for simplicity we consider only
the case that R on input x queries functions in the oracle at all x. That is, R
may first queries gi(x) for some gi ∈ G, and depending on the answer, R next
queries gj(x) for some gj ∈ G, and so on. Note that our proof for the generalized
hardcore sets is done in this black-box way, and so do all the known proofs
for Impagliazzo’s hardcore set lemma. Our result in this section shows that any
algorithm realizing such a black-box proof must make many queries to the oracle.

Theorem 4. Suppose V ≥ ω(1), 0 < δ ≤ 1 − (4 logV )/V , 0 < ε ≤ 1/3,
0 < ρ < 1, and S ≥ Ω((V k+1k3/ε2) log(1/ρ)). Consider any oracle algorithm
which uses an advice of length τ ≤ o(δ|X |) and realizes a (δ, k, ε, S, ρ) black-
box proof of hardcore sets for functions in FX,V . Then it must make at least
Ω((V k/ε2) log(1/δ)) oracle queries.

Note that the theorem says that even if we start from a very hard function,
with δ close to one, and even if we only want a hardcore set with k = 2 output
values, any algorithm realizing such a black-box proof still need to make many
queries, which corresponds to a large loss of circuit size. In particular, a loss by
a V factor is unavoidable. Now let us prove the theorem.
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Proof. Consider any R which realizes such a black-box proof. Assume that R
makes at most q = o((V k/ε2) log(1/δ)) oracle queries, and we will show that this
leads to a contradiction. In particular, we will show the existence of a function
f and a collection of functions G = {gI,i : I ∈ (

[V ]
k

)
and i ∈ [T ]}, for some

T = Ω((V k3/ε2) log(1/ρ)), such that f is (k, ρ, ε, G)-easy but Prx,r[RG;α
r (x) �=

f(x)] ≥ δ, for any advice α, which violates the requirement for a black-box proof.
We will prove the existence of such f and G by a probabilistic argument.

We choose f ∈ FX,V randomly such that independently for each input x, f(x)
takes a uniformly random value in [V ]. Then we choose each gI,i in the following
way:

– Independently for each input x ∈ f−1(I), gI,i(x) takes the value f(x) with
probability (1+2ε)/k and each other value in I with probability (1−2ε/(k−
1))/k.

– Independently for each input x /∈ f−1(I), gI,i(x) takes each value in I with
probability 1/k.

Our key lemma is the following.

Lemma 5. For any advice α and any input x, we have Prf,G,r[RG;α
r (x) �=

f(x)] ≥ √
δ.

Due to the page limit, we omit the formal proof of Lemma 5 and only sketch the
proof idea here. Consider any advice α and any input x. Recall that in our model,
any query made by RG;α(x) is of the form gI,i(x), for some gI,i ∈ G, and the
outcome of such a query has a distribution close to the uniform over the k values
in I, which is independent of f . When R makes only a small number of queries,
we can show that the distribution of the sequence of outcomes corresponding
to the queries is still close to a distribution which is independent of f , with the
outcome of each query being independent and uniform over some k values. That
is, such an R cannot fully exploit the small correlation between f and G, and
hence it behaves similarly when the useful oracle G is replaced by a useless one
which is independent of f . However, without a useful oracle, R cannot possibly
predict a random f well, which implies that even given G, R cannot predict f
well either.

Using this lemma together with a Hoeffding bound, one can show that for any
advice α,

Pr
f,G,r

[
Pr
x

[
RG;α

r (x) �= f(x)
]

< δ
]
≤ 2−Ω(δ|X|).

Then, using a union bound, we have

Pr
f,G,r

[
∃α ∈ {0, 1}τ : Pr

x

[
RG;α

r (x) �= f(x)
]

< δ
]
≤ 2τ · 2−Ω(δ|X|) ≤ o(1), (2)

when τ ≤ o(δ|X |). Next, we need the following; the proof is by a simple proba-
bilistic argument and is omitted here due to the page limit.

Lemma 6. Prf,G [f is not (k, ρ, ε, G)-easy] ≤ o(1).
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From Lemma 6 and the bound in (2), we can conclude the existence of some
f and G such that f is (k, ρ, ε, G)-easy but Prf,G,r[RG;α

r (x) �= f(x)] ≥ δ for
any advice α, which contradicts the requirement for a black-box proof of hard-
core sets. Therefore, any R realizing such a black-box proof must make at least
Ω((V k/ε2) log(1/δ)) queries, which proves Theorem 4. ��
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